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Abstract Orthogonal spreads in orthogonal spaces of type V' (2n + 2, 2) produce
large numbers of rank n dual hyperovals in orthogonal spaces of type V+(2n, 2). The
construction resembles the method for obtaining symplectic spreads in V (2n, ¢) from
orthogonal spreads in V' (2n + 2, ¢) when g is even.
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1 Introduction

A set D of n-dimensional subspaces spanning a finite I, -vector space V is called a
dual hyperoval (DHO) of rankn > 2,if D] = (¢" —1)/(g— 1)+ 1,dm XN X, =1
and X1 N X2 N X3 = 0 for every three different X1, X5, X3 € D. Usually DHOs are
viewed projectively and called “dimensional dual hyperovals,” but the vector space
point of view seems better for our purposes. See the survey article [31] for many of
the known DHOs, all of which occur in vector spaces of characteristic 2 and mostly
are over [F», in which case |D| = 2".

Our purpose is to show that the number of rank n orthogonal DHOs is not bounded
above by any polynomial in 2"; these DHOs occur in orthogonal spaces V™ (2n, 2)

U. Dempwolff
Department of Mathematics, Universitidt Kaiserslautern, 67653 Kaiserslautern, Germany
e-mail: dempwolff @mathematik.uni-kl.de

W. M. Kantor (<)
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

e-mail: kantor @uoregon.edu

W. M. Kantor
College of Computer and Information Science, Northeastern University, Boston, MA 02115, USA

@ Springer



84 J Algebr Comb (2015) 41:83-108

and all members are totally singular. Our DHOs will have a further property: they split
over a totally singular space Y, meaning that V = X @ Y for each DHO member X.
For more concerning the number of inequivalent DHOs of rank n, see Sect. 8b.

Our source for such orthogonal DHOs in V™ (2n,2) is orthogonal spreads in
V*t(2n + 2,2): sets O of totally singular (n + 1)-spaces such that each nonzero
singular vector is in exactly one of them. Such orthogonal spreads exist if and only
if n is odd. We use these for the following elementary result that is the basis for this
paper:

Theorem 1.1 Let O be an orthogonal spread in V¥ (2n + 2, 2). Let P be a point of
Y €0, sothat V:= PX/P ~ V*+(2n,2). Then

O/P:={(XN P P)/P|X €O~ (1}

is an orthogonal DHO in V that splits over Y/ P.

Although we will show that many orthogonal DHOs can be obtained from orthog-
onal spreads with the help of Theorem 1.1, there are orthogonal DHOs that cannot be
obtained by this method (see Sect. 8a).

Except in Sect. 7, ¢ will always denote a power of 2 and almost always n will be
odd. Our construction involves the close connection between orthogonal spreads in
VT (2n+2, g) and symplectic spreads in V (2n, ¢). Recall that a spread of n-spaces in
V = V(2n,q)isasetof g" + 1 subspaces such that each nonzero vector is in exactly
one of them; this determines an affine plane [7, p. 133]. A spread is called symplectic
if there is a nondegenerate alternating bilinear form on V' such that all members of
the spread are totally isotropic. Any symplectic spread in V (2n, ¢) can be lifted to an
essentially unique orthogonal spread in V¥ (2n + 2, g); conversely, any orthogonal
spread in V*(2n + 2, ¢) can be projected (in many ways, corresponding to arbitrary
nonsingular points) in order to obtain symplectic spreads [13, Sec. 3], [19, Thm. 2.13]
(cf. Definition 2.3 below). Theorem 1.1 produces many DHOs. There is at present no
determination of the number of inequivalent orthogonal spreads, and the same is true
for DHOs.

There is a simplified (and restricted) version of this process that does not take a
detour using orthogonal spreads of higher-dimensional spaces. Given a symplectic
spread S and distinct X, Y € S it is standard to introduce “coordinates”: a spread-
set ¥ for S (this is a set of self-adjoint linear operators). These coordinates can be
distorted in a unique way to a set Ay, of coordinates of an orthogonal DHO (this is a
set of skew-symmetric operators; see Theorem 3.12), which we call a shadow of S.
In some situations, there are natural choices for X or Y. For example, if S defines a
semifield plane, then we let Y be the shears axis; the semifield spreads in [19] produce
the following

Theorem 1.2 For odd composite n there are more than 2"*™W=2) /n? pairwise
inequivalent orthogonal DHOs in V*(2n,2) that are shadows of symplectic semi-
field spreads.

