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Abstract Affine Weyl groups and their parabolic quotients are used extensively as
indexing sets for objects in combinatorics, representation theory, algebraic geometry,
and number theory. Moreover, in the classical Lie types we can conveniently realize
the elements of these quotients via intuitive geometric and combinatorial models such
as abaci, alcoves, coroot lattice points, core partitions, and bounded partitions. In [2],
Berg et al. described a bijection between n-cores with first part equal to k and (n−1)-
cores with first part less than or equal to k, and they interpret this bijection in terms
of these other combinatorial models for the quotient of the affine symmetric group by
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the finite symmetric group. In this paper, we discuss how to generalize the bijection
of Berg–Jones–Vazirani to parabolic quotients of affine Weyl groups in type C . We
develop techniques using the associated affine hyperplane arrangement to interpret
this bijection geometrically as a projection of alcoves onto the hyperplane containing
their coroot lattice points. We are thereby able to analyze this bijective projection in
the language of various additional combinatorial models developed by Hanusa and
Jones [10], such as abaci, core partitions, and canonical reduced expressions in the
Coxeter group.

Keywords Core partition · Abacus diagram · Root system ·
Hyperplane arrangement · Alcove walk · Affine Weyl group ·
Affine Grassmannian

Mathematics Subject Classification 05E10

1 Introduction

Core partitions initially arose in the study of the representation theory of the sym-
metric group over a finite field. In modular representation theory, cores index blocks
in the decomposition of the group algebra; see [12]. Cores now appear as indexing
sets for many objects in combinatorics, representation theory, algebraic geometry,
and number theory. For example, Garvan et al. combinatorially proved Ramanu-
jan’s congruences for the partition function using statistics called cranks, which
are closely related to core partitions [8]. In another representation-theoretic con-
text, n-cores correspond to extremal vectors in a highest weight crystal for ̂sln ; see
[19]. In algebraic geometry, n-cores arise in expansions of the k-Schur functions
of Lapointe et al. [15], which Lam then proved represent the Schubert basis in the
homology of the affine Grassmannian [14]. Cores are also related to rational smooth-
ness of Schubert varieties inside the affine Grassmannian as shown by Billey and
Mitchell [3].

In work related to the study of irreducible Specht modules over the Hecke algebra
of the symmetric group [1], Berg and Vazirani prove that there is a bijection between
the set Ckn of n-cores with first part equal to k and the set C≤k

n−1 of (n − 1)-cores with
first part less than or equal to k. Because of the wide array of connections among
core partitions and other areas of mathematics, many additional combinatorial models
for core partitions have been developed. For example, n-cores also index minimal
length coset representatives in the quotient ˜Sn/Sn of the affine symmetric group by
the finite symmetric group. There are also interpretations in terms of abacus diagrams,
root lattice points, bounded partitions, and certain alcoves in the affine hyperplane
arrangement corresponding to the affine symmetric group. Connections among these
models play crucial roles in various areas of mathematics; for example, the connec-
tion between cores and bounded partitions was fundamental in the development of the
k-Schur functions. In [2], Berg et al. interpret the equipotence of Ckn and C≤k

n−1 geomet-
rically in terms of the alcove model for ˜Sn/Sn , thereby obtaining several additional
combinatorial descriptions for this bijection.
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Our main theorem is a generalization of the results in [2] to Lie type C . In type C ,
this parabolic quotient is known to be in bijection with the set of lecture hall partitions
introduced by Bousquet-Mélou and Eriksson [6] and certain mirrored Z-permutations
defined by Eriksson in his thesis [7]. Hanusa and Jones additionally define bijections
from the quotient ˜Cn/Cn to symmetric core partitions, abacus diagrams, bounded
partitions, and canonical reduced expressions in the Coxeter group in [10]. There is
also a classical geometric connection to certain hyperplane arrangements through the
language of root systems; see [5] and [11].

The crucial ingredient in many of the results contained in this paper is the ability
to provide a geometric interpretation in terms of alcove walks in the affine hyperplane
arrangement. These piecewise linear paths in the real span of the weight lattice were
introduced by Littelmann, who calls them Lakshmibai–Seshadri paths [13], in order
to prove a Littlewood–Richardson rule for decomposing the tensor product of two
simple highest weight modules of a complex symmetrizable Kac–Moody algebra into
its irreducible components [18]. Alcove walks now arise throughout the literature in
representation theory and algebraic geometry, and they often seem in many instances
to provide the most natural framework for type-free generalizations of results which
had previously only been known in type A. For example, Schwer provides a formula
for the Hall–Littlewood polynomials of arbitrary type in terms of alcove walks [23],
and this formula was generalized by Ram and Yip to Macdonald polynomials using
similar language [22]. There is also an explicit correspondence between alcove walks
and saturated chains in strong Bruhat order on the affine Weyl group, which gives rise
to type-free applications in equivariant K -theory of flag varieties [16] and the uniform
construction of tensor products of certain Kirillov–Reshetikhin crystals [17].

1.1 Summary of the main results

We start by defining a map Φn on elements of the parabolic quotient ˜Cn/Cn . The map
Φn acts on symmetric (2n)-cores,which index theminimal length coset representatives
of ˜Cn/Cn , as proved in [10]. Given a symmetric (2n)-core, themapΦn acts as follows:
first, label the boxes of the (2n)-core with the elements of Z/2nZ repeating along
diagonals by labeling box (i, j) with j − i (mod 2n). Then, delete all the rows that
end with the same element of Z/2nZ as the first row. Finally, delete all the columns
that end with the same element of Z/2nZ as the first column. It can be shown that
the image of Φn is a set of (2n − 2)-cores, which correspond to minimal length coset
representatives of ˜Cn−1/Cn−1.

Theorem A (Theorem 3) The map Φk
n given by restricting Φn to S k

2n, the set of
symmetric (2n)-cores with first part equal to k, becomes a bijection onto its image

S
≤k−� k

n �
2n−2 , the set of symmetric (2n − 2)-cores with first part at most k − ⌈ k

n

⌉

.

The proof of Theorem A uses the bijection between symmetric (2n)-cores and
balanced flush abacus diagrams with (2n)-runners, as introduced by Hanusa–Jones
[10]. Under this bijection FA , the map Φn induces a mapA2n −→ A2n−2 on abacus
diagrams with 2n runners to those with 2n − 2 runners. In addition, there is a bijec-
tion FR from abacus diagrams on 2n runners to lattice points in Z

n . We are able to
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explicitly describe the bijections Φk
n and their (co)domains in terms of all of these

combinatorial models for the parabolic quotient ˜Cn/Cn in a manner which makes the
diagram below commute. It turns out that the induced map Φn on abacus diagrams is
the most natural to describe. Theorem A is then proved by translating the condition
imposed on symmetric cores to the corresponding abacus diagrams and coroot lattice
points.

S2n

Φn

��

FA �� A2n
FR ��

Φn

��

R2n

Φn

��
S2n−2

FA �� A2n−2
FR �� R2n−2

We also interpret the bijections Φk
n both algebraically and geometrically. In terms

of reduced words in the quotient of the corresponding Coxeter group ˜Cn/Cn , the result
we obtain is the following.

Theorem B (Corollaries 31 and 34) For any reduced word in ˜Cn/Cn corresponding
to a symmetric (2n)-core with first part equal to k, applying Φn decreases the length
of the word by exactly k.

The novelty of Theorem B lies more in the method of its proof, which uses delicate
geometric arguments on the associated affine hyperplane arrangement. In fact, we
provide two distinct proofs of Theorem B, one geometric and the other algebraic. The
geometric proof uses the theory of alcove walks to study Φn . The correspondence
between the coroot lattice and reduced words in ˜Cn/Cn gives an induced action of
Φn on alcoves in R

n . Under this correspondence, the lattice points of the alcoves
corresponding to elements of S k

2n all lie on a single hyperplane. Moreover, when
we identify this hyperplane with the Euclidean space R

n−1 associated to ˜Cn−1, the
map Φk

n may be realized as a geometric projection of the alcoves onto the hyperplane
containing their coroot lattice points, as illustrated in Fig. 1. In particular, using the
correspondence between reduced words and minimal length alcove walks, we obtain
the following.

Theorem C (Theorem 5) Let w be a minimal length coset representative for ˜Cn/Cn

such that the symmetric core partition corresponding to w has first part equal to k. If

A1 → · · · → Ar

is an alcove walk for w, then

π(A1) → · · · → π(Ar ) (1.1)

is an alcove walk for Φn(w). Here, π is the projection onto the hyperplane contain-
ing the coroot lattice points of the symmetric (2n)-core partitions with first part k.
Moreover, if one removes all repetitions of the alcoves in (1.1), the result is a minimal
length alcove walk for Φn(w).
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Fig. 1 A visualization of Φ12
2 as a projection from ˜C2/C2 to ˜C1/C1

The geometric proof of Theorem B relies upon the interpretation of the projection
in terms of alcove walks articulated in Theorem C. We remark that by considering the
root system of type A instead of type C , our proof of Theorem C can be modified to
yield a similar statement for the projection map in type A, which sends n-cores with
first part equal to k to (n−1)-cores with first part less than or equal to k. The algebraic
proof of Theorem B presents an explicit description of Φn on reduced words. Given a
minimal length coset representativew ∈ ˜Cn/Cn , there is an action of the reducedword
on the corresponding abacus diagram. We analyze this action on abaci and provide an
explicit algorithm that constructs a reduced word for Φn(w) in �(w)-steps.

The map Φn also exhibits other nice combinatorial properties which suggest appli-
cations to other areas of mathematics, particularly in the direction of affine Schubert
calculus. For example, we prove the following theorem, showing that Φn preserves
strong Bruhat order.

Theorem D (Theorem 7) Fix two positive integers n and k. Given two elements x
and y in ˜Cn/Cn whose associated coroot lattice points lie in the domain of Φk

n , then
x ≥B y if and only if π(x) ≥B π(y).

To prove Theorem D, we use the equivalence between the containment of core parti-
tions and domination in the strong Bruhat order, which was introduced in Sect. 5.3 of
Hanusa–Jones [10] in order to answer a question of Billey and Mitchell [3].

1.2 Applications and directions for future work

The authors strongly suspect that analogous results can be achieved in Lie types B
and D, and this paper provides a solid framework for making such generalizations,
although no precise statements have yet been formulated. One primary difference in

123



916 J Algebr Comb (2015) 41:911–948

other Lie types is that the core partitions of Hanusa–Jones have dynamic labelings,
which makes the bijection on core partitions difficult to conjecture. Therefore, in
types B and D the geometry of the alcove walk model developed in this paper will
be crucial, not only for proving results, but also for formulating conjectures. Another
additional difficulty with a direct generalization from type C is that the domains for
the projections provably do not lie on any of the root hyperplanes themselves. This
was particularly surprising for the authors to discover about type B, since combi-
natorially type B is a subset of type C , and geometrically they are dual. However,
much of the groundwork for a geometric analysis of types B and D has been laid in
Sect. 5.

