Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads

Ulrich Dempwolff · William M. Kantor

Received: 17 March 2013 / Accepted: 22 April 2014 / Published online: 28 May 2014 © Springer Science+Business Media New York 2014

Abstract Orthogonal spreads in orthogonal spaces of type $V^+(2n + 2, 2)$ produce large numbers of rank *n* dual hyperovals in orthogonal spaces of type $V^+(2n, 2)$. The construction resembles the method for obtaining symplectic spreads in $V(2n, q)$ from orthogonal spreads in $V^+(2n+2, q)$ when *q* is even.

Keywords Orthogonal dual hyperoval · Symplectic spread · Orthogonal spread

1 Introduction

A set **D** of *n*-dimensional subspaces spanning a finite \mathbb{F}_q -vector space *V* is called a *dual hyperoval* (DHO) *of rank n* > 2, if $|D| = (q^n - 1)/(q - 1) + 1$, dim $X_1 ∩ X_2 = 1$ and $X_1 \cap X_2 \cap X_3 = 0$ for every three different $X_1, X_2, X_3 \in \mathbf{D}$. Usually DHOs are viewed projectively and called "dimensional dual hyperovals," but the vector space point of view seems better for our purposes. See the survey article [\[31](#page-25-0)] for many of the known DHOs, all of which occur in vector spaces of characteristic 2 and mostly are over \mathbb{F}_2 , in which case $|\mathbf{D}| = 2^n$.

Our purpose is to show that the number of rank *n orthogonal* DHOs is not bounded above by any polynomial in 2^n ; these DHOs occur in orthogonal spaces $V^+(2n, 2)$

U. Dempwolff

W. M. Kantor (\boxtimes)

Department of Mathematics, Universität Kaiserslautern, 67653 Kaiserslautern, Germany e-mail: dempwolff@mathematik.uni-kl.de

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA e-mail: kantor@uoregon.edu

and all members are totally singular. Our DHOs will have a further property: they *split over a totally singular space Y*, meaning that $V = X \oplus Y$ for each DHO member X. For more concerning the number of inequivalent DHOs of rank *n*, see Sect. [8b](#page-23-0).

Our source for such orthogonal DHOs in $V^+(2n, 2)$ is *orthogonal spreads* in $V^+(2n + 2, 2)$: sets **O** of totally singular $(n + 1)$ -spaces such that each nonzero singular vector is in exactly one of them. Such orthogonal spreads exist if and only if *n* is odd. We use these for the following elementary result that is the basis for this paper:

Theorem 1.1 Let **O** be an orthogonal spread in $V^+(2n+2, 2)$ *. Let P be a point of* $Y \in \mathbf{O}$, *so that* $V := P^{\perp}/P \simeq V^+(2n, 2)$ *. Then*

$$
\mathbf{O}/P := \{ \langle X \cap P^{\perp}, P \rangle / P \mid X \in \mathbf{O} - \{Y\} \}
$$

is an orthogonal DHO *in V that splits over Y*/*P.*

Although we will show that many orthogonal DHOs can be obtained from orthogonal spreads with the help of Theorem [1.1,](#page-1-0) there are orthogonal DHOs that cannot be obtained by this method (see Sect. [8a](#page-23-0)).

Except in Sect. [7,](#page-21-0) *q* will always denote a power of 2 and almost always *n* will be odd. Our construction involves the close connection between orthogonal spreads in $V^+(2n+2, q)$ and symplectic spreads in $V(2n, q)$. Recall that a spread of *n*-spaces in $V = V(2n, q)$ is a set of $q^n + 1$ subspaces such that each nonzero vector is in exactly one of them; this determines an affine plane [\[7,](#page-25-1) p. 133]. A spread is called *symplectic* if there is a nondegenerate alternating bilinear form on *V* such that all members of the spread are totally isotropic. Any symplectic spread in $V(2n, q)$ can be lifted to an essentially unique orthogonal spread in $V^+(2n + 2, q)$; conversely, any orthogonal spread in $V^+(2n+2, q)$ can be projected (in many ways, corresponding to arbitrary nonsingular points) in order to obtain symplectic spreads [\[13,](#page-25-2) Sec. 3], [\[19](#page-25-3), Thm. 2.13] (cf. Definition [2.3](#page-3-0) below). Theorem [1.1](#page-1-0) produces many DHOs. There is at present no determination of the number of inequivalent orthogonal spreads, and the same is true for DHOs.

There is a simplified (and restricted) version of this process that does not take a detour using orthogonal spreads of higher-dimensional spaces. Given a symplectic spread **S** and distinct $X, Y \in S$ it is standard to introduce "coordinates": a *spreadset* Σ for **S** (this is a set of self-adjoint linear operators). These coordinates can be distorted in a unique way to a set Δ_{Σ} of coordinates of an orthogonal DHO (this is a set of skew-symmetric operators; see Theorem [3.12\)](#page-10-0), which we call a *shadow* of **S**. In some situations, there are natural choices for *X* or *Y* . For example, if **S** defines a semifield plane, then we let *Y* be the shears axis; the semifield spreads in [\[19\]](#page-25-3) produce the following

Theorem 1.2 *For odd composite n there are more than* $2^{n(\rho(n)-2)}/n^2$ *pairwise inequivalent orthogonal* DHOs in $V^+(2n, 2)$ that are shadows of symplectic semi*field spreads.*

Here $\rho(n)$ denotes the number of (not necessarily distinct) prime factors of the integer *n*. *The number in the theorem is not bounded above by any polynomial in*

2*n*. The proof uses a somewhat general isomorphism result (Theorem [4.5\)](#page-14-0) for DHOs arising from Theorem [1.1.](#page-1-0)

We also consider the symplectic spreads **S** of the nearly flag-transitive planes in [\[20](#page-25-4)]. Here, the automorphism group of **S** contains a normal cyclic group fixing precisely two members of **S** and acting regularly on the remaining ones, which leads to the following

Theorem 1.3 For odd composite $n > 27$ there are more than $2^{3^{\rho(n)-1}}$ pairwise inequiv*alent orthogonal* DHOs in $V^+(2n, 2)$ *admitting a cyclic group of order* $2^n - 1$ *that fixes one member of the* DHO *and acts regularly on the remaining ones.*

This time, the number of DHOs is less than 2^n . We emphasize that there are many DHOs constructed using Theorem [1.1](#page-1-0) not considered in the preceding two theorems (see Example 8.1).

In Sect. [7,](#page-21-0) we discuss a generalization of all of these results to the more general context of *q*DHOs.

The authors of this paper view spreads and DHOs in somewhat different manners: the first author prefers to think in terms of sets of operators $[8,10]$ $[8,10]$ $[8,10]$, while the second prefers sets of subspaces and (often) quasifields [\[13](#page-25-2)[,16](#page-25-7),[17,](#page-25-8)[19](#page-25-3)[,20](#page-25-4)]. We have mostly used the first approach (Theorem [1.1](#page-1-0) being the main exception), and have tried to provide translations between the two points of view (Remarks [3.7,](#page-7-0) [3.10](#page-8-0) and [3.13,](#page-10-1) Example [3.11](#page-9-0) and Theorem [3.16\)](#page-11-0).

2 Orthogonal DHOs and Theorem [1.1](#page-1-0)

All fields will have characteristic 2 except in Sect. [7.](#page-21-0) Theorem [1.1](#page-1-0) is sufficiently elementary that almost no background is needed:

Proof of Theorem 1.1 It is standard that $V = P^{\perp}/P$ is an orthogonal space of type $V^+(2n, 2)$ and that each totally singular subspace *X* of P^{\perp} has a totally singular image \overline{X} in *V*. In particular, all members of O/P are totally singular of dimension *n*. Since $|\mathbf{O}/P| = 2^n$ it suffices to show that any two members of \mathbf{O}/P intersect in a point and any three intersect trivially.

Let $X_1, X_2, X_3 \in \mathbf{O} - \{Y\}$ be distinct. Then $\overline{X}_i = \langle X_i \cap P^{\perp}, P \rangle / P$ and $\overline{Y} = Y/P$. Let $P = \langle w \rangle$.

Since $(X_1 \cap P^{\perp}) \cap (X_2 \cap P^{\perp}) = 0$ we have dim $\overline{X}_1 \cap \overline{X}_2 \le 1$. On the other hand, $w = x_1 + x_2$ for some $0 \neq x_i \in X_i$. All vectors in the 2-space $\{0, w, x_1, x_2\}$ are singular, so this is a totally singular 2-space. Hence $x_i \in X_i \cap P^{\perp}$ and $\overline{X}_1 \cap \overline{X}_2 =$ $\langle x_1, w \rangle / P = \langle x_2, w \rangle / P$ have dimension 1, as required.

Similarly, $\overline{X}_1 \cap \overline{X}_3 = \langle x_3, w \rangle / P$ with $w = x'_1 + x_3, 0 \neq x'_1 \in X_1, 0 \neq x_3 \in X_3$. If $\overline{X}_1 \cap \overline{X}_2 \cap \overline{X}_3 \neq 0$ then $\overline{X}_1 \cap \overline{X}_2 = \overline{X}_1 \cap \overline{X}_3$, so that $\{0, w, x_1, x_2\} = \langle x_1, w \rangle =$ $\langle x_1', w \rangle = \{0, w, x_1', x_3\}$ (our field is \mathbb{F}_2 !). This is impossible, since $0 \neq x_2 \in X_2$, whereas X_2 intersects Y , X_1 and X_3 only in 0. Thus, O/P is a DHO.

Finally, if $x + P = y + P$ lies in $\overline{X_1} \cap \overline{Y}$ ($x \in X_1, y \in Y$), then $x \in X_1 \cap (y + P) \subseteq Y$ $X_1 \cap Y = 0$, so that **O**/*P* splits over \overline{Y} . **Definition 2.1** The DHO **O**/*P* in Theorem [1.1](#page-1-0) is the *projection of* **O** *with respect to P*. Note that $Y \in \mathbf{O}$ is determined by *P*.

The notions of equivalence and automorphisms of symplectic or orthogonal spreads, and of DHOs, are crucial for our results:

Definition 2.2 $T \in \Gamma\mathcal{L}(V)$ is an *equivalence* $\mathbf{E} \to \mathbf{E}'$ between sets **E** and **E**' of subspaces of a vector space *V* if *T* sends **E** onto **E** . The *automorphism group* Aut(**E**) *of* **E** is the group of equivalences from **E** to itself.

Clearly, in Theorem [1.1](#page-1-0) points P in the same Aut(O)-orbit produce isomorphic DHOs O/P and the stabilizer Aut (O) *P* of *P* induces an automorphism group of **O**/*P*.

Our goal is the construction of large numbers of inequivalent DHOs. For this purpose, we need to compare the construction in Theorem [1.1](#page-1-0) to ones in [\[13,](#page-25-2) Sect. 3] and [\[19](#page-25-3), Thm. 2.13] (cf. Sect. [3.2\)](#page-8-1). First we recall another standard property of orthogonal spaces $V^+(2m, q)$ [\[28](#page-25-9), Thm. 11.61]: the set of totally singular *m*-spaces is partitioned into two equivalence classes where totally singular *m*-spaces *X*, *Y* are equivalent if and only if dim $X \cap Y \equiv m \pmod{2}$.

Definition 2.3 *(Lifts and projections of symplectic and orthogonal spreads)* Assume that *n* is odd. Let *N* be a nonsingular point of $\overline{V} = V^+(2n+2, q)$, so that $V :=$ $N^{\perp}/N \simeq V(2n, q)$ is a symplectic space. If **S** is a symplectic spread in *V* and *M* is one of the two classes of totally singular $(n + 1)$ -spaces in \overline{V} , then (since $n + 1$ is even)

$$
\{X \in \mathcal{M} \mid \langle X \cap N^{\perp}, N \rangle / N \in \mathbf{S}\}
$$

is an orthogonal spread in \overline{V} , the *lift* of **S**. (Changing M produces an equivalent orthogonal spread.)

This reverses: if **O** is an orthogonal spread in $V^+(2n+2, q)$, then

$$
\mathbf{O}/N := \{ \langle X \cap N^{\perp}, N \rangle / N \mid X \in \mathbf{O} \}
$$

is a symplectic spread in *V*, the *projection* of **S** with respect to *N*. This strongly resembles Definition [2.1.](#page-2-0) As before, points *N* in the same Aut(**O**)-orbit produce isomorphic spreads **O**/*N*.