Here p(n) denotes the number of (not necessarily distinct) prime factors of the
integer n. The number in the theorem is not bounded above by any polynomial in
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2", The proof uses a somewhat general isomorphism result (Theorem 4.5) for DHOs
arising from Theorem 1.1.

We also consider the symplectic spreads S of the nearly flag-transitive planes in [20].
Here, the automorphism group of S contains a normal cyclic group fixing precisely
two members of S and acting regularly on the remaining ones, which leads to the
following

Theorem 1.3 Forodd compositen > 27 there are more than 23! pairwise inequiv-
alent orthogonal DHOs in V¥ (2n, 2) admitting a cyclic group of order 2" — 1 that
fixes one member of the DHO and acts regularly on the remaining ones.

This time, the number of DHOs is less than 2". We emphasize that there are many
DHOs constructed using Theorem 1.1 not considered in the preceding two theorems
(see Example 8.1).

In Sect. 7, we discuss a generalization of all of these results to the more general
context of gDHOs.

The authors of this paper view spreads and DHOs in somewhat different manners:
the first author prefers to think in terms of sets of operators [8, 10], while the second
prefers sets of subspaces and (often) quasifields [13,16,17,19,20]. We have mostly
used the first approach (Theorem 1.1 being the main exception), and have tried to
provide translations between the two points of view (Remarks 3.7, 3.10 and 3.13,
Example 3.11 and Theorem 3.16).

2 Orthogonal DHOs and Theorem 1.1

All fields will have characteristic 2 except in Sect. 7. Theorem 1.1 is sufficiently
elementary that almost no background is needed:

Proof of Theorem 1.1 Tt is standard that V = P~ /P is an orthogonal space of type
V*(2n, 2) and that each totally singular subspace X of P~ has a totally singular image
X in V. In particular, all members of O/ P are totally singular of dimension 7. Since
|0/ P| = 2" it suffices to show that any two members of O/ P intersect in a point and
any three intersect trivially.

Let X1, X», X3 € O—{Y} be distinct. Then X; = (X; NP+, P)/PandY = Y/P.
Let P = (w).

Since (X1 N PL)N (X, N PL) = 0 we have dim X; N X5 < 1. On the other hand,
w = x1 + xp for some 0 # x; € X;. All vectors in the 2-space {0, w, x|, xo} are
singular, so this is a totally singular 2-space. Hence x; € X; N P-and X| N X, =
(x1, w)/P = (x2, w)/ P have dimension 1, as required.

Similarly, X; N X3 = (x3, w)/P with w = x;+x3,0%# x] € X1,0 #x3 € X3.

IfX;NX>NX3 * 0then X N X2 = X; N X3, so that {0, w, x1, x2} = (x1, w) =
(x1, w) = {0, w, x}, x3} (our field is F2!). This is impossible, since 0 # x2 € X,
whereas X, intersects Y, X and X3 only in 0. Thus, O/ P is a DHO.

Finally,if x4+ P = y+ Pliesin X;NY (x € X1,y € ¥),thenx € X;N(y+P) C
X1 NY =0, sothat O/ P splits over Y. |
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Definition 2.1 The DHO O/ P in Theorem 1.1 is the projection of O with respect to
P. Note that Y € O is determined by P.

The notions of equivalence and automorphisms of symplectic or orthogonal spreads,
and of DHOs, are crucial for our results:

Definition 2.2 T € T'L(V) is an equivalence E — E’ between sets E and E’ of
subspaces of a vector space V if T sends E onto E’. The automorphism group Aut(E)
of E is the group of equivalences from E to itself.

Clearly, in Theorem 1.1 points P in the same Aut(Q)-orbit produce isomorphic
DHOs O/P and the stabilizer Aut(O)p of P induces an automorphism group of
O/P.

Our goal is the construction of large numbers of inequivalent DHOs. For this pur-
pose, we need to compare the construction in Theorem 1.1 to ones in [13, Sect. 3] and
[19, Thm. 2.13] (cf. Sect. 3.2). First we recall another standard property of orthogonal
spaces VT (2m, q) [28, Thm. 11.61]: the set of totally singular m-spaces is partitioned
into two equivalence classes where totally singular m-spaces X, Y are equivalent if
and only if dim X N Y = m (mod 2).

