
J Algebr Comb (2015) 42:225–244
DOI 10.1007/s10801-014-0579-5

Construction of chiral 4-polytopes with alternating
or symmetric automorphism group

Marston Conder · Isabel Hubard · Eugenia O’Reilly-Regueiro ·
Daniel Pellicer

Received: 28 May 2014 / Accepted: 20 December 2014 / Published online: 14 January 2015
© Springer Science+Business Media New York 2015

Abstract In this paper we describe a construction for finite abstract chiral 4-polytopes
with Schläfli type {3, 3, k} (with tetrahedral facets) and with an alternating or sym-
metric group as automorphism group. We use it to prove that for all but finitely many
n, both An and Sn are the automorphism groups of such a polytope. We also show that
the vertex-figures of the polytopes obtained from our construction are chiral.

Keywords Abstract polytopes · Chiral polytopes · Symmetric groups · Alternating
groups

1 Introduction

Abstract polytopes generalise the classical notion of convex geometric polytopes to
more general structures. Highly symmetric examples include not only classical regular
polytopes such as the Platonic solids and more exotic structures such as the 120-cell
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and600-cell, but also non-degenerate regularmaps on surfaces (such asKlein’s quartic,
of genus 3).

Roughly speaking, an abstract polytope P is a partially ordered set endowed with
a rank function, satisfying certain conditions that arise naturally from a geometric
setting. Such objects were proposed by Grünbaum in the 1970s, and their definition
(initially as ‘incidence polytopes’) and theory were developed by Danzer and Schulte.

Every automorphism of an abstract polytope is uniquely determined by its effect
on any flag, which is a maximal chain in P (when this is regarded as a poset). The
most symmetric examples are regular, with all flags lying in a single orbit, and a
comprehensive description of these is given in a book on the subject by McMullen
and Schulte [6]. These objects are also known as ‘thin residually connected geometries
with a linear diagram’.

An interesting class of exampleswhich are not quite regular are the chiral polytopes,
for which the automorphism group has two orbits on flags, with any two flags that
differ in a single element lying in different orbits. The study of chiral abstract polytopes
was pioneered by Schulte and Weiss (see [10,11] for example). Chiral polytopes of
rank 3 are essentially the same as chiral maps on surfaces, with some modest extra
geometric conditions.

For quite some time, the only known finite examples of chiral polytopes had ranks
3 and 4, but then some finite examples of rank 5 were constructed by Conder et al.
[3], and now quite a few such examples are known. Many small examples of regular
or chiral polytopes have been assembled in collections, as in [4,5], for example.

In early 2009, the first author and Alice Devillers devised a construction for chiral
polytopes whose facets are simplices, and used this to construct examples of finite
chiral polytopes of ranks 6, 7 and 8 (unpublished). At about the same time, the fourth
author of this paper devised a quite different method for constructing finite chiral
polytopes with given regular facets, and used this construction to prove the existence
of finite chiral polytopes of every rank d ≥ 3; see [7]. The latter polytopes are enor-
mous, however, and not easy to describe. It is still an open problem to find alternative
constructions for families of chiral polytopes of relatively small order, or which have
more easily described automorphism groups. A large number of other open questions
about chiral polytopes are given by the fourth author in [8].

In this paper, we make a contribution towards producing infinite families of chiral
polytopes with well-known groups. Specifically, we describe a construction for chiral
4-polytopes of type {3, 3, k}, with tetrahedral facets, using awayof combining together
permutation representations of the tetrahedral group A4 into the automorphism group.

Our main result is the following:

Theorem 1.1 For all but finitely many positive integers n, both An and Sn are the
automorphism groups of chiral 4-polytopes of type {3, 3, k} for some k.

In fact our construction proves this theorem for all n ≥ 50, but thanks to an easy
computation withMagma [1], we know it is also true for 20 ≤ n ≤ 49 and hence for
all n ≥ 20. In addition, we know that the only smaller values of n for which An is the
automorphism group of such a chiral 4-polytope are 9, 13, 14, 15, 17 and 18, while
the only such values of n for Sn are 12, 16, 17, 18 and 19. Examples of generating
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permutations for An and Sn in the cases not covered by our construction are given in
[2].

In a planned sequel, we will extend the ideas presented here to the construction of
infinite families of chiral polytopes of larger rank d, using permutation representations
of the alternating group Ad (as the rotation group of the regular (d−1) simplex) to
build their automorphism groups.

Here, we give some further background on regular and chiral polytopes in Sect.
2, and then in Sect. 3 we set up some of the building blocks and other things needed
for our construction. We describe our construction and prove Theorem 1.1 in Sect. 4.
Finally, in Sect. 5 we show that the vertex-figures of the chiral 4-polytopes resulting
from our construction are all chiral.

2 Abstract polytopes and chirality

An abstract d-polytope (or abstract polytope of rank d) is a partially ordered set P ,
the elements and maximal totally ordered subsets of which are called faces and flags
respectively, such that certain properties are satisfied, which we explain below.

2.1 Definition of abstract polytopes

First, P contains a minimum face F−1 and a maximum face Fd , and there is a rank
function from P to the set {−1, 0, . . . , d} such that rank(F−1) = −1 and rank(Fd) =
d. Every flag ofP contains precisely d+2 elements, including F−1 and Fd . The faces
of rank i are called i -faces, the 0-faces are called vertices, the 1-faces are called edges,
and the (d − 1)-faces are called facets. If F and G are faces of ranks r and s with
F ≤ G, then we say that F andG are incident, we defineG/F := {H | F ≤ H ≤ G},
and call this a section ofP , of rank s−r−1.When convenient, we identify the section
G/F−1 with the face G itself in P , and if v = F0 is a vertex, then the rank d − 1
section Fd/F0 := {H | F0 ≤ H} is called the vertex-figure of P at v.

Whenever G/F is a rank 1 section (with rank(G) − rank(F) = 2), there are
precisely two faces H1 and H2 such that F < Hi < G. This property is called the
diamond condition. It implies that for any flag� and for every i ∈ {0, . . . , d−1}, there
is a unique flag �i differing from � in precisely the i-face. We call �i the i -adjacent
flag for �.

Finally, for any two flags � and �′ of P , there exists a sequence �0, �1, . . . , �m

of flags of P from �0 = � to �m = �′ such that �k−1 is adjacent to �k , and
� ∩ �′ ⊆ �k , for 1 ≤ k ≤ m. The last condition is known as strong flag-connectivity
and completes the definition of an abstract d-polytope.

In this paper, we will deal with finite polytopes (namely those with finite rank and
only finitely many faces of each rank).

Every rank 2 section G/F between an (i − 2)-face F and an incident (i + 1)-face
G of a finite abstract polytope P is isomorphic to the face lattice of a polygon, and
by convention, we assume that each such polygon is non-degenerate (having at least 3
sides). If the number of sides of each such polygon depends only on i , and not on F or
G, then we say that P is equivelar. Regular and chiral polytopes (defined below) are
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examples of equivelar polytopes.We define the Schläfli type of an equivelar d-polytope
P as {p1, . . . , pd−1}, when each section between an (i − 2)-face and an (i + 1)-face
is an abstract pi -gon. By finiteness, pi < ∞ for all i , and by our non-degeneracy
assumption, pi > 2 for all i.