There are also directions for future work on the combinatorics of many related
partially ordered sets. As Theorem D suggests, a great deal of combinatorial struc-
ture is preserved by the bijective projection developed in this paper. In addition
to strong Bruhat order, there are other natural partial orderings to consider on
these parabolic quotients. For example, it would be interesting to more explic-
itly describe which intervals comprise the domains and images of these bijec-
tions.

Although the statements of many of the results of this paper are combinatorial in
nature, both the motivation for the work and the most promising future directions
are either algebro-geometric or representation-theoretic. The homology of the affine
Grassmannian has a basis of Schubert classes which are indexed by elements of the
parabolic quotients studied in this paper. The fact that the projection map preserves
strong Bruhat order means that Schubert cells in one dimension map to Schubert
cells one dimension lower. Therefore, the bijective projections developed in [2] and
this paper may yield a means by which one can construct inductive proofs in affine
Schubert calculus. In [21], Ram discusses how the root operators ẽi and f̃i coincide
with the rank one crystal base operators after projection onto the line orthogonal to
a hyperplane determined by the simple root αi . It would be interesting to see if the
projections defined in this paper can be similarly interpreted into the language of affine
crystals.

The geometric results on alcove walks in Sect. 5 in particular may have other poten-
tial applications in algebraic geometry and representation theory. In the study of
Shimura varieties with Iwahori level structure, Haines and Ngô develop the notion
of an alcove walk in the w-direction [9]. The alcove walk algebra, developed by Ram
in [21] as a refinement of the Littelmann path model of [18], provides a combinatorial
method for working with the affine Hecke algebra. This model had already been used
by Schwer to provide a combinatorial description of the Hall–Littlewood polynomials
[23], and Ram and Yip further apply the alcove walk algebra to the theory of Macdon-
ald polynomials in [22]. Parkinson et al. present a refinement of Ram’s alcove walk
model in order to study analogs of Mirković-Vilonen cycles in the affine flag variety
[20]. Essential to the work on alcove walks in these various contexts is the ability to
additionally track information about the direction or orientation of various parts of the
walk. Potential applications of the work in this paper to Shimura varieties, Mirković-
Vilonen cycles, Macdonald polynomials, and the affine Hecke algebra therefore arise
from the refined information obtained in Sect. 5 on so-called perpendicular and parallel
steps in alcove walks.
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1.3 Organization of the paper

In Sect. 2, we provide a brief review of the language of root systems, Weyl groups
and their parabolic quotients, and the affine hyperplane arrangement which gives rise
to the alcove model for affine Weyl groups. In Sect. 3, we review the combinatorial
models for the minimal length coset representatives of the parabolic quotient ˜W/W of
the affine Weyl group by the finite Weyl group, including an overview of the relevant
combinatorics in affine type C from Hanusa–Jones [10]. We summarize in Sect. 4.1
the results obtained in [2] by Berg et al. for the case of W = Sn .

The new results begin in Sects. 4.2–4.4, where we develop the map Φn on the var-
ious combinatorial models for the type C quotient, proving Theorem A in Sect. 4.5.
Section5 develops the geometry ofΦn in terms of alcovewalks in the affine hyperplane
arrangement. In particular,we extend the result obtained in Sect. 4.5which says that the
domains of Φn may be partitioned into hyperplanes, and show that when we identify
these hyperplanes with R

n−1, then Φn may be regarded as a projection from alcoves
of ˜Cn/Cn in R

n to alcoves of ˜Cn−1/Cn−1 in R
n−1. This geometric interpretation

provides a constructive proof for Theorem C. In Sect. 6, we provide an explicit algo-
rithm that determines the action of Φn on reduced words of ˜Cn/Cn . The geometry
developed in Sect. 5 and the algorithm provided in Sect. 6 give two distinct proofs of
Theorem B. Finally, in Sect. 7, we prove Theorem D, showing that Φn preserves the
strong Bruhat order on each of its hyperplane domains.

2 Affine Weyl groups and alcove walks

We begin by establishing some notation and providing a brief review of the necessary
background on Coxeter groups, Weyl groups, and their associated root systems. We
refer the reader to [4] and [11] for more detail on any of the definitions and results
stated in this section.

Let (W, S) denote a Coxeter systemwith a set of generators S for the Coxeter group
W . Since the generators s ∈ S all have order 2, each w �= 1 in W can be written as
w = s1s2 · · · sr for some si ∈ S. The minimal number of generators required to write
w as a product is called the length of w, which we denote by �(w). The Coxeter group
W is partially ordered by strong Bruhat order, whichwe denote by≤. If the order of the
product of any two generators in S equals either 2, 3, 4, or 6, then the corresponding
Coxeter group W is a Weyl group. The Weyl groups of interest in this paper are An

and Cn , as well as their affine analogs. The Dynkin diagrams for types An and Cn are
shown in Fig. 2.

s1 s2 s3 sn−1 sn· · ·

(a)

(c)

An (n ≥ 1)

s0 s1 s2 sn−2 sn−1· · ·4

(b) Cn (n ≥ 2)

sC
0 s1 s2 sn−2 sn−1 sC

n
· · ·4 4

˜Cn (n ≥ 2)

Fig. 2 Dynkin diagrams for the Weyl groups An ,Cn , and ˜Cn
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Let Φ denote the root system for the Weyl group W , which has a basis of simple
roots Δ. We remark that in all cases of interest in this paper, the root system Φ is
irreducible. An element of Φ which is a non-negative integral combination of simple
roots is positive, and Φ is the disjoint union of positive and negative roots Φ =
Φ+ ∪ Φ−. Since Φ is irreducible, there is a unique highest root α̃ which satisfies that
α̃ − α is a sum of simple roots for all α ∈ Φ+. For example, if ε1, . . . , εn denotes
the standard basis of R

n , then the positive roots of the Weyl group Cn are 2εi for
1 ≤ i ≤ n, and εi ± ε j for 1 ≤ i < j ≤ n. The basis of simple roots Δ consists of
α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn , and αn = 2εn , and the unique
long root is α̃ = 2ε1.

For any α ∈ Φ, denote by sα the reflection across the hyperplane perpendicular to α

that passes through the origin. The Weyl group W is then generated by the reflections
sα for α ∈ Φ, and so we may view W as a reflection group acting on the Euclidean
space V = R

n . Conversely, given a generator s ∈ S, by αs we mean the positive
simple root normal to the hyperplane through which s reflects.

Denote by Φ∨ := {α∨ | α ∈ Φ} the dual root system, where we define the coroots
as α∨ := 2α/〈α, α〉. The associated simple coroots are then given byΔ∨ := {α∨ | α ∈
Δ}. Denote byΛR the root lattice, which is theZ-spanΛR ofΦ in V . Similarly, denote
the coroot lattice by Λ∨

R .
The affine group Aff(V ) is the group consisting of all affine reflections across all

hyperplanes in V . It is shown in Sect. 4.1 of [11] that Aff(V ) is the semidirect product
of GL(V ) and the group of translations of elements of V . For each root α ∈ Φ and
each integer k, consider the affine hyperplane

Hα,k := {λ ∈ V | (λ, α) = k}.

The corresponding affine reflection across this hyperplane is given by

sα,k(λ) := λ − ((λ, α) − k)α∨.

Note that Hα,k = H−α,−k and that sα,0 = sα . We occasionally abbreviate Hα,0 = Hα .
Let H be the collection of all hyperplanes

H := {Hα,k | α ∈ Φ, k ∈ Z}.

The elements ofH are permuted naturally by elements ofW and translations inAff(V )

by elements of the coroot lattice Λ∨
R .

Define the affineWeyl group ˜W to be the subgroup of Aff(V ) generated by all affine
reflections sα,k , where α ∈ Φ and k ∈ Z. It is well known that ˜W is the semidirect
product of W and the translation group corresponding to the coroot lattice Λ∨

R ; see
Proposition 4.2 in [11]. Since the elements of ˜W permute the hyperplanes in H, they
permute the collection A of connected components of V ◦ := V \ ∪H∈H H . Each
element of A is called an alcove. The fundamental alcove A◦ is the alcove

A◦ = {λ ∈ V | 0 < (λ, α) < 1 for all α ∈ Φ+}.
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In fact, any alcove A ∈ A consists of all λ ∈ V satisfying the strict inequalities
kα < (λ, α) < kα + 1, where α runs through Φ+ and kα ∈ Z is some fixed integer
depending on α. The walls of A◦ are the hyperplanes Hα for α ∈ Δ, together with
Hα̃,1.

Define ˜S to be the set of reflections

˜S := {sα | α ∈ Δ} ∪ {sα̃,1}.

We will often relabel s0 = sα̃,1 for convenience. The pair ( ˜W ,˜S) is a Coxeter system
(see Proposition 4.3 in [11]), and theDynkin diagram for ˜W in typeC appears in Fig. 2.
In order to distinguish among the different Lie types, we will use the notation ˜An and
˜Cn to denote the affine Weyl groups of rank n in Lie types A and C , respectively, and
we will occasionally denote by An and Cn the corresponding finite Weyl groups.

The affine Weyl group ˜W acts transitively on A; we will consider the action
by left multiplication in this paper. More specifically, for an alcove A ∈ A, the
action sA applies the reflection corresponding to the generator s to the alcove A.
If w = si1si2 · · · sik , then wA is the alcove obtained by applying each of the reflec-
tions sik , . . . , si1 to the alcoveA one after the other. We will often identify the element
w ∈ ˜W with the alcove wA◦ ∈ A. The alcoves which correspond to elements in the
finite Weyl group W are precisely those adjacent to the origin. The union of these
alcoves is called the fundamental region.

Example 1 The Weyl group C2 has the presentation

C2 = 〈s1, s2 | (s1s2)
4 = 1〉,

and the affine Weyl group ˜C2 has the presentation

˜C2 = 〈s0, s1, s2 | (s0s1)
4 = (s0s2)

2 = (s1s2)
4 = 1〉. (2.1)

In Fig. 3, the walls of the fundamental alcove A◦ are labeled with the generators of
˜C2. The sequence of pictures demonstrates how the reflections generated by s0, s1, s2
permute A◦ transitively, in addition to the correspondence between words in ˜W and
alcoves in R

2.

Given a hyperplane H = Hα,k ∈ H, each alcove lies in one of the two half-spaces
defined by H . We say that H separates two alcoves A and A′ if these alcoves lie in
different half-spaces relative to H . For example, the hyperplane Hαs ,0 separates A◦
and sA◦ for all s ∈ ˜S. Given any alcove wA◦ ∈ A, it is well known that the length
�(w) equals the total number of hyperplanes which separateA◦ andwA◦; see Sect. 4.5
in [11].