Definition 2.3 (Lifts and projections of symplectic and orthogonal spreads) Assume
that n is odd. Let N be a nonsingular point of V = V*(2n +2,q), so that V :=
NL/N =~ V(2n,q) is a symplectic space. If S is a symplectic spread in V and M
is one of the two classes of totally singular (n 4 1)-spaces in V, then (since n + 1 is
even)

(X e M|(XNN* N)/N €S}

is an orthogonal spread in V, the lift of S. (Changing M produces an equivalent
orthogonal spread.)
This reverses: if O is an orthogonal spread in V*(2n + 2, ¢), then

O/N = {{X NN+, N)/N|X € O}

is a symplectic spread in V, the projection of S with respect to N. This strongly resem-
bles Definition 2.1. As before, points N in the same Aut(Q)-orbit produce isomorphic
spreads O/N.

Proposition 2.4 Let D be an orthogonal DHO of V. = VT (2n, 2). Then

(a) nis odd, and

(b) If D splits over a totally singular subspace Y, then | Jy.p X UY is the set of
singular vectors in V. In particular, Y is the only totally singular subspace over
which D splits.

Proof (a) If X1, X5, X3 are distinct members of D, then any two have intersection of
dimension 1. If # is even, then any two lie in different classes of totally singular
n-spaces, whereas there are only two such classes.
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(b) The set Sy of singular vectors of V has size 22—l 4 on, By Inclusion-Exclusion,
|Uxep X1 = 227=1 4 1. Thus, if D splits over the totally singular subspace ¥
thenY — 0= Sy — Uxep X- o

Remark 2.5 We will exclusively deal with orthogonal DHOs that split over totally
singular subspaces. However, there are orthogonal DHOs (see [8, Prop. 5.4]) that
split over subspaces that are not totally singular, but do not split over any totally
singular subspace.

Any linear operator preserving an orthogonal DHO lies in the orthogonal group:

Proposition 2.6 Let D and D' be orthogonal DHOs of V = V+(2n, 2) that split over
the totally singular subspace Y. If ® € GL(V) sends D to D/, then ® lies in the
stabilizer of Y in the orthogonal group O(V).

Proof By Proposition 2.4b, Sy = |Jycp X U Y is the set of all singular vectors in
V. Every 3-dimensional subspace that has exactly six points in Sy notin Y is totally
singular and hence has a seventh point in Y. Since every point of Y arises this way, ®
leaves Sy and Y invariant. O

Corollary 2.7 Let D be an orthogonal DHO of V = V7T (2n,2) that splits over
the totally singular subspace Y. Then, Y is invariant under G = Aut(D), and the
representation of G induced on V /Y is contragredient to the representation of G
induced on'Y.

Proof The preceding proposition implies the first assertion. Since ¥ = Y, the bilinear
form associated with the quadratic form induces a G-invariant duality from Y onto
V /Y, which implies the second assertion. O

3 Coordinates and symplectic spread-sets

In this section, we use coordinates of orthogonal and symplectic spreads in order to
describe operations that do not require projections from higher-dimensional orthogonal
spreads. Throughout the remainder of this paper we will always have

U=V(n,q) and V=E=U @ U,

where ¢ is even except in Sect. 7. If U is equipped with a nondegenerate symmetric
bilinear form b(-, -) we denote by T™* the operator adjoint to 7 € End(U).

3.1 Coordinates for symplectic spreads, orthogonal spreads and orthogonal DHOs

Assume that V is a symplectic space, and denote by E either a symplectic spread,
an orthogonal spread, or an orthogonal DHO in V that splits over a totally singular
subspace. The symplectic form (-, -) on V vanishes on all members of E. For an
orthogonal spread or DHO, all members of E are totally singular with respect to a
quadratic form Q polarizing to (-, -). For a DHO we always assume that g = 2.
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In order to coordinatize E we choose any distinct X, Y € E if E is a symplectic or
orthogonal spread. If E is a DHO that splits over a totally singular subspace Y then
choose X € E.

We identify V with U @ U. We may assume that

X=U@0andY =08 U,
the symplectic formon U @ U is

(e, ), (', ¥)) = b(x, y) + by, x), (3.1

and the quadratic form is
O((x, y)) =b(x, y). (3.2)
For Z € E — {Y} there is a unique L € End(U) such that Z = V (L), where

V(L) :={(x,xL)|x e U}. (3.3)

Each L is self-adjoint with respect to b if E is a symplectic spread (as Z is totally
isotropic), and L is even skew-symmetric (i.e., b(x, xL) = 0 for all x) if E is an
orthogonal spread or a DHO (as Z is totally singular). The subspace Z = X corre-
sponds to L = 0. If Z # X then L is invertible if E is a symplectic or orthogonal
spread, while L has rank n — 1 in the DHO case. Hence, there is a set £ € End(U)
containing 0 such that

E={V(L)|L € E}U{Y}
if E is a symplectic or orthogonal spread and
E={V(L)|L € E}

if E is an orthogonal DHO that splits over the totally singular subspace Y =0 ® U.
Definition 3.1 Let V =U @ U, E, X and Y be as above.

e If E is a symplectic spread, then E is a (symplectic) spread-set of E with respect
to the ordered pair (X, Y).

o If E is an orthogonal spread, then E is a Kerdock set of E with respect to the ordered
pair (X, Y) (cf. [13]).

e If E is an orthogonal DHO then E is a DHO-set of E with respect to X . (Note that
there is no choice for Y, the space over which E splits.)