2.2 Automorphisms and regular polytopes

An automorphism of an abstract polytope P is an order-preserving permutation of its
faces.We denote the group of automorphisms ofP by�(P). By the diamond condition
and strong flag-connectivity, every automorphism is uniquely determined by its effect
on any flag, and it follows that the number of automorphisms of P is bounded above
by the number of flags of P .

A d-polytope P is said to be regular whenever �(P) acts transitively (and there-
fore regularly) on the set of all flags of P . When that happens, the automorphism
group�(P) is generated by involutions ρ0, . . . , ρd−1, where ρi is the unique automor-
phism mapping a given base flag � to its i-adjacent flag �i . Moreover, the generators
ρ0, . . . , ρd−1 satisfy

ρ2
i = 1 for all i, (1)

(ρiρ j )
2 = 1 whenever |i − j | ≥ 2. (2)

These generators also satisfy the following intersection condition:

〈 ρi | i ∈ I 〉∩〈 ρi | i ∈ J 〉 = 〈 ρk | k ∈ I ∩ J 〉 for all I, J ⊆ {0, 1, . . . , d−1}. (3)

The stabiliser in �(P) of the i-face of the base flag� is generated by {ρ0, . . . , ρd−1}\
{ρi }, for 0 ≤ i < d, and the order of the element ρi−1ρi coincides with the i-th term
pi of the Schläfli type {p1, . . . , pd−1}, for 1 ≤ i < d.

These properties of the automorphism group of a regular polytope can be exploited
to construct examples from particular groups, called string C-groups. A string C-group
of rank d is a finite group � and an associated set {ρ0, . . . , ρd−1} of d generators for
� which satisfy (1) and (2), as well as the intersection condition (3). For any such �,
we may construct a regular d-polytope P with � = �(P), by taking as its i-faces the
(right) cosets of the subgroup generated by {ρ0, . . . , ρd−1} \ {ρi }, for 0 ≤ i < d, and
defining incidence by non-empty intersection; see [6, Theorem 2E11].

Hence up to isomorphism, regular d-polytopes are in one-to-one correspondence
with string C-groups.

Next, we define the rotation group �+(P) of a regular d-polytope P as the sub-
group of �(P) consisting of words of even length in the generators ρ0, . . . , ρd−1,
or equivalently, the subgroup generated by the abstract rotations σi = ρi−1ρi for
1 ≤ i < d. The index of �+(P) in the full automorphism group �(P) is at most 2.
Motivated by what happens for maps (in rank 3), we say that P is orientably regular
whenever this index is 2, and otherwise we say that P is non-orientably regular.
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Note that σi = ρi−1ρi has order pi for all i . Moreover, these generators satisfy the
relations

(σiσi+1 · · · σ j )
2 = 1 for 1 ≤ i < j < d. (4)

The involutory element τi, j = σiσi+1 · · · σ j is called an abstract half-turn, for 1 ≤
i < j < d. If we extend this definition of τi, j by setting τ0,i = τi,d = 1 for 0 ≤ i ≤ d,
and τi,i = σi for 0 < i < d, so that τi, j is defined whenever 0 ≤ i ≤ j ≤ d, and we
define the subgroup HI = 〈 τi+1, j | i, j ∈ I, i < j 〉 for every I ⊆ {−1, 0, . . . , d},
then these subgroups satisfy the intersection condition

HI ∩ HJ = HI∩J for all I, J ⊆ {−1, 0, . . . , d}. (5)

2.3 Chiral polytopes

The abstract d-polytope P is said to be chiral if its automorphism group �(P) has
two orbits on flags, with every two adjacent flags lying in different orbits. The reason
for this terminology is that any such P has maximum possible ‘rotational’ symmetry
(admitting analogues of the abstract rotations σi = ρi−1ρi ), without admitting the
‘reflections’ ρi .

The rank d of a chiral polytope is at least 3, since every abstract 2-polytope is
combinatorially isomorphic to a regular convex polygon with at least 3 sides (by our
non-degeneracy assumption). The facets and vertex-figures of a chiral d-polytope P
may be regular or chiral, but the (d − 2)-faces (and dually the co-edges) are always
regular (by a nice argument given in [10, Proposition 9]).

The structure of the automorphism group of a chiral polytope P closely resembles
that of the rotation group of a regular polytope. In particular, �(P) is generated by
elements σ1, . . . , σd−1, where σi maps a given base flag � to the flag (�i )i−1 which
differs from � in its (i − 1)- and i-faces. The rank 2 section of P between the (i − 2)-
and (i + 1)-faces of � is then isomorphic to a regular pi -gon for some pi , and the
automorphism σi permutes the (i − 1)- and i-faces of this section in two cycles of
length pi .

Moreover, the generators σi also satisfy (4), and if we define elements τi, j =
σiσi+1 · · · σ j for 1 ≤ i < j < d, and exactly as in the previous subsection for other
values of i and j , then the subgroups HI = 〈 τi+1, j | i, j ∈ I 〉 also satisfy the
intersection condition (5).

For simplicity and consistency, we still refer to these generators σi of �(P) as
abstract rotations, and the products τi, j for 1 ≤ i < j < d as abstract half-turns.
Also we often refer to the automorphism group of the chiral polytope P as its rotation
group and sometimes denote it by �+(P).

Conversely, any finite group � generated by d − 1 elements σ1, σ2, . . . , σd−1 sat-
isfying (4) and the intersection condition (5) is the rotation subgroup of an abstract
d-polytope P that is either (orientably) regular or chiral; see [10, Theorem 1]. Indeed
P is regular if and only if there is a group automorphism ρ of � of order 2 such that
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σ
ρ
i =

⎧
⎨

⎩

σ−1
i when i = 1,

σ 2
1 σi when i = 2,

σi when 2 < i < d.

(6)

Note (for later use) that for rank 3, the automorphism ρ has to invert σ1 and take σ2
to σ 2

1 σ2 = σ1σ
−1
2 σ−1

1 , so the composite of ρ with conjugation by σ1 inverts both σ1
and σ2; the existence of such an automorphism is the more customary test for chirality
of maps.

Each chiral d-polytope P occurs in two enantiomorphic forms, which may be
understood as P and its ‘mirror image’ (and hence as a right- and left-handed version
of P). The group of the mirror image of P is also �(P), but with respect to the
generators σ−1

1 , σ 2
1 σ2, σ3, . . . , σd−1. Further information can be found in [11].

