
J Algebr Comb (2015) 41:83–108
DOI 10.1007/s10801-014-0528-3

Orthogonal dual hyperovals, symplectic spreads,
and orthogonal spreads

Ulrich Dempwolff · William M. Kantor

Received: 17 March 2013 / Accepted: 22 April 2014 / Published online: 28 May 2014
© Springer Science+Business Media New York 2014

Abstract Orthogonal spreads in orthogonal spaces of type V +(2n + 2, 2) produce
large numbers of rank n dual hyperovals in orthogonal spaces of type V +(2n, 2). The
construction resembles the method for obtaining symplectic spreads in V (2n, q) from
orthogonal spreads in V +(2n + 2, q) when q is even.
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1 Introduction

A set D of n-dimensional subspaces spanning a finite Fq -vector space V is called a
dual hyperoval (DHO) of rank n > 2, if |D| = (qn −1)/(q −1)+1, dim X1 ∩ X2 = 1
and X1 ∩ X2 ∩ X3 = 0 for every three different X1, X2, X3 ∈ D. Usually DHOs are
viewed projectively and called “dimensional dual hyperovals,” but the vector space
point of view seems better for our purposes. See the survey article [31] for many of
the known DHOs, all of which occur in vector spaces of characteristic 2 and mostly
are over F2, in which case |D| = 2n .

Our purpose is to show that the number of rank n orthogonal DHOs is not bounded
above by any polynomial in 2n ; these DHOs occur in orthogonal spaces V +(2n, 2)
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and all members are totally singular. Our DHOs will have a further property: they split
over a totally singular space Y , meaning that V = X ⊕ Y for each DHO member X .
For more concerning the number of inequivalent DHOs of rank n, see Sect. 8b.

Our source for such orthogonal DHOs in V +(2n, 2) is orthogonal spreads in
V +(2n + 2, 2): sets O of totally singular (n + 1)-spaces such that each nonzero
singular vector is in exactly one of them. Such orthogonal spreads exist if and only
if n is odd. We use these for the following elementary result that is the basis for this
paper:

Theorem 1.1 Let O be an orthogonal spread in V +(2n + 2, 2). Let P be a point of
Y ∈ O, so that V := P⊥/P � V +(2n, 2). Then

O/P := {〈X ∩ P⊥, P〉/P | X ∈ O − {Y }}

is an orthogonal DHO in V that splits over Y/P.

Although we will show that many orthogonal DHOs can be obtained from orthog-
onal spreads with the help of Theorem 1.1, there are orthogonal DHOs that cannot be
obtained by this method (see Sect. 8a).

Except in Sect. 7, q will always denote a power of 2 and almost always n will be
odd. Our construction involves the close connection between orthogonal spreads in
V +(2n +2, q) and symplectic spreads in V (2n, q). Recall that a spread of n-spaces in
V = V (2n, q) is a set of qn + 1 subspaces such that each nonzero vector is in exactly
one of them; this determines an affine plane [7, p. 133]. A spread is called symplectic
if there is a nondegenerate alternating bilinear form on V such that all members of
the spread are totally isotropic. Any symplectic spread in V (2n, q) can be lifted to an
essentially unique orthogonal spread in V +(2n + 2, q); conversely, any orthogonal
spread in V +(2n + 2, q) can be projected (in many ways, corresponding to arbitrary
nonsingular points) in order to obtain symplectic spreads [13, Sec. 3], [19, Thm. 2.13]
(cf. Definition 2.3 below). Theorem 1.1 produces many DHOs. There is at present no
determination of the number of inequivalent orthogonal spreads, and the same is true
for DHOs.

There is a simplified (and restricted) version of this process that does not take a
detour using orthogonal spreads of higher-dimensional spaces. Given a symplectic
spread S and distinct X, Y ∈ S it is standard to introduce “coordinates”: a spread-
set � for S (this is a set of self-adjoint linear operators). These coordinates can be
distorted in a unique way to a set �� of coordinates of an orthogonal DHO (this is a
set of skew-symmetric operators; see Theorem 3.12), which we call a shadow of S.
In some situations, there are natural choices for X or Y . For example, if S defines a
semifield plane, then we let Y be the shears axis; the semifield spreads in [19] produce
the following

Theorem 1.2 For odd composite n there are more than 2n(ρ(n)−2)/n2 pairwise
inequivalent orthogonal DHOs in V +(2n, 2) that are shadows of symplectic semi-
field spreads.

Here ρ(n) denotes the number of (not necessarily distinct) prime factors of the
integer n. The number in the theorem is not bounded above by any polynomial in
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2n . The proof uses a somewhat general isomorphism result (Theorem 4.5) for DHOs
arising from Theorem 1.1.

We also consider the symplectic spreads S of the nearly flag-transitive planes in [20].
Here, the automorphism group of S contains a normal cyclic group fixing precisely
two members of S and acting regularly on the remaining ones, which leads to the
following

Theorem 1.3 For odd composite n > 27 there are more than 23ρ(n)−1
pairwise inequiv-

alent orthogonal DHOs in V +(2n, 2) admitting a cyclic group of order 2n − 1 that
fixes one member of the DHO and acts regularly on the remaining ones.

This time, the number of DHOs is less than 2n . We emphasize that there are many
DHOs constructed using Theorem 1.1 not considered in the preceding two theorems
(see Example 8.1).

In Sect. 7, we discuss a generalization of all of these results to the more general
context of qDHOs.

The authors of this paper view spreads and DHOs in somewhat different manners:
the first author prefers to think in terms of sets of operators [8,10], while the second
prefers sets of subspaces and (often) quasifields [13,16,17,19,20]. We have mostly
used the first approach (Theorem 1.1 being the main exception), and have tried to
provide translations between the two points of view (Remarks 3.7, 3.10 and 3.13,
Example 3.11 and Theorem 3.16).

2 Orthogonal DHOs and Theorem 1.1

All fields will have characteristic 2 except in Sect. 7. Theorem 1.1 is sufficiently
elementary that almost no background is needed:

Proof of Theorem 1.1 It is standard that V = P⊥/P is an orthogonal space of type
V +(2n, 2) and that each totally singular subspace X of P⊥ has a totally singular image
X in V . In particular, all members of O/P are totally singular of dimension n. Since
|O/P| = 2n it suffices to show that any two members of O/P intersect in a point and
any three intersect trivially.

Let X1, X2, X3 ∈ O−{Y } be distinct. Then Xi = 〈Xi ∩ P⊥, P〉/P and Y = Y/P .
Let P = 〈w〉.

Since (X1 ∩ P⊥) ∩ (X2 ∩ P⊥) = 0 we have dim X1 ∩ X2 ≤ 1. On the other hand,
w = x1 + x2 for some 0 
= xi ∈ Xi . All vectors in the 2-space {0, w, x1, x2} are
singular, so this is a totally singular 2-space. Hence xi ∈ Xi ∩ P⊥ and X1 ∩ X2 =
〈x1, w〉/P = 〈x2, w〉/P have dimension 1, as required.

Similarly, X1 ∩ X3 = 〈x3, w〉/P with w = x ′
1 + x3, 0 
= x ′

1 ∈ X1, 0 
= x3 ∈ X3.
If X1 ∩ X2 ∩ X3 
= 0 then X1 ∩ X2 = X1 ∩ X3, so that {0, w, x1, x2} = 〈x1, w〉 =

〈x ′
1, w〉 = {0, w, x ′

1, x3} (our field is F2!). This is impossible, since 0 
= x2 ∈ X2,
whereas X2 intersects Y, X1 and X3 only in 0. Thus, O/P is a DHO.

Finally, if x + P = y + P lies in X1 ∩Y (x ∈ X1, y ∈ Y ), then x ∈ X1 ∩ (y + P) ⊆
X1 ∩ Y = 0, so that O/P splits over Y . �
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Definition 2.1 The DHO O/P in Theorem 1.1 is the projection of O with respect to
P . Note that Y ∈ O is determined by P .

The notions of equivalence and automorphisms of symplectic or orthogonal spreads,
and of DHOs, are crucial for our results:

Definition 2.2 T ∈ �L(V ) is an equivalence E → E′ between sets E and E′ of
subspaces of a vector space V if T sends E onto E′. The automorphism group Aut(E)

of E is the group of equivalences from E to itself.

Clearly, in Theorem 1.1 points P in the same Aut(O)-orbit produce isomorphic
DHOs O/P and the stabilizer Aut(O)P of P induces an automorphism group of
O/P .

