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Abstract We give an explicit graded cellular basis of the sl3-web algebra KS . In order
to do this, we identify Kuperberg’s basis for the sl3-web space WS with a version of
Leclerc–Toffin’s intermediate crystal basis and we identify Brundan, Kleshchev and
Wang’s degree of tableaux with the weight of flows on webs and the q-degree of
foams. We use these observations to give a “foamy” version of Hu and Mathas graded
cellular basis of the cyclotomic Hecke algebra which turns out to be a graded cellular
basis of the sl3-web algebra. We restrict ourselves to the sl3 case over C here, but our
approach should, up to the combinatorics of slN -webs, work for all N > 1 or over Z.

Keywords Categorification · q-Skew Howe duality · Webs and web-algebras ·
Kashiwara–Lusztig crystal bases and intermediate crystals · Cyclotomic Hecke
algebra

1 Introduction

After Khovanov published his groundbreaking work [30] on the so-called arc alge-
bra Hn , which was inspired by his categorification of the Jones polynomial [29],
researchers started to study these diagrammatic algebras and generalizations of it
from different viewpoints and it turns out that these algebras have a beautiful com-
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binatorial structure and representation theory. Moreover, they are related to algebraic
geometry and knot theory.

The literature about this subject is wide nowadays and many results are known. To
list a few of them, the generalizations of the arc algebra in type A1 are for example
studied in [8–12,15,31,54] and [55], in type A2 for example in [44] and [48] or [49],
in type AN case for example in [43] and [47]. There is also an arc algebra in type D
studied in [17,18] and [19] and one in the gl(1|1) case studied in [53].

These algebras in type A can be seen as a categorification of the underlying slN -web
space. In the sl2 case (if one ignores orientations) one has the so-called Temperley-
Lieb category, which gives a diagrammatic presentation of the representation theory of
Uq(sl2) (an interesting historical remark is that a first diagrammatic approach already
arose in a paper of Rumer, Teller, and Weyl [51]). In the sl3 case the underlying space
consists of Kuperberg’s sl3-webs, introduced in [38]. They give a diagrammatic pre-
sentation of the representation theory of Uq(sl3). In the slN case the underlying space
consists of slN -webs. They give a diagrammatic presentation of the representation
theory of Uq(slN ), as was recently proven by Cautis, Kamnitzer and Morrison [13].

In this paper we continue the study of the so-called sl3-web algebras introduced
in [44]. We denote them by KS , where S is a sign string (string of + and − signs).
To be more precise, we show that KS is a graded cellular algebra in the sense of
[23] Graham and Lehrer (who introduced the notion in the ungraded setting) and Hu
and Mathas [25] (who extended Graham and Lehrer’s notion to the graded setting)
by giving an explicit graded cellular basis for the sl3-web algebra KS . We follow a
different approach than Brundan and Stroppel used in the sl2 case [8], since their
arguments does not seem to generalize in a straightforward way to N > 2. In fact,
we claim that our approach in this paper will, up to some combinatorics of slN -webs,
generalize to all N > 1.

It should be noted that it was known before, as the author showed together with
Mackaay and Pan in [44] in the sl3 case and Mackaay and Yonezawa [47] showed
in the slN case, that all the slN -web algebras are graded cellular algebras. The way
this was proven is by an abstract Morita equivalence—no other proof is known at the
moment. An explicit cellular basis in only known in the sl2 case. As mentioned, the
construction is due to Brundan and Stroppel [8].

Our approach in this paper is as follows. One main ingredient is the usage of cat-
egorified, diagrammatic quantum skew Howe duality studied recently independently
by varies authors in this framework [13,39] and [44] to cite a few (the first appear-
ance in the context of sl2-webs seems to be the paper of Huerfano and Khovanov
[27], although they never used the notion of skew Howe duality). In the sl3 case this
means that there is a strong 2-representation ψ : U(sln) → Foam3, called foamation,
of Khovanov and Lauda’s [35] categorification of U̇q(sln), denoted by U(sln), to the
category of sl3-foams Foam3. This foamation functor was used in [44] to show that KS

is Morita equivalent to a certain block of R�, where R� denotes Khovanov-Lauda’s
[33] and [34] and Rouquier’s [50] cyclotomic quotient, called the cyclotomic KL-R
algebra.

In a remarkable paper [4] Brundan and Kleshchev showed that the cyclotomic KL-R
algebra is isomorphic to the so-called cyclotomic Hecke algebra. Their isomorphism
was used by them to define a non-trivial grading on the cyclotomic Hecke algebra.
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Using this isomorphism, Hu and Mathas gave in [25] a graded cellular basis for the
cyclotomic KL-R algebra based on earlier work of Dipper, James and Mathas [16]
who gave a (ungraded) cellular basis of the cyclotomic Hecke algebra and Brundan
and Kleshchev’s (and Wang’s) work on graded Specht modules for these algebras, see
[5–7].

The approach we follow here is that we give a “foamy” version of the Hu and
Mathas basis (short HM-basis) using foamation and quantum skew Howe duality. It
turns out that the combinatorial structure can be easier seen within the cyclotomic
Hecke algebra, while the topological structure can be easier seen within the foam
setting.

We note that the explicit construction is a non-trivial task, since bases behave really
badly under Morita equivalence and some non-trivial translation from the cyclotomic
Hecke algebra to the foam framework was needed, that is, even the answers to basic
questions were unknown before. It turns out, as we explain below, that this non-trivial
combinatorics is in fact quite nice itself, since it gives a new perspective on the sl3-web
spaces.

The second main ingredient is that we use a special basis for our underlying sl3-web
space WS , the so-called intermediate crystal basis B� of Leclerc–Toffin [40] (short
LT-basis) of the highest weight Uq(sln)-module V�, which can be translated to the
sl3-web setting using quantum skew Howe duality. It turns out the the LT-basis is easy
to work with if one wants to categorify the results from the level of slN -webs.

To be a little bit more precise, we “categorify” the LT-algorithm for sl3-webs by
giving a growth algorithm for foams producing a graded cellular basis.