2.4 Chiral 4-polytopes

In this paper we concentrate on chiral polytopes of rank d = 4.
By [10, Lemma 11], the intersection condition for a chiral 4-polytope P can be

reduced to just three cases, as follows:

〈σ1〉 ∩ 〈σ2〉 = {1}, 〈σ2〉 ∩ 〈σ3〉 = {1} and 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉. (7)

We will also make use of an alternative generating set for �+(P), namely
{τ1, τ2, τ3}, where τi = τ1,i = σ1σ2 · · · σi for 1 ≤ i ≤ 3. In terms of these three
generators, the relations (σiσi+1 · · · σ j )

2 = 1 in (4) are equivalent to

(τ1τ3)
2 = τ 22 = τ 23 = 1. (8)

Furthermore, the test in (6) for regularity of P simplifies to the existence of a group
automorphism ρ of �+(P) such that

τ
ρ
i = τ−1

i for 1 ≤ i ≤ 3. (9)

Finally we note that 〈τ1〉 = 〈σ1〉 and 〈τ1, τ2〉 = 〈σ1, σ2〉, but a comparison of orders
shows that 〈τ2〉 �= 〈σ2〉, and similarly it need not be true that 〈τ2, τ3〉 = 〈σ2, σ3〉.

3 Actions of A4

In Sect. 4 we will construct families of chiral 4-polytopes whose facets are tetrahedra.
The construction involves extending an intransitive action of the rotation group A4 of
the tetrahedron on a set with n elements, to the standard action of An or Sn on the same
set, by adjoining a new permutation that represents a generator of the automorphism
group of the 4-polytope.

In this sectionwe create somebuilding blocks for the construction, via transitive per-
mutation representations of A4. We will be particularly interested in the permutations
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τ1 and τ2 representing the generators of A4 as the rotation group of the tetrahedron.
These permutations satisfy the relations τ 3

1 = τ 2
2 = (τ−1

1 τ2)
3 = 1.

3.1 Building blocks

The transitive representations of A4 that we use as building blocks are those on 1, 4, 6
and 12 points, as follows:

Representation A: the trivial representation of A4, of degree 1;
Representation B: the standard representation of A4 on 4 points, with

τ1 = (1, 3, 2)(4) and τ2 = (1, 2)(3, 4);

Representation C: the transitive representation of A4 on 6 points, given by

τ1 = (1, 2, 3)(4, 5, 6) and τ2 = (1, 4)(2, 5);

Representation D: the regular representation of A4 on 12 points, given by

τ1 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) and

τ2 = (1, 4)(2, 7)(3, 10)(5, 12)(6, 8)(9, 11).

Note that these transitive representations are unique up to re-labelling points, because
A4 has a single conjugacy class of subgroups of each of the orders 12, 3, 2 and 1.

We will also be interested in the orbits of the subgroup 〈τ1〉. In Representation B
there are two orbits, of lengths 3 and 1, respectively, while in Representations C and
D there are two of length 3 and four of length 3, respectively.

For later use, we illustrate these representations in Fig. 1 by subdivided boxes, with
each subdivision giving the length of an orbit of 〈τ1〉.

3.2 Extending the action of A4

Our construction involves extending an intransitive action of A4 = 〈τ1, τ2〉 to a tran-
sitive action of 〈τ1, τ2, τ3〉, by a suitable definition of the third generator τ3.

The first and third of the relations (τ1τ3)
2 = τ 2

2 = τ 2
3 = 1 given in (8) imply that τ3

must be an involution which conjugates the generator τ1 to its inverse. For this reason,
τ3 must permute the fixed points of 〈τ1〉 among themselves, and permute the orbits of
length 3 among themselves. To make the resulting action of 〈τ1, τ2, τ3〉 transitive, we
must link together the orbits of A4 = 〈τ1, τ2〉, and this can be achieved by defining τ3

Fig. 1 Transitive permutation representations of A4 = 〈τ1, τ2〉 on 1, 4, 6 and 12 points
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in such a way as to link together the orbits of 〈τ1〉, perhaps sometimes linking an orbit
to itself.

There is just one way of linking together two orbits of 〈τ1〉 of length 1, namely by
making τ3 interchange the single points from the orbits. On the other hand, linking
together two different orbits of 〈τ1〉 of length 3 can be done in three ways. If τ1
acts on one orbit as the 3-cycle (y1, y2, y3), where y1 = min{y1, y2, y3}, and on the
other as the 3-cycle (z1, z2, z3), where z1 = min{z1, z2, z3}, then we have these three
possibilities for the effect of τ3 on the set {y1, y2, y3, z1, z2, z3}:

(y1, z1)(y2, z3)(y3, z2) . . . type I

(y1, z2)(y2, z1)(y3, z3) . . . type II

(y1, z3)(y2, z2)(y3, z1) . . . type III.

In the special case where these orbits are the same (so that (y1, y2, y3) = (z1, z2, z3)),
the element τ3 induces (y2, y3), (y1, y2) and (y1, y3) for types I, II and III, respectively.

Also at this stage, we note that for an orientably regular or chiral 4-polytope P of
type {3, 3, k}, whose facets are tetrahedra, the reduced intersection condition (7) can
be simplified even further.

Lemma 3.1 Let � be a transitive permutation group of degree n generated by three
elements σ1, σ2 and σ3 satisfying

σ 3
1 = σ 3

2 = (σ1σ2)
2 = (σ2σ3)

2 = (σ1σ2σ3)
2 = 1

with 〈σ1, σ2〉 ∼= A4. If 〈σ2, σ3〉 is intransitive and σ2 is not a power of σ3, then the
intersection condition (7) holds.

Proof First 〈σ1〉 ∩ 〈σ2〉 = {1}, since σ1 and σ2 are two elements of order 3 generating
A4. Next, observe that 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 is a subgroup of 〈σ1, σ2〉, containing 〈σ2〉
and that 〈σ2〉 is maximal in 〈σ1, σ2〉, since every cyclic subgroup of order 3 in A4 is
maximal in A4. It follows that if 〈σ1, σ2〉∩〈σ2, σ3〉 �= 〈σ2〉, then 〈σ1, σ2〉∩〈σ2, σ3〉 =
〈σ1, σ2〉, and therefore σ1 ∈ 〈σ2, σ3〉, which gives � = 〈σ1, σ2, σ3〉 = 〈σ2, σ3〉.
But that is clearly impossible, because � is transitive while 〈σ2, σ3〉 is not. Thus
〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉. Finally, 〈σ2〉 ∩ 〈σ3〉 = {1}, since the element σ2 of order
3 does not lie in 〈σ3〉. 
�

3.3 Other facts needed

To conclude this section we mention some results from group theory that we need for
the construction presented in Sect. 4, specifically for recognising when a transitive
subgroup of Sn is either An or Sn , and also about the automorphism groups of An and
Sn .

Theorem 3.2 (Jordan, 1873) Let G be a primitive group of permutations on a set X
of degree n, and suppose G contains an element that acts as a p-cycle, fixing the other
n − p points, where p is a prime such that p ≤ n − 3. Then G is isomorphic to An or
Sn.
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For a proof, see [12, Theorem 13.9]. The next theorem is well known; proofs can
be found in [9, Corollary 7.7] for Aut(Sn), and [13, Theorem 2.3] for Aut(An), for
example.

Theorem 3.3 For every n ≥ 7, every automorphism of An and every automorphism of
Sn is induced by conjugation by an element of Sn. In particular,Aut(An) ∼= Aut(Sn) ∼=
Sn for every n ≥ 7.