Proposition 2.4 *Let* **D** *be an orthogonal* DHO *of* $V = V^+(2n, 2)$ *. Then*

- *(a) n is odd, and*
- *(b)* If **D** *splits over a totally singular subspace Y, then* $\bigcup_{X \in \mathbf{D}} X \cup Y$ *is the set of singular vectors in V . In particular, Y is the only totally singular subspace over which* **D** *splits.*
- *Proof* (a) If X_1, X_2, X_3 are distinct members of **D**, then any two have intersection of dimension 1. If *n* is even, then any two lie in different classes of totally singular *n*-spaces, whereas there are only two such classes.

(b) The set S_V of singular vectors of *V* has size $2^{2n-1} + 2^n$. By Inclusion–Exclusion, $|\bigcup_{X \in \mathbf{D}} X| = 2^{2n-1} + 1$. Thus, if **D** splits over the totally singular subspace *Y* then $Y - 0 = S_V - \bigcup_{X \in \mathbf{D}} X$.

Remark 2.5 We will exclusively deal with orthogonal DHO*s that split over totally singular subspaces.* However, there are orthogonal DHOs (see [\[8](#page-25-5), Prop. 5.4]) that split over subspaces that are not totally singular, but do not split over any totally singular subspace.

Any linear operator preserving an orthogonal DHO lies in the orthogonal group:

Proposition 2.6 Let **D** and **D**' be orthogonal DHOs of $V = V^+(2n, 2)$ that split over *the totally singular subspace Y. If* $\Phi \in GL(V)$ *sends* **D** *to* **D**^{\prime}*, then* Φ *lies in the stabilizer of Y in the orthogonal group* O(*V*)*.*

Proof By Proposition [2.4b](#page-3-1), $S_V = \bigcup_{X \in \mathbf{D}} X \cup Y$ is the set of all singular vectors in *V*. Every 3-dimensional subspace that has exactly six points in S_V not in *Y* is totally singular and hence has a seventh point in *Y*. Since every point of *Y* arises this way, Φ leaves S_V and *Y* invariant.

Corollary 2.7 Let **D** be an orthogonal DHO of $V = V^+(2n, 2)$ that splits over *the totally singular subspace Y. Then, Y is invariant under* $G = Aut(D)$ *, and the representation of G induced on V*/*Y is contragredient to the representation of G induced on Y .*

Proof The preceding proposition implies the first assertion. Since $Y = Y^{\perp}$, the bilinear form associated with the quadratic form induces a *G*-invariant duality from *Y* onto V/Y , which implies the second assertion.

3 Coordinates and symplectic spread-sets

In this section, we use coordinates of orthogonal and symplectic spreads in order to describe operations that do not require projections from higher-dimensional orthogonal spreads. Throughout the remainder of this paper we will always have

$$
U = V(n, q) \text{ and } V \cong U \oplus U,
$$

where q is even except in Sect. [7.](#page-21-0) If U is equipped with a nondegenerate symmetric bilinear form $b(\cdot, \cdot)$ we denote by T^* the operator adjoint to $T \in End(U)$.

3.1 Coordinates for symplectic spreads, orthogonal spreads and orthogonal DHOs

Assume that *V* is a symplectic space, and denote by **E** either a symplectic spread, an orthogonal spread, or an orthogonal DHO in *V* that splits over a totally singular subspace. The symplectic form (\cdot, \cdot) on *V* vanishes on all members of **E**. For an orthogonal spread or DHO, all members of **E** are totally singular with respect to a quadratic form Q polarizing to $(·, ·)$. For a DHO we always assume that $q = 2$.

In order to coordinatize **E** we choose any distinct *X*, $Y \in \mathbf{E}$ if **E** is a symplectic or orthogonal spread. If **E** is a DHO that splits over a totally singular subspace *Y* then choose $X \in \mathbf{E}$.

We identify *V* with $U \oplus U$. We may assume that

$$
X = U \oplus 0 \text{ and } Y = 0 \oplus U,
$$

the symplectic form on $U \oplus U$ is

$$
((x, y), (x', y')) = b(x, y') + b(y, x'),
$$
\n(3.1)

and the quadratic form is

$$
Q((x, y)) = b(x, y). \tag{3.2}
$$

For $Z \in \mathbf{E} - \{Y\}$ there is a unique $L \in \text{End}(U)$ such that $Z = V(L)$, where

$$
V(L) := \{(x, xL) \mid x \in U\}.
$$
\n(3.3)

Each *L* is self-adjoint with respect to b if **E** is a symplectic spread (as *Z* is totally isotropic), and L is even skew-symmetric (i.e., $b(x, xL) = 0$ for all x) if **E** is an orthogonal spread or a DHO (as *Z* is totally singular). The subspace $Z = X$ corresponds to $L = 0$. If $Z \neq X$ then L is invertible if **E** is a symplectic or orthogonal spread, while *L* has rank $n - 1$ in the DHO case. Hence, there is a set $\Xi \subseteq \text{End}(U)$ containing 0 such that

$$
\mathbf{E} = \{ V(L) \mid L \in \Xi \} \cup \{ Y \}
$$

if **E** is a symplectic or orthogonal spread and

$$
\mathbf{E} = \{ V(L) \mid L \in \Xi \}
$$

if **E** is an orthogonal DHO that splits over the totally singular subspace $Y = 0 \oplus U$.

Definition 3.1 Let $V = U \oplus U$, **E**, *X* and *Y* be as above.

- If **E** is a symplectic spread, then Ξ is a (symplectic) *spread-set of* **E** *with respect to the ordered pair* (*X*, *Y*).
- If **E** is an orthogonal spread, then Ξ is a *Kerdock set of* **E** *with respect to the ordered pair* (X, Y) (cf. [\[13](#page-25-2)]).
- If **E** is an orthogonal DHO then Ξ is a DHO-*set of* **E** *with respect to X*. (Note that there is no choice for Y , the space over which E splits.)

Conversely, it is routine to check the following:

Lemma 3.2 Assume that $\Xi \subseteq \text{End}(U)$ is a set of self-adjoint operators containing 0. *Define symplectic and quadratic forms on* $V = U \oplus U$ *using* [\(3.1\)](#page-5-0) *and* [\(3.2\)](#page-5-1)*.*

(a) $If |E| = q^n$ and $\det(L + L') \neq 0$ *for all distinct* $L, L' \in \Xi$, *then* $\mathbf{E} = \{V(L) | L \in \Xi\}$ E } \cup {0 \oplus *U*} *is a symplectic spread of V*.

- (b) *If* $|E| = q^{n-1}$, $det(L + L') ≠ 0$ *for all distinct L*, $L' ∈ E$, *and all members of* E *are skew-symmetric, then* $\mathbf{E} = \{V(L) | L \in \Xi\} \cup \{0 \oplus U\}$ *is an orthogonal spread of V .*
- *(c)* Assume that $|\Xi| = 2^n$ with n odd, that all members of Ξ are skew-symmetric, and *that*
	- *(1)* $rk(L + L') = n 1$ *for all distinct L*, *L*^{$′$} ∈ E *, and*
	- (2) *if* $L \in \Xi$ *then* $\{ \text{ker}(L + L') | L' \in \Xi \{L\} \}$ *is the set of* 1*-spaces of U*.
	- *Then* $\mathbf{E} = \{V(L) | L \in \Xi\}$ *is an orthogonal* DHO *that splits over* $0 \oplus U$.

Remark 3.3 Let $b(x, y) = x \cdot y$ be the usual dot product and identify End(*U*) with the space of all $n \times n$ matrices over \mathbb{F}_q . Then $L \in \text{End}(U)$ is self-adjoint if and only if $L = L^t$, and *L* is skew-symmetric if and only if, in addition, its diagonal is 0.

A variation is used in Sects. [4](#page-13-0) and [5:](#page-16-0) identify *U* with $F = \mathbb{F}_{q^n}$ and use the trace form

$$
b(x, y) = \text{Tr}(xy),
$$

where $\text{Tr}: F \to \mathbb{F}_q$ is the trace map.

Rank 1 operators will play a crucial role for our results. The following elementary description of those operators is also in [\[21,](#page-25-10) Prop. 5.1].

Lemma 3.4 *If* $T \in End(U)$ *has rank* 1, *then* $T = E_{a,b}$ *for some* $0 \neq a, b \in U$, *where*

$$
xE_{a,b} := b(x,a)b \text{ for all } x \in U. \tag{3.4}
$$

If $E_{a,b} = E_{a',b'}$ for nonzero a, a', b, b', then $a' = ka$ and $b' = k^{-1}b$ for some $k \in \mathbb{F}_q^{\star}$.

Proof Write $U_0 = \ker T = \langle a \rangle^{\perp}$ with $a \in U$. Let $v \in U - U_0$ such that $b(v, a) = 1$. Then $b := vT \neq 0$. Thus, $0 = uT = uE_{a,b}$ for $u \in U_0$ and $vT = b = vE_{a,b}$, so that $T = E_{a,b}$.

If $E_{a,b} = E_{a',b'}$ then $\langle a \rangle = \langle a' \rangle$ and $\langle b \rangle = \langle b' \rangle$, and a calculation completes the \Box

Remark 3.5 Since $b(x, yE_{a,b}) = b(xE_{b,a}, y)$, the operator $E_{b,a}$ is adjoint to $E_{a,b}$, so that $E_{a,b}$ is self-adjoint if and only if $\langle a \rangle = \langle b \rangle$. In this case, there is a (uniquely determined) $c \in \langle a \rangle = \langle b \rangle$ such that $E_{a,b} = E_{c,c}$.

In terms of matrices, the lemma is the elementary fact that rank 1 matrices have the form $a^t b$ for nonzero row vectors a, b . This matrix is symmetric if and only if $\langle a \rangle = \langle b \rangle$.

Lemma 3.6 *For each self-adjoint operator T there is a unique self-adjoint operator* $R = E_{a,a}$ *of rank* ≤ 1 *such that* $T + R$ *is skew-symmetric. Moreover,*

- (a) *a* ∈ Im *T*;
- *(b)* rk $(T + R) = \begin{cases} \text{rk } T & \text{if } \text{rk } T \equiv 0 \pmod{2} \\ \text{rk } T + 1 & \text{if } \text{rk } T = 1 \pmod{2} \end{cases}$
- rk $T \pm 1$ if rk $T \equiv 1 \pmod{2}$;
- *(c)* if S is self-adjoint and $S + E_{b,b}$ is skew-symmetric, then $R' = E_{a+b,a+b}$ is the *unique self-adjoint operator of rank* ≤ 1 *such that* $T + S + R'$ *is skew-symmetric*; *and*

(d) if n is odd and T is invertible, then $\ker(T + E_{a,a}) = \langle aT^{-1} \rangle$ and $b(a, aT^{-1}) \neq 0$.

Proof As *T* is self-adjoint, the map $\lambda_T: U \to \mathbb{F}_q$ given by $x \mapsto b(x, xT)$ is semilinear: $\lambda_T(kx) = k^2 \lambda_T(x)$ for $x \in U, k \in \mathbb{F}_q$. If $\lambda_T = 0$ then *T* is skew-symmetric and we set $R = 0 = E_{0,0}$. Assume that $\lambda_T \neq 0$ and set $U_0 = \ker \lambda_T$. Pick $u \in U$ such that $\lambda_T(u) = 1$ and $a \in U$ such that $U_0 = \langle a \rangle^{\perp}$ and $b(u, a) = 1$. Then $S = T + E_{a,a}$ is self-adjoint. Moreover $\lambda_S(x) = \lambda_T(x) + b(x, a)^2$ is 0 on both U_0 and *u*, so that *S* is skew-symmetric. In particular,

$$
\lambda_T(x) = \mathsf{b}(x, a)^2 \text{ for all } x \in U. \tag{3.5}
$$

As **b** is nondegenerate, every semilinear functional from *U* to \mathbb{F}_q associated with the Frobenius automorphism has the form $x \mapsto b(x, a)^2$ for a unique $a \in U$. This implies the uniqueness of $R = E_{a,a}$.