That is, the LT-algorithm, under q-skew Howe duality, turns given semi-standard
tableaux into sl3-webs by applying a sequence of so-called sl3-ladder operators
obtained from an algorithm on semi-standard tableaux to a certain highest weight
vector. On the other hand, the growth algorithm for foams, under categorified q-skew
Howe duality, turns standard 3-multitableaux into sl3-foams by applying a sequence
of certain sl3-foams (that categorify the ladder operators) obtained from an algorithm
on standard 3-multitableaux to a certain highest weight object.

It should be noted that, in order to formulate the growth algorithm for foams, we
relate standard 3-multitableaux to Khovanov–Kuperberg flows (see [32]) on sl3-webs.
Recall that these flows are a combinatorial way to answer the important question what
a web, seen as an invariant tensor InvUq (sl3)(

⊗
k Vsk ), is explicitly in terms of the

elementary tensors of
⊗

k Vsk .
In order to prove both observations highly non-trivial combinatorics on the sl3-

webs is needed (in fact this seems to be the only problem for generalizing everything
to N > 3). But this combinatorics turns out to be quite beautiful itself, i.e. we identify
Kuperberg’s basis of non-elliptic webs as an intermediate crystal basis (which shows
“immediately” that it is related by an unitriangular change-of-base matrix to the dual
canonical and again demonstrates that it is somehow “the” basis of the sl3-web space),
we give a growth algorithm for sl3-webs with flows and we relate webs with flows
to standard fillings of 3-multitableaux. We use latter to identify Brundan, Kleshchev
and Wang’s notion of degree [7] in a very natural way, i.e. as the weight of flows on
webs [32] and the q-degree of foams, where latter is just a slight modification of the
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geometrical Euler characteristic (hence, Brundan, Kleshchev and Wang’s degree is
an isotopy invariant).

The reason why we think this approach should “easily” (up to combinatorics of
slN -webs) generalize is that both of our main ingredients are known in general for
N > 1, see [43] and [47] (and conjecturally slN -foams [45]). Note that the results
from Sect. 3.1 can be easily generalized to slN -webs to give a growth algorithm for
such slN -webs. In fact, we tend to argue that this basis forms somehow a “natural”
basis of the slN -web space, which is neither the Satake basis nor Fontaine’s basis. For
details about the Satake basis and about Fontaine’s basis see [20] and [21].

This paper is organized as follows.

(1) We start by giving our notation for 3-multipartitions in Sect. 2.1. Most notions
from this section can be done in more generality, but we only need the case of
3-multipartitions in this paper.

(2) In Sect. 2.2 we recall Leclerc–Toffin’s basis and its relation to Kashiwara-
Lusztig’s crystal bases, Khovanov-Lauda’s categorification U(sln), the cyclo-
tomic KL-R algebra and the HM-basis for it.

(3) We recall sl3-webs/foams and their connection to Uq(sl3) in Sect. 2.3.
(4) In Sect. 2.4 we recall the sl3-web algebra KS (note that we use the conventions

from [44]) and the foamation functor ψ : U(sln) → Foam3.
(5) In the Sect. 3.1 we show that Kuperberg’s basis is indeed a monomial basis, that

is, we show that it is an intermediate crystal basis in the sense of Leclerc and
Toffin [40]. This includes that there is an unitriangular algorithm to compute the
dual canonical basis of the web space WS using Kuperberg’s sl3-web basis and
the Kuperberg bracket.

(6) We show how one can relate flows on sl3-webs to fillings of 3-multipartitions.
This gives rise to a growth algorithm for sl3-webs with flows in the two Sects. 3.2
and 3.3. These two combinatorial sections are crucial for the rest of the paper.

(7) In Sect. 3.4 we show that Brundan, Kleshchev and Wang’s degree of a tableaux
[7] has a very natural interpretation as the weight of flows on sl3-webs.

(8) We give in Sect. 4.1 a growth algorithm for foams that produces a homogeneous
basis of the foam space based on a categorified version of Leclerc–Toffin’s algo-
rithm to compute the intermediate crystal basis.

(9) We show that the growth algorithm for foams gives a homogeneous basis of
the foam space by showing that it can be seen as a “foamy” version of Hu and
Mathas graded cellular basis. Note that this includes that Brundan, Kleshchev
and Wang’s degree has a very natural interpretation as the q-degree of foams
(which is just a slightly modified Euler characteristic). This is done in Sect. 4.2.

(10) And finally, in Sect. 4.3, we show that the growth algorithm for foams produces
a graded cellular basis of KS .

(11) It follows (almost) as a direct application (see Remark 4.25) that the set of simple
heads of the cell (or Specht) modules S of KS , denoted by D, and the set of their
indecomposable, projective covers of, denoted by P , give rise to the canonical
and dual canonical bases of the sl3-web space W (∗)

S .

It is worth noting that we give lots of examples in each section to show that every-
thing can be done explicitly.
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2 Basic notions

2.1 Combinatoric, partitions and tableaux

In this section we define/recall some combinatorial notions that we use in this paper.
Note that we recall most notions only for the sl3 case, although they can be done in
more generality without difficulties, see for example [25].

Choose arbitrary but fixed non-negative integers n ≥ 2 and k ≤ n. Let

�(n, d) =
{

λ ∈ N
n |

n∑

i=1

λi = d

}

be the set of compositions of d of length n. By �+(n, d) ⊂ �(n, d) we denote the
subset of partitions, i.e. all λ ∈ �(n, d) such that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Let �+(n, d)1,2 ⊂ �+(n, d) be the subset of partitions whose entries are all 1 or
2. We use similar notions for �+(n, d)N for some N ∈ N, that is

�+(n, d)N =
{

λ ∈ N
n |

n∑

i=1

λi = d, λi ∈ {0, . . . , N }
}

.