4 Construction of chiral 4-polytopes

In this section we use the building blocks given earlier to construct two families of
chiral 4-polytopes, with automorphism groups Sn and An respectively, for all n ≥ 46.

4.1 General approach

We let X be the set {1, 2, . . . , n}, and define permutations τ1, τ2, and τ3 ∈ Sn such
that 〈τ1, τ2〉 = A4 and τ1, τ2, and τ3 satisfy (8). In order to prove that the construction
actually gives a chiral 4-polytope, we need to do three things:

Step (a): Show that � = 〈τ1, τ2, τ3〉 is An or Sn .
Our construction ensures that the action of � is transitive on X . We exhibit an

element of � that acts as a cycle of prime length p, fixing at least 3 points, and then
use this to prove that � is primitive on X and apply Theorem 3.2 to give � ∼= An or
� ∼= Sn .

Step (b): Show that � is the rotation subgroup of an orientably regular polytope or
the automorphism group of a chiral polytope.

For this step, all we need to do is prove that the permutations σ1 = τ1, σ2 = τ−1
1 τ2

and σ3 = τ−1
2 τ3 satisfy the reduced form of the intersection condition given in (7). By

Lemma 3.1, it is sufficient to show that 〈σ2, σ3〉 is intransitive on X and that σ2 �∈ 〈σ3〉.
Step (c): Verify chirality, by ruling out the existence of a permutation ρ ∈ Sn such that
τ

ρ
i = τ−1

i for all i ∈ {1, 2, 3}.
Note the permutations τ1 and τ2 are always even, since they come from permutation

representations of A4. It follows that once we have completed step (a), we can decide
whether � is An or Sn by simply checking whether τ3 is even or odd. In some cases
we will make an adjustment to τ3 that will still ensure that � = 〈τ1, τ2, τ3〉 is the
automorphism group of some chiral 4-polytope of type {3, 3, k} for some k, but has a
different parity, in which case we change � from an alternating group to a symmetric
group, or vice versa.

We will consider a number of cases, based on the residue class of n mod 6. Before
that, we give a concrete example (for n = 46), which will show how most of the
construction works. This can then be adapted in a number of ways for other values of
the degree n.
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4.2 Example: degree n = 46

Consider the following three permutations on 46 points:

τ1 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)

(22, 23, 24)(25, 26, 27)(28, 29, 30)(31, 32, 33)(34, 35, 36)(37, 38, 39)

(40, 41, 42)(43, 44, 45),

τ2 = (1, 4)(2, 7)(3, 10)(5, 12)(6, 8)(9, 11)(13, 16)(14, 17)(19, 22)(20, 23)

(25, 28)(26, 29)(31, 34)(32, 35)(37, 40)(38, 41)(43, 44)(45, 46),

τ3 = (1, 2)(4, 7)(5, 9)(6, 8)(10, 13)(11, 15)(12, 14)(16, 19)(17, 21)(18, 20)(22, 25)

(23, 27)(24, 26)(28, 31)(29, 33)(30, 32)(34, 39)(35, 38)(36, 37)(40, 43)

(41, 45)(42, 44).

These satisfy the required relations, and generate a transitive subgroup of S46. The
orbits of 〈τ1, τ2〉 are the sets {1, 2, . . . , 12}, {13, 14, . . . , 18}, {19, 20, . . . , 24}, {25,
26, . . . , 30}, {31, 32, . . . , 36}, {37, 38, . . . , 42} and {43, 44, 45, 46}, of lengths 12, 6,
6, 6, 6, 6 and 4. The way in which the orbits of 〈τ1〉 are linked together by τ3 is
illustrated in Fig. 2, where the Roman numerals indicate the type of link.

In this representation, observe that the elements σ2 = τ−1
1 τ2 and σ3 = τ−1

2 τ3 =
τ2τ3 are as follows:

σ2 = (1, 10, 5)(2, 4, 8)(3, 7, 11)(6, 12, 9)(13, 15, 17)(14, 16, 18)(19, 21, 23)

(20, 22, 24)(25, 27, 29)(26, 28, 30)(31, 33, 35)(32, 34, 36)(37, 39, 41)

(38, 40, 42)(43, 46, 45);
σ3 = (1, 7)(2, 4)(3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10)(5, 14, 21, 17, 12, 9, 15, 11)

(18, 20, 27, 23)(24, 26, 33, 29)(30, 32, 38, 45, 46, 41, 35)

(36, 37, 43, 42, 44, 40).

In particular, the cycle structure of σ3 is 12 22 42 61 71 81 111, and so its order is 1848.
Also σ 168

3 is an 11-cycle, namely (3, 25, 34, 16, 13, 31, 28, 10, 19, 39, 22).
We claim that the action of � = 〈τ1, τ2, τ3〉 is primitive on {1, . . . , 46}. To verify

this, we assume the contrary (but we will ignore the fact that 3 and 11 do not divide 46,
just to exhibit amore general argument).All the 11pointsmovedbyσ 168

3 would have to
belong to the sameblock of imprimitivity, sayU , since 11 is prime and every block con-
taining a fixed point of σ 168

3 would be fixed by σ 168
3 . Next, τ2 preservesU since it inter-

changes the points 3 and 10 ofU , and similarly, τ3 preservesU , since it fixes the point
3. It follows that τ1 cannot preserveU , and so the images ofU under τ1 and its inverse

Fig. 2 Orbit links for a permutation representation of degree 46
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τ 2
1 must be new blocks V andW , containing {1, 26, 35, 17, 14, 32, 29, 11, 20, 37, 23}
and {2, 27, 36, 18, 15, 33, 30, 12, 21, 38, 24}, respectively. Now τ2 preserves both V
andW , since it interchanges the points 26 and 29 and fixes the point 24, and similarly,
τ3 interchanges V with W since it interchanges the points 1 and 2. By transitivity, it
follows that there are just three blocks, with τ1, τ2 and τ3 inducing the permutations
(U, V,W ), (U )(V )(W ) and (U )(V,W ) on them. In particular, τ2 preserves every
block, while τ1 preserves no block. But that is impossible, since τ1 fixes the point 46.

By Theorem 3.2, we find that � = A46 or S46, and since τ3 is even, we have
� = A46.

Next, we verify the intersection condition. First, 〈σ2, σ3〉 = 〈τ−1
1 τ2, τ2τ3〉 is intran-

sitive, since it has {2, 4, 8} as an orbit, and second, σ2 �∈ 〈σ3〉, since σ2 = τ−1
1 τ2

induces the 3-cycle (1, 10, 5), while σ3 interchanges the points 1 and 7. Hence by
Lemma 3.1, the intersection condition (7) holds.

Thus A46 is the rotation group of a regular or chiral 4-polytope P (of type
{3, 3, 1848}).