- (a) Let $T + E_{a,a}$ be skew-symmetric and assume that $a \notin \text{Im } T = (\text{Im } T)^{\perp \perp}$. Then $b(a, (\text{Im } T^{\perp})) \neq \{0\}$, so that there exists $y \in (\text{Im } T)^{\perp}$ with $1 = b(a, y)$. Since *y* and *yT* are perpendicular, [\(3.5\)](#page-7-1) implies that $1 = b(a, y)^2 = b(y, yT) = 0$, a contradiction.
- (b) Clearly rk $(T + R) \equiv 0 \pmod{2}$.
- (c) $(T + S) + E_{a+b, a+b} = (T + E_{a,a}) + (S + E_{b,b}) + (E_{a,b} + E_{b,a})$ expresses the left-hand side as a sum of skew-symmetric operators.
- (d) By (b), dim ker($T + E_{a,a}$) = 1. Let $0 \neq x \in \text{ker } T + E_{a,a}$. By [\(3.4\)](#page-6-0), $0 =$ $\int xT + b(a, x)a$ and hence $x = b(a, x)aT^{-1}$, so that $0 \neq x \in \langle aT^{-1} \rangle$ and $b(a, x) \neq 0$. $\neq 0$.

Remark 3.7 In terms of matrices the first paragraph of the lemma states that, if *A* is a symmetric matrix, then $A + d(A)^t d(A)$ is skew-symmetric, where $d(A)$ is the diagonal of *A* written as a row vector as in [\[2,](#page-24-1) Lemma 7.3].

Lemma 3.8 *For a symplectic spread-set* Σ *of* $U = V(n, q)$ *with n odd,*

- (a) There is a unique bijection $C: U \to \Sigma$ such that $C(a) + E_{a,a}$ is skew-symmetric *for all* $a \in U$ *, and*
- (b) C is additive iff Σ is additively closed.
- *Proof* (a) If $0 \neq L \in \Sigma$ then the self-adjoint, invertible operator *L* is not skewsymmetric as *n* is odd. By the preceding lemma, there is a unique nonzero vector $a = a_L \in U$ such that $L + E_{a,a}$ is skew-symmetric of rank $n-1$. If $0 \neq L, L' \in \Sigma$, $L \neq L'$, then $a_L \neq a_{L'}$ as $L + L'$ is invertible and hence not skew-symmetric, so that *C* is bijective.
- (b) Since one direction is obvious, assume that Σ is additively closed. If $a, b \in U$, then $C(a) + C(b) = C(c)$ for some $c \in U$. By definition $C(c) + E_{c,c}$ is skewsymmetric, and so is $C(a) + C(b) + E_{a+b, a+b} = C(c) + E_{a+b, a+b}$ by Lemma [3.6c](#page-6-1). Then $c = a + b$ by Lemma [3.6,](#page-6-1) as required.

Definition 3.9 *(Canonical labeling)* The unique bijection $C: U \rightarrow \Sigma$ in Lemma [3.8](#page-7-2) is the *canonical labeling* of the symplectic spread-set Σ of operators of *U*. Notation: $C = \mathscr{L}(\Sigma).$

Remark 3.10 Each symplectic spread-set $\Sigma \subseteq \text{End}(U)$ determines a prequasifield on *U* defined by $x * a = xC(a)$ for any additive bijection $C: U \rightarrow \Sigma$. Then *C* is the canonical labeling if and only if

$$
b(x, x * a) = b(x, xC(a)) = b(x, xE_{a,a}) = b(x, a)^2
$$

by [\(3.4\)](#page-6-0). This is the condition on a prequasifield appearing in [\[19](#page-25-3), (2.15)].

3.2 Projections and lifts with coordinates

We next coordinatize projections and lifts (Definitions [2.1](#page-2-0) and [2.3\)](#page-3-0). We review [\[13](#page-25-2), [16,](#page-25-7) [19\]](#page-25-3) using somewhat different notations. We will assume for the remainder of Sect. [3](#page-4-0) that *n is odd*.

- (a) From Kerdock sets to symplectic spread- sets. Let **O** be an orthogonal spread in $\overline{V} = V^+(2n+2, q)$, let *N* be a nonsingular point, and choose an ordered pair *X*, $Y \in \mathbf{O}$. The identification
	- $\overline{V} = \overline{U} \oplus \overline{U}$ where $\overline{U} = V(n+1, q)$,
	- $X = \overline{U} \oplus 0$, $Y = 0 \oplus \overline{U}$,

produces a Kerdock set K such that each member of \mathbf{O} −{*Y*} has the form $V(L)$ = $\{(x, xL) | x \in \overline{U}\}, L \in \mathbb{K}$. Moreover, this identification induces a symmetric, nondegenerate bilinear form $\overline{b}(\cdot, \cdot)$ on \overline{U} such that the quadratic form Q is defined by $Q((x, y)) = b(x, y)$. Given this Kerdock set, we make the special choice

$$
N = \langle (w, w) \rangle \text{ with } \overline{b}(w, w) = 1.
$$

Then (x, xL) lies in N^{\perp} if and only if $\overline{b}(w, x) = \overline{b}(w, xL)$. Set $U = \langle w \rangle^{\perp}$ and write $x \in \overline{U}$ as $x = \alpha w + u, \alpha \in \mathbb{F}_q$, $u \in U$. As *L* is skew-symmetric, $wL \in U$ and

$$
\alpha = \overline{\mathsf{b}}(w, x) = \overline{\mathsf{b}}(w, xL) = \overline{\mathsf{b}}(wL, u).
$$

Also,

$$
uL = uL\pi_U + b(wL, u)w,
$$

where π_U is the orthogonal projection $\overline{U} \to U$. Since $U \oplus U$ is a set of representatives for N^{\perp}/N and as $(x, xL) = (\overline{b}(wL, u)w + u, \overline{b}(wL, u)w + \overline{b}(wL, u)wL +$ $uL\pi_U$ = $(u, \overline{b}(wL, u)wL + uL\pi_U)$ (mod *N*),

 ${L\pi_U + E_{wL, wL} | L \in \mathbb{K}}$ is a spread-set of the symplectic spread \mathbf{O}/N .

(b) FROM KERDOCK SETS TO DHO- SETS. We keep the notation from (a) using *q* = 2. We use *X* ∈ **O** − {*Y*} and the singular point *P* = $\langle (0, w) \rangle \subseteq Y$. We use the above identifications for \overline{V} , *X*, *Y*, and *Q*. A typical element in $V(L) \cap P^{\perp}$

has the form $(u, uL) = (u, uL\pi_U + b(wL, u)w) \equiv (u, uL\pi_U) \pmod{P}, u \in U$. As $U \oplus U \simeq P^{\perp}/P$, we see that

 ${L\pi_U | L \in \mathbb{K}}$ is a DHO-set of the orthogonal DHO **O**/*P*.

- (c) From symplectic spread- sets to Kerdock sets. Let **S** be a symplectic spread on $V = V(2n, q)$, and let *X*, $Y \in S$. This time we identify
	- $V = U \oplus U, U = V(n, q),$
	- $X = U \oplus 0, Y = 0 \oplus U$, and
	- The bilinear form is $((x, y), (x', y')) = b(x, y') + b(y, x')$ for a nondegenerate symmetric bilinear form b on *U*.

Let $\Sigma \subseteq \text{End}(U)$ be the resulting spread-set and $C = \mathcal{L}(\Sigma)$ (cf. Definition [3.9\)](#page-7-3). Set $\overline{U} = \mathbb{F}_q \oplus U$ and $\overline{V} = \overline{U} \oplus \overline{U}$, and define a quadratic form *Q* on \overline{V} by

$$
Q(\alpha, x, \beta, y) = \alpha \beta + b(x, y).
$$

For $a \in U$ define the skew-symmetric linear operator $D(a)$ on \overline{U} by

$$
(\alpha, x)D(a) = (b(x, a), \alpha a + x(C(a) + E_{a,a})).
$$

Then $\mathbb{K} = \{D(a) | a \in U\}$ is a Kerdock set of the lift **O**, where $O/N \simeq S$ for the choice $N = \langle (1, 0, 1, 0) \rangle$.

Example 3.11 We illustrate the above discussion using matrices, as in [\[2](#page-24-1), Lemma 7.3]. Let $\overline{U} = \mathbb{F}_q^{n+1}$ and $\overline{V} = \overline{U} \oplus \overline{U}$, equipped with the quadratic form $Q(x, y) = x \cdot y$. We will use the nonsingular point $N = \langle (e_1, e_1) \rangle$ and the singular point $P = \langle (0, e_1) \rangle$ (where the e_i are the standard basis vectors of \overline{U}). Then the bilinear form **b** is the usual dot product on $U := \langle e_2, \ldots, e_{n+1} \rangle$.

Let **O** be an orthogonal spread containing *X* and *Y* (defined above). Then a Kerdock set can be written $\mathbb{K} = \{D(u) \mid u \in U\}$ using $(n+1) \times (n+1)$ skew-symmetric matrices

$$
D(u) = \begin{pmatrix} 0 & x(u) \\ x(u)^t & A(u) \end{pmatrix},
$$

where $A(u)$ is an $n \times n$ skew-symmetric matrix and $x(u) \in U$ is a row matrix. Then

$$
\Delta := \{ A(u) \mid u \in U \} \tag{3.6}
$$

is a DHO-set of **O**/*P*, while

$$
\Sigma := \{ A(u) + x(u)^t x(u) \mid u \in U \},
$$

is a spread-set of the symplectic spread O/N , where $x(u)^{t}x(u)$ represents the previous rank 1 operator $E_{wL,wL}$ in (a).

3.3 Shadows, twists and dilations

Theorem 3.12 *Let* Σ *be a spread-set of self-adjoint operators of* $U = V(n, 2)$ *and* $C = \mathscr{L}(\Sigma)$. Then $\Delta = \Delta_{\Sigma} = \{B(a) = C(a) + E_{a,a} | a \in U\}$ is a DHO-set of *skew-symmetric operators.*

Proof We sketch two different arguments.

GEOMETRIC APPROACH. Start with a symplectic spread-set Σ and $C = \mathcal{L}(\Sigma)$, and produce a Kerdock set $\mathbb K$ using Sect. [3.2c](#page-8-1). Then apply Sect. [3.2b](#page-8-1) to $\mathbb K$ using the singular point $P = \langle (0, 0, 1, 0) \rangle$.

Algebraic approach. We will verify the conditions in Lemma [3.2c](#page-5-2). Consider distinct *a*, *b*, *c* \in *U*. Then skew-symmetric operator $B(a) + B(b) = C(a) + C(b) + C(b)$ $E_{a,a} + E_{b,b}$ has even rank at least $n-2$, and hence has rank $n-1$.

Let $x \neq 0$ with $x(B(a) + B(b)) = x(B(a) + B(c)) = 0$. Then $0 \neq x(C(a) + C(a))$ $C(b)$) = $b(a, x)a + b(b, x)b$, so that $b(a, x)$ or $b(b, x) \neq 0$. We cannot have $b(a, x)$ = $b(b, x) = 1$, as otherwise $b(a + b, x) = 0$ would contradict Lemma [3.6d](#page-6-1) (since $C(a) + C(b) + E_{a+b, a+b}$ is skew-symmetric by Lemma [3.6c](#page-6-1)).

Then $b(a, x) \neq b(b, x)$. By symmetry, it follows that $b(a, x)$, $b(b, x)$, and $b(c, x)$ are distinct members of \mathbb{F}_2 , a contradiction.

Remark 3.13 (Constructing DHO*-sets using orthogonal spreads)* Example [3.11](#page-9-0) contains the construction of the above set of operators using $[2, (7.4)]$ $[2, (7.4)]$ in terms of matrices (compare Remark [3.7\)](#page-7-0). However, the preceding theorem shows that we can proceed directly from spread-sets to the required DHO-sets.

The examples studied in Sects. [4](#page-13-0) and [5](#page-16-0) are obtained by taking known orthogonal spreads with "nice" descriptions in terms of matrices or linear operators and peeling off the set Δ in [\(3.6\)](#page-9-1). Of course, there is a bias here: orthogonal spreads having nice descriptions will have less nice descriptions using arbitrary choices of its members *X*, *Y* (as we will see in Example [8.1](#page-24-0) below).