Our goal is the construction of large numbers of inequivalent DHOs. For this pur-
pose, we need to compare the construction in Theorem 1.1 to ones in [13, Sect. 3] and
[19, Thm. 2.13] (cf. Sect. 3.2). First we recall another standard property of orthogonal
spaces V +(2m, q) [28, Thm. 11.61]: the set of totally singular m-spaces is partitioned
into two equivalence classes where totally singular m-spaces X, Y are equivalent if
and only if dim X ∩ Y ≡ m (mod 2).

Definition 2.3 (Lifts and projections of symplectic and orthogonal spreads) Assume
that n is odd. Let N be a nonsingular point of V = V +(2n + 2, q), so that V :=
N⊥/N � V (2n, q) is a symplectic space. If S is a symplectic spread in V and M
is one of the two classes of totally singular (n + 1)-spaces in V , then (since n + 1 is
even)

{X ∈ M | 〈X ∩ N⊥, N 〉/N ∈ S}

is an orthogonal spread in V , the lift of S. (Changing M produces an equivalent
orthogonal spread.)

This reverses: if O is an orthogonal spread in V +(2n + 2, q), then

O/N := {〈X ∩ N⊥, N 〉/N | X ∈ O
}

is a symplectic spread in V, the projection of S with respect to N . This strongly resem-
bles Definition 2.1. As before, points N in the same Aut(O)-orbit produce isomorphic
spreads O/N .

Proposition 2.4 Let D be an orthogonal DHO of V = V +(2n, 2). Then

(a) n is odd, and
(b) If D splits over a totally singular subspace Y, then

⋃
X∈D X ∪ Y is the set of

singular vectors in V . In particular, Y is the only totally singular subspace over
which D splits.

Proof (a) If X1, X2, X3 are distinct members of D, then any two have intersection of
dimension 1. If n is even, then any two lie in different classes of totally singular
n-spaces, whereas there are only two such classes.
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(b) The set SV of singular vectors of V has size 22n−1 + 2n . By Inclusion–Exclusion,
| ⋃X∈D X | = 22n−1 + 1. Thus, if D splits over the totally singular subspace Y
then Y − 0 = SV − ⋃

X∈D X . �
Remark 2.5 We will exclusively deal with orthogonal DHOs that split over totally
singular subspaces. However, there are orthogonal DHOs (see [8, Prop. 5.4]) that
split over subspaces that are not totally singular, but do not split over any totally
singular subspace.

Any linear operator preserving an orthogonal DHO lies in the orthogonal group:

Proposition 2.6 Let D and D′ be orthogonal DHOs of V = V +(2n, 2) that split over
the totally singular subspace Y . If � ∈ GL(V ) sends D to D′, then � lies in the
stabilizer of Y in the orthogonal group O(V ).

Proof By Proposition 2.4b, SV = ⋃
X∈D X ∪ Y is the set of all singular vectors in

V . Every 3-dimensional subspace that has exactly six points in SV not in Y is totally
singular and hence has a seventh point in Y . Since every point of Y arises this way, �

leaves SV and Y invariant. �
Corollary 2.7 Let D be an orthogonal DHO of V = V +(2n, 2) that splits over
the totally singular subspace Y . Then, Y is invariant under G = Aut(D), and the
representation of G induced on V/Y is contragredient to the representation of G
induced on Y .

Proof The preceding proposition implies the first assertion. Since Y = Y ⊥, the bilinear
form associated with the quadratic form induces a G-invariant duality from Y onto
V/Y , which implies the second assertion. �

3 Coordinates and symplectic spread-sets

In this section, we use coordinates of orthogonal and symplectic spreads in order to
describe operations that do not require projections from higher-dimensional orthogonal
spreads. Throughout the remainder of this paper we will always have

U = V (n, q) and V ∼= U ⊕ U ,

where q is even except in Sect. 7. If U is equipped with a nondegenerate symmetric
bilinear form b(·, ·) we denote by T � the operator adjoint to T ∈ End(U ).

3.1 Coordinates for symplectic spreads, orthogonal spreads and orthogonal DHOs

Assume that V is a symplectic space, and denote by E either a symplectic spread,
an orthogonal spread, or an orthogonal DHO in V that splits over a totally singular
subspace. The symplectic form (·, ·) on V vanishes on all members of E. For an
orthogonal spread or DHO, all members of E are totally singular with respect to a
quadratic form Q polarizing to (·, ·). For a DHO we always assume that q = 2.
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In order to coordinatize E we choose any distinct X, Y ∈ E if E is a symplectic or
orthogonal spread. If E is a DHO that splits over a totally singular subspace Y then
choose X ∈ E.

We identify V with U ⊕ U . We may assume that

X = U ⊕ 0 and Y = 0 ⊕ U ,

the symplectic form on U ⊕ U is

(
(x, y), (x ′, y′)

) = b(x, y′) + b(y, x ′), (3.1)

and the quadratic form is
Q

(
(x, y)

) = b(x, y). (3.2)

For Z ∈ E − {Y } there is a unique L ∈ End(U ) such that Z = V (L), where

V (L) := {(x, x L) | x ∈ U }. (3.3)

Each L is self-adjoint with respect to b if E is a symplectic spread (as Z is totally
isotropic), and L is even skew-symmetric (i. e., b(x, x L) = 0 for all x) if E is an
orthogonal spread or a DHO (as Z is totally singular). The subspace Z = X corre-
sponds to L = 0. If Z 
= X then L is invertible if E is a symplectic or orthogonal
spread, while L has rank n − 1 in the DHO case. Hence, there is a set � ⊆ End(U )

containing 0 such that

E = {V (L) | L ∈ �} ∪ {Y }

if E is a symplectic or orthogonal spread and

E = {V (L) | L ∈ �}

if E is an orthogonal DHO that splits over the totally singular subspace Y = 0 ⊕ U .

Definition 3.1 Let V = U ⊕ U, E, X and Y be as above.

• If E is a symplectic spread, then � is a (symplectic) spread-set of E with respect
to the ordered pair (X, Y ).

• If E is an orthogonal spread, then � is a Kerdock set of E with respect to the ordered
pair (X, Y ) (cf. [13]).

• If E is an orthogonal DHO then � is a DHO-set of E with respect to X . (Note that
there is no choice for Y , the space over which E splits.)

Conversely, it is routine to check the following:

Lemma 3.2 Assume that � ⊆ End(U ) is a set of self-adjoint operators containing 0.
Define symplectic and quadratic forms on V = U ⊕ U using (3.1) and (3.2).

(a) If |�| = qn and det(L + L ′) 
= 0 for all distinct L , L ′ ∈ �, then E = {V (L) | L ∈
�} ∪ {0 ⊕ U } is a symplectic spread of V .
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(b) If |�| = qn−1, det(L + L ′) 
= 0 for all distinct L , L ′ ∈ �, and all members of �

are skew-symmetric, then E = {V (L) | L ∈ �}∪ {0⊕U } is an orthogonal spread
of V .

(c) Assume that |�| = 2n with n odd, that all members of � are skew-symmetric, and
that
(1) rk(L + L ′) = n − 1 for all distinct L , L ′ ∈ �, and
(2) if L ∈ � then

{
ker(L + L ′) | L ′ ∈ � − {L}} is the set of 1-spaces of U.

Then E = {V (L) | L ∈ �} is an orthogonal DHO that splits over 0 ⊕ U.

Remark 3.3 Let b(x, y) = x · y be the usual dot product and identify End(U ) with
the space of all n × n matrices over Fq . Then L ∈ End(U ) is self-adjoint if and only
if L = Lt , and L is skew-symmetric if and only if, in addition, its diagonal is 0.

A variation is used in Sects. 4 and 5: identify U with F = Fqn and use the trace
form

b(x, y) = Tr(xy),

where Tr : F → Fq is the trace map.

Rank 1 operators will play a crucial role for our results. The following elementary
description of those operators is also in [21, Prop. 5.1].

Lemma 3.4 If T ∈ End(U ) has rank 1, then T = Ea,b for some 0 
= a, b ∈ U,

where
x Ea,b := b(x, a)b for all x ∈ U. (3.4)

If Ea,b = Ea′,b′ for nonzero a, a′, b, b′, then a′ = ka and b′ = k−1b for some k ∈ F
�
q .

Proof Write U0 = ker T = 〈a〉⊥ with a ∈ U . Let v ∈ U − U0 such that b(v, a) = 1.
Then b := vT 
= 0. Thus, 0 = uT = uEa,b for u ∈ U0 and vT = b = vEa,b, so that
T = Ea,b.

If Ea,b = Ea′,b′ then 〈a〉 = 〈a′〉 and 〈b〉 = 〈b′〉, and a calculation completes the
proof. �
Remark 3.5 Since b(x, yEa,b) = b(x Eb,a, y), the operator Eb,a is adjoint to Ea,b,

so that Ea,b is self-adjoint if and only if 〈a〉 = 〈b〉. In this case, there is a (uniquely
determined) c ∈ 〈a〉 = 〈b〉 such that Ea,b = Ec,c.