Definition 2 An alcove walk from A◦ to wA◦ is a path connecting a point in the
interior of A◦ to a point in the interior of wA◦, with another condition that the path
cannot pass through a vertex of any alcove. A step in an alcove walk is the result of
applying a reflection to an alcove across a hyperplane which bounds the alcove. If we
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s1

s2

s0

O

A◦

(a) A◦

O

A◦ s0

s2

s1

(b) s0A◦

O

A◦ s0
s1

s2

(c) s1s0A◦

O

A◦ s0

s2

s1

(d) s2s1s0A◦

O

A◦ s0
s1

s2

All alcoves(e)

Fig. 3 Elements of ˜C2 permute A◦ transitively

consider all such paths fromA◦ to wA◦, then the minimum number of hyperplanes in
H that such path intersects equals �(w). An alcove walk which crosses the minimum
number of hyperplanes is called aminimal (length) alcove walk fromA◦ towA◦; note
that it is not necessarily unique, just as reduced expressions for w are not unique.

It is a general fact (see [21], for example) that we may label the hyperplanes in H
with generators in ˜S such that if an alcove walk from A◦ to A′ ∈ A passes through
the hyperplanes labeled si1 , si2 , . . . , sik , in that order, then the alcove A′ is the alcove
wA◦, where w = si1si2 · · · sik .
Example 3 Consider the affine Weyl group ˜C2. The fundamental alcove A◦ is high-
lighted in red in the center, and each of the three walls ofA◦ are labeled by one of the
three generators in ˜S, according to whether the neighboring alcove is s0A◦, s1A◦, or
s2A◦, as in Fig. 3; here we record only the subscripts for brevity. Around the origin is
a copy of finite C2, so every wall of an alcove in this fundamental region is labeled
by one of the two generators in S, with the third side labeled by the affine reflection
s0. Continuing this pattern, each of the three walls of every alcove are labeled with a
distinct generator.

Figure4 shows two alcove walks beginning at A◦ and ending at the same alcove.
The first alcove walk is a minimal alcove walk, and the word corresponding to it is
w = s2s1s2s0s1s0. The second alcove walk is not a minimal alcove walk. The word
corresponding to the second alcove walk is w′ = s1s2s0s1s0s1s0s1s2s1s0s1. The two
words w and w′ are equivalent by using the defining relations of ˜C2 from (2.1), as the
following calculation demonstrates:
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(a) s2s1s2s0s1s0
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2
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0 0 00

0 0 0 0
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0

0

0

0

0

0
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1
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1

1

1

1 1 1
1

2 2

2

2
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2

2

2

2 1

2 2 2 2

2

22

(b) s1s2s0s1s0s1s0s1s2s1s0s1

Fig. 4 Examples of alcove walks

s1s2s0s1s0s1s0s1s2s1s0s1 = s1s2s1s0s2s1s0s1
= s1s2s1s2s0s1s0s1
= s2s1s2s1s0s1s0s1
= s2s1s2s1s1s0s1s0
= s2s1s2s0s1s0.

3 Combinatorial models for the parabolic quotient ˜W/W

Having established the geometric interpretation of the affineWeyl group ˜W in terms of
alcoves, wemove on to consider the parabolic quotient ˜W/W , the object of our interest
in this paper. It is a well-known fact that each coset in ˜W/W has a unique minimal
length representative element; see Sect. 2.4 in [4]. To index cosets in the quotient, we
consider the minimal length element in each coset. In this section, we introduce three
closely related combinatorial models that index minimal length coset representatives
of the parabolic quotient. They are the root lattice point model, abacus diagrams, and
core partitions.

3.1 Root lattice point model

To start, recall that ˜W is the semidirect product of W and the coroot lattice points
Λ∨

R ; that is, ˜W = Λ∨
R � W . We may also identify the Euclidean space V = R

n with
Λ∨

R ⊗Z R. Given an element w ∈ ˜W , we may associate a coroot lattice point to w

by acting on the origin 0 ∈ V by w. Since elements in the finite Weyl group W leave
0 ∈ V unchanged, two elements in the same coset of ˜W/W send 0 ∈ V to the same
coroot lattice point. Hence, there is a correspondence between coroot lattice points
and cosets of ˜W/W .

Remark 4 It should be pointed out that the authors of [2] and [10] have used the term
“root lattice point” where we instead say “coroot lattice point.” This difference in
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O

Fig. 5 Minimal length coset representatives for ˜C2/C2

terminology arises because in type A, which was studied by the authors of [2], the
root and coroot lattices coincide. In type C , however, we must use the coroot lattice
specifically, on which there is a well-defined action of ˜Cn . To preserve the terminology
in the existing literature, the authors have decided to refer to this model as the “root
lattice point model.”

Geometrically, if λ∨ is the coroot lattice point corresponding to a coset in ˜W/W ,
then the union of the alcoves that represent elements in that coset is a translation of
the fundamental region by the coroot λ∨. The minimal length coset representative
corresponding to a coroot lattice point is the alcove which has the minimal number of
hyperplanes separating it from the fundamental alcove A◦.
Definition 5 A distinguished alcove is an alcove which is of minimal length in its
coset in ˜W/W .

Figure 5 shows the distinguished alcoves, or minimal length coset representatives, for
˜C2/C2 shaded in gray. The coroot lattice is highlighted with bold black dots, and each
translate of the fundamental region by a coroot is outlined in solid gray.

Definition 6 The complement of the collection of the hyperplanes {Hα | α ∈ Φ+}
partitionsR

n intoWeyl chambers, which are highlighted in red in Fig. 5. Now consider
the complement of the collection {Hα,1 | α ∈ Φ+}, shown in blue in Fig. 5. Note that
these hyperplanes do not all meet in a single point, but that only |W | of these regions
actually contain any coroot lattice points. We refer to these |W | regions as the shifted
Weyl chambers.

The key observation about these shifted Weyl chambers is that, within each shifted
Weyl chamber, all distinguished alcoves are simply translates by an element of the
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coroot lattice of the same alcove in the fundamental region. We shall exploit this
symmetry later in Sect. 5.

3.2 Abacus diagrams

The development of abacus diagrams typically requires the concept of mirrored Z-
permutations. We provide only a brief discussion of mirrored Z-permutations in order
to move directly to abacus diagrams; the interested reader is referred to Sects. 2 and 3
in [10] for more details.

Definition 7 (Definition 2.1 in [10]) Fix a positive integer n and let N = 2n + 1. A
bijection w : Z → Z is a mirrored Z-permutation if w(i + N ) = w(i) + N and
w(−i) = −w(i) for all i ∈ Z.

It is easy to see from the equations in Definition 7 that a mirrored Z-permutation
w is completely determined by its action on {1, 2, . . . , n}, and that w(i) = i for
all i ≡ 0 (mod N ). Given a mirrored Z-permutation w, the ordered sequence
[w(1), w(2), . . . , w(2n)] is called the window of w. The windows for the mirrored
Z-permutations corresponding to the Coxeter generators of ˜Cn are shown below:

si = [1, 2, . . . , i − 1, i + 1, i, i + 2, . . . , n] for 1 ≤ i ≤ n − 1,

sC0 = [−1, 2, 3, . . . , n],
sCn = [1, 2, . . . , n − 1, n + 1].

The minimal length coset representatives in ˜Cn/Cn satisfy w(1) < w(2) < · · · <

w(n) < w(n + 1). Abacus diagrams combinatorialize the integers occurring in the
base window of a mirrored Z-permutation.

Definition 8 (Definition 3.1 in [10]) An abacus diagram is a diagram containing 2n
columns labeled 1, 2, . . . , 2n, called runners. Runner i contains entries labeled by the
integers mN + i for each level m where −∞ < m < ∞. An example of an abacus
diagram is shown in Fig. 6.

An abacus diagram is drawn as follows:

(i) Each runner is vertical, with −∞ at the top and ∞ at the bottom. The runners
increase from runner 1 in the left-most position to runner 2n in the right-most
position.

(ii) Entries in the abacus diagrammay be circled. The circled entries are called beads,
and the non-circled entries are called gaps. The entries are linearly ordered by the
labels mN + i , where m ∈ Z is the level and 1 ≤ i ≤ 2n is the runner number.
This linear ordering is called the reading order.

(iii) A bead b is active if there exist gaps that occur prior to b in the reading order.
Otherwise, the bead b is inactive. A runner is called flush if no bead on the runner
is preceded in reading order by a gap in the same runner. An abacus is flush if
every runner is flush.
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Fig. 6 The balanced flush
abacus a(w) corresponding to
the mirrored Z-permutation
w = [−11,−1, 2, 5, 8, 18]

1 2 3 4 5 6

−20 −19 −18 −17 −16 −15

−13 −12 −11 −10 −9 −8

−6 −5 −4 −3 −2 −1

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

22 23 24 25 26 27

(iv) An abacus is balanced if there is at least one bead on every runner, and the sum
of labels of the lowest bead on runners i and N − i is N for all i = 1, 2, . . . , 2n
(equivalently, the sum of the highest levels that contain a bead for runners i and
N − i is 0).

(v) An abacus is even if there is an even number of gaps preceding N in the reading
order.

A runner containing a bead at the highest level is called the largest runner, and a
runner whose lowest bead occurs at the lowest level among all runners is called the
smallest runner. Note that largest and smallest runners may not be unique. Denote by
A2n the set of all balanced flush abaci on 2n runners.

Definition 9 Given a mirrored Z-permutation w, define a(w) to be the balanced flush
abacus whose lowest bead in each runner is an element of {w(1), w(2), . . . , w(2n)}.

It has been shown (Lemma 3.6 in [10]) that the map a : ˜Cn/Cn −→ A2n by
w �→ a(w) is a bijection. From now on, we will assume all abacus diagrams to be
balanced flush abacus diagrams unless otherwise noted. When we translate the action
of the Coxeter generators on the mirrored Z-permutations through the bijection a to
abacus diagrams, we get an action of the Coxeter generators on abacus diagrams. They
are described in Sect. 3.2 of [10]. Since we are going to use these actions later in our
proofs, we summarize them again here:

(i) si interchanges column i with column i +1 and interchanges column 2n− i with
column 2n − i + 1, for 1 ≤ i ≤ n − 1.

(ii) sC0 interchanges column 1 and 2n, and then shifts the lowest bead on column 1
down one level toward ∞, and shifts the lowest bead on column 2n up one level
toward −∞.

(iii) sCn interchanges column n with column n + 1.

The following theorem shows that there is a bijection between coroot lattice points
and abacus diagrams for ˜W/W .

Theorem 1 (Theorem 4.1 in [10]) The coroot lattice point for an element w ∈ ˜W/W
is
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n
∑

i=1

leveli (a(w))εi ,

where leveli (a(w)) is the level of the lowest bead in column i of the abacus a(w).

3.3 Core partitions

Let λ = (λ1, . . . , λr ) be a partition. The Young diagram of λ is a collection of left-
justified boxes for which the number of boxes weakly decreases from λ1 to λr as one
moves down the rows. We will use (i, j) to denote the box located at the ith row and
the jth column of the Young diagram of λ. The (i, j)th hook length of λ, denoted by
hλ

(i, j), is the number of boxes to the right and below the (i, j)th box of λ, including
the (i, j)th box itself. A Young diagram is symmetric if it is symmetric across the line
formed by the boxes along the diagonal (i, i).

Definition 10 Given an integer n ≥ 2, a partition λ is an n-core if for every box (i, j)
in the Young diagram of λ, we have n � hλ

(i, j).