Definition 3.14 *(Shadows)* Let Σ be a spread-set of self-adjoint operators of *U* coordinatizing the symplectic spread **S** of $V = V(2n, 2)$ with respect to the pair (X, Y) . Let *Q* be the unique quadratic form on *V* polarizing to the given symplectic form such that *X* and *Y* are totally singular. The DHO-set $\Delta = \Delta_{\Sigma}$ associated to Σ in Proposition 3.12 will be called the *shadow of* Σ ; it is uniquely determined by the spread-set. We also call the orthogonal DHO on (V, Q) defined by Δ a *shadow* of the spread S. (Recall that this is not uniquely determined: we choose *X* and *Y* in order to obtain the spread-set Σ from the spread **S**. Also see Sect. [3.4.](#page-12-0))

Example 3.15 Consider $F = \mathbb{F}_{2^n}$ as an \mathbb{F}_2 -space equipped with the absolute trace form Tr as a nondegenerate symmetric form. Define the \mathbb{F}_2 -linear map $C(a)$, $a \in F$, by

$$
xC(a) = a^2x.
$$

 \mathcal{L} Springer

Then *C* is the canonical labeling (Definition 3.9) of a symplectic spread-set that coordinatizes the desarguesian plane. The operators

$$
xB(a) = a^2x + \text{Tr}(xa)a
$$

define the shadow $\Delta = \{B(a) | a \in F\}$ of Σ . In particular $x E_{a,a} = \text{Tr}(xa)a$. The automorphism group of the corresponding DHO is isomorphic to F^* · Aut(F) by Lemma [5.6](#page-18-0) below.

Our later Examples [4.2](#page-13-1) and [5.1](#page-16-1) are generalizations of this one. We close this section with a result obtaining new symplectic spreads from known ones.

Theorem 3.16 *Let* Σ *be a spread-set of self-adjoint operators of* $U = V(n, q)$ *, and let* $C = \mathscr{L}(\Sigma)$ *. (a) If u* ∈ *U*, *define* C_u : *U* → End(*U*) *by*

$$
C_u(a) := C(a) + E_{a,u} + E_{u,a}.
$$

Then $\Sigma_u := \{C_u(a) \mid a \in U\}$ *is a spread-set of self-adjoint operators and* C_u $\mathscr{L}(\Sigma_u)$. Moreover, Σ_u is additively closed if Σ is.

(b) $Pick \ 1 \neq \lambda \in \mathbb{F}_q$ *and define* $C^{\lambda}: U \to \text{End}(U)$ *by*

$$
C^{\lambda}(a) := C((1+\lambda)a) + E_{\lambda a, \lambda a}.
$$

Then $\Sigma^{\lambda} = \{ C^{\lambda}(a) \mid a \in U \}$ *is a spread-set of self-adjoint operators and* C^{λ} = $\mathscr{L}(\Sigma^{\lambda}).$

Proof This is a reformulation of special cases of [\[19,](#page-25-3) Lemma 2.18] using Lemma [3.6,](#page-6-1) [\(3.4\)](#page-6-0) and Lemma [3.8b](#page-7-2). (The easy, direct algebraic verification—similar to the proof of Theorem [3.12—](#page-10-0)is left to the reader.)

Remark 3.17 In view of [\[19,](#page-25-3) Lemma 2.18], Σ , Σ_u , and Σ^{λ} are all projections of the same orthogonal spread (cf. Definition [2.3\)](#page-3-0).

Definition 3.18 *(Twists and dilations)* Let Σ be a symplectic spread-set of $U =$ $V(n, q)$, *q* even. For $u \in U$ and $1 \neq \lambda \in \mathbb{F}_q$ we call the spread-set Σ_u in Theorem [3.16a](#page-11-0) the *u*-twist of Σ , and the spread-set Σ^{λ} in Theorem [3.16b](#page-11-0) the λ -dilation of Σ .

Corollary 3.19 In the notation of Theorem [3.16a](#page-11-0), assume that $q = 2$, Σ is additively *closed and* $u \in U$. Let $\Delta = \{B(a) := C(a) + E_{a,a} \mid a \in U\}$ and $\Delta_u = \{B_u(a) :=$ $C_u(a) + E_{a,a} \mid a \in U$ *be the shadows of* Σ *and* Σ_u *. Then* $B_u(a) = B(a+u) + B(u)$ *.*

Proof By Definition [3.14](#page-10-2) and Theorem [3.16,](#page-11-0)

$$
B_u(a) = C_u(a) + E_{a,a}
$$

= C(a) + E_{a,u} + E_{u,a} + E_{a,a}
= C(a + u) + E_{a+u,a+u} + C(u) + E_{u,u}
= B(a + u) + B(u).

 \mathcal{L} Springer

3.4 The projections **O**/*N* and **O**/*P*

The term "shadow" of a symplectic spread suggests that, as in the physical world, the original object cannot be recovered from the shadow. We will see how this occurs in our context: the relationship between symplectic spreads and shadows is less tight than visible in the preceding section. This is illustrated by Example [3.21](#page-12-1) below. We will see that non-isomorphic spread-sets can produce isomorphic shadows, a symplectic spread can have non-isomorphic shadows, and the automorphism groups of a symplectic spread and a shadow can be very different. These phenomena are best understood from the viewpoint of orthogonal spreads:

Proposition 3.20 *Let* **O** *be an orthogonal spread in* $\overline{V} = V^+(2n+2, 2)$ *. Let N be a* nonsingular point and P a singular point in \overline{V} such that the 2-space $\langle N, P \rangle$ is *hyperbolic. Then, the* DHO **O**/*P is a shadow of the symplectic spread* **O**/*N.*

Proof We will use the notation in Sect. [3.2](#page-8-1) for a suitable choice of coordinates. By assumption, $\langle N, P \rangle$ contains a singular point $P' \neq P$. We may assume that $P' =$ $\langle (e_1, 0) \rangle$ and $P = \langle (0, e_1) \rangle$, so that $N = \langle (e_1, e_1) \rangle$. We may assume that the members of **O** containing P' and P are $X = \overline{U} \oplus 0$ and $Y = 0 \oplus \overline{U}$, respectively. According to Remark [3.13](#page-10-1) (compare Example [3.11\)](#page-9-0), \mathbf{O}/P is a shadow of \mathbf{O}/N .

Example 3.21 (a) When the usual desarguesian spread **S** of $V(2, q^n)$ (for *q* even and $n > 1$ odd) is viewed as a symplectic spread of $V(2n, q)$, it can be lifted to the *desarguesian orthogonal spread* **O** of $\overline{V} = V^+(2n+2, q)$ as in Definition [2.3.](#page-3-0) Then $O/N_0 = S$ for a nonsingular point *N*₀. The group $G = SL(2, q^n) \cdot Aut(\mathbb{F}_{q^n})$ preserves the point N_0 , the orthogonal spread **O** and the orthogonal geometry of \overline{V} . It has exactly two orbits of singular points; the various orbits of nonsingular points *N* are described at length in [\[13,](#page-25-2) Sec. 4]. If $N \neq N_0$ then $\langle N^G \rangle$ is a *G*-invariant subspace $\neq 0$, *N*₀, and hence is N_0^{\perp} or \overline{V} .

If *P* is a singular point, then $P^{\perp} \neq N_0^{\perp}$. Thus, *P* is not perpendicular to some member *N'* of N^G , in which case $\langle N', P \rangle$ is a hyperbolic 2-space.

(b) In particular, when $q = 2$, by the preceding proposition *each* \mathbf{O}/P *is isomorphic to a shadow of each* O/N , $N \neq N_0$, where there are many non-isomorphic symplectic spreads **O**/*N* [\[13](#page-25-2), Cor. 3.6 and Sec. 4]. Also, **O**/*P* is a shadow of the desarguesian spread $\mathbf{O}/N_0 = \mathbf{S}$ when *P* is not in N_0^{\perp} .

If $q = 2$ and $n = 5$, then *G* has precisely three orbits of nonsingular points: {*N*₀}, $N_1^{\bar{G}}$, and N_2^G , with $N_1^G \subseteq N_0^{\perp}$ and $N_2^G \cap N_0^{\perp} = \emptyset$. Here \mathbf{O}/N_1 is a semifield spread with $|\text{Aut}(\mathbf{O}/N_1)| = 2^5 \cdot 5$, and \mathbf{O}/N_2 is a flag-transitive spread with $|\text{Aut}(\mathbf{O}/N_2)| = 33 \cdot 5$. The two orbits of *G* on singular points are P_0^G (inside N_0^{\perp}) and P_1^G (with $P_1^G \cap N_0^{\perp} = \emptyset$). The DHO **O**/ P_1 appeared in Example [3.15,](#page-10-3) while O/P_0 is one of the DHOs in Example [8.1.](#page-24-0) By Example [3.15,](#page-10-3) Aut $(O/P_1) = G_{P_1}$ has order 31 · 5, while G_{P_0} induces on the DHO O/P_0 an automorphism group of order $2^5 \cdot 5$. Thus, $\mathbf{O}/P_0 \ncong \mathbf{O}/P_1$. Use of a computer shows that $\text{Aut}(\mathbf{O}/P_0) =$ G_{P_0} .

4 Proof of Theorem [1.2](#page-1-1)

Except in Sect. [7,](#page-21-0) we will use $F = \mathbb{F}_{2^n}$ with $n > 1$ odd, viewed as an \mathbb{F}_2 -space equipped with the nondegenerate, symmetric bilinear form $(x, y) \mapsto \text{Tr}(xy)$ using the absolute trace $\text{Tr}: F \to \mathbb{F}_2$ as in Remark [3.3.](#page-6-2)

Notation 4.1 We will use the following:

- The quadratic form Q on $V = F \oplus F$ defined by $Q(x, y) = Tr(xy)$;
- The trace map $\text{Tr}_{d,e} : \mathbb{F}_{2^d} \to \mathbb{F}_{2^e}$ when $\mathbb{F}_{2^d} \supset \mathbb{F}_{2^e}$, so that $\text{Tr}_{n:1} = \text{Tr};$
- Sequences $d = (d_0 = 1, d_1, \ldots, d_m)$ of $|d| = m + 1$ different integers such that $d_1|d_2|\cdots|d_m|n$, associated with a chain $\mathbb{F}_2 = F_0 \subset F_1 \subset \cdots \subset F_m \subset F$, $|F_i| = 2^{d_i}$, of |d| proper subfields of *F*;
- The *Fi*-linear operator

$$
E_{a,b}^{(i)}: x \mapsto \text{Tr}_{n:d_i}(ax)b \tag{4.1}
$$

on *F* for $a, b \in F$ and $0 \le i \le m$; and

• Sequences $c = (c_1, \ldots, c_m), c_i \in F$.

This section is concerned with the following symplectic semifield spread-sets:

Example 4.2 [\[19\]](#page-25-3) Let *d* and *c* be as above with all $c_i \in F^*$. For $a \in F$ define the operator $C(a)$ on F by

$$
C(a) = a^2 \mathbf{1} + \sum_{i=1}^{m} (E_{c_i, a}^{(i)} + E_{a, c_i}^{(i)}).
$$

This defines a symplectic spread-set Σ . Moreover, $C = \mathscr{L}(\Sigma)$ by Example [3.15](#page-10-3) since the operators $E_{c_i,a}^{(i)} + E_{a,c_i}^{(i)}$ are skew-symmetric. The shadow of Σ (Definition [3.14\)](#page-10-2) is

$$
\Delta = \{ B(a) \mid a \in F \} \text{ with } B(a) = C(a) + E_{a,a}^{(0)}.
$$

The DHO-set Δ defines an orthogonal DHO of *V* by

$$
\mathbf{D} = \{ V(a) \mid a \in F \} \text{ with } V(a) = V(B(a)) := \{ (x, xB(a)) \mid a \in F \}.
$$

- *Remark 4.3* (a) The preceding spread-set Σ is obtained by successively twisting the desarguesian spread-set $\Sigma_0 = \{a^2 \mathbf{1} \mid a \in F\}$. Namely, view Σ_0 as a symplectic spread-set over F_m . Let $d = d_m$ and $c = c_m \in F^*$. By Theorem [3.16](#page-11-0) the twist $\Sigma_1 = \{a^2\mathbf{1} + E_{c,a}^{(m)} + E_{a,c}^{(m)} \mid a \in F\}$ is a symplectic spread-set over F_m . Now view Σ_1 as a spread-set over F_{m-1} and iterate the twisting using $c_{m-1} \in F^*$.
- (b) None of the nontrivial elations of the projective plane arising from the symplectic spread-set is inherited by the shadow DHO since $C(a + b) = C(a) + C(b)$ but $B(a + b) = C(a + b) + E_{a+b,a+b}^{(0)} \neq C(a) + E_{a,a}^{(0)} + C(b) + E_{b,b}^{(0)} = B(a) + B(b)$ for $0 \neq a, b, a \neq b$.