In terms of matrices, the lemma is the elementary fact that rank 1 matrices have
the form at b for nonzero row vectors a, b. This matrix is symmetric if and only if
〈a〉 = 〈b〉.
Lemma 3.6 For each self-adjoint operator T there is a unique self-adjoint operator
R = Ea,a of rank ≤ 1 such that T + R is skew-symmetric. Moreover,

(a) a ∈ Im T ;
(b) rk (T + R) =

{
rk T if rk T ≡ 0 (mod 2)

rk T ± 1 if rk T ≡ 1 (mod 2);
(c) if S is self-adjoint and S + Eb,b is skew-symmetric, then R′ = Ea+b,a+b is the

unique self-adjoint operator of rank ≤ 1 such that T + S + R′ is skew-symmetric;
and
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(d) if n is odd and T is invertible, then ker(T + Ea,a) = 〈aT −1〉 and b(a, aT −1) 
= 0.

Proof As T is self-adjoint, the map λT : U → Fq given by x �→ b(x, xT ) is semilin-
ear: λT (kx) = k2λT (x) for x ∈ U, k ∈ Fq . If λT = 0 then T is skew-symmetric and
we set R = 0 = E0,0. Assume that λT 
= 0 and set U0 = ker λT . Pick u ∈ U such
that λT (u) = 1 and a ∈ U such that U0 = 〈a〉⊥ and b(u, a) = 1. Then S = T + Ea,a

is self-adjoint. Moreover λS(x) = λT (x) + b(x, a)2 is 0 on both U0 and u, so that S
is skew-symmetric. In particular,

λT (x) = b(x, a)2 for all x ∈ U . (3.5)

As b is nondegenerate, every semilinear functional from U to Fq associated with the
Frobenius automorphism has the form x �→ b(x, a)2 for a unique a ∈ U . This implies
the uniqueness of R = Ea,a .

(a) Let T + Ea,a be skew-symmetric and assume that a 
∈ Im T = (Im T )⊥⊥. Then
b(a, (Im T ⊥)) 
= {0}, so that there exists y ∈ (Im T )⊥ with 1 = b(a, y). Since
y and yT are perpendicular, (3.5) implies that 1 = b(a, y)2 = b(y, yT ) = 0, a
contradiction.

(b) Clearly rk (T + R) ≡ 0 (mod 2).
(c) (T + S) + Ea+b,a+b = (T + Ea,a) + (S + Eb,b) + (Ea,b + Eb,a) expresses the

left-hand side as a sum of skew-symmetric operators.
(d) By (b), dim ker(T + Ea,a) = 1. Let 0 
= x ∈ ker T + Ea,a . By (3.4), 0 =

xT + b(a, x)a and hence x = b(a, x)aT −1, so that 0 
= x ∈ 〈aT −1〉 and
b(a, x) 
= 0. �

Remark 3.7 In terms of matrices the first paragraph of the lemma states that, if A
is a symmetric matrix, then A + d(A)t d(A) is skew-symmetric, where d(A) is the
diagonal of A written as a row vector as in [2, Lemma 7.3].

Lemma 3.8 For a symplectic spread-set � of U = V (n, q) with n odd,

(a) There is a unique bijection C : U → � such that C(a) + Ea,a is skew-symmetric
for all a ∈ U, and

(b) C is additive iff � is additively closed.

Proof (a) If 0 
= L ∈ � then the self-adjoint, invertible operator L is not skew-
symmetric as n is odd. By the preceding lemma, there is a unique nonzero vector
a = aL ∈ U such that L+Ea,a is skew-symmetric of rank n−1. If 0 
= L , L ′ ∈ �,
L 
= L ′, then aL 
= aL ′ as L + L ′ is invertible and hence not skew-symmetric, so
that C is bijective.

(b) Since one direction is obvious, assume that � is additively closed. If a, b ∈ U ,
then C(a) + C(b) = C(c) for some c ∈ U . By definition C(c) + Ec,c is skew-
symmetric, and so is C(a)+C(b)+Ea+b,a+b = C(c)+Ea+b,a+b by Lemma 3.6c.
Then c = a + b by Lemma 3.6, as required. �

Definition 3.9 (Canonical labeling) The unique bijection C : U → � in Lemma 3.8
is the canonical labeling of the symplectic spread-set � of operators of U . Notation:
C = L (�).
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Remark 3.10 Each symplectic spread-set � ⊆ End(U ) determines a prequasifield on
U defined by x ∗ a = xC(a) for any additive bijection C : U → �. Then C is the
canonical labeling if and only if

b(x, x ∗ a) = b(x, xC(a)) = b(x, x Ea,a) = b(x, a)2

by (3.4). This is the condition on a prequasifield appearing in [19, (2.15)].

3.2 Projections and lifts with coordinates

We next coordinatize projections and lifts (Definitions 2.1 and 2.3). We review [13,16,
19] using somewhat different notations. We will assume for the remainder of Sect. 3
that n is odd.

(a) From Kerdock sets to symplectic spread- sets. Let O be an orthogonal
spread in V = V +(2n+2, q), let N be a nonsingular point, and choose an ordered
pair X, Y ∈ O. The identification
• V = U ⊕ U where U = V (n + 1, q),
• X = U ⊕ 0, Y = 0 ⊕ U ,

produces a Kerdock set K such that each member of O−{Y } has the form V (L) =
{(x, x L) | x ∈ U }, L ∈ K. Moreover, this identification induces a symmetric,
nondegenerate bilinear form b(·, ·) on U such that the quadratic form Q is defined
by Q

(
(x, y)

) = b(x, y). Given this Kerdock set, we make the special choice

N = 〈(w,w)〉 with b(w,w) = 1.

Then (x, x L) lies in N⊥ if and only if b(w, x) = b(w, x L). Set U = 〈w〉⊥ and
write x ∈ U as x = αw + u, α ∈ Fq , u ∈ U . As L is skew-symmetric, wL ∈ U
and

α = b(w, x) = b(w, x L) = b(wL , u).

Also,

uL = uLπU + b(wL , u)w,

where πU is the orthogonal projection U → U . Since U ⊕U is a set of representa-
tives for N⊥/N and as (x, x L) = (b(wL , u)w+u, b(wL , u)w+b(wL , u)wL +
uLπU ) ≡ (u, b(wL , u)wL + uLπU ) (mod N ),

{LπU + EwL ,wL | L ∈ K} is a spread-set of the symplectic spread O/N .

(b) From Kerdock sets to DHO- sets. We keep the notation from (a) using
q = 2. We use X ∈ O − {Y } and the singular point P = 〈(0, w)〉 ⊆ Y. We use
the above identifications for V , X , Y , and Q. A typical element in V (L) ∩ P⊥
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has the form (u, uL) = (u, uLπU + b(wL , u)w) ≡ (u, uLπU ) (mod P), u ∈ U .
As U ⊕ U � P⊥/P , we see that

{LπU | L ∈ K} is a DHO-set of the orthogonal DHO O/P.

(c) From symplectic spread- sets to Kerdock sets. Let S be a symplectic
spread on V = V (2n, q), and let X, Y ∈ S. This time we identify
• V = U ⊕ U , U = V (n, q),
• X = U ⊕ 0, Y = 0 ⊕ U , and
• The bilinear form is

(
(x, y), (x ′, y′)

) = b(x, y′)+b(y, x ′) for a nondegenerate
symmetric bilinear form b on U .

Let � ⊆ End(U ) be the resulting spread-set and C = L (�) (cf. Definition 3.9). Set
U = Fq ⊕ U and V = U ⊕ U , and define a quadratic form Q on V by

Q(α, x, β, y) = αβ + b(x, y).

For a ∈ U define the skew-symmetric linear operator D(a) on U by

(α, x)D(a) = (
b(x, a), αa + x(C(a) + Ea,a)

)
.

Then K = {D(a) | a ∈ U } is a Kerdock set of the lift O, where O/N � S for the
choice N = 〈(1, 0, 1, 0)〉.
Example 3.11 We illustrate the above discussion using matrices, as in [2, Lemma 7.3].
Let U = F

n+1
q and V = U ⊕ U , equipped with the quadratic form Q(x, y) = x · y.

We will use the nonsingular point N = 〈(e1, e1)〉 and the singular point P = 〈(0, e1)〉
(where the ei are the standard basis vectors of U ). Then the bilinear form b is the usual
dot product on U := 〈e2, . . . , en+1〉.