Following the notation in [2], we denote the set of all n-cores by Cn , the set of all
n-cores with first part equal to k by Ckn , and the set of all n-cores with first part ≤ k
by C≤k

n . Similarly, we will denote the set of all symmetric n-cores by Sn , the set of
all symmetric n-cores with first part equal to k by S k

n , and the set of all symmetric
n-cores with first part ≤ k by S ≤k

n .
There is a bijection between balanced flush abacus diagrams with 2n runners and

(2n)-cores. The bijection FS : A2n → S2n is defined as follows.

Definition 11 (Definition 5.2 in [10]) Let a ∈ A2n be a balanced flush abacus with 2n
runners and M active beads. Define FS (a) to be the partition whose i th row contains
the same number of boxes as gaps that appear before the (M − i + 1)th active bead in
reading order. It is shown in Sect. 5 of [10] that the image of FS is indeed the set of
symmetric (2n)-cores.

A summary of the three combinatorial models for ˜Cn/Cn discussed in this section
appears in Table1.

3.4 Canonical reduced words

Under the bijection FS between abacus diagrams and cores, we get a natural action
of ˜Cn on the set of symmetric (2n)-cores. To describe this action, we begin by labeling

Table 1 Models for ˜W/W in
Lie type C

Model for ˜Cn/Cn Conditions

Core partitions Symmetric (2n)-cores

Abacus diagrams Balanced flush abaci on 2n runners

Coroot lattice points (a1, . . . , an) ∈ Z
n
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0 1 2 1 0

1

2

1

0

0

0

1

1

(a) s0λ

0 1 2 1

1

2

1

0 1

1

(b) s1s0λ

0 1

1

2

0

2

(c) s0s1s0λ

0 1 2

1

2

(d)
s2s0s1s0λ

0 1

1

(e)
s1s2s0s1s0λ

0

(f)
s0s1s2s0s1s0λ

Fig. 7 The action of ˜C2 on a 4-core and the canonical reduced word

N
2 so that (i, j) corresponds to row i and column j in the Young diagram. Define the

residue of a position in N
2 to be

res(i, j) =
{

( j − i)||(2n) if 0 ≤ ( j − i)||(2n) ≤ n
2n − (( j − i)||(2n)) if n < ( j − i)||(2n) < 2n,

where p||q is the integer in {0, 1, . . . , q − 1} that is congruent to p mod q. When a
Young diagram is labeled with its residues, we call the boxes in the Young diagram
containing residue i the i-boxes of the diagram.

We say that a box is addable to a partition λ if adding the box to the Young diagram
of λ results in a partition. Similarly, a box is removable if removing the box from λ

results in a partition.

Theorem 2 (Theorem 5.8 in [10]) Let si ∈ ˜Cn be a generator of the Coxeter group
˜Cn. If there exist addable i-boxes or removable i-boxes, then si acts on λ by adding
all addable i-boxes to λ, or deleting all removable i-boxes from λ. If there are no
addable or removable i-boxes in λ, then si acts as the identity on λ. This provides a
well-defined action of ˜Cn on S2n.

Using Theorem 2, we may repeatedly delete removable boxes from a (2n)-core
λ to obtain a canonical reduced word corresponding to λ, as the following example
illustrates.

Example 12 Taking a 4-core and repeatedly applying Theorem 2 as shown in Fig. 7,
we obtain the reduced word s0s1s0s2s1s0.

4 The projection map Φn

4.1 Review of the results for type A

In this section, we review results obtained for the projection map Φn : ˜Sn/Sn →
˜Sn−1/Sn−1 in [2]. Core partitions, abacus diagrams, and root lattice points also index
elements of ˜Sn/Sn in Lie type A. These models are the symmetric group analogs of
the models described in Sect. 3 for type ˜Cn , and they are summarized in Table 2.

We first define a map Φk
n : ˜Sn/Sn → ˜Sn−1/Sn−1 on core partitions. Given an

n-core λ, consider its Young diagram. To apply Φk
n , first compute all of the hook
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Table 2 Models for Lie type A
Model for ˜Sn/Sn Conditions

Core partitions n-Cores

Abacus diagrams n-Runners and sum of the highest levels that
contain a bead equals 0

Root Lattice Points (a1, . . . , an) ∈ Z
n such that

∑n
i=1 ai = 0

lengths h(i,1) of the left-most squares of the i th row. Then, delete all rows i of λ for
which h(i,1) ≡ h(1,1) (mod n). Using abacus diagrams, Berg et al. show that when
Φk

n is applied to a n-core λ with first part equal to k, the resulting partition Φk
n (λ) is

a (n − 1)-core with first part at most k. Furthermore, it is shown in [2] that the map
Φk

n : Ckn → C≤k
n−1 is a bijection.

Given an abacus a corresponding to an n-core in Ckn , the map Φk
n acts by removing

the entire runnerwith the largest bead. To obtain an abacus corresponding to an (n−1)-
core, simply place the remaining runners onto an abacus on n − 1 runners, keeping
the levels of the entries the same as they were prior to removing the largest runner.

When defined on root lattice points, the map Φk
n becomes more geometrically

enlightening. As a review, recall that the simple roots Δ of type An−1 are the n − 1
vectors

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn .

In type A, the n-cores correspond to (co)root lattice points (a1, . . . , an) ∈ Λ∨
R , where

ai ∈ Z and
∑n

i=1 ai = 0; refer to Remark 4 for a disambiguation of the terminology.
Let V = Λ∨

R⊗ZR � R
n . As summarized in Table 2, elements of V are (a1, . . . , an) ∈

R
n such that

∑n
i=1 ai = 0. When the cores are identified with the root lattice points,

the domain Ckn of Φk
n lies inside a hyperplane in V . More specifically, for k ≥ 0, let

Hk
n denote the affine hyperplane

Hk
n =

{

v ∈ R
n : (v, ε(kmod n)) =

⌈

k

n

⌉}

∩ V, (4.1)

where 1 ≤ (kmod n) ≤ n. Corollary 3.2.15 in [2] says that the n-cores λ with first
part λ1 = k all lie inside Hk

n ∩Λ∨
R . Further, Theorem 4.1.1 in [2] says that the mapΦk

n ,
when restricted to the domain Ckn inside Hk

n ∩ΛR
∨, is a projection onto the hyperplane

Hk
n .

4.2 The map Φn on symmetric cores

The map Φn acting on the set S2n of symmetric (2n)-cores can be defined in the
followingway. First, label the boxes of a (2n)-core by the elements ofZ/2nZ repeating
along diagonals by assigning box (i, j) the label j − i (mod 2n). Then, delete all
the rows and columns that end with the same element of Z/2nZ as the first row
(equivalently column). An example of this process is shown in Fig. 8.
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4.3 The map Φn on abacus diagrams

Given an abacus a, write a = (a1, . . . , an,−an, . . . ,−a1), where we denote by ai the
level of the lowest bead in column i so that the i th coordinate of a equals leveli (a)εi
for 1 ≤ i ≤ n. Note that these are precisely the coordinates of the coroot lattice point
corresponding to a by Theorem 1.

DefineΦ ′
n(a) to be the abacus obtained via the following procedure: first, locate the

right-most runner with the largest coordinate in abacus a. Then, delete this runner and
its symmetric runner. The resulting abacus Φ ′

n(a) is a balanced abacus with 2n − 2
runners, corresponding to an element of ˜Cn−1/Cn−1. An example of this procedure is
shown in Fig. 9 (the abacus corresponds to the core partition in Fig. 8).

As reviewed in Sect. 3.3, balanced abacus diagrams for the quotient ˜Cn/Cn are in
bijective correspondence with symmetric (2n)-cores. Let this bijection be denoted by
FA . Using the bijection FA and the map Φn on S2n , we get an induced map Φn :
A2n → A2n−2 on abacus diagrams such that the following diagram is commutative:

S2n
FA ��

Φn

��

A2n

Φn

��
S(2n−2)

FA �� A(2n−2)

(4.2)

Proposition 13 The induced map Φn on abacus diagrams is the map Φ ′
n.

To prove this proposition, we will need the following lemma:

(a) (b)

Fig. 9 Action of Φ ′
3 on the abacus a= (1, 2, −2, 2, −2, −1)
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Lemma 14 In an abacus diagram a corresponding to the core partition FS (a), there
is a left-most runner whose largest bead is located at the smallest level. Deleting this
runner results in an abacus a′ whose corresponding core partition is obtained from
FS (a) by deleting all columns that end with the same element of Z/2nZ as the first
column.

Proof By construction of the core partition from the abacus diagram, the columns
correspond to the gaps that are smaller than the largest active bead. For example, the
smallest gap, which is smaller than every active bead, corresponds to the first column.
It can be easily checked (similar to the case of deleting the right-most runner having
a bead at the highest level) that two columns end with the same element of Z/2nZ

if and only if their gaps are in the same runner. The left-most runner whose largest
bead is the smallest is the runner containing the smallest gap. By deleting this runner,
we are deleting all the columns that end with the same element of Z/2nZ as the first
column, as claimed. ��

We are now ready to prove Proposition 13.

Proof (of Proposition 13) Notice that the symmetric runner of the right-most largest
runner is the left-most smallest runner. To apply Φ ′

n , we will proceed in two steps.
Deleting the right-most largest runner corresponds to deleting all rows that end in the
same element ofZ/2nZ as the first row. Deleting the symmetric runner, by Lemma 14,
corresponds to deleting all columns that end with the same element of Z/2nZ as the
first column. As in the proof of Lemma 14, the columns correspond to gaps in the
symmetric runner that are smaller than the largest active bead. It follows that the
resulting (2n − 2)-core partition we get from applying Φ ′

n is what we would obtain if
we apply the map Φn . ��

4.4 The domain and codomain of the map Φn

In order to fully understand the map Φn : ˜Cn/Cn → ˜Cn−1/Cn−1, it is necessary to
use the theory of alcoves. We have seen that for type A, the map Φk

n is a projection
when restricted to the root lattice points corresponding to n-cores in Ckn . In general,
given a parabolic quotient ˜W/W , we wish to partition its elements into hyperplane
domains. The cores corresponding to each hyperplane domain should satisfy common
combinatorial properties. By identifying each hyperplane with ˜Cn−1/Cn−1, the map
Φn : ˜Cn/Cn → ˜Cn−1/Cn−1 is subsequently defined by projecting each domain onto
their hyperplanes. In this subsection, we wish to find a partition of the domain of Φn

so that when restricted to these parts, the map Φn is bijective.

Lemma 15 Let a ∈ A2n be a balanced flush abacus with 2n runners. If the largest
bead of a is located at level � of runner i , where 1 ≤ i ≤ 2n, then the first part of the
symmetric (2n)-core FS (a) is λ1 = 2n(� − 1) + i .