Recall that we can associate to each λ ∈ �+(n, d) a diagram for λ

λ = {(r, c) | 0 ≤ c ≤ λr , 1 ≤ r ≤ n},

which we, by a slight abuse of notion, denote by the same symbol λ. The elements of
a diagram are called nodes N . For example, if λ = (3, 2, 1), that is d = 6, n = 3, then

Hence, we use the English notation to denote our partitions/diagrams.
A tableau T of shape λ is a filling of λ with (possible repeating) numbers from a

chosen, fixed set {1, . . . , k}. Such a tableau T is said to be semi-standard, if its entries
increase along its rows (weekly) and columns (strictly), and column-strict, if its entries
increase along its columns (no restriction on rows). For example

the tableau T1 is semi-standard, but T2 is only column-strict. We denote the set of all
semi-standard tableau of shape λ by Stds(λ) and the set of all column-strict tableau
of shape λ by Col(λ).
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Moreover, we stress that we do not assume that our tableaux have only non-repeating
entries. In fact, we only assume that the number of times that an entry appears is
between 0 and 3. For our 3-multitableaux �λ (see below) we assume the same with the
extra restriction that repeating entries are never in the same vector entry of �λ and all
repeating entries are of the same residue. We note that this strange looking condition
is due to the fact that we use divided powers which do not appear in the language of
cyclotomic Hecke or KL-R algebras.

In the same vein, a 3-multipartition �λ ∈ �+(n, d, 3) of d with length n is a triple of
partitions �λ = (λ1, λ2, λ3)with λl = (λl

1, . . . , λ
l
nl
) such that their total length is n and

their total sum is d. As before, we can associate to each �λ ∈ �+(n, d, 3) a diagram
for �λ

�λ = {(r, c, l) | 0 ≤ c ≤ λl
r , 1 ≤ r ≤ nl , l = 1, . . . , 3},

which we, by a slight abuse of notion, denote by the same symbol �λ. For example, if
we have �λ = ((3, 2, 1), (0), (4)), that is d = 10, n = 4, λ1 = (3, 2, 1), λ2 = (0) and
λ3 = (4), then

At this point it is worthwhile to say that since both notations appear repeatedly
in the literature: To distinguish between the notion of partition λ and components of
multipartition �λ = (λ1, λ2, λ3), we write latter using superscripts (and similar for
multitableaux).

As before, a 3-multitableau �T of shape �λ is a filling of �λ with (possible repeating)
numbers from a chosen, fixed set {1, . . . , k}. Such a tableau �T is said to be standard,
if its entries increase along its rows and columns (both strictly).

We denote the set of all standard tableau �T of shape �λ by Std(�λ).
As we mentioned above, we are mostly interested in 3-multipartitions�+(n, d, 3)

here. But under skew Howe-duality it is necessary to consider them as l-partitions,
where the l > 0 depends on the context. There are two natural embeddings
ιl3, κ

l
3 : �+(n, d, 3) → �+(n, d, l) for l > 2, i.e.

ιl3(
�λ) = ((0), . . . , (0)

︸ ︷︷ ︸
l−3

, λ1, λ2, λ3) and κ l
3(

�λ) = (λ1, λ2, λ3, (0), . . . , (0)
︸ ︷︷ ︸

l−3

).

We always use the first one ιl3, since the first one fits to our other conventions. But,
with a slight abuse of notation, we always think of ιl3(�λ) as a 3-multipartition �λ.

Definition 2.1 Let λ ∈ �+(n, d) be a partition. Then we associate to each node
N = (r, c) ∈ λ of λ a residue r(N ) by the rule r(N ) = r − c + m where m is the
number of non-zero entries of λ. It should be noted that we see m as being fixed by λ,
even if we speak about addable or removable nodes.
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If �λ = {(r, c, l) | 0 ≤ c ≤ λl
r , 1 ≤ r ≤ nl , l = 1, 2, 3} is a 3-multipartition, then

we can use the same notions for each of its nodes N = (r, n, l) ∈ �λ. This time m is
the maximal number of non-zero entries of the components of �λ.

An addable node N of residue r(N ) = k is a node N that can be added to the
diagram of λ such that the new diagram is still the diagram of a partition and the
residue is r(N ) = k. We denote the set of addable nodes of residue k of λ by Ak(λ).

Similar, a removable node N of residue r(N ) = k is a node that can be removed
from the diagram of λ such that the new diagram is still the diagram of a partition and
the residue of N is r(N ) = k. We denote the set of removable nodes of residue k of λ
by Rk(λ).

Again, we can use the same notions for a 3-multipartition �λ ∈ �+(n, d, 3).
Moreover, we say a node N = (r, c, l) of �λ = (λl)3l=1 comes before (or after)

another node N ′ = (r ′, c′, l ′) of �λ, denoted by N 
 N ′ (or N � N ′), iff l < l ′ or
l = l ′ and r ≤ r ′ (or l > l ′ or l = l ′ and r ≥ r ′). We use the obvious definitions for
the notions strictly before ≺ and strictly after 
.

For a fixed node N , we denote the set of addable nodes of λ before N with the same
residue r(N ) = k by Ak≺N (λ) and we denote the set of addable nodes of λ after N
with the same residue r(N ) = k by Ak
N (λ). In the same vein, for a fixed node N ,
we denote the set of removable nodes of λ before N with the same residue r(N ) = k
by Rk≺N (λ) and we denote the set of removable nodes of λ after N with the same
residue r(N ) = k by Rk
N (λ).

We are mostly interested in the nodes after a given node N . One would have to use
the nodes before if one wants to construct a “dual” basis of the HM-basis, see [25].

Example 2.2 Let �λ = (λ1, λ2, λ3) be the following 3-multipartition (we have m = 3).

We have filled the nodes ofλ1,2,3 with the corresponding residues. Note that the residue
is constant along the diagonals.

The set of addable nodes of residue 4 for �λ and the set of removable nodes of residue
2 for �λ are given by

where we have indicated the addable nodes with a · and the removable with a ×.
The removable node is after the first addable and before the second addable node.
Moreover, in the following we demonstrate all nodes strictly before ≺ and strictly
after 
 a fixed node marked −.
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Definition 2.3 Let �λ = (λ1, λ2, λ3) and �μ = (μ1, μ2, μ3) be two 3-multipartitions
in�+(n, d, 3). Recall that λl = (λl

1, λ
l
2, . . . ) andμl = (μl

1, μ
l
2, . . . ) for l ∈ {1, 2, 3}.

We say �λ dominates �μ, denoted by �μ � �λ, if

l−1∑

i=1

|μl | +
s∑

j=1

μl
j ≤

l−1∑

i=1

|λl | +
s∑

j=1

λl
j

for all 1 ≤ l ≤ 3 and 1 ≤ s. We write �μ� �λ, if �μ� �λ and �μ �= �λ. It is easy to check
that � is a partial ordering of the set of all 3-multipartitions �+(n, d, 3), called the
dominance order.