Let O be an orthogonal spread containing X and Y (defined above). Then a Kerdock
set can be written K = {D(u) | u ∈ U } using (n+1)×(n+1) skew-symmetric matrices

D(u) =
(

0 x(u)

x(u)t A(u)

)
,

where A(u) is an n × n skew-symmetric matrix and x(u) ∈ U is a row matrix. Then

� := {A(u) | u ∈ U } (3.6)

is a DHO-set of O/P , while

� := {A(u) + x(u)t x(u) | u ∈ U },

is a spread-set of the symplectic spread O/N , where x(u)t x(u) represents the previous
rank 1 operator EwL ,wL in (a).
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3.3 Shadows, twists and dilations

Theorem 3.12 Let � be a spread-set of self-adjoint operators of U = V (n, 2) and
C = L (�). Then � = �� = {B(a) = C(a) + Ea,a | a ∈ U } is a DHO -set of
skew-symmetric operators.

Proof We sketch two different arguments.
Geometric approach. Start with a symplectic spread-set � and C = L (�),

and produce a Kerdock set K using Sect. 3.2c. Then apply Sect. 3.2b to K using the
singular point P = 〈(0, 0, 1, 0)〉.

Algebraic approach. We will verify the conditions in Lemma 3.2c. Consider
distinct a, b, c ∈ U . Then skew-symmetric operator B(a) + B(b) = C(a) + C(b) +
Ea,a + Eb,b has even rank at least n − 2, and hence has rank n − 1.

Let x 
= 0 with x(B(a) + B(b)) = x(B(a) + B(c)) = 0. Then 0 
= x(C(a) +
C(b)) = b(a, x)a+b(b, x)b, so that b(a, x) or b(b, x) 
= 0. We cannot have b(a, x) =
b(b, x) = 1, as otherwise b(a + b, x) = 0 would contradict Lemma 3.6d (since
C(a) + C(b) + Ea+b,a+b is skew-symmetric by Lemma 3.6c).

Then b(a, x) 
= b(b, x). By symmetry, it follows that b(a, x), b(b, x), and b(c, x)

are distinct members of F2, a contradiction. �

Remark 3.13 (Constructing DHO-sets using orthogonal spreads) Example 3.11 con-
tains the construction of the above set of operators using [2, (7.4)] in terms of matrices
(compare Remark 3.7). However, the preceding theorem shows that we can proceed
directly from spread-sets to the required DHO-sets.

The examples studied in Sects. 4 and 5 are obtained by taking known orthogonal
spreads with “nice” descriptions in terms of matrices or linear operators and peeling
off the set � in (3.6). Of course, there is a bias here: orthogonal spreads having nice
descriptions will have less nice descriptions using arbitrary choices of its members
X, Y (as we will see in Example 8.1 below).

Definition 3.14 (Shadows) Let � be a spread-set of self-adjoint operators of U coor-
dinatizing the symplectic spread S of V = V (2n, 2) with respect to the pair (X, Y ).
Let Q be the unique quadratic form on V polarizing to the given symplectic form such
that X and Y are totally singular. The DHO-set � = �� associated to � in Proposi-
tion 3.12 will be called the shadow of �; it is uniquely determined by the spread-set.
We also call the orthogonal DHO on (V, Q) defined by � a shadow of the spread S.
(Recall that this is not uniquely determined: we choose X and Y in order to obtain the
spread-set � from the spread S. Also see Sect. 3.4.)

Example 3.15 Consider F = F2n as an F2-space equipped with the absolute trace
form Tr as a nondegenerate symmetric form. Define the F2-linear map C(a), a ∈ F,

by

xC(a) = a2x .
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Then C is the canonical labeling (Definition 3.9) of a symplectic spread-set that coor-
dinatizes the desarguesian plane. The operators

x B(a) = a2x + Tr(xa)a

define the shadow � = {B(a) | a ∈ F} of �. In particular x Ea,a = Tr(xa)a. The
automorphism group of the corresponding DHO is isomorphic to F� · Aut(F) by
Lemma 5.6 below.

Our later Examples 4.2 and 5.1 are generalizations of this one. We close this section
with a result obtaining new symplectic spreads from known ones.

Theorem 3.16 Let � be a spread-set of self-adjoint operators of U = V (n, q), and
let C = L (�).

(a) If u ∈ U, define Cu : U → End(U ) by

Cu(a) := C(a) + Ea,u + Eu,a .

Then �u := {Cu(a) | a ∈ U } is a spread-set of self-adjoint operators and Cu =
L (�u). Moreover, �u is additively closed if � is.

(b) Pick 1 
= λ ∈ Fq and define Cλ : U → End(U ) by

Cλ(a) := C
(
(1 + λ)a

) + Eλa,λa .

Then �λ = {Cλ(a) | a ∈ U } is a spread-set of self-adjoint operators and Cλ =
L (�λ).

Proof This is a reformulation of special cases of [19, Lemma 2.18] using Lemma 3.6,
(3.4) and Lemma 3.8b. (The easy, direct algebraic verification—similar to the proof
of Theorem 3.12—is left to the reader.) �
Remark 3.17 In view of [19, Lemma 2.18], �, �u , and �λ are all projections of the
same orthogonal spread (cf. Definition 2.3).

Definition 3.18 (Twists and dilations) Let � be a symplectic spread-set of U =
V (n, q), q even. For u ∈ U and 1 
= λ ∈ Fq we call the spread-set�u in Theorem 3.16a
the u-twist of �, and the spread-set �λ in Theorem 3.16b the λ-dilation of �.

Corollary 3.19 In the notation of Theorem 3.16a, assume that q = 2, � is additively
closed and u ∈ U. Let � = {B(a) := C(a) + Ea,a | a ∈ U } and �u = {Bu(a) :=
Cu(a)+ Ea,a | a ∈ U } be the shadows of � and �u. Then Bu(a) = B(a + u)+ B(u).

Proof By Definition 3.14 and Theorem 3.16,

Bu(a) = Cu(a) + Ea,a

= C(a) + Ea,u + Eu,a + Ea,a

= C(a + u) + Ea+u,a+u + C(u) + Eu,u

= B(a + u) + B(u).

�
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3.4 The projections O/N and O/P

The term “shadow” of a symplectic spread suggests that, as in the physical world, the
original object cannot be recovered from the shadow. We will see how this occurs in
our context: the relationship between symplectic spreads and shadows is less tight than
visible in the preceding section. This is illustrated by Example 3.21 below. We will see
that non-isomorphic spread-sets can produce isomorphic shadows, a symplectic spread
can have non-isomorphic shadows, and the automorphism groups of a symplectic
spread and a shadow can be very different. These phenomena are best understood
from the viewpoint of orthogonal spreads:

Proposition 3.20 Let O be an orthogonal spread in V = V +(2n + 2, 2). Let N be
a nonsingular point and P a singular point in V such that the 2-space 〈N , P〉 is
hyperbolic. Then, the DHO O/P is a shadow of the symplectic spread O/N.

Proof We will use the notation in Sect. 3.2 for a suitable choice of coordinates. By
assumption, 〈N , P〉 contains a singular point P ′ 
= P . We may assume that P ′ =
〈(e1, 0)〉 and P = 〈(0, e1)〉, so that N = 〈(e1, e1)〉. We may assume that the members
of O containing P ′ and P are X = U ⊕ 0 and Y = 0 ⊕ U , respectively. According to
Remark 3.13 (compare Example 3.11), O/P is a shadow of O/N . �

Example 3.21 (a) When the usual desarguesian spread S of V (2, qn) (for q even and
n > 1 odd) is viewed as a symplectic spread of V (2n, q), it can be lifted to the
desarguesian orthogonal spread O of V = V +(2n + 2, q) as in Definition 2.3.
Then O/N0 = S for a nonsingular point N0. The group G = SL(2, qn) ·Aut(Fqn )

preserves the point N0, the orthogonal spread O and the orthogonal geometry of V .
It has exactly two orbits of singular points; the various orbits of nonsingular points
N are described at length in [13, Sec. 4]. If N 
= N0 then 〈N G〉 is a G-invariant
subspace 
= 0, N0, and hence is N⊥

0 or V .
If P is a singular point, then P⊥ 
= N⊥

0 . Thus, P is not perpendicular to some
member N ′ of N G , in which case 〈N ′, P〉 is a hyperbolic 2-space.