Our goal is to show that we obtain at least $2^{n(\rho(n)-2)}/n^2$ inequivalent orthogonal DHOs of the above type when *n* is composite. We start with a uniqueness result concerning shadows:

Proposition 4.4 *If* $n > 5$ *, then a* DHO-set $\Delta \subseteq \text{End}(U)$ *can be the shadow of at most one additively closed symplectic spread-set.*

Proof Let $\Delta = \{B(a) | a \in U\}$ be the shadow of the additively closed symplectic spread-sets Σ and Σ . Write $\Sigma = \{C(a) := B(a) + E_{a,a} \mid a \in U\}$ with $C = \mathcal{L}(\Sigma)$ additive (by Lemma [3.8b](#page-7-2)). Then for each $B(a) \in \Delta$ there is a self-adjoint operator $E_{b,b}$ of rank ≤ 1 such that $\overline{C}(a) := B(a) + E_{b,b} \in \Sigma$. Write $a' = b$. We have to show that $a' = a$ for all a. (N.B.–We do not know that $\overline{C} = \mathscr{L}(\tilde{\Sigma})$.)
We alsim that \overline{C} is additive Let 0. (as he get and $\overline{C}(a)$.)

We claim that *C* is additive. Let $0 \neq a, b \in U$ and $C(a) + C(b) = C(c)$ with $c \in U$. By the additivity of *C* and the definition of \overline{C} ,

$$
C(a+b+c) = (B(a) + E_{a,a}) + (B(b) + E_{b,b}) + (B(c) + E_{c,c})
$$

= $E_{a',a'} + E_{b',b'} + E_{c',c'} + E_{a,a} + E_{b,b} + E_{c,c}.$ (4.2)

Then $c = a + b$, as otherwise the rank of the above left side is *n* and of the right side is ≤ 6 . Thus, \overline{C} is additive.

Since $C(a) + E_{a',a'}$ and $C(b) + E_{b',b'}$ are skew-symmetric, by Lemma [3.6c](#page-6-1)

$$
\overline{C}(a) + \overline{C}(b) + E_{a'+b',a'+b'} = \overline{C}(a+b) + E_{a'+b',a'+b'}
$$

is also skew-symmetric. Since $\overline{C}(a+b)+E_{(a+b)',(a+b)'}$ is skew-symmetric, $a'+b'=$ $(a + b)'$ by Lemma [3.6.](#page-6-1)

Since $a + b = c$ and $E_{a+b, a+b} = E_{a,a} + E_{b,b} + E_{a,b} + E_{b,a}$, we have $E_{a,b} + E_{b,a} =$ $E_{a',b'} + E_{b',a'}$ by [\(4.2\)](#page-14-1). By [\(3.4\)](#page-6-0),

$$
\langle a', b' \rangle = \text{Im} (E_{a',b'} + E_{b',a'}) = \text{Im} (E_{a,b} + E_{b,a}) = \langle a, b \rangle.
$$

Then the additive map $a \mapsto a'$ fixes each 2-space of the \mathbb{F}_2 -space *U*, and hence is 1. \Box

Theorem [1.2](#page-1-1) depends on relating equivalences of spread-sets and of shadows of twists (cf. Definition [3.18\)](#page-11-1):

Theorem 4.5 *Assume that* Σ *and* Σ *are symplectic spread-sets of* $U = V(n, 2)$, *for odd* $n > 5$, whose respective shadows Δ and Δ are equivalent.

- *(a)* For some permutation $a \mapsto a'$ of U fixing 0, some $T \in GL(U)$ and some $u \in U$, $T^*B(a)T = \widetilde{B}_{\mu}(a')$ *for all a* ∈ *U*, *where* $\Delta = \{B(a) | a \in U\}$ *is the shadow of* \sum *and* $\Delta_u = \{B_u(a) \mid a \in U\}$ *is the shadow of the twist* \sum_u
- *(b)* If $\tilde{\Sigma}$ is additively closed then, for some permutation a $\mapsto \overline{a}$ of U and $S = T^{-1}$, $\widehat{C}(a) := B(\overline{a}) + E_{a,a} = S^* \widetilde{C}_u(aT) S$ is the canonical labeling of the additively $closed$ symplectic spread-set $S^{\star}\widetilde{\Sigma}_{u}(a)$ $S.$ Furthermore, the shadow of $\widehat{\Sigma} = S^{\star}\widetilde{\Sigma}_{u}S$ *is* Δ *.*

(c) If Σ and Σ are additively closed then a semifield defined by Σ is isotopic to a
against ald defined by some twist of $\widetilde{\Sigma}$ s *emifield defined by some twist of* Σ .

See [\[7,](#page-25-1) p. 135] for the definition of "isotopic semifields." In the present context, this means that $T_1 \Sigma T_2$ *is a twist of* Σ *for some* $T_1, T_2 \in GL(U)$ *.*

Proof (a) Let $\Phi: V \to V$ be an operator mapping the DHO **D** for Δ onto the DHO **D** for Δ , where $V = U \oplus U$ as usual. By Proposition [2.4b](#page-3-1) and Proposition [2.6,](#page-4-1) $\Phi \in O(V)$ has the form

$$
(x, y)\Phi = (x\Phi_{11}, x\Phi_{12} + y\Phi_{22})
$$

where $\Phi_{11}, \Phi_{22} \in GL(U), \Phi_{12} \in End(U)$, and the adjoint of $T := \Phi_{22}$ is $T^* = \Phi_{11}^{-1}$ by Corollary [2.7.](#page-4-2)

If $C = \mathcal{L}(\Sigma)$ and $C = \mathcal{L}(\Sigma)$ (Definition [3.9\)](#page-7-3), we have $\Delta = \{B(a) := C(a) +$ $E_{a,a} \mid a \in V$ and $\Delta = \{B(a) := C(a) + E_{a,a} \mid a \in U\}$. Then $\mathbf{D} = \{V(B(a)) \mid a \in U\}$. Then $\mathbf{D} = \{V(B(a)) \mid a \in U\}$. *U*} and $\mathbf{\overline{D}} = \{V(\mathbf{\overline{B}}(a)) | a \in U\}$ in the notation of [\(3.3\)](#page-5-3). We apply Φ to $(x, xB(a)) \in V(B(a)) \in \mathbf{D}$ and obtain

$$
(x, xB(a))\Phi = (y, y\Phi_{11}^{-1}(\Phi_{12} + B(a)\Phi_{22})) \in V(\widetilde{B}(a')), \quad y = x\Phi_{11},
$$

for some permutation $a \mapsto a'$ of *U*. Then $\widetilde{B}(a') = T^*(\Phi_{12} + B(a)T)$. In particular, when $a = 0$ and $u := 0'$ we have $\widetilde{B}(u) = T^* \Phi_{12}$. Then, in the notation of Corollary [3.19,](#page-11-2) $T^*B(a)T = \widetilde{B}(a') + \widetilde{B}(u) = \widetilde{B}((a'+u)+u) + \widetilde{B}(u) = \widetilde{B}_u(a'+u)$. Since $0' = u$, replacing $a \mapsto a'$ by the permutation $a \mapsto a' + u$ produces (a) (but does not change *u*).

- (b) If Σ is additively closed then C_u is additive by Lemma [3.8b](#page-7-2) and the end of Theorem [3.16a](#page-11-0). Let $a \mapsto \overline{a}$ be the inverse of $a \mapsto a'S$. Then (a) states that $\widehat{C}(a) = B(\overline{a}) + C$
 $\overline{C} = \widehat{S} \setminus \widehat{C}$ $E_{a,a} = S^* \widetilde{B}_u(\overline{a}')S + E_{a,a} = S^* \widetilde{C}_u(aT)S + S^* E_{aT,aT}S + E_{a,a} = S^* \widetilde{C}_u(aT)S.$ The shadow of the symplectic spread-set $\hat{\Sigma}$ for *C* is $\{B(\overline{a}) | \overline{a} \in U\} = \Delta$, by Definition [3.14,](#page-10-2) while $\hat{\Sigma} = S^* \tilde{\Sigma}_u S$. Finally, the additivity of $a \mapsto S^* \tilde{C}_u(a) S$
	- proves (b).
- (c) This is immediate from (b) and Proposition [4.4.](#page-14-2) \Box

Proof of Theorem 1.2 By [\[19](#page-25-3), Thm. 4.15], [\[18](#page-25-11), Thm. 1.1] and [\[22](#page-25-12)], there are at least 2^{*n*(ρ (*n*)−1)/*n*² symplectic semifield spreads defining non-isomorphic semifield planes} using Example [4.2.](#page-13-1) If two equivalent orthogonal DHOs are defined by shadows of symplectic spread-sets Σ and Σ in Example [4.2,](#page-13-1) then the semifields defined by Σ and some twist $\tilde{\Sigma}_u$ ($u \in U$) are isotopic by Theorem [4.5c](#page-14-0). Since there are $|U| = 2^n$ possibilities for *u*, we obtain at least $2^{n(\rho(n)-2)}/n^2$ pairwise inequivalent DHOs. □

Remark 4.6 Note that the exact formulas for the semifield spreads in Example [4.2](#page-13-1) were never used in the above arguments. Therefore, if many more inequivalent symplectic semifield spread-sets are found then there will, correspondingly, be many more inequivalent DHOs.

Also note that Proposition [4.4](#page-14-2) and Theorem [4.5](#page-14-0) deal with spread-sets and DHO-sets, and hence do not conflict with Sect. [3.4,](#page-12-0) which deals with spreads and DHOs.

The preceding result and argument differ in a significant way from ones in [\[10](#page-25-6),[19,](#page-25-3) [20\]](#page-25-4) and Sect. [5:](#page-16-0) it did not rely on a group of automorphisms of the objects (DHOs) being studied, but rather on such a group for related objects.

5 Proof of Theorem [1.3](#page-2-1)

We will show that the shadows of the symplectic spreads of the nearly flag-transitive planes in [\[20](#page-25-4)] produce at least as many non-isomorphic DHOs as stated in Theorem[1.3.](#page-2-1) We start with the corresponding spread-sets:

Example 5.1 [\[20\]](#page-25-4) Let *d* and *c* be sequences as at the start of the preceding section, with associated fields F_j and the additional properties that $c_j \in F_j$ with at least one of them nonzero, and $\sum_{i=1}^{j} c_i \neq 1$ for $1 \leq j \leq m$. For $a \in F$ define

$$
C(a) = (1 + \sum_{i=1}^{m} c_i) a^2 \mathbf{1} + \sum_{i=1}^{m} c_i E_{a,a}^{(i)}
$$
(5.1)

[the operators $E_{a,b}^{(i)}$ are in [\(4.1\)](#page-13-2)]. Then *C* is the canonical labeling of a symplectic spread-set Σ . Indeed, Σ is just the description in [\[10\]](#page-25-6) of the symplectic spread-sets from [\[20\]](#page-25-4). For completeness we verify that *C* is the canonical labeling $\mathscr{L}(\Sigma)$, i.e., in view of [\(3.4\)](#page-6-0) and Definition [3.9,](#page-7-3) that $\text{Tr}(x(xC(a))) = \text{Tr}(x(xE_{a,a})) = \text{Tr}(ax)^2$ (as in [\[19,](#page-25-3) (2.15)]). Since *n* is odd we have Tr = Tr \circ Tr_{*n:d_i*} and hence Tr($c_i z$ Tr_{*n:d_i*(*z*)) =} $Tr \circ Tr_{n:d_i}(c_i z Tr_{n:d_i}(z)) = Tr(c_i Tr_{n:d_i}(z)^2) = Tr(Tr_{n:d_i}(c_i z^2)) = Tr(c_i z^2)$. If $z = ax$ it follows that

$$
\operatorname{Tr}(x(xC(a)) = \operatorname{Tr}(ax)^2 + \sum_{i=1}^m \operatorname{Tr}(c_i a^2 x^2) + \sum_{i=1}^m \operatorname{Tr}(c_i a x \operatorname{Tr}_{n:d_i}(ax)) = \operatorname{Tr}(ax)^2,
$$

as required.