Next, supposeP is regular. Then theremust exist an involutory group automorphism
ρ of � inverting each of τ1, τ2 and τ3. By Theorem 3.3, this automorphism ρ can be
taken as a permutation in S46. In particular, since ρ inverts τ1, it must permute the
orbits of 〈τ1〉 among themselves, and hence must fix the point 46. Then since ρ inverts
τ2, it follows that ρ preserves the orbit {45, 46} of 〈τ2〉 and hence fixes the point 45.
In turn, since ρ inverts τ1, it must interchange the other two points 43 and 44 of the
3-cycle (43, 44, 45) of τ1, and then must interchange the orbits {40, 43} and {42, 44}
of 〈τ3〉, and hence must interchange the points 40 and 42. But this is impossible, since
42 is fixed by τ2, while 40 is not. Thus P is a chiral 4-polytope, of type {3, 3, 1848},
with automorphism group A46.

To do the same for S46, we define τ1 and τ2 exactly as above, but now take

τ3 = (1, 2)(4, 6)(7, 8)(10, 13)(11, 15)(12, 14)(16, 19)(17, 21)(18, 20)(22, 25)

(23, 27)(24, 26)(28, 31)(29, 33)(30, 32)(34, 39)(35, 38)(36, 37)(40, 43)

(41, 45)(42, 44).

This is almost the same as the permutation taken for τ3 above, but with the three
transpositions (4, 7), (5, 9) and (6, 8) replaced by the two transpositions (4, 6) and
(7, 8), and two fixed points 5 and 9.With regard to Fig. 2, we have replaced the τ3-link
between the first two orbits of 〈τ1〉 by self-links for those two orbits, of types III and
II respectively. This time we have

σ3 = (1, 6, 7)(2, 8, 4)(3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10)(5, 14, 21, 17, 12)

(9, 15, 11)(18, 20, 27, 23)(24, 26, 33, 29)(30, 32, 38, 45, 46, 41, 35)

(36, 37, 43, 42, 44, 40),

which has cycle structure 33 42 51 61 71 111, so its order is 4620.
Now σ 420

3 is an 11-cycle, in fact the 8th power of the one found before, and it can be
used to prove that the action of � = 〈τ1, τ2, τ3〉 is primitive, and hence that � = A46
or S46. This time τ3 is odd, so � = S46. Again the intersection condition is satisfied
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(noting that {2, 4, 8} is still an orbit of 〈σ2, σ3〉 = 〈τ−1
1 τ2, τ2τ3〉 and that (1, 10, 5) is

still a cycle of σ2), and the same argument as before proves chirality. Thus we have
another chiral 4-polytope, but now of type {3, 3, 4620}, and with automorphism group
S46.

4.3 Adding extra orbits of A4 of length 6

Now take the above example (for n = 46) and insert an additional orbit of length 6 for
〈τ1, τ2〉 ∼= A4 between the last two on the right, with a τ3-link of type I to the previous
final orbit of length 6 and a τ3-link of type III to the orbit of length 4, as in Fig. 3.

This gives a transitive permutation representation on 46 + 6 = 52 points, with the
following changes made to the three permutations τi used to generate A46:

τ1: adjoin the two 3-cycles (46, 47, 48) and (49, 50, 51), and the fixed point 52,
τ2: replace (43, 44)(45, 46) by (43, 46)(44, 47)(49, 50)(51, 52), fixing points 45
and 48,
τ3: replace the fixed point 46 by (46, 51)(47, 50)(48, 49), fixing the point 52.

With these changes, the only effect on the permutation σ3 = τ2τ3 is to alter cycles
containing any of the points numbered greater than 42, and in fact, it is easy to
see that the two cycles (30, 32, 38, 45, 46, 41, 35) and (36, 37, 43, 42, 44, 40) of
lengths 7 and 6 are replaced by (30, 32, 38, 45, 41, 35), (36, 37, 43, 51, 52, 46, 40)
and (42, 44, 50, 48, 49, 47), of lengths 6, 7 and 6. In particular, the cycle structure of
σ3 remains the same except for the addition of one further cycle of length 6, and σ 168

3
is still the same 11-cycle, namely (3, 25, 34, 16, 13, 31, 28, 10, 19, 39, 22).

Again this 11-cycle and the existence of a fixed point of τ1 can be used to prove
that the group � = 〈τ1, τ2, τ3〉 is primitive, and then since the parity of τ3 has changed
from even to odd, we have � = S52. The intersection condition (7) holds for exactly
the same reasons as for degree 46, and the proof of chirality is entirely similar: any
involutory group automorphism ρ inverting each of τ1, τ2 and τ3 would have to fix the
points 52 and 51, and swap the points 49 and 50, and then swap the points 47 and 48,
which is impossible.

Thus S52 is the automorphism group of a chiral 4-polytopeP (of type {3, 3, 1848}).
Furthermore, we can now make the same change to the effect of τ3 on the first orbit

of 〈τ1, τ2〉 (of length 12) as we did for degree 46, with a change in parity of τ3, and the
same arguments work again, to prove that A52 is the automorphism group of a chiral
4-polytope of type {3, 3, 4620}.

In summary, inserting the extra orbit of A4 of length 6 increased the degree n by 6,
but retained the properties of the permutations τ1, τ2 and τ3 needed to prove that An

and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k} for some
k.

Fig. 3 Inserting an extra orbit of 〈τ1, τ2〉 ∼= A4 of length 6
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But clearly we can do the same kind of thing again. Suppose we insert another new
orbit of A4 of length 6 between the last one and the orbit of length 4, with a τ3-link of
type III to the previous final orbit of length 6 and a τ3-link of type I to the orbit of length
4. Then the degreen increases by 6, andwe return to a situation similar to that for degree
46. With the obvious re-numbering of points in the last two orbits of A4, the cycles
(36, 37, 43, 51, 52, 46, 40) and (42, 44, 50, 48, 49, 47) of lengths 7 and 6 for σ3 in the
case of degree 52 are replaced by (36, 37, 43, 51, 46, 40), (42, 44, 50, 57, 58, 53, 47)
and (48, 49, 55, 54, 56, 52), of lengths 6, 7 and 6. Hence the cycle structure of σ3
is again changed only by the addition of another cycle of length 6. All the previous
arguments work in the same way, to prove that A58 and S58 are the automorphism
groups of chiral 4-polytopes of types {3, 3, 1848} and {3, 3, 4620}, respectively.

These insertions can be repeated over and over again, increasing the degree by 6
through insertion of a new orbit of length 6 for A4 each time. Provided that the types
of the τ3-links joining successive new orbits of A4 are chosen to alternate between
types I and III, the important properties of the the permutations τ1, τ2 and τ3 will be
retained, and all our arguments will go through in the same way as for degrees 46 and
52.

Thus we have the following: for every integer n ≥ 46 such that n ≡ 4 mod 6, both
An and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k} for
some k.

In fact, k can be taken as 1848 or 4620, depending on the residue class of n mod 12,
and in particular, our construction shows there are infinitely many chiral 4-polytopes
of type {3, 3, k} for each of these two values of k.