This order can be extended to 3-multitableaux in the following way. Suppose we
have two standard 3-multitableaux �T1 ∈ Std(�λ) and �T2 ∈ Std( �μ) with k nodes filled
with numbers from {1, . . . , k} (no repetitions). As in Definition 3.16, we denote the
corresponding 3-multipartitions after removing all nodes with entries higher than j ∈
{1, . . . , k} by �μ j and �λ j . Then

�T1 � �T2 ⇐⇒ �μ j � �λ j for all j ∈ {1, . . . , k}.

To extend it to all, i.e. allowing repetitions, 3-multitableaux we use a special 3-
multitableaux �T ′ associated to �T by inductively replacing repeating entries from left
to right, e.g.

(2.1)

Then we can use the same rules as before.
Given �λ ∈ �+(n, d, 3) we can associate to it a unique standard 3-multitableau

T�λ ∈ Std(�λ) with the property

�T ∈ Std(�λ) ⇒ �T � T�λ.

Note that T�λ is easily seen to be the tableau with all entries in order from top to bottom
and left to right.

Example 2.4 Given the same 3-multipartition as later in Example 3.14 part (b), i.e.
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we see that

It will dominate all �T ∈ Std(�λ). For example

will be dominated, since

Definition 2.5 Let �T ∈ Std(�λ) be a 3-multitableau. The residue sequence of �T ,
denoted by r( �T ) is the k-tuple whose j ∈ {1, . . . , k} entry is the residues of the
node with number j . Moreover, the residue sequence of a 3-multitableau �λ, denoted
by r(�λ), is defined to be r(�λ) = r(T�λ). Note that, since we only use 3-multitableaux
whose repeating numbers are of the same residue, the notion makes sense for or notion
of 3-multitableaux.

2.2 Intermediate crystal bases and categorified quantum algebras

In this section we shortly recall Leclerc–Toffin’s definition of an intermediate crystal
basis, of which we think as a basis sitting in between the lower global (in the sense of
Kashiwara) crystal bases bT (also called canonical basis in the sense of Lusztig) and the
standard basis eT ′ . Then we recall the notion of Khovanov and Lauda’s categorification
of U̇q(sln) (recall that this is Beilinson, Lusztig and MacPherson idempotented form
[2]), denoted by U(sln), and the notion of Khovanov-Lauda and Rouquier algebras
(KL-R for short) and Hu–Mathas graded cellular basis for latter.

We stress that we really only recall everything very briefly. Much more details can
be found for example in the references we give below.

Moreover, we do not recall q-skew Howe duality or the representation theory of
Uq(gln) and Uq(sln)-tensors, because we want to keep the length of this paper in a
reasonable boundary. Details concerning q-skew Howe duality (or even more, i.e. a
nice survey about it) can for example be found in the paper by Cautis, Kamnitzer
and Morrison [13] and, for example in Mackaay’s paper [43], the reader can find a
good discussion how tensor products and certain bases behave under q-skew Howe
duality. We note that we use the conventions of [44] (with E−i = Fi ) and we hope
that the reader does not get confused, since some authors use different conventions,
e.g. a different quantum parameter v = −q−1.

2.2.1 Intermediate crystal bases

Note that a similar section can be found in [43], since Mackaay also uses in his paper
[43] the intermediate crystal basis under q-skew Howe duality.
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Let us denote by V� the irreducible U̇q(sln)-representation of highest weight� =
(3�). There is a particular nice basis of V� called the lower global crystal basis (or
canonical basis). Since we do not need it explicitly here, we do not recall the definition.
Details can be found in [24] or [42] for example. We denote the canonical basis of
V�, which is parametrized by Stds(3�)1, by

can(V�) = {bT | T ∈ Stds(3�)}.
In contrast to the standard basis {eT ′ ∈ ��q(C

n
q)

⊗3 | T ′ ∈ Col(3�)}, which is easy
to write down, but has not a very good behavior under the action, the lower global
crystal basis is very hard to find, but has a very good behavior. Note that, as pointed
out in [43], q-skew Howe duality turns bT �→ b∗

T and vice versa, that is, the canonical
basis of V� turns under q-skew Howe duality to the U̇q(sl3)-dual canonical basis
dcan(W�) = {b∗

T | T ∈ Stds(3�)} of the sl3-web space W�.
Leclerc and Toffin [40] defined a different basis of V�, denoted by B�, parametrized

by the elements in Stds(3�) (as Kashiwara-Lusztig’s lower global crystal basis). It is
also called the intermediate crystal basis. It is much easier to write down than the
lower global crystal basis and Leclerc and Toffin [40] gave an inductive algorithm
how to compute can(V�) from B�. We recall their definition of B� now very briefly
(we should admit that we do not recall the details about the notation here, but they are
not important for us in this paper. A good discussion can be found in [43]).

Given T ∈ Stds(3�), let us recall how to obtain the Leclerc–Toffin (or short LT2)
basis element AT ∈ B�. Let 1 ≤ i1 ≤ � be the smallest number such that the rows
of T = T1 with row number ≤ i1 (where we number the rows starting with 1 from
top to bottom in our convention) contain numbers equal to i1 + 1. We denote the total
number of such entries by j1 > 0. Lower these entries to i1 and denote the new tableau
by T2 ∈ Stds(3�) (this tableau will still be semi-standard). Continue until one obtains
after s-steps a tableau Ts whose entries are exactly the row numbers. The element AT

is defined by (F (a)b = Fa
b[a]! is the divided power with the quantum integer [a] = qa+q−a

q+q−1 )

AT = F ( j1)
i1

· · · F ( js )
is

v� (here v� is the vector of highest weight �). (2.2)

These basis elements are fixed under the bar involution.
One can easily work out the expansion of AT on the standard basis eT ′ of��q(C

n
q)

⊗3

(the quantum exterior power—details can be found in [13] or [43]). Leclerc and Toffin
showed (i.e. Lemma 9 in [40]) that

AT = eT +
∑

T ′≺T

αT ′(v)eT ′ , (2.3)

with T ′ ∈ Col(3�) and certain αT ′(v) ∈ N[v, v−1] (with v = −q−1). Here ≺ denotes
the lexicographical ordering on column-strict tableaux: For a column-strict tableaux

1 Note that we write 3� as a shorthand for the partition (3�).
2 We always mean Toffin and not Thibon. We thank Catharina Stroppel for recognizing this confusing point.
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T we define the column-word co(T ) = (c1, . . . , c3�) to be a sequence of the entries
of the columns of T read from top to bottom and then from left to right. Note that this
sequence has length m�. Then the set Col(3�) is partial order by

T ≤ T ′ ⇔c(T ′)− c(T )∈N
3� with c(T (′))=(c(′)1 , c(′)1 + c(′)2 , . . . , c(′)1 + · · · + c(′)3�).