Proof The first part of the (2n)-core FS (a), say λ1, is equal to the number of gaps
that are smaller than the largest bead. Let the largest bead of each runner be located at
levels (r1, r2, . . . , r2n) = (a1, . . . , an,−an, . . . ,−a1), respectively. Since the largest
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bead is located at level � of runner i (i.e., ri = �), the number of gaps that occur before
this bead is

i
∑

j=1

(� − r j ) +
2n
∑

j=i+1

(� − r j − 1) = 2n� −
2n
∑

j=1

r j − (2n − i)

= 2n� − (2n − i) = 2n(� − 1) + i,

as desired. ��
Let Φk

n denote the map Φn when the domain is restricted toS k
2n .

Corollary 16 Under the bijection between symmetric (2n)-cores and balanced flush
abaci, FA (S k

2n) is the set of abaciwhere the largest runner is located at level � = ⌈ k
2n

⌉

of runner i := k (mod 2n).

Proof We may write k uniquely as 2n(� − 1) + i , where � ≥ 1 and 1 ≤ i ≤ 2n.
By Lemma 15, elements ofS k

2n correspond to balanced flush abaci where the largest
active beads are located at level � of the i th runner. ��

Proposition 17 The image of Φk
n is a subset of the setS

≤
(

k−
⌈

k
n

⌉)

2n−2 of (2n − 2)-cores
with first part at most k − ⌈ k

n

⌉

.

Proof To show that the image of the map Φk
n is contained in S

≤k−
⌈

k
n

⌉

2n−2 , notice that
the number of gaps in runner 2n + 1 − i which are smaller than the largest active
bead (which is located in the i th runner) is equal to � k

n �. Indeed, it is equal to 2� − 1
if i ≡ 1, . . . , n (mod 2n), and 2� if i ≡ n + 1, . . . , 2n (mod 2n). When we apply
the map Φk

n to this abacus, the number of gaps that are less than the first active bead

decreases by at least
⌈ k
n

⌉

. Hence, the image of Φk
n is a subset of S

≤k−
⌈

k
n

⌉

2n−2 . ��

4.5 The map Φn on coroot lattice points

Recall that there is a bijective correspondence between elements in ˜Cn/Cn and coroot
lattice points of the form (a1, . . . , an) ∈ Z

n . By Theorem 1, the coroot lattice point
(a1, . . . , an) corresponds to the abacus on 2n runners with the largest active bead for
each runner located at levels (a1, . . . , an,−an, . . . ,−a1).

Fix an integer k > 0. Define

�1 := k (mod n) and �2 := k (mod 2n), (4.3)

where 1 ≤ �1 ≤ n and 1 ≤ �2 ≤ 2n. Let Hk
n denote the affine hyperplane

Hk
n =

{
{

v ∈ R
n : 〈v, ε�1〉 = ⌈ k

2n

⌉}

if �2 ∈ {1, . . . , n}
{

v ∈ R
n : 〈v, εn−�1+1〉 = − ⌈ k

2n

⌉}

if �2 ∈ {n + 1, . . . , 2n}. (4.4)
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Fig. 10 The hyperplanes Hk
2

Note that all of the points on Hk
n have the same fixed �1th or (n−�1+1)th coordinate.

In particular, for the first case, the �1th coordinate is
⌈ k
2n

⌉

, and for the second case, it
equals − ⌈ k

2n

⌉

. The affine hyperplanes Hk
n for ˜C2/C2 are shown in Fig. 10.

Proposition 18 (Elements of S k
2n lie on a hyperplane) Under the correspondence

between symmetric (2n)-cores and coroot lattice points, we have the following:

(i) If �2 ∈ {1, . . . , n}, then the symmetric (2n)-cores λ with λ1 = k correspond to
the lattice points (a1, . . . , an) ∈ Hk

n ∩ Z
n subject to the conditions

−
⌈

k

2n

⌉

< ai ≤
⌈

k

2n

⌉

, i ∈ [1, �1 − 1],

−
⌈

k

2n

⌉

< ai <

⌈

k

2n

⌉

, i ∈ [�1 + 1, n].

(ii) If �2 ∈ {n+1, . . . , 2n}, then the symmetric (2n)-cores λ with λ1 = k correspond
to the lattice points (a1, . . . , ak) ∈ Hk

n ∩ Z
n subject to the conditions

−
⌈

k

2n

⌉

< ai ≤
⌈

k

2n

⌉

, i ∈ [1, n − �1],

−
⌈

k

2n

⌉

≤ ai ≤
⌈

k

2n

⌉

, i ∈ [n − �1 + 2, n].

Under the correspondence between (2n − 2)-cores and lattice points in Z
n−1, we

have the following:
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(iii) If �2 ∈ {1, . . . , n}, then elements of S
≤

(

k−
⌈

k
n

⌉)

2n−2 correspond to lattice points
(a1, . . . , an−1) ∈ Z

n−1 subject to the conditions

−
⌈

k

2n

⌉

< ai ≤
⌈

k

2n

⌉

, i ∈ [1, �1 − 1],

−
⌈

k

2n

⌉

< ai <

⌈

k

2n

⌉

, i ∈ [�1, n − 1].

(iv) If �2 ∈ {n+1, . . . , 2n}, then elements ofS ≤
(

k−
⌈

k
n

⌉)

2n−2 correspond to lattice points
(a1, . . . , an−1) ∈ Z

n−1 subject to the conditions

−
⌈

k

2n

⌉

< ai ≤
⌈

k

2n

⌉

, i ∈ [1, n − �1],

−
⌈

k

2n

⌉

≤ ai ≤
⌈

k

2n

⌉

, i ∈ [n − �1 + 1, n].

Proof The claims in cases (i) and (ii) follow from Corollary 16.
We will prove the claim for case (iii), in which 1 ≤ �2 ≤ n. The coroot lattice

points satisfying condition (iii) above correspond to all balanced flush abaci whose
highest active beads are no higher than the bead located at level

⌈ k
2n

⌉

of runner �1 −1.
Since 1 ≤ �2 ≤ n, we may write k = 2n� + �1. It follows from Lemma 15 that the

first part of the core partition is at most

(2n − 2)

(⌈

k

2n
− 1

⌉)

+ �1 − 1 = (2n − 2)� + �1 − 1

= (2n� + �1) − (2� + 1)

= k −
⌈

k

n

⌉

,

as desired. Case (iv) is proved analogously. ��
Denote the set of coroot lattice points corresponding to the core partitions S k

2n
by Rk

2n , and the set of coroot lattice points corresponding to the core partitions

S
≤

(

k−
⌈

k
n

⌉)

2n−2 byR
≤

(

k−
⌈

k
n

⌉)

2n−2 . We are now ready to prove our first main theorem, which
appears as Theorem A in the introduction.

Theorem 3 The map

Φk
n : S k

2n → S
≤

(

k−
⌈

k
n

⌉)

2n−2

is a bijection.

Proof Using the commutative diagram (4.2) and the bijection FR between abacus
diagrams and coroot lattice points, the following diagram is commutative:
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S k
2n

FR◦FA ��

Φk
n��

Rk
2n

Φk
n��

S
≤

(

k−
⌈

k
n

⌉)

2n−2

FR◦FA��
R

≤
(

k−
⌈

k
n

⌉)

2n−2

(4.5)

In the commutative diagram above, Φk
n acts on the coroot lattice points in Rk

2n by
deleting the �1th coordinate if 1 ≤ �2 ≤ n, or deleting the (n − �1 + 1)th coordinate
if n + 1 ≤ �2 ≤ n. This is clearly an injection because in each case, the �1th and
(n − �1 + 1)th coordinates are both fixed and redundant.

The map Φk
n is a bijection between Rk

2n and R
≤

(

k−
⌈

k
n

⌉)

2n−2 because the inverse is
defined by inserting

⌈ k
2n

⌉

at position �1 if 1 ≤ �2 ≤ n, or− ⌈ k
2n

⌉

at position n−�1+1
if n + 1 ≤ �2 ≤ 2n. Since the horizontal arrows in the commutative diagram are also

bijections, the map Φk
n : S k

2n → S
≤

(

k−
⌈

k
n

⌉)

2n−2 is a bijection. ��

5 Geometric interpretation of the map Φk
n

In this section, we describe a geometric interpretation of Φk
n on ˜Cn/Cn using the

alcove model. Recall the correspondence between ˜Cn and alcoves in R
n discussed in

Sect. 2 given by sending a word w ∈ ˜Cn to the alcove w(A◦).
For the duration of this paper, we fix two non-negative integers n and k. Moreover,

whenever we are dealing with an object which is naturally indexed by n and k, even
if no label is explicitly mentioned, we will assume this fixed labeling.

Recall from (4.3) that we have defined �2 := k (mod 2n), where 1 ≤ �2 ≤ 2n,
and that the definition of Hk

n depends on the value of �2. Throughout this section
we shall only consider the case when �2 ∈ {1, . . . , n} since the proof for when �2 ∈
{n + 1, . . . , 2n} is completely analogous. Moreover, for ease of notations, �1 = k
(mod n) will be denoted by � for the rest of this section.

We begin by noting that we can naturally identify Hk
n withR

n−1 via the {εi : i �= �}
basis where {ε1, . . . , εn} is the standard orthonormal basis for R

n . We define the map
π : R

n → Hk
n to be the projection of R

n onto Hk
n . Analytically, this is given by

π(v) =
∑

j �=�

〈v, ε j 〉ε j +
⌈

k

2n

⌉

ε�. (5.1)

Suppose that A◦ = A1 → · · · → Ar = Aw is a minimal length alcove walk from
A◦ to Aw. Now we aim to show that π(A1) → · · · → π(Ar ) is an alcove walk for
AΦk

n (w), and that if one removes all repeated instances of alcoves in the projected walk,

then the resulting walk is minimal. We begin by showing that π(A1) → · · · → π(Ar )

is indeed an alcove walk forΦk
n (w). It is sufficient to show that the image of an alcove

A ⊆ R
n under π is an alcove when we identify Hk

n with R
n−1.
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Lemma 19 The image of an alcove under π is an alcove via the identification of Hk
n

with R
n−1.

Proof Fix an alcoveA. For every positive root β, there exists a unique integer kβ such
that λ ∈ R

n lies in the interior of the alcove A if and only if for all β, the point λ

satisfies the inequalities kβ < (λ, β) < kβ + 1; i.e., λ lies between the hyperplanes
Hβ,kβ and Hβ,kβ+1.

Let αi denote the ordered basis of simple roots in type ˜Cn . The fundamental alcove
is the region bounded by the hyperplanes Hαi ,0 for 1 ≤ i ≤ n, and Hα̃,1. In other
words, the fundamental alcove consists of all points λ ∈ R

n such that (λ, αi ) > 0 for
1 ≤ i ≤ n and (λ, α̃) < 1. This is precisely all points (a1, . . . , an) ∈ R

n satisfying
the inequality

1

2
> a1 > a2 > · · · > an > 0.

Now, the alcove A is a translation by integer coordinates of an alcove based at
the origin in the fundamental region, as defined in Sect. 2. To show that the image of
A is an alcove, it suffices to show that the image of any alcove in the fundamental
region is an alcove. All the alcoves in the fundamental region are obtained from the
fundamental alcove via a sequence of reflections across the hyperplanes Hβ,0, where
β ∈ Φ+ is a positive root.