Conversely, it is routine to check the following:

Lemma 3.2 Assume that £ C End(U) is a set of self-adjoint operators containing 0.
Define symplectic and quadratic forms on V.= U @ U using (3.1) and (3.2).

(a) If|1E| = q" and det(L+ L) # Oforalldistinct L, L’ € B, thenE = {V(L)|L €
EYU{0 @ U} is a symplectic spread of V.
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(b) If|E| = ¢" ', det(L + L") # 0 for all distinct L, L' € E, and all members of &
are skew-symmetric, then E = {V (L) | L € E}U{0® U} is an orthogonal spread
of V.

(c) Assume that |E| = 2" with n odd, that all members of E are skew-symmetric, and
that
(I) 7%k(L+ L") =n —1foralldistinct L,L' € E, and
(2) if L € E then {ker(L + L)L €&— {L}} is the set of 1-spaces of U.
Then E = {V (L) | L € E} is an orthogonal DHO that splits over 0 @ U.

Remark 3.3 Let b(x, y) = x - y be the usual dot product and identify End(U) with
the space of all n x n matrices over IF,. Then L € End(U) is self-adjoint if and only
if L = L', and L is skew-symmetric if and only if, in addition, its diagonal is 0.

A variation is used in Sects. 4 and 5: identify U with F = Fy» and use the trace
form

b(x,y) = Tr(xy),

where Tr: F — [ is the trace map.

Rank 1 operators will play a crucial role for our results. The following elementary
description of those operators is also in [21, Prop. 5.1].

Lemma 3.4 If T € End(U) has rank 1, then T = E,}, for some 0 # a,b € U,
where
xE p:=b(x,a)b forall x € U. (3.4)

IfE,p = Eypy fornonzeroa,a', b, b, thena' = ka andb’' = k='b for some k € Fy.

Proof Write Uy =ker T = (a)L witha € U.Letv € U — Ug such that b(v, a) = 1.
Then b := vT #0. Thus,0 = uT =ukE, foru € Uy and vT = b = vE, }, so that
T =E;p.

If E,» = Eyy then (@) = (a’) and (b) = (b'), and a calculation completes the
proof. O

Remark 3.5 Since b(x, yE, ) = b(xEp 4, y), the operator Ej, , is adjoint to E, p,
so that E, p is self-adjoint if and only if (a) = (b). In this case, there is a (uniquely
determined) ¢ € (a) = (b) such that E, , = E, ..

In terms of matrices, the lemma is the elementary fact that rank 1 matrices have
the form a’b for nonzero row vectors a, b. This matrix is symmetric if and only if

(a) = (b).

Lemma 3.6 For each self-adjoint operator T there is a unique self-adjoint operator

R = E, 4 of rank < 1 such that T + R is skew-symmetric. Moreover,

(a) aelmT;

kT ifrk7 =0 (mod 2)

(b) tk(T +R) = 7 4 1iftk T =1 (mod 2):

(c) if S is self-adjoint and S + Ep p, is skew-symmetric, then R’ = Eqqp q4p is the
unique self-adjoint operator of rank < 1 such that T + S + R’ is skew-symmetric;
and
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(d) ifnisoddandT isinvertible, thenker(T +E, 4) = (aT_l) and b(a, aT™1) # 0.

Proof As T is self-adjoint, the map A7 : U — F, given by x — b(x, xT') is semilin-
ear: Ap(kx) = k*Ar(x) forx € U, k € F,.If A7 = O then T is skew-symmetric and
we set R = 0 = Ep. Assume that A7 # 0 and set Uy = ker A7. Pick u € U such
that A7 (u) = 1 and a € U such that Uy = (a)* and b(u,a) = 1.Then S = T + E, ,
is self-adjoint. Moreover Ag(x) = A7 (x) + b(x, a)? is 0 on both Uy and u, so that S
is skew-symmetric. In particular,

Ar(x) =b(x,a)? forallx € U. (3.5)

As b is nondegenerate, every semilinear functional from U to IF, associated with the
Frobenius automorphism has the form x > b(x, a)? for a unique @ € U. This implies
the uniqueness of R = E, 4.