Since we tend to use 3-multipartitions and 3-multitableaux instead let us state what
this means in our notation. A column-strict tableaux T of shape (3�) corresponds
to a 3-multipartition �λ by subtracting from each row its number and obtain a new
column-strict tableaux T̃ . Read the k-th column from bottom to top to obtain in this
way the k-th partition λk of �λ = (λ1, λ2, λ3). It is easy to see that this process is in
fact invertible.

Write �λT for the corresponding 3-multipartition. Then T ≤ T ′ iff �λT � �λT ′ ,
where � is the dominance order from Definition 2.3. As a small example consider the
following.

Moreover, there is an algorithm to obtain the canonical basis can(V�) which uses
B� as an intermediate basis. Leclerc and Toffin showed (i.e. Sect. 4.2 in [40]) that

bT = AT +
∑

T ′′≺T

βT ′′T (v)AT ′′ , (2.4)

with T ′′ ∈ Stds(3�) for certain bar-invariant (!) coefficients βT ′′T (v) ∈ Z[v, v−1].
It is worth noting that a slight change in the definition of B�, i.e. changing the rules

which entries are to replaced, one get similar results as above. In fact, in this paper
we use such a slight change. We call such these basis, by a slight abuse of notation,
still LT-bases or of LT-type. Under q-skew Howe duality, as explained in Sect. 3.1,
this basis turns out to be Kuperberg’s basis of sl3-webs. Moreover, it changes the
underlying space ��q(C

n
q)

⊗3 to �•
q(C

3
q)

⊗n .

2.2.2 The special quantum 2-algebras

Khovanov and Lauda (Rouquier introduced independently similar notions [50]) intro-
duced diagrammatic 2-categories U(g) which categorify the integral version of the
corresponding idempotented quantum groups [35].

Cautis and Lauda [14] defined diagrammatic 2-categories UQ(g) with implicit
scalers Q consisting of ti j , ri and s pq

i j which determine certain signs in the defini-
tion of the categorified quantum groups.

In this section, we very briefly recall U(sln) = UQ(sln). Much more can be found
in the papers cited above. The scalars Q are given by ti j = −1 if j = i + 1, ti j = 1
otherwise, ri = 1 and s pq

i j = 0. This corresponds precisely to the signed version in
[35,36]. For simplicity we work with C as an underlying field.
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Definition 2.6 (Khovanov–Lauda) The 2-category U(sln) is defined as follows.

• The objects in U(sln) are the weights λ ∈ Z
m−1.

For any pair of objects λ and λ′ in U(sln), the hom category U(sln)(λ, λ′) is the
Z-graded, additive C-linear category consisting of the following data.

• Objects (or 1-morphisms in U(sln)), that is finite formal sums of the form Ei 1λ{t}
where t ∈ Z is the grading shift and i is a signed sequence such that λ′ =
λ+ ∑l

a=1 εai ′a .
• The morphisms or 2-cells are graded, C-vector spaces generated by compositions

of diagrams shown below. Here {k} denotes a degree shift by k. Moreover, we use
the two shorthand notations αi j = (αi , α j ) and αλi = 2 (λ,αi )

(αi ,αi )
.

with φ1 = idEi 1λ , φ2 : Ei 1λ ⇒ Ei 1λ{αi i }, φ3 : EiE j 1λ ⇒ E jEi 1λ{αi j } and cups
and caps φ4 : 1λ{ 1

2α
i i + αλi } ⇒ EiFi 1λ and φ5 : 1λ{ 1

2α
i i − αλi } ⇒ FiEi 1λ.

Moreover, we have diagrams of the form

with ψ1 = idFi 1λ , ψ2 : Fi 1λ ⇒ Fi 1λ{αi i }, ψ3 : FiF j 1λ ⇒ F jFi 1λ{αi j } and
cups and capsψ4 : FiEi 1λ ⇒ 1λ{ 1

2α
i i +αλi } andψ5 : EiFi 1λ ⇒ 1λ{ 1

2α
i i −αλi }.

The relations on the 2-morphisms are those of the signed version in [35,36]. The
convention for reading these diagrams is from right to left and bottom to top. The
2-cells should satisfy several relation which we will not recall here. Details can be for
example found in Cautis and Lauda’s paper [14].

2.2.3 The cyclotomic KL-R algebras

In this subsection, we recall the definition of the cyclotomic KL-R algebras, due to
Khovanov and Lauda [33,34] and, independently, to Rouquier [50]. We also very
shortly recall Hu and Mathas graded cellular basis [25] for these algebras of type A.

Let � be a dominant sln-weight, V� the irreducible U̇q(sln)-module of highest
weight � and P� the set of weights in V�.

Definition 2.7 (Khovanov–Lauda, Rouquier) The cyclotomic KL-R algebra R� is the
subquotient of U(sln) defined by the subalgebra of all diagrams with only downward
oriented strands and right-most region labeled� and modded out by the ideal generated
by all diagrams of the form

(2.5)

This relation is known as the cyclotomic relation.
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Note that

R� =
⊕

μ∈P�

R�(μ),

where R�(μ) is the subalgebra generated by all diagrams whose left-most region is
labeled μ. It is not clear from the definition what the dimension of R� is. Moreover,
it is not clear that R� is finite dimensional, but Brundan and Kleshchev proved that
R� is indeed finite dimensional [4].