Recalling that the positive roots in type ˜Cn are 2εi for 1 ≤ i ≤ n, and εi ± ε j for
1 ≤ i < j ≤ n, there are thus three types of reflections to consider:

(i) Reflecting across the hyperplane Hεi−ε j ,0. In this case, we switch the i th coordi-
nate and the j th coordinate; i.e.,

(a1, . . . , ai , . . . , a j , . . . , an) �→ (a1, . . . , a j , . . . , ai , . . . , an).

(ii) Reflecting across the hyperplane Hεi+ε j ,0. In this case, we first switch the i th
coordinate and the j th coordinate, then also change their signs; i.e.,

(a1, . . . , ai , . . . , a j , . . . , an) �→ (a1, . . . ,−a j , . . . ,−ai , . . . , an).

(iii) Reflecting across the hyperplane H2εi ,0. In this case, only the sign of the i th
coordinate changes; i.e.,

(a1, . . . , ai , . . . , an) �→ (a1, . . . ,−ai , . . . , an).

It is easy to see from the three cases above that an alcove in the fundamental region
consists of all points (k1aσ(1), . . . , knaσ(n)) ∈ R

n such that 1
2 > a1 > a2 > · · · >

an > 0, where ki ∈ {−1, 1} for 1 ≤ i ≤ n, and σ is a permutation of {1, 2, . . . , n}.
Without loss of generality, we may assume � = 1, so that applying π deletes

the first coordinate. To finish the proof, we apply the projection π and note that
the image contains all points of the form (k2aσ(2), . . . , knaσ(n)) ∈ R

n−1 such that
1
2 > a1 > a2 > · · · > an > 0. Since aσ(1) is gone, we can just delete it from the
inequality. It follows that the image is an alcove in type ˜Cn−1/Cn−1, as desired. ��

123



936 J Algebr Comb (2015) 41:911–948

Remark 20 By considering the image of an alcove under the projection π from (5.1),
Lemma 19 tells us that π induces a map ˜Cn → ˜Cn−1. By abuse of notation, we denote
this induced map by π as well.

Lemma 21 The image of a fundamental region under π is a fundamental region via
the identification of Hk

n with R
n−1.

Proof In type ˜Cn , the fundamental region in R
n is the region containing the points

(a1, . . . , an) where − 1
2 ≤ ai ≤ 1

2 for all 1 ≤ i ≤ n. As in the proof of the previous
lemma, without loss of generality, we assume � = 1 so that applying π deletes the first
coordinate. The image of the fundamental region is (a2, . . . , an), where− 1

2 ≤ ai ≤ 1
2

for all 2 ≤ i ≤ n, which is the fundamental region in type ˜Cn−1. ��
Definition 22 Denote by A′◦ the distinguished alcove on Hk

n whose coroot lattice
point is

⌈ k
2n

⌉

ε�. The alcove A′◦ gets identified with the fundamental alcove in ˜Cn−1
under the projection π , which makes it convenient to establish a separate notation
identifying this alcove.

Lemma 23 Exactly k hyperplanes separate the fundamental alcoveA◦ and the alcove
A′◦.

Proof Recall that the coroot lattice point associated with A′◦ is
⌈ k
2n

⌉

ε�. The abacus
corresponding to this point has the lowest bead at level

⌈ k
2n

⌉

in runner � , at level
− ⌈ k

2n

⌉

in runner N − � (where N = 2n + 1, as in Definition 7), and at level zero
elsewhere. We see that the value of the lowest bead B in runner � is N

⌈ k
2n

⌉ + � − 1.
Furthermore, there exists a unique bead b on runner � whose value lies in the range
[n + 1, N + n]. Note that the value labeling b is � if � � n + 1 and � + N otherwise.
If g denotes the number of gaps between B and b, and p denotes the number of beads
whose values are greater than N + n, then

g =
{

(2n − 1)
(⌈ k

2n

⌉ − 1
) + � − 1 if � � n + 1,

(2n − 1)
(⌈ k

2n

⌉ − 1
)

if � < n + 1,
(5.2)

and

p =
{

⌈ k
2n

⌉

if � � n + 1,
⌈ k
2n

⌉ − 1 if � < n + 1.
(5.3)

Using Corollary 8.1 in [10], we know then that the length of the word corresponding
to A′◦ is
⎧

⎨

⎩

g + p = (2n − 1)
(⌈

k
2n

⌉

− 1
)

+ � − 1 +
⌈

k
2n

⌉

if � � n + 1,

g + p + (b − N ) = (2n − 1)
(⌈

k
2n

⌉

− 1
)

+
⌈

k
2n

⌉

− 1 + (� + N ) − N if � < n + 1.

(5.4)
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A
B

O

Hk
n

Fig. 11 A perpendicular step (arrow) is obtained by reflecting over a hyperplane (diagonal line crossed
by the arrow) not perpendicular to Hk

n

Bothof these are equal to k becauseby thedefinitionof�,wehave k = 2n(
⌈ k
2n

⌉−1)+�.
From this we conclude that any minimal length walk from A◦ to A′◦ passes through
precisely k hyperplanes. ��

Wenowdevelop several definitionswhichwill be critical to the remaining geometric
arguments in this section. We will have occasion to separate out steps in an alcove
walk which are parallel to a fixed hyperplane Hk

n because these are the steps which
survive after applying the projection π .

Definition 24 Given a pair of roots α and β and two non-negative integers m and m′,
we call two affine hyperplanes Hα,m and Hβ,m′ parallel (resp. perpendicular) if the
roots α and β are parallel (resp. perpendicular). Given a fixed hyperplane Hk

n , we call a
step from an alcoveA to an alcoveA′ in an alcove walk perpendicular if it is achieved
by reflecting A across a hyperplane which is not perpendicular to Hk

n . (The reason
for this terminology is clear as illustrated in Fig. 11.) A step that is not perpendicular
shall be called parallel. An alcove walk which consists entirely of perpendicular (resp.
parallel) steps will be called a perpendicular walk (resp. parallel walk).

Next, we will identify a certain subset of alcoves along the hyperplane Hk
n which

can be naturally identified with the alcove model one dimension lower. In addition,
this subset of “good alcoves” includes all of the distinguished alcoves on Hk

n (i.e.,
those corresponding to minimal length coset representatives), which can therefore in
turn be identified with the distinguished alcoves one dimension lower.

As an auxiliary definition, we will start by identifying translates T k
n of the hyper-

planes Hk
n by a unit of 1

2 toward the origin. The good alcoves are then characterized as
sharing a face with these translates, and so the good alcoves can be thought of as the
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alcoves along Hk
n which are, in some sense, closest to the origin. We remind the reader

that in this section we only discuss the case in which �2 = k (mod 2n) ∈ {1, . . . , n}.
There is an analogous definition for both the hyperplanes T k

n and good alcoves in
the case in which �2 = k (mod 2n) ∈ {n + 1, . . . , 2n}, but all of the arguments are
identical.

Definition 25 Fix a hyperplane Hk
n . Define the hyperplane T

k
n = {

v ∈ R
n : 〈v, ε�〉 =

⌈ k
2n

⌉ − 1
2

}

to be the translate of Hk
n shifted by a unit of 1

2 toward the origin. We
call an alcove whose coroot lattice point lies in Rk

2n a good alcove if it shares an
(n − 1)-dimensional face with the hyperplane T k

n .

Proposition 26 Anyminimal length alcove walk to a good alcove takes exactly k steps
which are perpendicular to Hk

n .

Proof Observe from the symmetry of the hyperplane arrangement that steps in an
alcove walk which are parallel to Hk

n preserve the number of perpendicular steps
required to cross the hyperplane T k

n . The result follows easily from this observation
and Lemma 23, since every good alcove can be obtained by reflecting A′◦ across
hyperplanes which are perpendicular to Hk

n . ��
Proposition 27 Distinguished alcoveswhose coroot lattice points are inRk

2n are good
alcoves.

Proof As discussed in Sect. 3.1, we can partition the coroot lattice points lying inRk
2n

into 2n − 2 sets corresponding to the shifted Weyl chambers meeting Rk
2n . Within

each shifted Weyl chamber, the position of the distinguished alcoves in each translate
of the fundamental region is the same.

Within a shifted Weyl chamber, every distinguished alcove whose lattice point lies
on Hk

n is clearly a translation of another distinguished alcove whose lattice point also
lies on Hk

n by a translation that is parallel to Hk
n , provided that there is more than one

coroot lattice point in this shiftedWeyl chamber. Translation parallel to Hk
n sends good

alcoves to good alcoves since T k
n is parallel to Hk

n . It follows that if one distinguished
alcove in a given shifted Weyl chamber is good, then so are the rest of these alcoves.

Note that the hyperplane T k
n intersects each translate of the fundamental region

on Hk
n in a full (n − 1)-dimensional face, since T k

n is parallel to at least one face of
the fundamental region. Consider the distinguished alcove on Hk

n within each shifted
Weyl chamber whose coroot lattice point is closest to the origin. Since there exists
at least one alcove in the same coset which shares a face with T k

n , this must be true
for the distinguished alcove. Indeed, any alcove which does not share a full (n − 1)-
dimensional face with T k

n has at least one more hyperplane separating it from the
fundamental alcove, in which case the length of the corresponding word is longer than
that of the alcove sharing a face with T k

n . Therefore, these distinguished alcoves are
good, and the result follows by the previous paragraph. ��

Lemma 28 For any alcove B ∈ R
n−1 whose coroot lattice point is in R

≤
(

k−
⌈

k
n

⌉)

2n−2 ,
there exists a good alcove A on Hk

n such that π(A) = B.
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Proof Let y ∈ R
≤

(

k−
⌈

k
n

⌉)

2n−2 be the coroot lattice point for the alcove B. By Proposi-
tion 18, there exists a coroot lattice point y′ ∈ Rk

2n such that π(y′) = y. Furthermore,
from Lemma 21, we know that the translated fundamental region centered at y′ is
mapped to the translated fundamental region centered at π(y′) = y. It suffices to
show that there exists a good alcove with coroot lattice point y′ whose image under π

is B.
By Lemma 19, the image of any good alcove with coroot lattice point y′ is an

alcove with coroot lattice point y. Moreover, it is clear that the image under π of the
intersection of T k

n and the translated fundamental region centered around y′ is the
translated fundamental region centered around y. It follows that there exists a good
alcove A such that π(A) = B, as desired. ��

We now introduce “clusters” of alcoves as a way of partitioning alcoves into sets
which allow maximal parallel movement without taking any perpendicular steps. A
given alcove can reach any other alcove within its cluster via only parallel steps.
Conversely, to reach any alcove outside of its cluster, at least one perpendicular step
must be taken.