4.4 Adding an extra point fixed by A4

In all of the cases considered so far in this section, with degree n ≡ 4 mod 6, the
subgroup 〈τ1, τ2〉 ∼= A4 had single orbits of lengths 12 and 4, and n−16

6 orbits of
length 6, and the permutation τ1 had a single fixed point (which we chose to be n) and
n−1
3 cycles of length 3. We will now consider what happens when we adjoin a single

orbit of length 1.
Necessarily, the permutations τ1 and τ2 will fix this point, while τ3 must inter-

change it with the only other fixed point of τ1. The only change to the permutation
σ3 is to enlarge its unique 7-cycle (containing the original fixed point of τ1) to an
8-cycle. For example, when n = 46, the cycle (30, 32, 38, 45, 46, 41, 35) becomes
(30, 32, 38, 45, 47, 46, 41, 35).

The order of σ3 changes from 1848 to 1848/7 = 264, or from 4620 to
2 · 4620/7 = 1320, and in those two cases respectively, the permutations σ 24

3
and σ 120

3 are 11-cycles, namely ξ = (3, 19, 31, 34, 22, 10, 13, 25, 39, 28, 16) and
ξ5 = (3, 10, 16, 22, 28, 34, 39, 31, 25, 19, 13).

In each case, the 11-cycle and the existence of a fixed point of τ1 can be used to
prove that the resulting permutations τ1, τ2 and τ3 generate a primitive group, and
hence an alternating or symmetric group. Also the intersection condition holds for
exactly the same reasons as before. On the other hand, the proof of chirality needs a
small variation.
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Take n to be the resulting degree, and n − 1 and n as the fixed points of τ1, and
n − 2 as the image of n − 1 under τ2 in the orbit of A4 of length 4. Now suppose
there exists an involutory group automorphism ρ of � = 〈τ1, τ2, τ3〉 inverting each
τi . By Theorem 3.3, this automorphism ρ can be taken as an element of Sn , and since
ρ inverts τ1, it must fix or interchange the points n − 1 and n. If it fixes both, then the
same argument as before gives a contradiction, and so it must interchange them. But
that is impossible, since n − 1 and n lie in cycles of τ2 of different lengths (namely 2
and 1). Hence there is no such automorphism ρ, and we have a chiral 4-polytope.

Thus we have the following: for every integer n ≥ 47 such that n ≡ 5 mod 6, both
An and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k} for
some k.

In fact, k can be taken as 264 or 1320, depending on the residue class of n mod 12,
and in particular, our construction shows there are infinitely many chiral 4-polytopes
of type {3, 3, k} for each of these two values of k.

4.5 Adding a second orbit of A4 of length 4

Next, we consider what happens when we add a second orbit of length 4 for A4 to the
permutations given earlier for A46, but at the ‘first end’, linked to the orbit of length
12 for A4 by a τ3 link of type II, as in Fig. 4.

Specifically (and to avoid altering the numbering too much), we introduce four new
points, labelled v, x, y and z, with the assumption that v < x < y < z and make the
following changes made to the three permutations τi used to generate A46:

τ1: adjoin the 3-cycle (x, y, z) and the fixed point v,
τ2: adjoin the transpositions (v, z) and (x, y),
τ3: replace the transposition (1, 2) and fixed point 3 by (x, 2)(y, 1)(z, 3), fixing v.

With these changes, the only effect on thepermutationσ3 = τ2τ3 is to alter the cycles
containing any of the points numbered 1, 2 and 3, namely the transpositions (1, 7)
and (2, 4) and the 11-cycle (3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10). These cycles
are replaced by (x, 1, 7), (y, 2, 4) and (v, 3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10, z),
of lengths 3, 3 and 13, respectively.

In particular, the cycle structure of σ3 becomes 12 32 42 61 71 81 131, and so σ3 now
has order 2184.Alsoσ 168

3 is a 13-cycle, namely (3, v, z, 10, 16, 22, 28, 34, 39, 31, 25,
19, 13).

Weclaim that the action of� = 〈τ1, τ2, τ3〉 is primitive on {1, . . . , 46}∪{v, x, y, z}.
If not, then the 13 points moved by σ 168

3 would belong to the same block U , and U
would be preserved by τ1 and τ3, since the point v is fixed by both τ1 and τ3, and U
would be preserved by τ2, since τ2 swaps v with z. But then U would be preserved

Fig. 4 Adding a second orbit of length 4 for A4
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by 〈τ1, τ2, τ3〉 = � and so could not be a block of imprimitivity. Since τ3 is even, it
follows that � ∼= A50.

Also the subgroup generated by σ2 and σ3 is intransitive, because it has {y, 2, 4, 8}
as an orbit, and σ2 does not lie in 〈σ3〉, because σ2 induces the 3-cycle (2, 4, 8), while
σ3 induces the 3-cycle (y, 2, 4) on this orbit. By Lemma 3.1, the intersection condition
holds.

We still need to confirm chirality. Suppose there is an involution ρ in S50 which
conjugates each of τ1, τ2 and τ3 to its inverse. Then ρ fixes or interchanges the two
fixed points of τ1, namely v and 46, and if it fixes 46, then the same argument as before
gives a contradiction, so it must interchange them. It follows that ρ swaps vτ2 = z
with 46τ2 = 45, and also zτ3 = 3 with 45τ3 = 41. But that is impossible, since 3 and
41 lie in cycles of τ2 of different lengths (namely 2 and 1).

Thus A50 is the automorphism group of a chiral 4-polytope of type {3, 3, 2184}.
Next, if we make the same change to the effect of τ3 on the orbit {1, 2, . . . , 12} of

〈τ1, τ2〉 as we did for degree 46, then we find that the cycles of σ3 containing the points
of {v, x, y, z, 1, 2, . . . , 12} are (v, 3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10, z), (x, 1,
6, 7), (y, 2, 8, 4), (5, 14, 21, 17, 12) and (9, 15, 11). In this case,σ3 has cycle structure
31 44 51 61 71 131 and hence order 5460. Again the existence of the 13-cycle and the
effect of τ1, τ2 and τ3 on the points v and z imply that � = 〈τ1, τ2, τ3〉 is primitive,
and this time the change in parity of τ3 gives � ∼= S50. Also {y, 2, 4, 8} is an orbit
of 〈σ2, σ3〉, on which σ2 induces the 3-cycle (2, 4, 8) and σ3 induces the 4-cycle
(y, 2, 8, 4), and hence the intersection condition holds, again by Lemma 3.1. Chirality
follows from the same argument as for A50 above.

Thus S50 is the automorphism group of a chiral 4-polytope of type {3, 3, 5460}.
Now we can repeat the process begun in Sect. 4.3 and introduce further orbits of

length 6 for A4 near the ‘other end’. As before, this adds extra 6-cycles to the cycle
structure for σ3, but does not affect the proof of primitivity, and therefore still gives
the group � = 〈τ1, τ2, τ3〉 as either An or Sn each time. Also verification of the
intersection condition and proof of chirality are entirely analogous to those for the
A50 case, above.

Thus we have the following: for every integer n ≥ 50 such that n ≡ 2 mod 6, both
An and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k} for
some k.

In fact, k can be taken as 2184 or 5460, depending on the residue class of n mod 12,
and in particular, our construction shows there are infinitely many chiral 4-polytopes
of type {3, 3, k} for each of these two values of k.