(a) Let T + E, 4 be skew-symmetric and assume that a ¢ Im 7 = (Im 7). Then
b(a, Im T+)) # {0}, so that there exists y € (Im T)* with 1 = b(a, y). Since
y and yT are perpendicular, (3.5) implies that 1 = b(a, y)*> = b(y, yT) =0, a
contradiction.

(b) Clearly rk (T + R) =0 (mod 2).

© (T+95+ Ea+b,a+b =(T+ Ea,a) + S+ Eb,b) + (Ea,b + Eb,a) expresses the
left-hand side as a sum of skew-symmetric operators.

(d) By (b), dimker(T + E;4) = 1. Let 0 # x € kerT + E; 4. By (3.4), 0 =
xT + b(a, x)a and hence x = b(a,x)aT~", so that 0 # x € (aT~') and
b(a, x) # 0. O

Remark 3.7 In terms of matrices the first paragraph of the lemma states that, if A
is a symmetric matrix, then A + d(A)'d(A) is skew-symmetric, where d(A) is the
diagonal of A written as a row vector as in [2, Lemma 7.3].

Lemma 3.8 For a symplectic spread-set ¥ of U = V (n, q) with n odd,

(a) There is a unique bijection C:U — X such that C(a) + E, 4 is skew-symmetric
foralla € U, and
(b) C is additive iff ¥ is additively closed.

Proof (a) If 0 # L € X then the self-adjoint, invertible operator L is not skew-
symmetric as n is odd. By the preceding lemma, there is a unique nonzero vector
a = ay € U suchthat L+E, ,is skew-symmetricofrankn—1.1f0 # L, L’ € T,
L # L' thenaj, # ays as L + L' is invertible and hence not skew-symmetric, so
that C is bijective.

(b) Since one direction is obvious, assume that ¥ is additively closed. If a, b € U,
then C(a) + C(b) = C(c) for some ¢ € U. By definition C(c) + E. . is skew-
symmetric, and sois C(a)4+C (b)+ Eq4p.a+b = C(c)+Eqs+b.a+» by Lemma 3.6¢c.
Then ¢ = a + b by Lemma 3.6, as required. O

Definition 3.9 (Canonical labeling) The unique bijection C: U — X in Lemma 3.8
is the canonical labeling of the symplectic spread-set X of operators of U. Notation:

C =2(%).
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Remark 3.10 Each symplectic spread-set ¥ € End(U) determines a prequasifield on
U defined by x * a = xC(a) for any additive bijection C: U — X. Then C is the
canonical labeling if and only if

b(x,x xa) = b(x,xC(a)) = b(x, xE,q) = b(x, a)?

by (3.4). This is the condition on a prequasifield appearing in [19, (2.15)].

3.2 Projections and lifts with coordinates

We next coordinatize projections and lifts (Definitions 2.1 and 2.3). We review [13, 16,
19] using somewhat different notations. We will assume for the remainder of Sect. 3
that n is odd.

(a) FROM KERDOCK SETS TO SYMPLECTIC SPREAD- SETS. Let O be an orthogonal
spreadin V = VT (2n+2, ¢), let N be a nonsingular point, and choose an ordered
pair X, Y € O. The identification

e V=U®UwhereU =V(n+1,q),

e X=Ud0, Y=00U,

produces a Kerdock set K such that each member of O — {Y } has the form V (L) =
{(x,xL)|x € ﬁ}, L € K. Moreover, this identification induces a symmetric,
nondegenerate bilinear form b(-, -) on U such that the quadratic form Q is defined
by Q((x, y)) =b(x, ¥). Given this Kerdock set, we make the special choice

N = ((w, w)) with b(w, w) = 1.
Then (x, xL) lies in N if and only if b(w, x) = b(w, xL). Set U = (w)~ and
write x € U asx =aw +u,a € Fy,u € U. As L is skew-symmetric, wL € U
and
o= B(w, xX) = B(w, xL) = B(wL, u).
Also,
ul = ulLny —I—E(wL, u)w,
where 7y is the orthogonal projection U—U. Since U @ U is a set of representa-
tives for NL/IX andas (x, xL) = (b(wL, u)w+u, b(wL, u)w+b(wL, u)wL+
uLny) = (u,b(wL, u)wL 4+ uLmy) (mod N),
{Lmy 4+ Ewr.wi | L € K} is a spread-set of the symplectic spread O/N.
(b) FROM KERDOCK SETS TO DHO- SETS. We keep the notation from (a) using

g = 2. Weuse X € O — {Y} and the singular point P = ((0, w)) < Y. We use
the above identifications for V, X, Y, and Q. A typical element in V(L) N Pt
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has the form (v, uL) = (u, uLwy +b(wL, u)w) = (u, uLwy) (mod P),u € U.
AsU @ U ~ PL/P, we see that

{Lmy | L € K} is a DHO-set of the orthogonal DHO O/ P.