Note that we mod out by relations involving dots on the last strand, rather than the
first strand as in [33] to make it consistent with our other conventions in this paper.

It is worth noting that if we draw pictures for the KL-R algebra, then we do not
need orientations anymore, that is pictures will look like

In [25] Hu and Mathas gave a graded cellular basis of the KL-R algebra R� (or Rn
c(S)

in their notation). We do not recall their definition here, since it is not short and we
give an alternative definition using foams later. The reader is encouraged to take a
look in their great paper. We call their basis HM-basis. We only mention that their
basis is parametrized by �λ ∈ �+(n, c(S), l), i.e. all l-multipartitions of c(S) for all
suitable n, l, and �T , �T ′ ∈ Std(�λ), i.e. standard l-multitableaux in the KL-R sense
without repeating entries. They denote their basis by

{ψ �T , �T ′ | �λ ∈ Pc(S) and �T , �T ′ ∈ Std(�λ)},

where Pc(S) is the set of all multipartitions of c(S). Moreover, it is graded by

degBKW(ψ �T , �T ′) = degBKW(
�T )+ degBKW(

�T ′),

where the degree is Brundan et al. degree given in [7], which we recall in 3.28. We note
that n in our context will be the number of strands of a given web (see next section)
and c(S) is as in 2.11. It is worth noting that we restrict to the easiest case, i.e. the
linear quiver over C, but much more is known about HM-basis, see for example [26]
or [41] for a version over Z.

2.3 Webs and foams

We are going to recall the notions of sl3-webs and foams in this section. Nothing here
is new, i.e. the whole section is literally copied from [44] (up to some small changes)
and the results are mostly from either [32] or [38] in the case of webs or [28] and [46]
for the foams. As before, we only briefly recall the different notions and much more
can be found in the papers mentioned above.

In [38], Kuperberg describes the representation theory of Uq(sl3) using oriented
trivalent graphs, possibly with boundary, called webs or sl3-webs. Boundaries of webs
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consist of univalent vertices (the ends of oriented edges), which we will usually put on
a horizontal line (or various horizontal lines), called the cut-line, and that we usually
picture by a dotted line, e.g. such a web is shown below.

We say that a web has n free strands if the number of non-trivalent vertices is exactly n.
In this way, the boundary of a web can be identified with a sign string S = (s1, . . . , sn),
with si = ±, such that upward oriented boundary edges get a “+” and downward
oriented boundary edges a “−” sign. Webs without boundary are called closed webs.

Fixing a boundary S, we can form the C(q)-vector space WS , spanned by all webs
with boundary S, modulo the following set of local relations or Kuperberg relations
[38].

(2.6)

(2.7)

(2.8)

Here

[a] = qa − q−a

q − q−1 = qa−1 + qa−3 + · · · + q−(a−1) ∈ N[q, q−1]

denotes the quantum integer. Note that we sometimes do not orient our webs. In all
those cases the orientation does not matter and is therefore not pictured.

By abuse of notation, we will call all elements of WS webs. From relations (2.6),
(2.7) and (2.8) it follows that any element in WS is a linear combination of webs with
the same boundary and without circles, digons or squares. These are called non-elliptic
webs. As a matter of fact, the non-elliptic webs form a basis of WS , which we call BS .
Therefore, we will simply call them basis webs or Kuperberg’s basis webs or LT-basis
webs (we explain the name in Sect. 3.1).

Following Brundan and Stroppel’s [8] notation for arc diagrams, we will write w∗
to denote the web obtained by reflecting a given web w horizontally and reversing all
orientations. Moreover, by uv∗, we mean the planar diagram containing the disjoint
union of u and v∗, where u lies vertically above v∗. By v∗u, we shall mean the closed
web obtained by glueing v∗ on top of u, when such a construction is possible (i.e. the
number of free strands and orientations on the strands match).
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It should be noted that we usually use the symbol w for any web, closed or with
boundary, while we use the symbols u, v for half-webs, that is w = u∗v for suitable
webs u, v ∈ BS .

To make the connection with the representation theory of Uq(sl3), we recall that a
sign string S = (s1, . . . , sn) corresponds to

VS = Vs1 ⊗ · · · ⊗ Vsn ,

where V+ is the fundamental representation and V− its dual. Both V+ and V− have
dimension three. In this interpretation, webs correspond to intertwiners and

WS ∼= InvUq (sl3)(VS) ∼= HomUq (sl3)(C, VS).

Therefore, the elements of BS give a basis of InvUq (sl3)(VS). However, this basis is not
equal to the usual tensor basis nor to the dual canonical basis, see [32]. Moreover, in
[44] it was proved that Kuperberg’s web basis and the dual canonical basis are related
by a unitriangular change of basis matrix. The proof follows from categorification.
We will reproduce this result without using categorification in Corollary 3.7.

Kuperberg showed in [38] (see also [32]) that basis webs are indexed by closed
weight lattice paths in the dominant Weyl chamber of sl3. It is well-known that any
path in the sl3-weight lattice can be presented by a pair consisting of a sign string
S = (s1, . . . , sn) and a state string J = ( j1, . . . , jn), with ji ∈ {−1, 0, 1} for all
1 ≤ i ≤ n. Given a pair (S, J ) representing a closed dominant path, a unique basis web
(up to isotopy) is determined by a set of inductive rules called the growth algorithm.
We do not need it here explicitly, but it should be noted that Khovanov and Kuperberg
showed in [32], that the growth algorithm is independent of the involved choices. A
result that we need later in Sect. 3.1. The growth algorithm gives the basis BS .

Following Khovanov and Kuperberg in [32], we define a flow or flow line f on a
webw to be an oriented subgraph that contains exactly two of the three edges incident
to each trivalent vertex. At the boundary, the flow lines can be represented by a state
string J . By convention, at the i-th boundary edge, we set ji = +1 if the flow line is
oriented downward, ji = −1 if the flow line is oriented upward and ji = 0 there is
no flow line. The same convention determines a state for each edge ofw. We will also
say that any flow f that is compatible with a given state string J on the boundary of
w extends J .

Given a web with a flow, denoted w f , Khovanov and Kuperberg [32] attribute a
weight to each trivalent vertex and each arc in w f , as in Figures 2.9 and 2.10. The
total weight of w f is by definition the sum of the weights at all trivalent vertices and
arcs.