(b) In particular, when q = 2, by the preceding proposition each O/P is isomorphic
to a shadow of each O/N , N 
= N0, where there are many non-isomorphic
symplectic spreads O/N [13, Cor. 3.6 and Sec. 4]. Also, O/P is a shadow of the
desarguesian spread O/N0 = S when P is not in N⊥

0 .
If q = 2 and n = 5, then G has precisely three orbits of nonsingular points: {N0},
N G

1 , and N G
2 , with N G

1 ⊆ N⊥
0 and N G

2 ∩ N⊥
0 = ∅. Here O/N1 is a semifield

spread with |Aut(O/N1)| = 25 · 5, and O/N2 is a flag-transitive spread with
|Aut(O/N2)| = 33 ·5. The two orbits of G on singular points are PG

0 (inside N⊥
0 )

and PG
1 (with PG

1 ∩ N⊥
0 = ∅). The DHO O/P1 appeared in Example 3.15, while

O/P0 is one of the DHOs in Example 8.1. By Example 3.15, Aut(O/P1) = G P1

has order 31 · 5, while G P0 induces on the DHO O/P0 an automorphism group of
order 25 · 5. Thus, O/P0 
� O/P1. Use of a computer shows that Aut(O/P0) =
G P0 .
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4 Proof of Theorem 1.2

Except in Sect. 7, we will use F = F2n with n > 1 odd, viewed as an F2-space
equipped with the nondegenerate, symmetric bilinear form (x, y) �→ Tr(xy) using
the absolute trace Tr : F → F2 as in Remark 3.3.

Notation 4.1 We will use the following:

• The quadratic form Q on V = F ⊕ F defined by Q(x, y) = Tr(xy);
• The trace map Trd:e : F2d → F2e when F2d ⊃ F2e , so that Trn:1 = Tr;
• Sequences d = (d0 = 1, d1, . . . , dm) of |d| = m + 1 different integers such

that d1|d2| · · · |dm |n, associated with a chain F2 = F0 ⊂ F1 ⊂ · · · ⊂ Fm ⊂ F,

|Fi | = 2di , of |d| proper subfields of F;
• The Fi -linear operator

E (i)
a,b : x �→ Trn:di (ax)b (4.1)

on F for a, b ∈ F and 0 ≤ i ≤ m; and
• Sequences c = (c1, . . . , cm), ci ∈ F .

This section is concerned with the following symplectic semifield spread-sets:

Example 4.2 [19] Let d and c be as above with all ci ∈ F�. For a ∈ F define the
operator C(a) on F by

C(a) = a21 +
m∑

i=1

(E (i)
ci ,a + E (i)

a,ci
).

This defines a symplectic spread-set �. Moreover, C = L (�) by Example 3.15 since
the operators E (i)

ci ,a + E (i)
a,ci are skew-symmetric. The shadow of � (Definition 3.14) is

� = {B(a) | a ∈ F} with B(a) = C(a) + E (0)
a,a .

The DHO-set � defines an orthogonal DHO of V by

D = {V (a) | a ∈ F} with V (a) = V
(
B(a)

) := {(x, x B(a)
) | a ∈ F}.

Remark 4.3 (a) The preceding spread-set � is obtained by successively twisting the
desarguesian spread-set �0 = {a21 | a ∈ F}. Namely, view �0 as a symplectic
spread-set over Fm . Let d = dm and c = cm ∈ F�. By Theorem 3.16 the twist
�1 = {a21+ E (m)

c,a + E (m)
a,c | a ∈ F} is a symplectic spread-set over Fm . Now view

�1 as a spread-set over Fm−1 and iterate the twisting using cm−1 ∈ F�.
(b) None of the nontrivial elations of the projective plane arising from the symplectic

spread-set is inherited by the shadow DHO since C(a + b) = C(a) + C(b) but
B(a +b) = C(a +b)+ E (0)

a+b,a+b 
= C(a)+ E (0)
a,a +C(b)+ E (0)

b,b = B(a)+ B(b)

for 0 
= a, b, a 
= b.
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Our goal is to show that we obtain at least 2n(ρ(n)−2)/n2 inequivalent orthogonal
DHOs of the above type when n is composite. We start with a uniqueness result
concerning shadows:

Proposition 4.4 If n > 5, then a DHO-set � ⊆ End(U ) can be the shadow of at most
one additively closed symplectic spread-set.

Proof Let � = {B(a) | a ∈ U } be the shadow of the additively closed symplectic
spread-sets � and �̃. Write � = {C(a) := B(a) + Ea,a | a ∈ U } with C = L (�)

additive (by Lemma 3.8b). Then for each B(a) ∈ � there is a self-adjoint operator
Eb,b of rank ≤ 1 such that C(a) := B(a)+ Eb,b ∈ �̃. Write a′ = b. We have to show
that a′ = a for all a. (N. B.–We do not know that C = L (�̃).)

We claim that C is additive. Let 0 
= a, b ∈ U and C(a) + C(b) = C(c) with
c ∈ U . By the additivity of C and the definition of C ,

C(a + b + c) = (B(a) + Ea,a) + (B(b) + Eb,b) + (B(c) + Ec,c)

= Ea′,a′ + Eb′,b′ + Ec′,c′ + Ea,a + Eb,b + Ec,c. (4.2)

Then c = a + b, as otherwise the rank of the above left side is n and of the right side
is ≤ 6. Thus, C is additive.

Since C(a) + Ea′,a′ and C(b) + Eb′,b′ are skew-symmetric, by Lemma 3.6c

C(a) + C(b) + Ea′+b′,a′+b′ = C(a + b) + Ea′+b′,a′+b′

is also skew-symmetric. Since C(a +b)+ E(a+b)′,(a+b)′ is skew-symmetric, a′ +b′ =
(a + b)′ by Lemma 3.6.

Since a+b = c and Ea+b,a+b = Ea,a +Eb,b +Ea,b +Eb,a , we have Ea,b +Eb,a =
Ea′,b′ + Eb′,a′ by (4.2). By (3.4),

〈a′, b′〉 = Im (Ea′,b′ + Eb′,a′) = Im (Ea,b + Eb,a) = 〈a, b〉.

Then the additive map a �→ a′ fixes each 2-space of the F2-space U , and hence is 1.
�

Theorem 1.2 depends on relating equivalences of spread-sets and of shadows of
twists (cf. Definition 3.18):

Theorem 4.5 Assume that � and �̃ are symplectic spread-sets of U = V (n, 2), for
odd n > 5, whose respective shadows � and �̃ are equivalent.

(a) For some permutation a �→ a′ of U fixing 0, some T ∈ GL(U ) and some u ∈ U,

T �B(a)T = B̃u(a′) for all a ∈ U, where � = {B(a) | a ∈ U } is the shadow of
� and �̃u = {B̃u(a) | a ∈ U } is the shadow of the twist �̃u.

(b) If �̃ is additively closed then, for some permutation a �→ a of U and S = T −1,

Ĉ(a) := B(a) + Ea,a = S�C̃u(aT )S is the canonical labeling of the additively
closed symplectic spread-set S��̃u(a)S. Furthermore, the shadow of �̂ = S��̃u S
is �.
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(c) If � and �̃ are additively closed then a semifield defined by � is isotopic to a
semifield defined by some twist of �̃.

See [7, p. 135] for the definition of “isotopic semifields.” In the present context,
this means that T1�T2 is a twist of �̃ for some T1, T2 ∈ GL(U ).

Proof (a) Let � : V → V be an operator mapping the DHO D for � onto the DHO
D̃ for �̃, where V = U ⊕ U as usual. By Proposition 2.4b and Proposition 2.6,
� ∈ O(V ) has the form

(x, y)� = (x�11, x�12 + y�22)

where �11,�22 ∈ GL(U ), �12 ∈ End(U ), and the adjoint of T := �22 is
T � = �−1

11 by Corollary 2.7.
If C = L (�) and C̃ = L (�̃) (Definition 3.9), we have � = {B(a) := C(a) +
Ea,a | a ∈ V } and �̃ = {B̃(a) := C̃(a)+Ea,a | a ∈ U }. Then D = {V (B(a)) | a ∈
U } and D̃ = {V (B̃(a)) | a ∈ U } in the notation of (3.3).
We apply � to (x, x B(a)) ∈ V (B(a)) ∈ D and obtain

(x, x B(a))� = (y, y�−1
11 (�12 + B(a)�22)) ∈ V (B̃(a′)), y = x�11,

for some permutation a �→ a′ of U . Then B̃(a′) = T �(�12+B(a)T ). In particular,
when a = 0 and u := 0′ we have B̃(u) = T ��12. Then, in the notation of
Corollary 3.19, T �B(a)T = B̃(a′)+ B̃(u) = B̃((a′+u)+u)+ B̃(u) = B̃u(a′+u).
Since 0′ = u, replacing a �→ a′ by the permutation a �→ a′ + u produces (a) (but
does not change u).

(b) If �̃ is additively closed then C̃u is additive by Lemma 3.8b and the end of
Theorem 3.16a.
Let a �→ a be the inverse of a �→ a′S. Then (a) states that Ĉ(a) = B(a) +
Ea,a = S� B̃u(a′)S + Ea,a = S�C̃u(aT )S + S�EaT,aT S + Ea,a = S�C̃u(aT )S.
The shadow of the symplectic spread-set �̂ for Ĉ is {B(a) | a ∈ U } = �, by
Definition 3.14, while �̂ = S��̃u S. Finally, the additivity of a �→ S�C̃u(a)S
proves (b).