(c) FROM SYMPLECTIC SPREAD-SETS TO KERDOCK SETS. Let S be a symplectic
spreadon V = V(2n, g), and let X, Y € S. This time we identify
o V=U®U,U=V(n,q),
e X=U®0,Y=06U, and
e Thebilinear formis ((x, y), (x’, y")) = b(x, y")+b(y, x’) foranondegenerate
symmetric bilinear form b on U.

Let ¥ € End(U) be the_resul_ting spread-set and C = £ (%) (cf. ]Ziﬁnition 3.9). Set
U=F,®UandV =U @ U, and define a quadratic form Q on V by

O, x, B, y) = af +b(x, y).
For a € U define the skew-symmetric linear operator D(a) on U by
(e, x)D(a) = (b(x,a),0a + x(C(a) + Eqa)).

Then K = {D(a) |a € U} is a Kerdock set of the lift O, where O/N =~ S for the
choice N = ((1, 0, 1, 0)).

Example 3.11 We illustrate the above discussion using matrices, as in [2, Lemma 7.3].
Let U = IFZ“ and V = U @ U, equipped with the quadratic form Q(x, y) = x - y.
We will use the nonsingular point N = ((ey, e1)) and the singular point P = ((0, 1))
(where the e; are the standard basis vectors of U). Then the bilinear form b is the usual
dot producton U := (e2, ..., €p+1)-

Let O be an orthogonal spread containing X and Y (defined above). Then a Kerdock
setcanbe written K = {D(u) |u € U}using (n+1) x (n+1) skew-symmetric matrices

_ 0 x(u)
bl = (x(u)’ A(u)) |

where A(u) is an n x n skew-symmetric matrix and x(u#) € U is a row matrix. Then
A:={A)|uec U} (3.6)
is a DHO-set of O/ P, while
S i={AWw) +x@)'x@w)|u e U},

is a spread-set of the symplectic spread O/ N, where x (1) x (1) represents the previous
rank 1 operator Eyf, 1 in ().
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3.3 Shadows, twists and dilations

Theorem 3.12 Let ¥ be a spread-set of self-adjoint operators of U = V (n,2) and
C = Z(X). Then A = As = {B(a) = C(a) + Esqla € U} is a DHO-set of
skew-symmetric operators.

Proof We sketch two different arguments.

GEOMETRIC APPROACH. Start with a symplectic spread-set ¥ and C = £ (%),
and produce a Kerdock set K using Sect. 3.2c. Then apply Sect. 3.2b to K using the
singular point P = ((0, 0, 1, 0)).

ALGEBRAIC APPROACH. We will verify the conditions in Lemma 3.2¢c. Consider
distinct a, b, ¢ € U. Then skew-symmetric operator B(a) + B(b) = C(a) + C(b) +
E,.a + Epp has even rank at least n — 2, and hence has rank n — 1.

Let x # 0 with x(B(a) + B(b)) = x(B(a) + B(c)) = 0. Then 0 # x(C(a) +
C (b)) = b(a, x)a+b(b, x)b,sothatb(a, x) orb(b, x) # 0. We cannothave b(a, x) =
b(b, x) = 1, as otherwise b(a + b, x) = 0 would contradict Lemma 3.6d (since
C(a) + C(b) + Eq4b.a+b 1s skew-symmetric by Lemma 3.6c¢).

Then b(a, x) # b(b, x). By symmetry, it follows that b(a, x), b(b, x), and b(c, x)
are distinct members of [F», a contradiction. O

Remark 3.13 (Constructing DHO-sets using orthogonal spreads) Example 3.11 con-
tains the construction of the above set of operators using [2, (7.4)] in terms of matrices
(compare Remark 3.7). However, the preceding theorem shows that we can proceed
directly from spread-sets to the required DHO-sets.

The examples studied in Sects. 4 and 5 are obtained by taking known orthogonal
spreads with “nice” descriptions in terms of matrices or linear operators and peeling
off the set A in (3.6). Of course, there is a bias here: orthogonal spreads having nice
descriptions will have less nice descriptions using arbitrary choices of its members
X, Y (as we will see in Example 8.1 below).