(2.9)
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(2.10)

For example, the following web has weight −4.

We will show later in Sect. 3.4 that Brundan, Kleshchev and Wang’s degree of a multi-
tableau has, after translating it using q-skew Howe duality, a very natural interpretation
as (minus) the weight of a flow f on a fixed web w.

We choose arbitrary but fixed non-negative integers n ≥ 2 and � ≤ n, such that
d = 3� ≥ n. Recall �(n, d) = {

λ ∈ N
n | ∑n

i=1 λi = d
}
.

Recall that a flow on the line on the boundary of a web, i.e. a pair of a sign string
S and a state string J , can be encoded using column-strict tableaux Col(λ). Here
λ = (3�) ∈ �(n, d) and for any sign string S = (s1, . . . , sn) the number sk appears
with multiplicity one or two depending on the sign string S, see [44]. To be precise,
in [44] we showed the following. We note that the restriction to the canonical flow
gives semi-standard tableaux. Therefore, non-elliptic webs can be associated 1 : 1
with semi-standard tableaux, a fact that was already known before (we note that some
authors, e.g. Russell [52], use different reading conventions).

Proposition 2.8 There is a bijection between Col(λ) and the set of state strings J
such that there exists a web w ∈ BS and a flow f on w which extends J .

Example 2.9 All of the three webs with flow

belong to the same tableau, i.e. the unique one for the sign string and state string pair
(S, J ) with S = (+,−,+,−,+,−) and J = (0, 0, 0, 0, 0, 0), that is

We need the following constant. For each S = (s1, . . . , sn) with 3� = n+ + 2n−
define

c(sk) =
{

k, if sk = +,
2k, if sk = −, and c(S) = c(s1)+ · · · + c(sk)− 3

2
�(�+ 1). (2.11)
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Moreover, Khovanov and Kuperberg defined a special flow on basis webs, called the
canonical flow. See [32]. We do not need it here in much detail, but it is important
to note that the pair of a sign string and state string (S, J ) for a web w under the
identification with its corresponding tableau gives a semi-standard tableau. See [44]
for more details. We denote usually a web w with its unique canonical flow by wc.

For another connection to representation theory, recall the following. Let e±
−1,0,+1

be the standard basis of V±. Given (S, J ), let

eS
J = es1

j1
⊗ · · · ⊗ esn

jn

be the elementary tensor. Khovanov and Kuperberg proved the following result (The-
orem 2 in [32]) which we will reprove later. Note that we work with q instead of
v = −q−1 as in [32].

Theorem 2.10 (Khovanov–Kuperberg) Given (S, J ), we have

wS
J = eS

J +
∑

J ′<J

c(S, J, J ′)eS
J ′

for some coefficients c(S, J, J ′) ∈ N[v, v−1], where the state strings J and J ′ are
ordered lexicographically.

We shortly review the category called Foam3 of sl3-foams introduced by Khovanov
in [28] (these can be seen as a sl3 version of Bar-Natan’s sl2-cobordism [1]). It is worth
noting that Blanchet has proposed in [3] a slightly different foam category and it seems
to be easier to work out the signs following his approach (as for example in [39]). But
we, old-school as we are, do not use his setting here. Moreover, we only need the
graded version in this paper. So we do not recall for example Gornik’s filtered version
here. For more details see [22].

We recall the following definitions as they appear in [46]. We note that the diagrams
accompanying these definitions are taken, also, from [46].

A pre-foam is a cobordism with singular arcs between two webs. A singular arc
in a pre-foam U is the set of points of U which have a neighborhood homeomorphic
to the letter Y times an interval. Note that singular arcs are disjoint. Interpreted as
morphisms, we read pre-foams from bottom to top by convention. Thus, pre-foam
composition consists of placing one pre-foam on top of the other. The orientation of
the singular arcs is, by convention, as in the diagrams below (called the zip and the
unzip respectively).

We allow pre-foams to have dots that can move freely about the facet on which they
belong, but we do not allow a dot to cross singular arcs.

By a foam, we mean a formal C-linear combination of isotopy classes of pre-foams
modulo the ideal generated by the set of relations � = (3D, NC, S,�) and the closure
relation, as described below.
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The closure relation, i.e. any C-linear combination of foams with the same
boundary, is equal to zero iff any way of capping off these foams with a common
foam yields a C-linear combination of closed foams whose evaluation is zero.

The relations in � imply some identities (for detailed proofs see [28]). We only
recall a few here that we need later on. More can be found in [28].

Definition 2.11 Let Foam3 be the category whose objects are webs 
 lying inside a
horizontal strip in R

2, which is bounded by the lines y = 0, 1 containing the boundary
points of
. The morphisms of Foam3 are C-linear combinations of foams lying inside
the horizontal strip bounded by y = 0, 1 times the unit interval. We require that the
vertical boundary of each foam is a set (possibly empty) of vertical lines.

The q-degree of a foam F is defined as

degq(F) = χ(∂F)− 2χ(F)+ 2d + b,

where χ denotes the Euler characteristic, d is the number of dots and b is the number
of vertical boundary components. This makes Foam3 into a graded category. We show
later, using q-skew Howe duality, that the q-degree degq is Brundan, Kleshchev and
Wang’s degree degBK W .
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Definition 2.12 [28] (Foam homology) Given a webw the foam homology ofw is the
complex vector space, F(w), spanned by all foams

U : ∅ → w

in Foam3.

Remark 2.13 The complex vector space F(w) is graded by the q-degree on foams
and has q-rank 〈w〉, where 〈w〉 is the Kuperberg bracket. See [28] or [46] for details.

2.4 The sl3-web algebra

We are going to recall the definition of the sl3-web algebra KS as given in [44]. For
the rest of the section let S denote a fixed sign string of length n.

Definition 2.14 (sl3-web algebra) For u, v ∈ BS , we define

u Kv = F(u∗v){n},

where {n} denotes a grading shift upwards in degree by n.
The sl3-web algebra KS is defined by

KS =
⊕

u,v∈BS

u Kv.