The shadow of Σ is

$$
\Delta = \{ B(a) \mid a \in F \} \text{ with } B(a) = C(a) + E_{a,a}^{(0)}.
$$
 (5.2)

Using the quadratic form in the preceding section, we obtain a DHO in $F \oplus F$:

$$
\mathbf{D} = \mathbf{D}_{d,c} := \{ V(a) \mid a \in F \} \text{ with } V(a) := V(B(a)).
$$

For $b \in F^*$ define $M_b \in GL_{\mathbb{F}_2}(F)$ by $(x, y)M_b = (b^{-1}x, by)$. If $y = b^{-1}x$ then

$$
(x, xB(a))M_b = (y, b(byB(a))) = (y, yB(ab)),
$$

so that $V(a)M_b = V(ab)$ in the notation of [\(3.3\)](#page-5-3), and $M := \{M_b | b \in F^{\star}\}\simeq F^{\star}$ is a group of automorphisms of **D**. Also, if $\alpha \in Aut(F)$ then the map

$$
\Phi_{\alpha}: (x, y) \mapsto (x^{\alpha}, y^{\alpha}) \tag{5.3}
$$

normalizes *M* and it is an automorphism of of **D** if $c_i^{\alpha} = c_i$ for all *i*. Define

$$
\mathcal{P} = \{ \Phi_{\alpha} \mid c_i^{\alpha} = c_i \text{ for all } i \} \text{ and } \mathcal{G} = \mathcal{MP}. \tag{5.4}
$$

In the next proposition, we will show that G is the full automorphism group of **D**.

- *Remark 5.2* (a) The preceding spread-set Σ is obtained by successively dilating the desarguesian spread-set $\Sigma_0 = \{a^2 \mathbf{1} \mid a \in F\}$. View Σ_0 as a symplectic spreadset over F_m . Let $d = d_m$ and $1 \neq c = c_m \in F_m^*$, and define $\lambda = c^{1/2}$. By Theorem [3.16,](#page-11-0) a typical element of the λ -dilation has the form $((1 + \lambda)a)^2$ **1** + $E_{\lambda a,\lambda a}^{(m)} = (1+c)a^2\mathbf{1} + cE_{a,a}^{(m)}$, where the right side is $C(a)$ when $m = 1$. Hence the spread-set Σ is obtained as a dilation in the case $m = 1$. View Σ as a spread-set over F_{m-1} and iterate the dilating by choosing $c_{m-1} \in F_{m-1}$.
- (b) Two DHOs $\mathbf{D}_{\underline{d},\underline{c}}$ and $\mathbf{D}_{\underline{d}',\underline{c}'}$ are *equal if and only if* $\underline{d} = \underline{d}'$ *and* $\underline{c} = \underline{c}'$. This is proved exactly as in [\[20,](#page-25-4) Prop. 8.1] or [\[10](#page-25-6), Proof of Thm. 5.2].
- (c) When $m = 0$ Examples [4.2](#page-13-1) and [5.1](#page-16-1) coincide with Example [3.15.](#page-10-3)
- (d) Unfortunately, use of Theorem [4.5a](#page-14-0) does not seem to shorten the proofs in the present section.

Proposition 5.3 *Let* $\mathbf{D} = \mathbf{D}_{d,c}$ *and* $\mathbf{D}' = \mathbf{D}_{d',c'}$ *be* DHO*s in* Example [5.1.](#page-16-1) *Then*

 (a) Aut $(D) = G$ *, and*

(b)
$$
\mathbf{D} \simeq \mathbf{D}'
$$
 if and only if $\underline{d} = \underline{d}'$ and $c_i^{\alpha} = c_i'$ for some $\alpha \in \text{Aut}(F)$ and $1 \leq i \leq |\underline{d}|$.

We will prove this using several lemmas. Recall that **D** and **D**' split over $Y =$ $0 \oplus F \subseteq V$.

Lemma 5.4 *If* $\Phi \in Aut(\mathbf{D})$ *satisfies* $\Phi_Y = \mathbf{1}_Y$ *and* $\Phi_{V/Y} = \mathbf{1}_{V/Y}$ *then* $\Phi = \mathbf{1}$ *.*

Proof By assumption, (x, y) $\Phi = (x, xR + y)$ for some $R \in \text{End}(F)$. There is a permutation $a \mapsto a'$ of F such that $V(a)\Phi = V(a')$ for all *a*. Then $(x, xB(a))\Phi =$ $(x, x B(a'))$ states that $R + B(a) = B(a')$ for all *a*. Let $b := 0'$, so that $R = B(b)$.

If $b = 0$ then $\Phi = 1$, as required.

Suppose that $b \neq 0$. We have $B(a) + B(b) = B(a')$. Consider the equation $x B(a) +$ $xB(b) = xB(a')$ as a polynomial equation modulo $x^{2^n} - x$. By [\(5.1\)](#page-16-2) and [\(5.2\)](#page-16-3), $xB(a)$ is the sum of a term linear in *x*, terms of the form $cx^{2^{d_i k}}$ with $d_i > 2$ and $0 < d_i k < n$ and $c \in F$, and terms such as $a^{1+2^k} x^{2^k}$ arising from Tr(ax) a . If $0 < k < n$, $(k, n) = 1$, then

$$
a^{2^k+1}x^{2^k} + b^{2^k+1}x^{2^k} = a'^{2^k+1}x^{2^k}, \quad x \in F, \quad \text{i. e., } a^{2^k+1} + b^{2^k+1} = a'^{2^k+1}.
$$

Choosing $k = 1$ and $k = 2$, since $(a³)⁵ = (a⁵)³$ we see that every $x \in F$ satisfies $(x^{3} + b^{3})^{5} = (x^{5} + b^{5})^{3}$, which is absurd since $b \neq 0$.

Lemma 5.5 Aut(D) *is isomorphic to a subgroup of* $\Gamma L(1, 2^n)$ *, and M is normal in* Aut(**D**)*.*

Proof Set $A := \text{Aut}(D)$. By Lemma [5.4](#page-17-0) and Corollary [2.7,](#page-4-2) A acts faithfully on *Y* , and *M* induces a Singer group of GL(*Y*). By [\[12](#page-25-13)], *A* has a normal subgroup $\mathcal{H} \simeq GL(k, 2^{\ell})$, where $n = k\ell$ and $\mathcal{Z} := \mathcal{M} \cap Z(\mathcal{H})$ is a cyclic group of order $2^{\ell} - 1$. If $k = 1$, then $H = M$, as required.

Assume that $k > 1$. The *M*-orbits on **D** are $\{V(0)\}\$ and $\mathbf{D} - \{V(0)\}\$. Then $V(0)$ is *H*-invariant, as otherwise *H* would be 2-transitive on **D**, contradicting [\[5\]](#page-25-14). The action of M on $V(0)$ is the same as its action on the field F , hence $V(0)$ can be viewed as an $\mathbb{F}_{2^{\ell}}$ -space on which \mathcal{Z} acts as $\mathbb{F}_{2^{\ell}}^{\star}$ and \mathcal{H} acts as $GL(k, 2^{\ell})$.

In order to obtain a contradiction we will use a transvection *A* in $GL(k, 2^{\ell})$ (so that the \mathbb{F}_2 -space $W := C_{V(0)}(A)$ has dimension $n - l$ and $A^2 = 1$; from now on dimensions will be over \mathbb{F}_2). By Corollary [2.7,](#page-4-2) *A* arises from an operator $\Phi \in \mathcal{H}$ such that $(x, y) \Phi = (xA, y(A^{\star})^{-1}) = (xA, yA^{\star}).$

There is a permutation $a \mapsto a'$ of F^* such that $V(a)\Phi = V(a')$. Then $AB(a)A^* =$ *B*(*a*') since $V(a)\Phi = \{(x, xAB(a)A^{\star}) | x \in F\}.$

Note that $W(AB(a)A^* + B(a)) \subseteq WB(a)(A^* + 1)$ has dimension \leq rk(A^* + **1**) = *l*. Since dim *V* − dim *W* = *n* − (*n* − *l*), it follows that $rk(B(a') + B(a))$ = $\dim V(0)(AB(a)A^* + B(a)) \le l + l < n - 1$. By Lemma [3.2c](#page-5-2), $a' = a$ and hence $\Phi = 1$, a contradiction.

Lemma 5.6 Aut $(D) = G$.

Proof By the preceding lemma, we need to determine which Φ_{α} lie in *G*. Since $V(a)\Phi_{\alpha} = \{(x^{\alpha}, (xB(a))^{\alpha}) \mid x \in F\}$, [\(5.1\)](#page-16-2) and [\(5.2\)](#page-16-3) show that $V(a)\Phi_{\alpha} = V(a^{\alpha})$, so that $\mathbf{D}_{\underline{d},\underline{c}} = \mathbf{D}_{\underline{d},\underline{c}^{\alpha}}$. By Remark [5.2\(](#page-17-1)b), $c_i = c_i^{\alpha}$ for all *i*, so that $\Phi_{\alpha} \in \mathcal{P}$.

Remark 5.7 It might be interesting to have a proof of Lemma [5.6](#page-18-0) using an elementary polynomial argument rather than the somewhat less elementary group theory we employed.

Proof of Proposition 5.7 We just proved (a). Consider (b). Clearly, Φ_{α} maps $\mathbf{D}_{d,c}$ onto ${\bf D}_{d,c}$ ^{α} (cf. [\(5.3\)](#page-17-2)).

Conversely, assume that Φ maps **D** onto **D**'. By Proposition [2.6,](#page-4-1) Φ lies in O(*V*), and by Lemma [5.5](#page-18-1) it even lies in the normalizer $\mathcal{M}\{\Phi_{\alpha} \mid \alpha \in Aut(F)\}\$ of $\mathcal M$ in $O(V)$. (Compare the proofs of [\[20](#page-25-4), Prop. 5.1] or [\[10,](#page-25-6) Prop. 4.6]; the former does not even need the precise group Aut(**D**).) So we may assume that $\Phi = \Phi_{\alpha}$ for some α . Arguing as in the proof of the preceding lemma we obtain $\underline{d} = \underline{d}'$ and $\underline{c}' = \underline{c}^{\alpha}$.

We leave the following calculation to the reader:

Lemma 5.8 *If* $p_1 \leq \cdots \leq p_\ell$ *are odd primes, then*

$$
\frac{(2^{p_1}-1)(2^{p_1p_2}-1)\cdots(2^{p_1\cdots p_\ell}-1)}{p_1\cdots p_\ell} \geq 2^{3^{\ell}}
$$

unless (ℓ ; p_1, \ldots, p_{ℓ}) = (1; 3), (1; 5) *or* (2; 3, 3)*.*

Proof of Theorem 1.3 Let $n = p_1 p_2 \cdots p_{m+1}$ for odd primes p_i such that $p_1 \leq \cdots \leq p_m$ p_{m+1} , i.e. $\rho(n) = m + 1$. Consider the chain $\mathbb{F}_2 = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_{m+1}$ $F = \mathbb{F}_{2^n}$ where $|F_i| = 2^{d_i}$ for $d_i = p_1 \cdots p_i$. Every sequence (c_1, \ldots, c_m) with *c_i* ∈ *F_i* and $\sum_{i=1}^{j} c_i \neq 1$ for $1 \leq j \leq m$ defines a symplectic spread in Example [5.1](#page-16-1) (where $c_i = 0$ means that we delete the field F_i from the chain). By Proposition [5.3](#page-17-3) we obtain at least $(2^{p_1}-1)(2^{p_1p_2}-1)\cdots(2^{p_1\cdots p_m}-1)/p_1p_2\cdots p_m$ pairwise inequivalent DHOs. Now use Lemma [5.8.](#page-18-2)

6 A non-isomorphism theorem

In this section we will prove:

Theorem 6.1 *Any* DHO *from* Example [4.2](#page-13-1) *is not isomorphic to a* DHO *from* Example 5.1 *having* $h > 0$.