Definition 3.14 (Shadows) Let X be a spread-set of self-adjoint operators of U coor-
dinatizing the symplectic spread S of V = V(2n, 2) with respect to the pair (X, Y).
Let Q be the unique quadratic form on V polarizing to the given symplectic form such
that X and Y are totally singular. The DHO-set A = Ay associated to ¥ in Proposi-
tion 3.12 will be called the shadow of ¥; it is uniquely determined by the spread-set.
We also call the orthogonal DHO on (V, Q) defined by A a shadow of the spread S.
(Recall that this is not uniquely determined: we choose X and Y in order to obtain the
spread-set ¥ from the spread S. Also see Sect. 3.4.)

Example 3.15 Consider F' = Fy» as an Fp-space equipped with the absolute trace
form Tr as a nondegenerate symmetric form. Define the F»-linear map C(a),a € F,
by

xC(a) = a’x.
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Then C is the canonical labeling (Definition 3.9) of a symplectic spread-set that coor-
dinatizes the desarguesian plane. The operators

xB(a) = a’x + Tr(xa)a

define the shadow A = {B(a)|a € F} of X. In particular xE, , = Tr(xa)a. The
automorphism group of the corresponding DHO is isomorphic to F* - Aut(F) by
Lemma 5.6 below.

Our later Examples 4.2 and 5.1 are generalizations of this one. We close this section
with a result obtaining new symplectic spreads from known ones.

Theorem 3.16 Let X be a spread-set of self-adjoint operators of U = V (n, q), and
let C = £ (2).
(a) Ifu € U, define C,,: U — End(U) by

Cu(a) = C(a) + Ea,u + Eu,a~

Then X, := {Cy(a) |a € U} is a spread-set of self-adjoint operators and C,, =
L(Zy). Moreover, %, is additively closed if 3 is.
(b) Pick 1 # ) € F, and define C*:U — End(U) by

C*a) := C((1 +M)a) + Esg -

Then ©* = {C*(a) |a € U} is a spread-set of self-adjoint operators and C* =
L(ZM).

Proof This is a reformulation of special cases of [19, Lemma 2.18] using Lemma 3.6,
(3.4) and Lemma 3.8b. (The easy, direct algebraic verification—similar to the proof
of Theorem 3.12—is left to the reader.) ]

Remark 3.17 In view of [19, Lemma 2.18], =, %, and X* are all projections of the
same orthogonal spread (cf. Definition 2.3).

Definition 3.18 (Twists and dilations) Let ¥ be a symplectic spread-set of U =
V(n,q),qeven.Foru € Uand1 # A € F, wecall the spread-set X, in Theorem 3.16a
the u-twist of ¥, and the spread-set £* in Theorem 3.16b the A-dilation of %.

Corollary 3.19 In the notation of Theorem 3.16a, assume that g = 2, ¥ is additively
closedandu € U. Let A = {B(a) :=C(a)+ E 4 |a € U} and A, = {By(a) :=
Cy(a)+ E; 4| a € U} be the shadows of ¥ and ¥,,. Then B, (a) = B(a +u) + B(u).

Proof By Definition 3.14 and Theorem 3.16,

By(a) = Cy(a) + Ea.q
=C@+Equ+Euat+Eqa
=C(a+u)+ Eqtuatu + Cu) + Eyy
= B(a +u) + B(u).
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3.4 The projections O/N and O/ P

The term “shadow” of a symplectic spread suggests that, as in the physical world, the
original object cannot be recovered from the shadow. We will see how this occurs in
our context: the relationship between symplectic spreads and shadows is less tight than
visible in the preceding section. This is illustrated by Example 3.21 below. We will see
that non-isomorphic spread-sets can produce isomorphic shadows, a symplectic spread
can have non-isomorphic shadows, and the automorphism groups of a symplectic
spread and a shadow can be very different. These phenomena are best understood
from the viewpoint of orthogonal spreads:

Proposition 3.20 Let O be an orthogonal spread in V =V*T@2n+2,2). Let N be
a nonsingular point and P a singular point in V such that the 2-space (N, P) is
hyperbolic. Then, the DHO O/ P is a shadow of the symplectic spread O/N.