(c) This is immediate from (b) and Proposition 4.4. �
Proof of Theorem 1.2 By [19, Thm. 4.15], [18, Thm. 1.1] and [22], there are at least
2n(ρ(n)−1)/n2 symplectic semifield spreads defining non-isomorphic semifield planes
using Example 4.2. If two equivalent orthogonal DHOs are defined by shadows of
symplectic spread-sets � and �̃ in Example 4.2, then the semifields defined by �

and some twist �̃u (u ∈ U ) are isotopic by Theorem 4.5c. Since there are |U | = 2n

possibilities for u, we obtain at least 2n(ρ(n)−2)/n2 pairwise inequivalent DHOs. �
Remark 4.6 Note that the exact formulas for the semifield spreads in Example 4.2
were never used in the above arguments. Therefore, if many more inequivalent sym-
plectic semifield spread-sets are found then there will, correspondingly, be many more
inequivalent DHOs.
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Also note that Proposition 4.4 and Theorem 4.5 deal with spread-sets and DHO-sets,
and hence do not conflict with Sect. 3.4, which deals with spreads and DHOs.

The preceding result and argument differ in a significant way from ones in [10,19,
20] and Sect. 5: it did not rely on a group of automorphisms of the objects (DHOs)
being studied, but rather on such a group for related objects.

5 Proof of Theorem 1.3

We will show that the shadows of the symplectic spreads of the nearly flag-transitive
planes in [20] produce at least as many non-isomorphic DHOs as stated in Theorem 1.3.
We start with the corresponding spread-sets:

Example 5.1 [20] Let d and c be sequences as at the start of the preceding section,
with associated fields Fj and the additional properties that c j ∈ Fj with at least one

of them nonzero, and
∑ j

i=1 ci 
= 1 for 1 ≤ j ≤ m. For a ∈ F define

C(a) = (1 +
m∑

i=1

ci )a
21 +

m∑

i=1

ci E (i)
a,a (5.1)

[the operators E (i)
a,b are in (4.1)]. Then C is the canonical labeling of a symplectic

spread-set �. Indeed, � is just the description in [10] of the symplectic spread-sets
from [20]. For completeness we verify that C is the canonical labeling L (�), i. e., in
view of (3.4) and Definition 3.9, that Tr

(
x(xC(a))

) = Tr
(
x(x Ea,a)

) = Tr(ax)2 (as
in [19, (2.15)]). Since n is odd we have Tr = Tr ◦ Trn:di and hence Tr

(
ci zTrn:di (z)

) =
Tr ◦Trn:di

(
ci zTrn:di (z)

) = Tr
(
ci Trn:di (z)

2
) = Tr

(
Trn:di (ci z2)

) = Tr(ci z2). If z = ax
it follows that

Tr
(
x(xC(a)

) = Tr(ax)2 +
m∑

i=1

Tr(ci a
2x2) +

m∑

i=1

Tr
(
ci axTrn:di (ax)

) = Tr(ax)2,

as required.
The shadow of � is

� = {B(a) | a ∈ F} with B(a) = C(a) + E (0)
a,a . (5.2)

Using the quadratic form in the preceding section, we obtain a DHO in F ⊕ F :

D = Dd,c := {V (a) | a ∈ F} with V (a) := V
(
B(a)

)
.

For b ∈ F� define Mb ∈ GLF2(F) by (x, y)Mb = (b−1x, by). If y = b−1x then

(
x, x B(a)

)
Mb = (

y, b(by B(a))
) = (

y, y B(ab)
)
,
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so that V (a)Mb = V (ab) in the notation of (3.3), and M := {Mb | b ∈ F�} � F� is
a group of automorphisms of D. Also, if α ∈ Aut(F) then the map

�α : (x, y) �→ (xα, yα) (5.3)

normalizes M and it is an automorphism of of D if cα
i = ci for all i . Define

P = {�α | cα
i = ci for all i} and G = MP. (5.4)

In the next proposition, we will show that G is the full automorphism group of D.

Remark 5.2 (a) The preceding spread-set � is obtained by successively dilating the
desarguesian spread-set �0 = {a21 | a ∈ F}. View �0 as a symplectic spread-
set over Fm . Let d = dm and 1 
= c = cm ∈ F�

m , and define λ = c1/2. By
Theorem 3.16, a typical element of the λ-dilation has the form ((1 + λ)a)21 +
E (m)

λa,λa = (1 + c)a21 + cE (m)
a,a , where the right side is C(a) when m = 1. Hence

the spread-set � is obtained as a dilation in the case m = 1. View � as a spread-set
over Fm−1 and iterate the dilating by choosing cm−1 ∈ Fm−1.

(b) Two DHOs Dd,c and Dd ′,c′ are equal if and only if d = d ′ and c = c′. This is
proved exactly as in [20, Prop. 8.1] or [10, Proof of Thm. 5.2].

(c) When m = 0 Examples 4.2 and 5.1 coincide with Example 3.15.
(d) Unfortunately, use of Theorem 4.5a does not seem to shorten the proofs in the

present section.

Proposition 5.3 Let D = Dd,c and D′ = Dd ′,c′ be DHOs in Example 5.1. Then

(a) Aut(D) = G, and
(b) D � D′ if and only if d = d ′ and cα

i = c′
i for some α ∈ Aut(F) and 1 ≤ i ≤ |d|.

We will prove this using several lemmas. Recall that D and D′ split over Y =
0 ⊕ F ⊆ V .

Lemma 5.4 If � ∈ Aut(D) satisfies �Y = 1Y and �V/Y = 1V/Y then � = 1.

Proof By assumption, (x, y)� = (x, x R + y) for some R ∈ End(F). There is a
permutation a �→ a′ of F such that V (a)� = V (a′) for all a. Then (x, x B(a))� =
(x, x B(a′)) states that R + B(a) = B(a′) for all a. Let b := 0′, so that R = B(b).

If b = 0 then � = 1, as required.
Suppose that b 
= 0. We have B(a)+B(b) = B(a′). Consider the equation x B(a)+

x B(b) = x B(a′) as a polynomial equation modulo x2n − x . By (5.1) and (5.2), x B(a)

is the sum of a term linear in x , terms of the form cx2di k
with di > 2 and 0 < di k < n

and c ∈ F , and terms such as a1+2k
x2k

arising from Tr(ax)a. If 0 < k < n, (k, n) = 1,
then

a2k+1x2k + b2k+1x2k = a′2k+1x2k
, x ∈ F, i. e., a2k+1 + b2k+1 = a′2k+1.

Choosing k = 1 and k = 2, since (a′3)5 = (a′5)3 we see that every x ∈ F satisfies
(x3 + b3)5 = (x5 + b5)3, which is absurd since b 
= 0. �
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Lemma 5.5 Aut(D) is isomorphic to a subgroup of �L(1, 2n), and M is normal in
Aut(D).

Proof Set A := Aut(D). By Lemma 5.4 and Corollary 2.7, A acts faithfully on
Y , and M induces a Singer group of GL(Y ). By [12], A has a normal subgroup
H � GL(k, 2), where n = k and Z := M∩ Z(H) is a cyclic group of order 2 −1.
If k = 1, then H = M, as required.

Assume that k > 1. The M-orbits on D are {V (0)} and D − {V (0)}. Then V (0) is
H-invariant, as otherwise H would be 2-transitive on D, contradicting [5]. The action
of M on V (0) is the same as its action on the field F , hence V (0) can be viewed as
an F2-space on which Z acts as F

�
2 and H acts as GL(k, 2).

In order to obtain a contradiction we will use a transvection A in GL(k, 2) (so
that the F2-space W := CV (0)(A) has dimension n − l and A2 = 1; from now on
dimensions will be over F2). By Corollary 2.7, A arises from an operator � ∈ H such
that (x, y)� = (x A, y(A�)−1) = (x A, y A�).

There is a permutation a �→ a′ of F� such that V (a)� = V (a′). Then AB(a)A� =
B(a′) since V (a)� = {(x, x AB(a)A�) | x ∈ F}.

Note that W (AB(a)A� + B(a)) ⊆ W B(a)(A� + 1) has dimension ≤ rk(A� +
1) = l. Since dim V − dim W = n − (n − l), it follows that rk(B(a′) + B(a)) =
dim V (0)(AB(a)A� + B(a)) ≤ l + l < n − 1. By Lemma 3.2c, a′ = a and hence
� = 1, a contradiction. �
Lemma 5.6 Aut(D) = G.