Moreover, we can make the same adjustment as in Sect. 4.4, by adding an
extra fixed point of 〈τ1, τ2〉 ∼= A4 at the ‘other end’. In this case, the order of
σ3 changes from 2184 to 2184/7 = 312, or from 5460 to 2 · 5460/7 = 1560,
respectively, and the permutations σ 24

3 and σ 120
3 are 13-cycles, namely ζ =

(3, z, 16, 28, 39, 25, 13, v, 10, 22, 34, 31, 19) and ζ 5 = (3, 25, 34, 16, v, 19, 39, 22,
z, 13, 31, 28, 10). Again it is easy to verify primitivity, and deduce that� = 〈τ1, τ2, τ3〉
is isomorphic to An or Sn . Also the intersection condition holds for exactly the same
reasons as before, but again, the proof of chirality needs a small variation. This time
there are three fixed points of τ1, two of which are interchanged by τ3. If there exists
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an involutory permutation ρ of the points that inverts each τi , then it must fix or
interchange those two, and then the argument follows in the same way as in Sect. 4.4.

Thus we have the following: for every integer n ≥ 51 such that n ≡ 3 mod 6, both
An and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k} for
some k.

In fact, k can be taken as 312 or 1560, depending on the residue class of n mod 12,
and in particular, our construction shows there are infinitely many chiral 4-polytopes
of type {3, 3, k} for each of these two values of k.

4.6 Adding a third orbit of A4 of length 4

We are left with the cases of degree n ≡ 0 or 1 mod 6. For these, we start with our
constructions from the previous subsection for degrees congruent to 2 or 3 mod 6
(beginning with 50 and 51), and adjoin a third orbit of length 4 for A4, at the same end
as the second such orbit, with a τ3-link of type III to itself. This is illustrated in Fig. 5.

Specifically, we introduce another four new points, labelled p, q, r and s, with
the assumption that p < q < r < s and make the following changes to the three
permutations τi used for generating An−4 or Sn−4 :

τ1: adjoin the 3-cycle (p, q, r) and the fixed point s,
τ2: adjoin the transpositions (p, q) and (r, s),
τ3: replace the fixed point v by (p, r)(s, v), fixing q.

Obviously this increases the degree by 4, from n − 4 to n, and in all cases the only
effect on the permutation σ3 is to replace the 13-cycle (v, 3, 13, 19, 25, 31, 39, 34, 28,
22, 16, 10, z) by the cycle (v, 3, 13, 19, 25, 31, 39, 34, 28, 22, 16, 10, z, s, p, q, r),
which has length 17.

In particular, the order of σ3 changes from 2184 or 5460 to 2856 or 7140 when
n − 4 ≡ 4 mod 6, and from 312 or 1560 to 408 or 2040 when n − 4 ≡ 5 mod 6.

In all cases, some power of σ3 is a single 17-cycle containing all the points p, q
and r , and this can be used to prove that � = 〈τ1, τ2, τ3〉 is primitive, since it contains
the point p and its images under each of the generators of �. It follows that � = An

or Sn , again depending on the parity of τ3.
The intersection condition holds for the same reasons as in the previous subsection,

but again a little more care is needed to prove chirality. When n ≡ 0 mod 6, there
are three fixed points of τ1, and two of them (namely s and v) are interchanged by τ3,
while the third one (at the ‘other end’) is fixed by τ3. Hence any permutation ρ in Sn
that conjugates each τi to its inverse must fix the third one, and then chirality follows
from the same argument as for degree 46. On the other hand, when n ≡ 1 mod 6,
there are four fixed points of τ1, with two at each end, both interchanged by τ3. Just

Fig. 5 Adding a third orbit of length 4 for A4
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one of those, however, is a fixed point of τ2, and so it is fixed by any such ρ, and then
chirality follows from the same argument as for degree 47.

Thus we have the following: for every integer n ≥ 54 such that n ≡ 0 or 1 mod 6,
both An and Sn are the automorphism groups of chiral 4-polytopes of type {3, 3, k}
for some k.

In fact, k can be taken as 2856 or 7140 when n ≡ 0 mod 6, and as 408 or 2040
when n ≡ 1 mod 6, in both cases depending on the residue class of n mod 12, and in
particular, our construction shows there are infinitely many chiral 4-polytopes of type
{3, 3, k} for each of these four values of k.

5 Vertex-figures

In this section we prove the following:

Theorem 5.1 The vertex-figures of the polytopes constructed in Sect. 4 are all chiral.

Again there is some variation in the argument of different residue classes of n mod
6, but the approach is much the same in all cases.

Proof Let τ1, τ2 and τ3 be the generators of �(P) as given, and take σ1 = τ1, σ2 =
τ−1
1 τ2 and σ3 = τ−1

2 τ3 = τ2τ3 as before. Then the subgroup �0 generated by σ2 and
σ3 is the rotation group of a vertex-figure of P .

It is easy to verify that the group �0 = 〈σ2, σ3〉 always has two orbits on the n-point
set X , one of which has length 3 or 4, with the other having length n−3 or n−4. Indeed
if n ≡ 4 or 5 mod 6, the small orbit Y is {2, 4, 8}, while otherwise Y is {2, 4, 8, y},
where y is the middle point of the 3-cycle (x, y, z) of the ‘second’ A4-orbit of length
4, which is linked by τ3 to the A4-orbit of length 12 as in Sects. 4.5 and 4.6.

Also some power ξ of σ3 is either the 11-cycle (3, 25, 34, 16, 13, 31, 28, 10, 19, 39,
22), or the 13-cycle (v, 3, 25, 34, 16, 13, 31, 28, 10, 19, 39, 22, z), where v and z are
another two of the four points of the second A4-orbit of length 4 introduced in 4.5, or
the 17-cycle (v, 3, 25, 34, 16, 13, 31, 28, 10, 19, 39, 22, z, s, p, q, r), where p, q, r
and s are the four points of the third A4-orbit of length 4 introduced in 4.6.

We will first show that �0 acts on the set Z = X \Y as an alternating or symmetric
group of degree |Z | = n − 3 or n − 4 and then show that �0 admits no automorphism
that inverts both σ2 and σ3, which is enough to prove chirality of the vertex-figures.

Suppose �0 is imprimitive on Z . Then all the points of the cycle ξ of prime length
(obtained as a power of σ3) lie in the same block of imprimitivity, say U . Now U is
preserved by σ3 and so cannot be preserved by σ2, and furthermore, since σ2 has order
3, the images ofU under σ2 and its inverse σ 2

2 must be new blocks V andW . Next, in
all cases, σ2 takes 10–5, 19–21 and 14–16, while σ3 takes 5–14 and 14–21. It follows
that V contains 10σ2 = 5 and 19σ2 = 21, while W contains 16σ 2

2 = 14, and therefore
σ3 interchanges V and W . Hence there are just three blocks, cyclically permuted by
σ2. But also σ2 fixes at least one point, namely one of the points of the first A4-orbit
of length 4, and so σ2 preserves at least one block, a contradiction.