Definition 29 Each alcove in ˜Cn is contained in a cluster, which is a set of alcoves
which project down bijectively onto Hk

n to alcoves in a translate of the fundamental
region of ˜Cn−1; see Fig. 12. All alcoves within a cluster are reachable from each

O

A′

level r + 1 level r

A′

A

A◦

clusters

Fig. 12 Going from a good alcove at level r to a good alcove at level r + 1
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other via a parallel walk, as defined in Definition 24. These clusters are centered
either at a coroot lattice point or at a coroot lattice point translated by (1/2, . . . , 1/2).
Equivalently, clusters are the sets of (n − 1)2n−1 alcoves which all share a face with
the same hyperplane parallel to Hk

n , but also have a vertex in common which does not
lie on Hk

n .

Taking steps within a cluster allows movement parallel to Hk
n up to a unit in each

direction without taking a perpendicular step. Two hyperplanes Hα,k and Hα,m are
adjacent if the difference |k − m| is minimal. Since all alcoves in a cluster have a
face which lies in a hyperplane parallel to Hk

n , between any two adjacent hyperplanes
parallel to Hk

n we can make exactly one forward perpendicular step.

Lemma 30 (Walk Lifting Lemma) LetA be a good alcove whose coroot lattice point
lies in Rk

2n. If a minimal length alcove walk from π(A◦) to π(A) has length s, then
any minimal length alcove walk from A◦ to A has length k + s.

Proof For any minimal length alcove walk from A◦ to A of length �, consider its
projection to the hyperplane T k

n , which is the hyperplane parallel to Hk
n that contains

a face of A, as described in Definition 25. This projection deletes all the steps in the
walk which are perpendicular to Hk

n . By Proposition 26, this projection is an alcove
walk from π(A◦) to π(A) of length � − k.

Now suppose that any minimal length alcove walk from π(A◦) to π(A) has length
s. The previous observation then says that � − k ≥ s, or equivalently � ≥ k + s. To
prove that in fact � = k+s, it suffices to show that there exists a minimal length alcove
walk from π(A◦) to π(A) that can be lifted to a walk from A◦ to A, containing only
parallel steps to Hk

n as well as perpendicular steps which move the centroid of the
alcove closer to the hyperplane Hk

n . For ease of reference, we refer to this latter type
of step as a forward perpendicular step. As long as the walk from A◦ to A contains
only forward perpendicular steps and parallel steps to Hk

n , it will contain exactly k
perpendicular steps to Hk

n by Proposition 26.
We now index hyperplanes T k

n by levels, based on their distance from the origin.
Define the level of the hyperplane T k

n to be the ceiling of the minimal distance from
the origin to any point on T k

n , which equals � k
2n �. If a good alcove A shares a face

with a level r hyperplane T k
n , we say that A is on level r . We will prove the claim by

using induction on the level of the hyperplane in which the good alcove A is located.
We first consider the case where the good alcoveA shares a face with a level r = 1

hyperplane T k
n . We need to show there is a path from A◦ to A which takes only

parallel and forward perpendicular steps. SinceA is on level 1, then the coroot lattice
point for A is between −1 and 1 in each coordinate, and so either π(A) = π(A′) for
some alcove A′ in the fundamental region, or A lies outside the fundamental region
by at most one unit in each direction. In the first case, it is clear that A is reachable
from A◦ via a perpendicular walk. Indeed, the walk will consist of a sequence of
forward perpendicular steps entirely within the fundamental region followed by a
single forward perpendicular step to reach the good alcove on T k

n . Now suppose
that π(A) = π(A′) for some alcove A′ which is not in the fundamental region. In
this case, we can assume that A′ lies in the same cluster as an alcove A f which is
in the fundamental region. The walk from A◦ to A should then begin by taking a

123



J Algebr Comb (2015) 41:911–948 941

perpendicular walk to A f within the fundamental region (if A f does not equal A◦),
then taking the parallelwalk toA′ within the cluster, followed by another perpendicular
walk fromA′ toA as in the previous case. In either scenario, we can lift the walk from
π(A◦) to π(A) to an alcove walk from A◦ to the good alcove A on level 1.

For the induction hypothesis, suppose all the good alcoves at level r satisfy the
Walk Lifting Lemma. Now, consider a good alcove A located at level r + 1. If this
good alcove has the same projection onto T k

n as a good alcove A′ located at level r ,
then for the first part of the walk fromA◦ toA, we can just take the lift of the minimal
alcove walk from π(A◦) to π(A′) given by the induction hypothesis (as pictured in
Fig. 12). Once we reach A′, we can then take a (forward) perpendicular walk to level
r + 1 to obtain a minimal length alcove walk from A◦ to A.

Finally, suppose the good alcove at level r + 1 does not have the same projection
onto Hk

n as any alcove at level r . Consider any minimal alcove walk from π(A◦) to
π(A). Let A′ be the alcove on T k

n closest to A which does have the same projection
as an alcove at level r , which by an abuse of notation we also call A′ (see Fig. 12).
We construct a lift of the walk from π(A◦) to π(A) as follows. First lift the path
from π(A◦) to π(A′) to a walk from A◦ to the alcove A′ at level r by the induction
hypothesis. Similar to the base case of the induction, we construct the final part of
the lift by taking a parallel walk within the cluster containing A′ at level r , followed
(if necessary) by a single perpendicular step to move to the next cluster, remaining
between the same two adjacent hyperplanes parallel to Hk

n which bound A′. Within
this next cluster (at the latest), we will reach an alcove which has the same projection
onto Hk

n asA. From that point, take the perpendicular walk directly toA. Altogether,
we have a walk fromA◦ toA consisting entirely of forward perpendicular and parallel
steps, proving the claim for level r + 1. By induction, it follows that all good alcoves
satisfy the Walk Lifting Lemma. ��

Equipped with the Walk Lifting Lemma, we are now prepared to derive our main
geometric results. LetX k

2n denote the distinguished alcoves whose associated coroot

lattice points are elements ofRk
2n and let X

�k−� k
n �

2n be defined similarly.

Theorem 4 The following diagram commutes:

S k
2n

FX ��

Φk
n��

X k
2n

π
��

S
≤

(

k−
⌈

k
n

⌉)

2n−2

FX ��
X

≤
(

k−
⌈

k
n

⌉)

2n−2

Proof Start with a core S ∈ S k
2n .By the commutative diagram (4.5), the coroot lattice

point associated to the image of FX (S) is precisely the same as the coroot lattice point
associated to the alcove FX (Φk

n (S)). To complete the theorem, it suffices to show that
π sends distinguished alcoves to distinguished alcoves.

To see this, suppose by contradiction that A ∈ X k
2n is an alcove such that π(A) is

not distinguished. Let s be the length of the minimum length alcove walk to π(A).
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There exists an alcove B with the same coroot lattice point as π(A) to which there
exists a minimal length walk of length r < s. By Lemma 28, there exists a good alcove
A′ in the same coset as A so that π(A′) = B. Since both A and A′ are good, by the
Walk Lifting Lemma there exist minimal length alcove walks to A and A′ of lengths
k + s and k + r , respectively. Since k + s > k + r , this is a contradiction to the fact
that A is a distinguished alcove. It follows that π(A) must be distinguished. ��

Theorem 5 Let w be a minimal length coset representative for ˜Cn/Cn such that the
associated core has first part k; i.e., suppose that the alcove Aw ∈ X k

2n. If A◦ =
A1 → · · · → Ar = Aw is a minimal length alcove walk for w, then

π(A1) → · · · → π(Ar ) (5.5)

is an alcovewalk forΦk
n (w).Moreover, if one removes all repeated instances of alcoves

in (5.5), then the resulting walk is a minimal length alcove walk for Φk
n (w).

Proof By Lemmas 19 and 21, we know that π(A◦) is the fundamental alcove for
˜Cn−1. In addition, Theorem 4 shows that π(Aw) corresponds to Φk

n (w). Moreover, π
takes adjacent alcoves to adjacent alcoves, so (5.5) is an alcove walk from the identity
alcove in ˜Cn−1 to the alcove corresponding to Φk

n (w). The removal of the repeated
instances of alcoves still clearly yields an appropriate alcove walk under π . Moreover,
the Walk Lifting Lemma says that this must in fact be a minimal length walk, since
any shorter walk would lift to a shorter original walk to Aw. ��

Corollary 31 Let w be a minimum length coset representative for ˜Cn/Cn. Then

�
˜Cn

(w) − �
˜Cn−1

(Φk
n (w)) = k. (5.6)

Proof Start with a minimal length alcove walk

A◦ = A1 → · · · → As+1 = FX (w),

where s = �
˜Cn(w). Then

π(A◦) → · · · → π(FX (w))

is an alcove walk for FX (Φk
n (w)). Note that in this alcove walk there are exactly

k repeated instances of alcoves, corresponding to the k perpendicular steps to Hk
n

guaranteed by Proposition 26. We may delete these repeated instances of alcoves to
get an alcove walk of length s − k. This alcove walk is minimal, for if it is not, then
there exits an alcove walk of length r < s − k, which, by the Walk Lifting Lemma
may be lifted to an alcove walk fromA◦ to FX (w) of length r + k < s, contradicting
the fact that �(w) = s. Therefore, �

˜Cn−1
(Φk

n (w)) = �
˜Cn

(w) − k. ��
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6 Action of Φk
n on reduced words

In this section, we will describe the action of the map Φk
n on reduced words of

˜Cn/Cn . We remark that analogous claims for type A were stated without proof in
[2], and so we include all of the details here. Let si1 · · · si� be a reduced word in
˜Cn/Cn which corresponds to the abacus a = (a1, . . . , an,−an, . . . ,−a1). From
the correspondence between reduced words and abacus diagrams, we can see that
si� · · · si1(a) = (0, . . . , 0), is the abacus diagram corresponding to the identity ele-
ment in ˜Cn/Cn .

From si1 · · · si� , we can build a reduced word for Φk
n (a) in the following � steps.

First, consider the action of si1 on the abacus a. Using the results of Sect. 3.2 in [10],
if si1 acts on a by changing the position of the largest runner, set t1 = 1 ∈ ˜Cn−1.
Otherwise, if applying si1 to a does not change the position of the largest runner, then
there exists a unique generator si ′1 ∈ ˜Cn−1, where i ′1 = i1 or i1 − 1, depending on
the positions of the runners being changed relative to the largest runner, such that
Φn(si1a) = si ′1Φn(a). In this case, set t1 = si ′1 .

At step r for 1 ≤ r ≤ �, consider the action of sir on the abacus sir−1 · · · si1(a). As
with the first step, if sir changes the position of the largest runner, set tr = 1 ∈ ˜Cn−1.
Otherwise, there exists a unique generator si ′r ∈ ˜Cn−1 such that

Φn(sir sir−1 · · · si1 · a) = si ′r Φn(sir−1 · · · si1 · a) = si ′r tr−1 · · · t1 · Φn(a).

In this case, set tr = si ′r .
From our construction, we obtain the following commutative diagram for all 1 ≤

r ≤ �:

sir−1 · · · si1 · a Φn ��

sir
��

tr−1 · · · t1 · Φn(a)

tr
��

sir sir−1 · · · si1 · a Φn �� tr tr−1 · · · t1 · Φn(a)

It follows that t1 · · · t� is a word corresponding to the abacus Φn(a). By Lemma 15,
since si1 · · · si� is a reduced word for the abacus a, there are exactly λ1 instances when
the generator si j changes the largest runner. In fact, it will either move the largest
runner to the left by one, or, if the largest runner is the first runner, decrease the level
of the largest runner by one and move it to runner 2n. In other words, the word t1 · · · t�
has a length of exactly � − λ1.