Proof We will use the notation in Sect. 3.2 for a suitable choice of coordinates. By
assumption, (N, P) contains a singular point P* # P. We may assume that P’ =
((e1,0)) and P = ((0, e1)), sothat N = ((e1, e1)). We may assume that the members
of O containing P’ and P are X = U @0and Y = 0@ U, respectively. According to
Remark 3.13 (compare Example 3.11), O/ P is a shadow of O/N. O

Example 3.21 (a) When the usual desarguesian spread S of V' (2, ¢") (for ¢ even and
n > 1 odd) is viewed as a symplectic spread of V (2n, q), it can be lifted to the
desarguesian orthogonal spread O of V.= V1 (2n + 2, ¢) as in Definition 2.3.
Then O/No = S for a nonsingular point Ny. The group G = SL(2, g") - Aut(Fn)
preserves the point No, the orthogonal spread O and the orthogonal geometry of V.
It has exactly two orbits of singular points; the various orbits of nonsingular points
N are described at length in [13, Sec. 4]. If N # Ny then (NG) is a G-invariant
subspace # 0, Ny, and hence is Nd- orV.

If P is a singular point, then P # NOL. Thus, P is not perpendicular to some
member N’ of N, in which case (N’, P) is a hyperbolic 2-space.

(b) In particular, when ¢ = 2, by the preceding proposition each O/ P is isomorphic

to a shadow of each O/N, N # Ny, where there are many non-isomorphic
symplectic spreads O/N [13, Cor. 3.6 and Sec. 4]. Also, O/ P is a shadow of the
desarguesian spread O/Np = S when P is not in N&-.
If g =2 and n = 5, then G has precisely three orbits of nonsingular points: { Ny},
NIG, and Nzc, with NIG C NOL and N2G N N&- = (). Here O/N is a semifield
spread with |Aut(O/Np)| = 2° - 5, and O/N; is a flag-transitive spread with
|Aut(O/N>)| = 33-5. The two orbits of G on singular points are POG (inside Nol)
and PIG (with PIG N NOL = (). The DHO O/ P; appeared in Example 3.15, while
O/ Py is one of the DHOs in Example 8.1. By Example 3.15, Aut(O/P;) = G p,
has order 31 - 5, while G p, induces on the DHO O/ Py an automorphism group of
order 2° - 5. Thus, O/ Py % O/ P;. Use of a computer shows that Aut(Q/Py) =
Gp,.
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4 Proof of Theorem 1.2

Except in Sect. 7, we will use F' = Fon with n > 1 odd, viewed as an [F,-space
equipped with the nondegenerate, symmetric bilinear form (x, y) + Tr(xy) using
the absolute trace Tr: F — F, as in Remark 3.3.

Notation 4.1 We will use the following:

e The quadratic form Q on V = F @ F defined by Q(x, y) = Tr(xy);

e The trace map Try., : Fya — Fpe when Fou D Foe, so that Try,.; = Tr;

e Sequences d = (dy = 1,d1,...,dy) of |[d| = m + 1 different integers such
that d,|d>| - - - |d,y |n, associated with a chainF, = Fp C F{ C --- C F,, C F,
|F;| = 24, of |d| proper subfields of F;

e The F;-linear operator

E) x> Tryg, (ax)b 4.1

on F fora,be Fand0 <i < m; and
e Sequences ¢ = (c1,...,¢cm), Ci € F.

This section is concerned with the following symplectic semifield spread-sets:

Example 4.2 [19] Let d and ¢ be as above with all ¢; € F*. For a € F define the
operator C(a) on F by

m
Cla)=a’1+ > (EQ, +ES.).
i=1

This defines a symplectic spread-set . Moreover, C = Z (%) by Example 3.15 since
the operators Eéf ?a + Eff,)c[ are skew-symmetric. The shadow of ¥ (Definition 3.14) is

The DHO-set A defines an orthogonal DHO of V by
D = {V(a)|a € F} with V(a) = V(B(a)) = {(x,xB(a)) la € F).

Remark 4.3 (a) The preceding spread-set X is obtained by successively twisting the
desarguesian spread-set £9 = {a’1|a € F}. Namely, view % as a symplectic
spread-set over Fy,. Letd = d,, and ¢ = ¢;, € F*. By Theorem 3.16 the twist
¥ = {d*1+ EE”Z) + Ef,mc) |a € F}isasymplectic spread-set over F;,. Now view
¥ as a spread-set over F,,,_; and iterate the twisting using ¢,,—1 € F*.

(b) None of the nontrivial elations of the projective plane arising from the symplectic
spread-set is inherited by the shadow DHO since C(a + b) = C(a) + C(b) but
Bla+b) = Cla+b)+EY, ., # C@ +EL) + Cb) + E) = B(a) + B®)
forO #£a,b,a #b.
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Our goal is to show that we obtain at least 2"*"™=2) /n? inequivalent orthogonal
DHOs of the above type when n is composite. We start with a uniqueness result
concerning shadows:

P