First we need a tedious computational result:

Lemma 6.2 *For* $F = \mathbb{F}_{2^n}$ ($n > 5$ *odd*)*, let* $f: F \rightarrow F$ *be such that* $f(x)^3 + x^3$ *and* $f(x)^5 + x^5$ *are additive. Then* $f = 1$.

Proof Let $g(x) := f(x)^3 + x^3$ and $h(x) := f(x)^5 - x^5$. Since $(f(x)^3)^5 = (f(x)^5)^3$, for all $x \in F$ we have

$$
x^{12}g(x) + x^3g(x)^4 + g(x)^5 = x^{10}h(x) + x^5h(x)^2 + h(x)^3.
$$
 (6.1)

Write $g(x) = \sum_{i=0}^{n-1} g_i x^{2^i}$ and $h(x) = \sum_{i=0}^{n-1} h_i x^{2^i}$ with $g_i, h_i \in F$, where indices will be read mod *n*. Since $h(x)^2 = \sum_{i=0}^{n-1} h_{i-1}^2 x^{2^i}$ and $g(x)^4 = \sum_{i=0}^{n-1} g_{i-2}^4 x^{2^i}$, the left side of [\(6.1\)](#page-19-0) has the form

$$
L(x) = \sum_{i=0}^{n-1} g_i x^{2^i + 12} + \sum_{i=0}^{n-1} g_{i-2}^4 x^{2^i + 3} + g(x)^5
$$

and the right side has the form

$$
R(x) = \sum_{i=0}^{n-1} h_i x^{2^i + 10} + \sum_{i=0}^{n-1} h_{i-1}^2 x^{2^i + 5} + h(x)^3.
$$

In order to view $L(x) = R(x)$ as a polynomial identity involving polynomials of degree $\leq 2^n - 1$, we note that the above summations in $L(x)$ and $R(x)$ involve exponents ≤ $2^n - 1$ (since *n* ≥ 5), as do the following (for all *x* ∈ *F*):

$$
g(x)^5 = \left(\sum_{i=0}^{n-1} g_i x^{2^i}\right) \left(\sum_{i=0}^{n-1} g_{i-2}^4 x^{2^i}\right)
$$

\n
$$
= \sum_{0 \le i < k \le n-1} (g_i g_{k-2}^4 + g_k g_{i-2}^4) x^{2^i + 2^k} + \sum_{i=0}^{n-2} g_i g_{i-2}^4 x^{2^{i+1}} + g_{n-1} g_{n-3}^4 x
$$

\n
$$
h(x)^3 = \left(\sum_{i=0}^{n-1} h_i x^{2^i}\right) \left(\sum_{i=0}^{n-1} h_{i-1}^2 x^{2^i}\right)
$$

\n
$$
= \sum_{0 \le i < k \le n-1} (h_i h_{k-1}^2 + h_k h_{i-1}^2) x^{2^i + 2^k} + \sum_{i=0}^{n-2} h_i h_{i-1}^2 x^{2^{i+1}} + h_{n-1} h_{n-2}^2 x.
$$

Denote by $L_0(x)$ and $R_0(x)$ the sums over the terms with odd exponents in $L(x)$ and $R(x)$, respectively. These involve the following exponents:

$$
L_o(x) 2^0 + 12 2^i + 3 (i > 0) 1 2^0 + 2^k (k > 0)
$$

\n
$$
R_o(x) 2^0 + 10 2^i + 5 (i > 0) 1 2^0 + 2^k (k > 0)
$$

We rewrite $L_0(x)$ and $R_0(x)$ so that all coinciding exponents are visible:

$$
L_o(x) = g_{n-1}g_{n-3}^4x + (g_{-1}^4 + g_0^5 + g_2g_{-2}^4)x^5 + g_0x^{13}
$$

+
$$
[g_0^4x^7 + g_1^4x^{11}] + (g_0g_1^4 + g_3g_{-2}^4)x^9
$$

+
$$
\sum_{i \ge 4} g_{i-2}^4x^{2^i+3} + \sum_{\substack{0 < k \le n-1 \\ k \ne 2,3}} (g_0g_{k-2}^4 + g_ka_{-2}^4)x^{1+2^k}
$$

$$
R_o(x) = h_{n-1}h_{n-2}^2x + (h_1^2 + h_0h_2^2 + h_3h_{-1}^2)x^9 + h_0x^{11}
$$

+
$$
[h_0^2x^7 + h_2^2x^{13}] + (h_0h_1^2 + h_2h_{-1}^2)x^5
$$

+
$$
\sum_{i \ge 4} h_{i-1}^2x^{2^i+5} + \sum_{\substack{0 < k \le n-1 \\ k \ne 2,3}} (h_0h_{k-1}^2 + h_kh_{-1}^2)x^{1+2^k}.
$$

Comparing the coefficients of $L_o(x) = R_o(x)$, we obtain the following table containing some of the relations among the various g_i and h_i .

Since $i, k \leq n-1$, the last two equations show that only $g_0, g_1, g_{n-2}, g_{n-1}$ and h_0 , h_1 , h_2 , h_{n-1} might be nonzero. Moreover,

$$
g_0^4 = h_0^2, \ g_1^4 = h_0 \ and \ g_0 = h_2^2. \tag{6.2}
$$

The exponent $1 + 2^k$, $k = n - 2$, yields $0 + g_{n-2}^5 = 0 + 0$. We need three even exponent terms in the equation $L(x) = R(x)$:

$$
g_{n-1}x^{2^{n-1}+12} = 0
$$

\n
$$
g_1g_{1-2}^4x^{2^{1+1}} = h_1h_{1-1}^2x^{2^{1+1}}
$$

\n
$$
(g_1g_{3-2}^4 + 0)x^{2^1+2^3} = (h_1h_{3-1}^2 + 0)x^{2^1+2^3}.
$$

Then $g_{-1} = g_{n-1} = 0$, so that $h_1 h_0 = 0$ by the second equation.

If $h_0 = 0$ then $g_0 = g_1 = 0$ by [\(6.2\)](#page-21-1). If $h_1 = 0$ then $g_1 = 0$ by the third equation, and then $h_0 = g_0 = 0$ by [\(6.2\)](#page-21-1).

Thus, $g(x) = 0$ and $f(x)^3 = x^3$. Since *n* is odd, we obtain $f(x) = x$, as desired. \Box

Proof of Theorem 6.1 Assume that a DHO from Example [4.2](#page-13-1) is isomorphic to a DHO from Example [5.1.](#page-16-1) Let $C(a)$ be as in Example [5.1](#page-16-1) with spread-set Σ and shadow ${B(a) = C(a) + E_{a,a} | a \in U}$. By Theorem [4.5b](#page-14-0), there is a permutation $a \mapsto a'$ of *U* such that $0' = 0$ and $\hat{C}(a) = B(a') + E_{a,a}$ is the canonical labeling of an additively closed spread-set.

Then

$$
\widehat{C}(a) = C(a') + E_{a,a} + E_{a',a'},
$$

where $C(a') = (1 + \sum_{i=1}^{m} c_i)a'^2 \mathbf{1} + \sum_{i=1}^{m} c_i E_{a',a'}^{(i)}$ by [\(5.1\)](#page-16-2). Write $x\widehat{C}(a) =$ $\sum_{i=0}^{n-1} u_i(a) x^{2i}$ with each $u_i : F \to F$ additive (since \hat{C} is), $u_1(a) = a^{3} + a^{3}$ and $u_2(a) = a^{5} + a^{5}$ since $m \ge 1$. The additivity of u_1 and u_2 yields the hypotheses of Lemma [6.2.](#page-19-1) Thus, $a' = a$ for all $a \in U$, so that $\widehat{C} = C$. In Example [5.1](#page-16-1) we assumed that some $c_j \neq 0$ (thereby excluding the desarguesian spread). By [\[10](#page-25-6), Lemma 4.7] it follows that Σ is not additively closed, a contradiction.

7 *q***DHOs**

Theorem [1.1](#page-1-0) used orthogonal spreads over \mathbb{F}_2 to obtain DHOs. This suggests the question: what happens if larger fields are allowed. This then motivates the following in all characteristics:

Definition 7.1 A set **D** of *n*-spaces in a finite vector space over \mathbb{F}_q is a *q*DHO *of rank n* if the following hold:

(a) dim $(X_1 \cap X_2) = 1$ for all distinct $X_1, X_2 \in \mathbf{D}$,

- (b) Each point of a member of **D** lies in precisely *q* members of **D**, and
- (c) **D** spans the underlying vector space.

A 2DHO is just a DHO. Note that $|\mathbf{D}| = q^n$ (fix $Y \in \mathbf{D}$ and count the pairs (P, X)) with *P* a point of $X \in \mathbf{D} - \{Y\}$, and the number of nonzero vectors in $\bigcup_{X \in \mathbf{D}} X$ is $|\mathbf{D}|(q^n-1)/q = q^{n-1}(q^n-1).$

There is a sharp division for DHOs between even and odd characteristic: for any even *q* and any $n > 1$ there are known DHOs over \mathbb{F}_q of rank *n*, but no DHO has yet been found in odd characteristic. We will provide several types of examples showing that this division disappears for *q*DHOs.

Example 7.2 It is easy to see that a *q*DHO of rank 2 is the dual of the affine plane *AG*(2, *q*).

The next example is the analog of a standard construction of DHOs over \mathbb{F}_2 (see $[6, Ex. 1.2(a)]$ $[6, Ex. 1.2(a)]$.

Example 7.3 For a spread **S** of $W = V(2n, q)$ for $n > 2$ and any prime power *q*, let *P* be a point of $Y \in S$. Then, it is straightforward to check that $S/P := \{(X, P)/P \mid X \in S\}$ $S - \{Y\}$ is a *q*DHO of rank *n* in W/P .

Example 7.4 (Compare Huybrechts [\[11](#page-25-16)]) Let $V = V(n, q)$ and $W = V \oplus (V \wedge V)$ for any prime power *q*. Then

$$
\mathbf{D} := \{ X(t) \mid t \in V \}, \text{ where } X(t) := \{ (x, x \wedge t) \mid x \in V \},
$$

is a q DHO *of rank n*. For distinct *s*, $t \in V$, $(x, x \wedge s) = (x, x \wedge t)$ iff $x \wedge (s - t) = 0$. Thus $X(s) \cap X(t) = \{(x, x \wedge s) | x \in \langle s - t \rangle\}$ is 1-dimensional, and (a) follows. Also $\langle s - t \rangle = \langle s - t' \rangle$ implies that $t' \equiv at \pmod{\langle s \rangle}$ for some $a \in \mathbb{F}_q$, and (b) follows. Clearly (c) holds.

Example 7.5 Let **D** be a *q*DHO of rank *n* in $V = V(m, q)$. Let *U* be a subspace of *V* such that $U \cap (X + Y) = 0$ for all $X, Y \in \mathbf{D}$. Then $\mathbf{D}/U := \{ \langle X, U \rangle / U \mid X \in \mathbf{D} \}$ is a *q*DHO of rank *n* in V/U , using the proof in [\[30,](#page-25-17) Prop. 3.8].

Example 7.6 (Orthogonal qDHOs) In order to generalize Theorem [1.1,](#page-1-0) let **O** be an orthogonal spread in $V^+(2n+2, q)$ and let *P* be a point of $Y \in \mathbf{O}$, so that $V :=$ $P^{\perp}/P \simeq V^+(2n, q)$. Then

$$
\mathbf{O}/P := \{ \overline{X} := \langle X \cap P^{\perp}, P \rangle / P \mid X \in \mathbf{O} - \{Y\} \}
$$

is a *q*DHO in *V*, and $V = \overline{X} \oplus (Y/P)$ for each $X \in \mathbf{O} - \{Y\}$. This is proved as in Sect. [2.](#page-2-2)

There are orthogonal spreads **O** known in $V^+(2n+2, q)$ for any odd $n > 1$ whenever *q* is a power of 2, and for $n = 3$ and various odd *q* [\[4](#page-25-18)[,15](#page-25-19),[23\]](#page-25-20) (obtained from ovoids via the triality map).