Thus �0 is primitive on Z = X \ Y . Moreover, the existence of the prime cycle ξ

shows that �0 is alternating or symmetric on Z (by Jordan’s theorem).
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On the other hand, σ2 induces (2, 4, 8) on Y , and σ3 induces either (2, 4) or (2, 8, 4)
on Y when |Y | = 3, or (2, 4, y) or (2, 8, 4, y) on Y when |Y | = 4, so �0 = 〈σ2, σ3〉
acts on Y as S3, A3, A4 or S4. It follows that �0 is isomorphic to a sub-direct product
G1×G2 whereG1 = An−3, Sn−3, An−4 or Sn−4, andG2 = S3, A3, A4 or S4. (Recall
that a sub-direct product of groups G1 and G2 is a subgroup G of G1 × G2 with the
property that the restrictions to G of the projections πi : G1 × G2 → Gi are both
surjective.)

Now each of An−3, Sn−3, An−4 and Sn−4 is insoluble, with no non-trivial abelian
normal subgroup,while A3, S3, A4 and S4 are soluble, and so the kernel K of the action
of �0 on Z = X \ Y is the largest soluble normal subgroup of �0 and is therefore
characteristic in �0 (that is, invariant under all automorphisms of �0). Thus every
automorphism of �0 induces an automorphism of the group �0 ∼= �0/K induced by
�0 on Z , which of course is An−3, Sn−3, An−4 or Sn−4.

Next, suppose the vertex-figures of P are regular, so that �0 has an automorphism
that inverts both σ2 and σ3. Then by the above argument, this automorphism induces
an automorphism of �0 which inverts the permutations induced by σ2 and σ3 on Z .
Also by Theorem 3.3, we know that the latter can be viewed as a permutation on Z . We
can therefore complete the proof of chirality by showing that there is no permutation
ρ in Sym(Z) that conjugates each of σ2 and σ3 to its inverse.

In exactly half of the cases we have considered, the permutation σ3 has exactly
two fixed points, namely 6 and 8. These are the cases where τ3 links the second and
third orbits of 〈τ1〉 in the A4-orbit of length 12, or equivalently, where τ3 contains
the transpositions (4, 7), (5, 9) and (6, 8). In all these cases, (1, 10, 5), (6, 12, 9) and
(14, 16, 18) are 3-cycles of σ2, and (5, 14, 21, 17, 12, 9, 15, 11) and (18, 20, 27, 23)
are an 8-cycle and a 4-cycle of σ3, and the point 1 lies in a 2-cycle or 3-cycle of σ3.

Now ρ must fix the unique fixed point of σ3 on Z = X \Y , namely 6, and therefore
ρ interchanges the other two points 9 and 12 of the 3-cycle (6, 12, 9) of σ2. It follows
that conjugation by ρ inverts the 8-cycle (5, 14, 21, 17, 12, 9, 15, 11) of σ3, and hence
interchanges the points 5 and 14, and must then conjugate the 3-cycle (1, 10, 5) of σ2
to the inverse of the 3-cycle (14, 16, 18) of σ2. Hence ρ interchanges the points 1 and
18. But that is impossible, since 18 lies in a 4-cycle of σ3, while 1 lies in a 2-cycle or
3-cycle of σ3.

In the other half of all cases, σ3 has no fixed points, but has a unique 5-cycle, namely
(5, 14, 21, 17, 12), and this must be inverted by ρ, and the same is true for the prime
cycle ξ of length 11, 13 or 17. Now each of the four points 5, 14, 21 and 17 of the
5-cycle (5, 14, 21, 17, 12) of σ3 lies in a 3-cycle of σ2 that has a point in common with
the prime cycle ξ , but the fifth point 12 does not have this property. Hence ρ fixes the
point 12 and therefore must interchange the other two points 6 and 9 of the 3-cycle
(6, 12, 9) of σ2.

In all these remaining cases, the point 9 lies in a 3-cycle of σ3, namely (9, 15, 11),
and it follows that the point 6 must also lie in a 3-cycle of σ3. In the cases where there
are two or more A4-orbits of length 4 (and σ3 has no fixed points), the point 6 lies in
the 4-cycle (1, 6, 7, x) of σ3, and so we can ignore those. This leaves only the cases
where there is just one A4-orbit of length 4, namely those with n ≡ 4 or 5 mod 6. For
these, we consider what happens locally around the single A4-orbit of length 4.
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When n ≡ 4 mod 6 (as in the case n = 46 and its extensions considered in Sects.
4.2 and 4.3), we may label the points of X such that the generators τi of � have the
following forms:

τ1 = . . . (n − 12, n − 11, n − 10)(n − 9, n − 8, n − 7)(n − 6, n − 5, n − 4)(n − 3, n − 2, n − 1),

τ2 = . . . (n − 15, n − 12)(n − 14, n − 11)(n − 9, n − 6)(n − 8, n − 5)(n − 3, n − 2)(n − 1, n),

τ3 = . . . (n − 12, n − 7)(n − 11, n − 8)(n − 10, n − 9)(n − 6, n − 3)(n − 5, n − 1)(n − 4, n − 2)

or . . . (n − 12, n − 9)(n − 11, n − 7)(n − 10, n − 8)(n − 6, n − 1)(n − 5, n − 2)(n − 4, n − 3).

With this labelling, n−2 is the only fixed point of σ2, and this lies in a 6-cycle of σ3,
which is (n−10, n−9, n−3, n−4, n−2, n−6) when n ≡ 10 mod 12 (such as when
n = 46), or (n−10, n−8, n−2, n−4, n−3, n−5)when n ≡ 4mod 12 (such as when
n = 52). Also the unique 7-cycle of σ3 is (n−16, n−14, n−8, n−1, n, n−5, n−11)
when n ≡ 10 mod 12, or (n − 16, n − 15, n − 9, n − 1, n, n − 6, n − 12) when n ≡ 4
mod 12.

In both cases ρ must fix the only fixed point of σ2, namely n−2, and so the 6-cycle
of σ3 containing n − 2 must be inverted by ρ. When n ≡ 10 mod 12, this implies
that ρ fixes n − 9 and hence interchanges the two other points n − 7 and n − 5 of the
3-cycle (n− 9, n− 7, n− 5) of σ2. But that is impossible, since n− 5 lies in a 7-cycle
of σ3, while n− 7 does not. Similarly, when n ≡ 4 mod 12, we find that ρ fixes n− 5,
and hence swaps n − 7 and n − 9, which is impossible since n − 9 lies in a 7-cycle of
σ3, while n − 7 does not.

A similar approach works when n ≡ 5 mod 6. In this case σ2 has two fixed points,
one being the (unique) point fixed by 〈τ1, τ2〉 ∼= A4. This lies in an 8-cycle of σ3,
while the other lies in a 6-cycle of σ3, and hence both points must be fixed by ρ. Then
the same argument as in the case n ≡ 4 mod 6 shows that two points from a 3-cycle
of σ2 are interchanged by ρ, but one of them lies in the 8-cycle of σ3 while the other
does not. Hence no such ρ exists, and this completes the proof.
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