Proposition 32 The word t1 · · · t� is a reduced word corresponding to the abacus
Φn(a).

Proof It suffices to show that the length of a reduced word for Φn(a) is � − λ1. We
will proceed via contradiction. Suppose si1 · · · si p is a reduced word for Φn(a), with
p < � − λ1. We will construct a word for a that has length p + λ1 < �.

By definition, si p · · · si1 ·Φn(a) = (0, . . . , 0) corresponds to the abacus representing
the identity element of the quotient ˜Cn−1/Cn−1. We will construct a word for a as
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follows. For the first step, consider the action of si1 on the abacus Φn(a). There are
two cases to consider:

(i) Suppose 1 ≤ i1 ≤ n − 1. The generator si1 swaps two runners (along with their
symmetric runners). Consider the positions of the two runners in the abacus a. If
they are adjacent in a, then there exists a generator si ′1 ∈ ˜Cn such that si ′1 switches
these two runners in the abacus a. If this is the case, set w1 = si ′1 . On the other
hand, if the two runners are not adjacent in a, then they must be separated by
the longest runner or the symmetric runner of the longest runner. In this case, set
w1 = si ′′1 si ′1 , where si ′1 is the generator that moves the longest runner to the left
by one position, and si ′′1 is the generator that swaps the two desired runners.

(ii) Suppose i1 = 0. The generator s0 swaps the first runner and the last runner,
increases the first runner by one level, and decreases the last runner by one level.
Consider the position of this first runner in the abacus a. If this runner is the first
runner, set w1 = s0. On the other hand, if this runner is not the first runner, then
the first runner must be the longest runner or the symmetric runner of the longest
runner. If the first runner is the longest runner, set w1 = s0s1s0. If the first runner
is the symmetric runner of the longest runner, then set w1 = s0s1.

It can be checked from our construction that w1a = si1Φn(a).
At step r for 1 ≤ r ≤ p, suppose we have inductively constructed w j for all

1 ≤ j ≤ r − 1 such that Φn(wr−1 · · · w1 · a) = sir−1 · · · si1 · Φn(a). Consider the
action of sir on the abacus sii−1 · · · si1 · Φn(a). We construct wr in the same manner
as was described above so that the following diagram commutes:

wr−1 · · · w1 · a Φn ��

wr

��

sir−1 · · · si1 · Φn(a)

sir
��

wrwr−1 · · · w1 · a Φn �� sir sir−1 · · · si1Φn(a)

To finish our construction, note that after step p, we have that
Φn(wpwp−1 · · · w1 · a) = (0, . . . , 0) is the abacus corresponding to the identity
element in ˜Cn−1/Cn−1. However, wpwp−1 · · · w1 · a is not necessarily the abacus
corresponding to the identity element in ˜Cn/Cn . Letwp+1 be the shortest word so that
wp+1wp · · · w1 · a = (0, . . . , 0) is the abacus corresponding to the identity element
in ˜Cn/Cn .

From our construction, the word (wp+1 · · · w1)
−1 = w−1

1 · · ·w−1
p+1 is a word cor-

responding to the abacus a, and it has length �(si1 · · · si p ) + λ1 = p + λ1. This is
because every extra generator we added moves the largest runner to the left, or moves
it from the first runner to the last runner while decreasing its level by one. Since
p + λ1 < �, the length of the word corresponding to the abacus a, we have arrived at
a contradiction. Therefore, the length of Φn(a) is � − λ1, as desired. ��
Example 33 The canonical reduced word for the abacus a = (2, 1,−1, 1,−1,−2)
can be found as described inSect. 3.4 to be s0s1s3s2s3s0s1s2s0s1s0.Using the procedure
outlined in this section, a reduced word for Φn(a) = (1,−1, 1,−1) is 1 · 1 · s2 · 1 · 1 ·
s0s1 · 1 · s0 · 1 · 1 = s2s0s1s0.
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(2, 1,−1, 1,−1,−2)
s0→ (−1, 1,−1, 1,−1, 1)

s1→ (1,−1,−1, 1, 1,−1)
s3→ (1,−1, 1,−1, 1,−1)
s2→ (1, 1,−1, 1,−1,−1)

s3→ (1, 1, 1,−1,−1,−1)
s0→ (0, 1, 1,−1,−1, 0)
s1→ (1, 0, 1,−1, 0,−1)

s2→ (1, 1, 0, 0,−1,−1)
s0→ (0, 1, 0, 0,−1, 0)
s1→ (1, 0, 0, 0, 0,−1)

s0→ (0, 0, 0, 0, 0, 0)

(1,−1, 1,−1)
1→ (1,−1, 1,−1)

1→ (1,−1, 1,−1)
s2→ (1, 1,−1,−1)

1→ (1, 1,−1,−1)
1→ (1, 1,−1,−1)

s0→ (0, 1,−1, 0)
s1→ (1, 0, 0,−1)

1→ (1, 0, 0,−1)
s0→ (0, 0, 0, 0)

1→ (0, 0, 0, 0)
1→ (0, 0, 0, 0).

Corollary 34 (The map Φk
n decreases length by exactly k) For any abacus a corre-

sponding to a symmetric core partition in Sk
2n, we have that �(Φk

n (a)) = �(a) − k.
Here, by �(a) we mean the length of the canonical reduced word corresponding to the
abacus a.

7 The map Φk
n preserves Bruhat order

Fix a hyperplane Hk
n . In this section, we will show that under the identification of Hk

n
with R

n−1, strong Bruhat order is preserved when alcoves having coroot lattice points
lying on Hk

n are projected onto Hk
n .

Theorem 6 (Theorem 5.11 in [10]) Let x, y ∈ ˜W/W. Then x ≥B y if and only if the
core diagram for x contains the core diagram for y.

We begin with a lemma on abacus diagrams, which uses the above fact that strong
Bruhat order is equivalent to containment of cores. By an abuse of notation, we will
use the same letters to denote both the abacus diagram and the core partition associated
to an element of ˜Cn/Cn .

Lemma 35 Let x and y be elements in ˜Cn/Cn. Define the kth highest bead in an
abacus diagram by reading along levels right to left, starting with the highest level.
Then x ≥B y if and only if for all k ≥ 1, the kth highest bead in x is as high as the
kth highest bead in y.

Proof The number of gaps smaller than the kth highest bead in x and y is the length
of the kth row in the core partitions of x and y. Let the highest bead in x be located
on runner ix at level �x , and the highest bead for y on runner iy at level �y . By
Lemma 15, the number of gaps in x that are smaller than the highest bead in x equals
2n(�x − 1) + ix , and the number of gaps in y that are smaller than the highest bead in
y equals 2n(�y − 1) + iy .
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1 2 3 4 5 6

−20 −19 −18 −17 −16 −15

−13 −12 −11 −10 −9 −8

−6 −5 −4 −3 −2 −1

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

22 23 24 25 26 27

(a) x = (1, 2, −2, 2, −2, −1)

1 2 3 4 5 6

−20 −19 −18 −17 −16 −15

−13 −12 −11 −10 −9 −8

−6 −5 −4 −3 −2 −1

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

22 23 24 25 26 27

(b) y = (1, 0, −2, 2, 0, −1)

Fig. 13 The map on abaci preserves Bruhat order

First suppose x ≥B y. It is clear from the previous paragraph that the highest bead
in x is as high as the highest bead in y. Moreover, there are 2n(�x − �y) + (ix − iy)
more gaps in x that are smaller than the first highest bead than there are in y. This
number is exactly the number of positions that are higher than the highest bead in y,
but not higher than the highest bead in x . It can be easily checked that since the core
partition for x contains the core partition of y, the number of gaps smaller than the
kth bead in x is at least the number of gaps smaller than the kth bead in y, and so the
kth bead in x must be as high as the kth bead in y, as desired.

To prove the converse, note that from the discussion above, if the kth highest bead
in x is as high as the kth highest bead in y, then the number of gaps that are smaller
than the kth bead in x is at least the number of gaps that are smaller than the kth highest
bead in y. It follows that the core partition of x contains the core partition of y, and
so x ≥B y. ��
Theorem 7 (Bruhat order is preserved) Let x and y be elements in ˜Cn/Cn whose
associated coroot lattice points lie on Hk

n . Identify Hk
n with R

n−1 and let π be the
projection map onto Hk

n . Then x ≥B y if and only if π(x) ≥B π(y).

Proof Our proof will use abacus diagrams. Suppose x ≥B y. By Lemma 35, the kth
highest bead in x is as high as the kth highest bead in y. When we apply the projection
map π , we delete the same beads in both abaci.When we record the beads in an abacus
diagram listed from highest to lowest (b1, b2, b3, . . . ), define the rank of bead bi to
be its position i in this list. Consider the ranks of the deleted beads in x and y. Since
the kth highest bead in x is at least as high as the kth highest bead in y, the rank of a
deleted bead in x is no higher than its rank in y. After deleting those beads, the kth
highest bead in π(x) is still as high as the kth highest bead in π(y) for all k ≥ 1. It
follows that π(x) ≥ π(y).

Conversely, suppose π(x) ≥B π(y). By Lemma 35 again, the kth highest bead in
π(x) is as high as the kth highest bead in π(y) for all k ≥ 1. To obtain x and y from
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π(x) and π(y), we are inserting the same beads for both abaci. Given a bead to be
inserted, its rank after its insertion into π(x) is no higher than its rank after its insertion
into π(y). Therefore, after the addition of all the beads, the kth highest bead in x is
still as high as the kth highest bead in y. It follows that x ≥B y, as desired. ��
Remark 36 We remark that Theorem 7 also generalizes to affine type A. Indeed, the
corresponding statement of Lemma 35 for affine type A is a consequence of the version
of the lemma proved here in affine type C . Since Theorem 6 holds for affine type A
as well, our proof of Theorem 7, used word for word, gives a proof of the fact that Φk

n
also preserves strong Bruhat order in affine type A.

Example 37 As shown in Fig. 13, the beads in x = (1, 2,−2, 2,−2,−1) are num-
bered from highest to lowest by (18, 16, 11, 9, 8, 4, 2, 1,−1,−3,−5,−6, . . .), and
the beads in y = (1, 0,−2, 2, 0,−1) are numbered (18, 11, 8, 5, 4, 2, 1,−1,−2,−3,
−5,−6,−8, . . .), where the beads to be deleted are underlined. The ranks of the
deleted beads in x are (1, 3, 6, 10, . . .), which are no higher than the ranks of the
deleted beads in y, which are (1, 2, 5, 10, . . .). After the deletion of these beads, the
kth highest bead in π(x) is still as high as the kth highest bead in π(y), and so
π(x) ≥B π(y). The converse is illustrated in a similar fashion.
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