Proof By the preceding lemma, we need to determine which �α lie in G. Since
V (a)�α = {(xα, (x B(a))α) | x ∈ F}, (5.1) and (5.2) show that V (a)�α = V (aα), so
that Dd,c = Dd,cα . By Remark 5.2(b), ci = cα

i for all i , so that �α ∈ P . �
Remark 5.7 It might be interesting to have a proof of Lemma 5.6 using an elemen-
tary polynomial argument rather than the somewhat less elementary group theory we
employed.

Proof of Proposition 5.7 We just proved (a). Consider (b). Clearly, �α maps Dd,c onto
Dd,cα (cf. (5.3)).

Conversely, assume that � maps D onto D′. By Proposition 2.6, � lies in O(V ),
and by Lemma 5.5 it even lies in the normalizer M{�α | α ∈ Aut(F)} of M in O(V ).
(Compare the proofs of [20, Prop. 5.1] or [10, Prop. 4.6]; the former does not even
need the precise group Aut(D).) So we may assume that � = �α for some α. Arguing
as in the proof of the preceding lemma we obtain d = d ′ and c′ = cα . �

We leave the following calculation to the reader:

Lemma 5.8 If p1 ≤ · · · ≤ p are odd primes, then

(2p1 − 1)(2p1 p2 − 1) · · · (2p1···p − 1)

p1 · · · p

≥ 23

unless (; p1, . . . , p) = (1; 3), (1; 5) or (2; 3, 3).
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Proof of Theorem 1.3 Let n = p1 p2 · · · pm+1 for odd primes pi such that p1 ≤ · · · ≤
pm+1, i.e. ρ(n) = m + 1. Consider the chain F2 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm+1 =
F = F2n where |Fi | = 2di for di = p1 · · · pi . Every sequence (c1, . . . , cm) with
ci ∈ Fi and

∑ j
i=1 ci 
= 1 for 1 ≤ j ≤ m defines a symplectic spread in Example 5.1

(where ci = 0 means that we delete the field Fi from the chain). By Proposition 5.3 we
obtain at least (2p1 −1)(2p1 p2 −1) · · · (2p1···pm −1)/p1 p2 · · · pm pairwise inequivalent
DHOs. Now use Lemma 5.8. �

6 A non-isomorphism theorem

In this section we will prove:

Theorem 6.1 Any DHO from Example 4.2 is not isomorphic to a DHO from Exam-
ple 5.1 having h > 0.

First we need a tedious computational result:

Lemma 6.2 For F = F2n (n ≥ 5odd), let f : F → F be such that f (x)3 + x3 and
f (x)5 + x5 are additive. Then f = 1.

Proof Let g(x) := f (x)3 + x3 and h(x) := f (x)5 − x5. Since ( f (x)3)5 = ( f (x)5)3,
for all x ∈ F we have

x12g(x) + x3g(x)4 + g(x)5 = x10h(x) + x5h(x)2 + h(x)3. (6.1)

Write g(x) = ∑n−1
i=0 gi x2i

and h(x) = ∑n−1
i=0 hi x2i

with gi , hi ∈ F , where indices

will be read mod n. Since h(x)2 = ∑n−1
i=0 h2

i−1x2i
and g(x)4 = ∑n−1

i=0 g4
i−2x2i

, the
left side of (6.1) has the form

L(x) =
n−1∑

i=0

gi x2i +12 +
n−1∑

i=0

g4
i−2x2i +3 + g(x)5

and the right side has the form

R(x) =
n−1∑

i=0

hi x2i +10 +
n−1∑

i=0

h2
i−1x2i +5 + h(x)3.

In order to view L(x) = R(x) as a polynomial identity involving polynomials of degree
≤ 2n − 1, we note that the above summations in L(x) and R(x) involve exponents
≤ 2n − 1 (since n ≥ 5), as do the following (for all x ∈ F):
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g(x)5 =
(

n−1∑

i=0

gi x2i

) (
n−1∑

i=0

g4
i−2x2i

)

=
∑

0≤i<k≤n−1

(gi g
4
k−2 + gk g4

i−2)x2i +2k +
n−2∑

i=0

gi g
4
i−2x2i+1 + gn−1g4

n−3x

h(x)3 =
(

n−1∑

i=0

hi x2i

) (
n−1∑

i=0

h2
i−1x2i

)

=
∑

0≤i<k≤n−1

(hi h
2
k−1 + hkh2

i−1)x2i +2k +
n−2∑

i=0

hi h
2
i−1x2i+1 + hn−1h2

n−2x .

Denote by Lo(x) and Ro(x) the sums over the terms with odd exponents in L(x)

and R(x), respectively. These involve the following exponents:

Lo(x) 20 + 12 2i + 3 (i > 0) 1 20 + 2k (k > 0)

Ro(x) 20 + 10 2i + 5 (i > 0) 1 20 + 2k (k > 0)

We rewrite Lo(x) and Ro(x) so that all coinciding exponents are visible:

Lo(x) = gn−1g4
n−3x + (g4−1 + g5

0 + g2g4−2)x5 + g0x13

+[g4
0 x7 + g4

1 x11] + (g0g4
1 + g3g4−2)x9

+
∑

i≥4

g4
i−2x2i +3 +

∑

0<k≤n−1
k 
=2,3

(g0g4
k−2 + gk g4−2)x1+2k

Ro(x) = hn−1h2
n−2x + (h2

1 + h0h2
2 + h3h2−1)x9 + h0x11

+[h2
0x7 + h2

2x13] + (h0h2
1 + h2h2−1)x5

+
∑

i≥4

h2
i−1x2i +5 +

∑

0<k≤n−1
k 
=2,3

(h0h2
k−1 + hkh2−1)x1+2k

.

Comparing the coefficients of Lo(x) = Ro(x), we obtain the following table con-
taining some of the relations among the various gi and hi .

Equation Exponent  of x Restrictions

g4
0 = h2

0 7

g4
1 = h0 11

g0 = h2
2 13

g0g4
k−2 + gk g4−2 = h0h2

k−1 + hk h2−1 1 + 2k 0 < k 
= 2, 3

g4
i−2 = 0 2i + 3 i ≥ 4

0 = h2
i−1 2i + 5 i ≥ 4
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Since i, k ≤ n − 1, the last two equations show that only g0, g1, gn−2, gn−1 and
h0, h1, h2, hn−1 might be nonzero. Moreover,

g4
0 = h2

0, g4
1 = h0 and g0 = h2

2. (6.2)

The exponent 1 + 2k , k = n − 2, yields 0 + g5
n−2 = 0 + 0.

We need three even exponent terms in the equation L(x) = R(x):

gn−1x2n−1+12 = 0

g1g4
1−2x21+1 = h1h2

1−1x21+1

(g1g4
3−2 + 0)x21+23 = (h1h2

3−1 + 0)x21+23
.

Then g−1 = gn−1 = 0, so that h1h0 = 0 by the second equation.
If h0 = 0 then g0 = g1 = 0 by (6.2). If h1 = 0 then g1 = 0 by the third equation,

and then h0 = g0 = 0 by (6.2).
Thus, g(x) = 0 and f (x)3 = x3. Since n is odd, we obtain f (x) = x , as desired.

�
Proof of Theorem 6.1 Assume that a DHO from Example 4.2 is isomorphic to a DHO
from Example 5.1. Let C(a) be as in Example 5.1 with spread-set � and shadow
{B(a) = C(a) + Ea,a | a ∈ U }. By Theorem 4.5b, there is a permutation a �→ a′ of
U such that 0′ = 0 and Ĉ(a) = B(a′)+ Ea,a is the canonical labeling of an additively
closed spread-set.

Then

Ĉ(a) = C(a′) + Ea,a + Ea′,a′ ,

where C(a′) = (1 + ∑m
i=1 ci )a′21 + ∑m

i=1 ci E (i)
a′,a′ by (5.1). Write xĈ(a) =

∑n−1
i=0 ui (a)x2i

with each ui : F → F additive (since Ĉ is), u1(a) = a′3 + a3 and
u2(a) = a′5 + a5 since m ≥ 1. The additivity of u1 and u2 yields the hypotheses of
Lemma 6.2. Thus, a′ = a for all a ∈ U , so that Ĉ = C . In Example 5.1 we assumed
that some c j 
= 0 (thereby excluding the desarguesian spread). By [10, Lemma 4.7] it
follows that � is not additively closed, a contradiction. �

7 qDHOs

Theorem 1.1 used orthogonal spreads over F2 to obtain DHOs. This suggests the
question: what happens if larger fields are allowed. This then motivates the following
in all characteristics:

Definition 7.1 A set D of n-spaces in a finite vector space over Fq is a qDHO of rank
n if the following hold:

(a) dim(X1 ∩ X2) = 1 for all distinct X1, X2 ∈ D,

(b) Each point of a member of D lies in precisely q members of D, and
(c) D spans the underlying vector space.
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A 2DHO is just a DHO. Note that |D| = qn (fix Y ∈ D and count the pairs (P, X)

with P a point of X ∈ D − {Y }), and the number of nonzero vectors in
⋃

X∈D X is
|D|(qn − 1)/q = qn−1(qn − 1).