Remark 7.7 Many of the known and better understood DHOs over \mathbb{F}_2 are bilinear [\[9\]](#page-25-21) (roughly speaking, bilinear DHOs can be represented by additively closed DHO-sets). Examples are the 2DHOs in Example [7.3](#page-22-0) if **S** is a semifield spread, the 2DHOs in Example [7.4,](#page-22-1) and the DHOs in Example [8.1.](#page-24-0) It does not seem possible to give a useful definition for bilinearity of DHOs using \mathbb{F}_q , $q > 2$. However, our examples show that the notion of bilinearity can be generalized to *q*DHOs for any *q* in an obvious fashion (i. e., by introducing the notion of "additively closed *q*DHO-sets").

Remarks 7.8 (Analogs of previous results) Our main results have natural Analogs for *q*DHOs.

- (a) Proposition [2.4b](#page-3-1) holds: we already know $|\bigcup_{X \in \mathbf{D}} X|$, so that $S_V = \bigcup_{X \in \mathbf{D}} X \cup Y$ is the set of all singular vectors in *V*.
- (b) Proposition [2.6](#page-4-1) holds when $q > 2$: Φ leaves $S_V Y$ invariant, and then Φ also leaves *Y* invariant as in Proposition [2.6](#page-4-1) (though this time, since $q > 2$ we can use 2-spaces that contain exactly *q* points of S_V not in *Y*).
- (c) The results in Sect. [3](#page-4-0)[-5](#page-16-0) go through with at most minor changes. For example, Theorem [1.2](#page-1-1) becomes: *for even q and odd composite n there are more than qn*(ρ(*n*)−2) /*n*² *pairwise inequivalent orthogonal q*DHOs in *V* ⁺(2*n*, *q*) *that arise from symplectic semifield spreads*.

Remark 7.8 Any two members of a *q*DHO **D** meet in a point that lies in exactly *q* members of **D**. Therefore, there is an associated design with $v = |\mathbf{D}| = q^n$ "points," $k = q$ "points" per block, and exactly one block containing any given pair of "points"; these are the same parameters as the design of points and lines of $AG(n, q)$. It would be interesting to know whether these designs are ever isomorphic when $q > 2$.

8 Concluding remarks

(a) Let *n* be odd and $1 \le r < n$ with $(n, r) = 1$. Set $F = \mathbb{F}_{2^n}$, $V = F \oplus F$, and as usual turn *V* into a quadratic \mathbb{F}_2 -space using $Q(x, y) = \text{Tr}(xy)$. For $a \in F$ define the operator $B(a)$ on F by

$$
xB(a) = ax^{2^r} + (ax)^{2^{n-r}}.
$$

By Yoshiara [\[29\]](#page-25-22), ${B(a) | a \in F}$ is a DHO-set of skew-symmetric operators defining an orthogonal DHO $D_{n,r}$. Moreover, $|\text{Aut}(D_{n,r})| = 2^n(2^n - 1)n$ [\[26](#page-25-23)[,29](#page-25-22)]. Thus, by Example 3.21 , $\mathbf{D}_{5,1}$ and $\mathbf{D}_{5,2}$ are not projections of orthogonal spreads, and it seems likely that the same is true for all $D_{n,r}$, $n \geq 5$.

- (b) There are few papers explicitly dealing with the number of DHOs of a given rank $[1,24-27,29,31]$ $[1,24-27,29,31]$ $[1,24-27,29,31]$ $[1,24-27,29,31]$ $[1,24-27,29,31]$ $[1,24-27,29,31]$. For example, $[26,29]$ $[26,29]$ $[26,29]$ obtained approximately $cd²$ nonisomorphic DHOs of rank d over \mathbb{F}_2 for some constant c . However, many more may be known, but the isomorphism problems are open. For example, the quotient construction of Example [7.3](#page-22-0) associates to each spread **S** and each point *P* of $V(2n, 2)$ a DHO S/P in $V(2n, 2)/P$. There are very large numbers of nonisomorphic spreads and many points *P* to choose, so that the number of DHOs of this type probably explodes for large *n*. Unfortunately, as is the case for the DHOs arising from Theorem [1.1,](#page-1-0) the isomorphism problem seems to be very difficult in general.
- (c) For orthogonal spreads, in the situation of Definition [2.3](#page-3-0) isomorphisms $O/N \rightarrow$ **O**^{\prime}/*N*^{\prime} between spreads "essentially" lift to isomorphisms **O** \rightarrow **O** \prime sending *N* \rightarrow

 N' [\[13,](#page-25-2) Corollary 3.7]. We do not know if there is a corresponding general theorem of that sort for the DHOs in Theorem [1.1.](#page-1-0) The proof of Theorem [1.3](#page-2-1) shows that such a lift occurs for isomorphisms among the DHOs appearing there. Theorem [1.2](#page-1-1) is more interesting in this regard: the proof shows that isomorphisms $O/P \rightarrow O'/P'$ among *those* DHOs lift to isomorphisms $O \rightarrow O'$, but there does not seem to be any reason to expect that *P* must be sent to *P* . It would be very interesting to have a theorem containing both Theorems [1.2](#page-1-1)

and [1.3](#page-2-1) that involves such a lift of DHO-isomorphisms to orthogonal spread isomorphisms.

(d) There are many more symplectic spreads known in *V*. Some cannot be described conveniently using spread-sets and yet have transitive automorphism groups and a precise determination of isomorphisms among the associated planes [\[17\]](#page-25-8); others have trivial automorphism groups [\[14\]](#page-25-26); and still others have not been examined at all. The various associated DHOs seem even harder to study.

Another family of examples arises from symplectic semifields in a manner different from Sect. [4:](#page-13-0)

Example 8.1 Let $T: F \to \mathbb{F}_2$ and $\mathbb{F}_2 \oplus F \oplus \mathbb{F}_2 \oplus F$ be as in Sects. [3.2](#page-8-1) and [4,](#page-13-0) with quadratic form $Q(\alpha, x, \beta, y) = \alpha \beta + T(xy)$. Let $(F, +, *)$ be a symplectic semifield using *F*, such as one in Example [4.2](#page-13-1) given by $x * a = xC(a)$. Then [\[19](#page-25-3), Lemma 2.18] contains an orthogonal spread $\mathbf{O} := {\mathbf{O}[s] | s \in F} \cup {\mathbf{O}[\infty]}$, with

$$
\begin{aligned} \mathbf{O}[\infty] &= 0 \oplus 0 \oplus \mathbb{F}_2 \oplus F \\ \mathbf{O}[s] &= \{ (\alpha, x, T(xs), x*s + s(\alpha + T(xs))) \mid \alpha \in \mathbb{F}_2, x \in F \}, \end{aligned}
$$

admitting the transitive elementary abelian group consisting of the operators $(\alpha, x, \beta, y) \mapsto (\alpha + T(xt), x, \beta + T(xt), y + x * t + (\alpha + \beta)t), t \in F.$

If $\mu \in F$ and $P_{\mu} := \langle (0, 0, 0, \mu) \rangle$, then Theorem [1.1](#page-1-0) produces a DHO \mathbf{O}/P_{μ} *in P*^{\perp} /*P*_μ *admitting a transitive elementary abelian group* induced by the above operators.

The number of DHOs obtained this way is the number of symplectic semifields of order 2^n multiplied by $|F| = 2^n$. We conjecture that the number of pairwise inequivalent DHOs obtained is greater than the number of pairwise non-isotopic presemifields used.

(e) Orthogonal DHOs (and spreads) are implicitly used in [\[3,](#page-24-3) Thm. 2] to construct Grassmannian packings.

References

- 1. Buratti M., Del Fra A.: Semi-Boolean Steiner quadruple systems and dimensional dual hyperovals. Adv. Geom. 3(Special issue) S254–S270 (2003)
- 2. Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: *Z*4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. LMS **75**, 436–480 (1997)
- 3. Calderbank, A.R., Hardin, R.H., Rains, E.M., Shor, P.W., Sloane, N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algeb. Comb. **9**, 129–140 (1999)
- 4. Conway, J.H., Kleidman, P.B., Wilson, R.A.: New families of ovoids in O_8^+ . Geom. Ded. **26**, 157–170 (1988)
- 5. Curtis, C.W., Kantor, W.M., Seitz, G.M.: The 2-transitive permutation representations of the finite Chevalley groups. Trans. AMS **218**, 1–59 (1976)
- 6. Del Fra, A.: On *d*-dimensional dual hyperovals: Geom. Dedicata **79**, 157–178 (2000)
- 7. Dembowski P.: Finite Geometries, Springer, Berlin (1997) (reprint of the 1968 edn.)
- 8. Dempwolff U.: Dimensional, doubly dual hyperovals and bent functions. Innov. in Incidence Geom. **13**, 149–178 (2013)
- 9. Dempwolff U., Edel Y.: Dimensional dual hyperovals and APN functions with translation groups. J. Algebr Comb. **39**, 457–496 (2014)
- 10. Dempwolff U., Müller P.: Permutation polynomials and translation planes of even order. To appear in Adv. Geom. doi[:10.1515/advgeom-2011-050](http://dx.doi.org/10.1515/advgeom-2011-050)
- 11. Huybrechts, C.: Dimensional dual hyperovals in projective spaces and *c* · AG∗-geometries. Discrete Math. **255**, 193–223 (2002)
- 12. Kantor, W.M.: Linear groups containing a Singer cycle. J. Algebr. **62**, 232–234 (1980)
- 13. Kantor, W.M.: Spreads, translation planes and Kerdock sets I. SIAM J. Alg. Disc. Meth. **3**, 151–165 (1981)
- 14. Kantor, W.M.: An exponential number of generalized Kerdock codes. Inform. Control **53**, 74–80 (1982)
- 15. Kantor, W.M.: Ovoids and translation planes. Canad. J. Math. **34**, 1195–1207 (1982)
- 16. Kantor W. M.: Codes, quadratic forms and finite geometries, In: Different Aspects of Coding Theory. Calderbank, R. (ed.) Proc. AMS Symp. Appl. Math. 50, 153–177 (1995)
- 17. Kantor, W.M., Williams, M.E.: New flag-transitive affine planes of even order. J. Comb. Theory **74**, 1–13 (1996)
- 18. Kantor, W.M.: Commutative semifields and symplectic spreads. J. Algebr. **270**, 98–114 (2003)
- 19. Kantor, W.M., Williams, M.E.: Symplectic semifield planes and Z4-linear codes. Trans. AMS **356**, 895–938 (2004)
- 20. Kantor, W.M., Williams, M.E.: Nearly flag-transitive affine planes. Adv. Geom. **10**, 161–183 (2010)
- 21. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Maximum scattered linear sets of pseudoregulus type and the Segre variety *Sn*,*n*. J. Algebr. Comb. (2013). doi[:10.1007/s10801-013-0468-3](http://dx.doi.org/10.1007/s10801-013-0468-3)
- 22. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: A remark on symplectic semifield planes and Z4-linear codes. Des. Codes Cryptogr. **69**, 143–149 (2013)
- 23. Moorhouse, G.E.: Ovoids from the *E*8 root lattice. Geom. Ded. **46**, 287–297 (1993)
- 24. Taniguchi, H.: On an isomorphism problem of some dual hyperovals in $PG(2d + 1, q)$ with *q* even. Graphs Comb. **23**, 455–465 (2007)
- 25. Taniguchi, H.: Quotients of the deformation of Veronesian dual hyperoval in PG(3*d*, 2). Discrete Math. **312**, 498–508 (2012)
- 26. Taniguchi, H., Yoshiara, S.: On dimensional dual hyperovals $\mathcal{S}_{\sigma,\phi}^{d+1}$. Innov. Incidence Geom. 1, 197–219 (2005)
- 27. Taniguchi, H., Yoshiara, S.: New quotients of the *d*-dimensional Veronesian dual hyperovals in PG(2*d*+ 1, *q*). Innov. Incidence Geom. **12**, 151–165 (2005)
- 28. Taylor, D.E.: The Geometry of the Classical Groups. Heldermann, Berlin (1992)
- 29. Yoshiara, S.: A family of *d*-dimensional dual hyperovals in PG(2*d* + 1, 2). Eur. J. Comb. **20**, 589–603 (1999)
- 30. Yoshiara, S.: Ambient spaces of dual arcs. J. Algebr. Combin. **19**, 5–23 (2004)
- 31. Yoshiara S.: Dimensional dual arcs-a survey. In: Hulpke, A. et al. (eds.) Finite geometries, groups, and computation. de Gruyter, Berlin, pp. 247–266 (2006)