There is a sharp division for DHOs between even and odd characteristic: for any
even q and any n > 1 there are known DHOs over Fq of rank n, but no DHO has yet
been found in odd characteristic. We will provide several types of examples showing
that this division disappears for qDHOs.

Example 7.2 It is easy to see that a qDHO of rank 2 is the dual of the affine plane
AG(2, q).

The next example is the analog of a standard construction of DHOs over F2 (see
[6, Ex. 1.2(a)]).

Example 7.3 For a spread S of W = V (2n, q) for n > 2 and any prime power q, let P
be a point of Y ∈ S. Then, it is straightforward to check that S/P := {〈X, P〉/P | X ∈
S − {Y }} is a qDHO of rank n in W/P .

Example 7.4 (Compare Huybrechts [11]) Let V = V (n, q) and W = V ⊕ (V ∧ V )

for any prime power q. Then

D := {X (t) | t ∈ V }, where X (t) := {(x, x ∧ t) | x ∈ V },

is a qDHO of rank n. For distinct s, t ∈ V , (x, x ∧ s) = (x, x ∧ t) iff x ∧ (s − t) = 0.
Thus X (s) ∩ X (t) = {(x, x ∧ s)|x ∈ 〈s − t〉} is 1-dimensional, and (a) follows. Also
〈s − t〉 = 〈s − t ′〉 implies that t ′ ≡ at (mod 〈s〉) for some a ∈ Fq , and (b) follows.
Clearly (c) holds.

Example 7.5 Let D be a qDHO of rank n in V = V (m, q). Let U be a subspace of V
such that U ∩ (X + Y ) = 0 for all X, Y ∈ D. Then D/U := {〈X, U 〉/U | X ∈ D} is a
qDHO of rank n in V/U , using the proof in [30, Prop. 3.8].

Example 7.6 (Orthogonal qDHOs) In order to generalize Theorem 1.1, let O be an
orthogonal spread in V +(2n + 2, q) and let P be a point of Y ∈ O, so that V :=
P⊥/P � V +(2n, q). Then

O/P := {
X := 〈X ∩ P⊥, P〉/P | X ∈ O − {Y }}

is a qDHO in V, and V = X ⊕ (Y/P) for each X ∈ O − {Y }. This is proved as in
Sect. 2.

There are orthogonal spreads O known in V +(2n + 2, q) for any odd n > 1
whenever q is a power of 2, and for n = 3 and various odd q [4,15,23] (obtained from
ovoids via the triality map).

Remark 7.7 Many of the known and better understood DHOs over F2 are bilinear [9]
(roughly speaking, bilinear DHOs can be represented by additively closed DHO-sets).
Examples are the 2DHOs in Example 7.3 if S is a semifield spread, the 2DHOs in
Example 7.4, and the DHOs in Example 8.1. It does not seem possible to give a useful

123



106 J Algebr Comb (2015) 41:83–108

definition for bilinearity of DHOs using Fq , q > 2. However, our examples show that
the notion of bilinearity can be generalized to qDHOs for any q in an obvious fashion
(i. e., by introducing the notion of “additively closed qDHO-sets”).

Remarks 7.8 (Analogs of previous results) Our main results have natural Analogs for
qDHOs.

(a) Proposition 2.4b holds: we already know |⋃X∈D X |, so that SV = ⋃
X∈D X ∪ Y

is the set of all singular vectors in V .
(b) Proposition 2.6 holds when q > 2: � leaves SV − Y invariant, and then � also

leaves Y invariant as in Proposition 2.6 (though this time, since q > 2 we can use
2-spaces that contain exactly q points of SV not in Y ).

(c) The results in Sect. 3-5 go through with at most minor changes. For example,
Theorem 1.2 becomes: for even q and odd composite n there are more than
qn(ρ(n)−2)/n2 pairwise inequivalent orthogonal qDHOs in V +(2n, q) that arise
from symplectic semifield spreads.

Remark 7.8 Any two members of a qDHO D meet in a point that lies in exactly q
members of D. Therefore, there is an associated design with v = |D| = qn “points,”
k = q “points” per block, and exactly one block containing any given pair of “points”;
these are the same parameters as the design of points and lines of AG(n, q). It would
be interesting to know whether these designs are ever isomorphic when q > 2.

8 Concluding remarks

(a) Let n be odd and 1 ≤ r < n with (n, r) = 1. Set F = F2n , V = F ⊕ F , and
as usual turn V into a quadratic F2-space using Q(x, y) = Tr(xy). For a ∈ F
define the operator B(a) on F by

x B(a) = ax2r + (ax)2n−r
.

By Yoshiara [29], {B(a) | a ∈ F} is a DHO-set of skew-symmetric operators
defining an orthogonal DHO Dn,r . Moreover, |Aut(Dn,r )| = 2n(2n −1)n [26,29].
Thus, by Example 3.21, D5,1 and D5,2 are not projections of orthogonal spreads,
and it seems likely that the same is true for all Dn,r , n ≥ 5.

(b) There are few papers explicitly dealing with the number of DHOs of a given
rank [1,24–27,29,31]. For example, [26,29] obtained approximately cd2 non-
isomorphic DHOs of rank d over F2 for some constant c. However, many more
may be known, but the isomorphism problems are open. For example, the quotient
construction of Example 7.3 associates to each spread S and each point P of
V (2n, 2) a DHO S/P in V (2n, 2)/P . There are very large numbers of non-
isomorphic spreads and many points P to choose, so that the number of DHOs of
this type probably explodes for large n. Unfortunately, as is the case for the DHOs
arising from Theorem 1.1, the isomorphism problem seems to be very difficult in
general.

(c) For orthogonal spreads, in the situation of Definition 2.3 isomorphisms O/N →
O′/N ′ between spreads “essentially” lift to isomorphisms O → O′ sending N →
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N ′ [13, Corollary 3.7]. We do not know if there is a corresponding general theorem
of that sort for the DHOs in Theorem 1.1. The proof of Theorem 1.3 shows that
such a lift occurs for isomorphisms among the DHOs appearing there.
Theorem 1.2 is more interesting in this regard: the proof shows that isomorphisms
O/P → O′/P ′ among those DHOs lift to isomorphisms O → O′, but there does
not seem to be any reason to expect that P must be sent to P ′.
It would be very interesting to have a theorem containing both Theorems 1.2
and 1.3 that involves such a lift of DHO-isomorphisms to orthogonal spread
isomorphisms.

(d) There are many more symplectic spreads known in V . Some cannot be described
conveniently using spread-sets and yet have transitive automorphism groups and
a precise determination of isomorphisms among the associated planes [17]; others
have trivial automorphism groups [14]; and still others have not been examined
at all. The various associated DHOs seem even harder to study.

Another family of examples arises from symplectic semifields in a manner different
from Sect. 4:

Example 8.1 Let T : F → F2 and F2 ⊕ F ⊕ F2 ⊕ F be as in Sects. 3.2 and 4, with
quadratic form Q(α, x, β, y) = αβ + T (xy). Let (F,+, ∗) be a symplectic semifield
using F , such as one in Example 4.2 given by x ∗a = xC(a). Then [19, Lemma 2.18]
contains an orthogonal spread O := {O[s] | s ∈ F} ∪ {O[∞]}, with

O[∞] = 0 ⊕ 0 ⊕ F2 ⊕ F

O[s] = {(
α, x, T (xs), x ∗ s + s(α + T (xs))

) ∣
∣α ∈ F2, x ∈ F

}
,

admitting the transitive elementary abelian group consisting of the operators
(α, x, β, y) �→ (α + T (xt), x, β + T (xt), y + x ∗ t + (α + β)t), t ∈ F .

If μ ∈ F and Pμ := 〈(0, 0, 0, μ) 〉, then Theorem 1.1 produces a DHO O/Pμ

in P⊥
μ /Pμ admitting a transitive elementary abelian group induced by the above

operators.
The number of DHOs obtained this way is the number of symplectic semifields of

order 2n multiplied by |F | = 2n . We conjecture that the number of pairwise inequiva-
lent DHOs obtained is greater than the number of pairwise non-isotopic presemifields
used.

(e) Orthogonal DHOs (and spreads) are implicitly used in [3, Thm. 2] to construct
Grassmannian packings.
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