The multiplication on KS is defined by taking

u Kv1 ⊗ v2 Kw → u Kw

to be zero, if v1 �= v2, and by the map to be defined as in [44] if v1 = v2 = v.

We use the following lemma throughout the whole paper.

Lemma 2.15 For any u, v ∈ BS, we have a grading preserving isomorphism

Foam3(u, v) ∼= u Kv.

Using this isomorphism, the multiplication

u Kv ⊗ v′ Kw → u Kw

corresponds to the composition

Foam3(u, v)⊗ Foam3(v
′, w) → Foam3(u, w),

if v = v′, and is zero otherwise.
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Proof See [44]. ��
Remark 2.16 Lemma 2.15 shows that KS is an associative, unital algebra. Moreover,
completely similar as in [44], the algebra KS is a graded Frobenius algebra of Goren-
stein parameter n. We do not need this fact in this paper, so the interested reader can
find the details in [44].

Note that for any u ∈ BS , the identity 1u ∈ Foam3(u, u) defines an idempotent.
We have

1 =
∑

u∈BS

1u ∈ KS .

Alternatively, one can see KS as a category whose objects are the elements in BS such
that the module of morphisms between u ∈ BS and v ∈ BS is given by Foam3(u, v).

Moreover, there is a graded, linear involution on KS denoted

∗ : KS → KS (2.12)

that reflects the foams along the xy-plane and reorient the edges afterwards. For exam-
ple

Remark 2.17 The algebra has a basis given by the so-called face removing algorithm
as explained in [56]. We do not know much about this basis except that it is easy to
compute. We do not need it here and do not recall it, but it is worth noting that it is
possible to prove Theorem 4.18 “by hand”, i.e. use induction on the number of faces
and show that the corresponding moves are “almost” face removing moves.

We will now briefly recall an instance of q-skew Howe duality, the so-called foa-
mation functor. We will refer to the application of this functor on the level of webs
and foams, depending on the context, by saying “using foamation” or by abuse of
language “by q-skew Howe duality”. The hope that the reader does not get confused.

We note that such a functor was independently studied by Lauda, Queffelec and
Rose [39] with a slightly different convention than the one we recall from [44].

Let us denote by KS-(p)Modgr the category of all finite dimensional, (projective),
unitary, graded KS-modules. Recall that we need a slightly generalization of a sign
string called enhanced sign string. With a slight abuse of notation, we use S for
enhanced sign strings. Fix d = 3�.

Definition 2.18 An enhanced sign string is a sequence denoted by S = (s1, . . . , sn)

with entries si ∈ {◦,−1,+1,×}, for all i = 1, . . . n. The corresponding weight
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μ = μS ∈ �(n, d) is given by the rules

μi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if si = ◦,
1, if si = 1,

2, if si = −1,

3, if si = ×.

Let �(n, d)3 ⊂ �(n, d) be again the subset of weights with entries between 0 and 3.

Define

K(3�) =
⊕

μS∈�(n,n)3
KS

and

W(p)
(3�)

= K(3�)-(p)Modgr

∼=
⊕

μS∈�(n,n)3
KS-(p)Modgr.

Recall that there exists a categorical U(sln)-action on W(p)
(3�)

, called foamation.

Definition 2.19 (sl3-foamation) We define a 2-functor

ψ : U(sln) → W(p)
(3�)

called foamation, in the following way. Recall that we read U(sln) diagrams from right
to left—this will correspond to reading webs from bottom to top.

On objects: The functor is defined by sending an sln-weight λ = (λ1, . . . , λn−1)

to an object ψ(λ) of W(3�) by

ψ(λ) = S, S = (a1, . . . , an), ai ∈ {0, 1, 2, 3}, λi = ai+1 − ai ,

n∑

i=1

ai = 3�,

and to zero if no such enhanced sign string S exists. Note that, if such an S exists, then
it is unique.

On morphisms: The functor on morphisms is defined to be the algebra homomor-
phism of C-algebras defined by glueing the following webs on top of the sl3-webs in
W(3�).
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If the boundary values ai are ai /∈ {0, 1, 2, 3}, then we send the morphism to zero. We
use the convention that vertical edges labeled 1 are oriented upwards, vertical edges
labeled 2 are oriented downwards and edges labeled 0 or 3 are erased. Note that the
orientation of the horizontal edges is uniquely determined by the orientation of the
vertical edges, e.g. a H-move from an E is always orientated from right to left and a
H-move from a F from left to right.

On 2-cells: Note our conventions. We only draw the most important part of the
foams, omitting partial identity foams. We only mention the most important ones
here. See [44] for the full list. Note that our drawing conventions in this paper are
slightly different from those in [44], i.e. we have rotated the foams by π

2 clockwise
around the y-axis.

(1) The bottom (top) part of the string diagram in U(sln) is represented by the web at
the bottom (top) of the foam.

(2) Glueing a U(sln) diagram on top of another corresponds to gluing a foam on top
of the other.

(3) In our string diagram conventions an upwards pointing arrow represents an E .
Hence, on the level of webs, such H-moves have to point to the bottom left.

(4) We only draw some of the orientations in the pictures. The rest are fixed by the
ones drawn following the conventions in [44]. They are not so important here, so
we will not recall them.

(5) A facet is labeled 0 or 3 if and only if its boundary has edges labeled 0 or 3.
(6) All facets labeled 0 or 3 in the images below have to be erased, in order to get real

foams.
(7) For any λ > (3�), the image of the elementary morphisms below is taken to be

zero, by convention.
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In the list below, we always assume that i < j .
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Proposition 2.20 The foamation

ψ : U(sln) → W(p)
(3�)

is a well-defined strong 2-representation in the sense of [14].

Proof See [44] or with a slightly different setting [39]. ��
It is worth noting that the foamation functor descends to the KL-R algebra by taking

only downwards pointing arrows in a good way, see Cautis and Lauda [14] or Lauda,
Queffelec and Rose [39] for more details. There is also a version for the extended
graphical calculus from [37] and we conjecture that using it could make some of the
later arguments easier.

Moreover, for N > 3 Mackaay and Yonezawa give a version of the foamation
using matrix factorizations [47]. Conjecturally, there should also be a foamation using
N > 3-foams (see [45]).

3 The uncategorified picture

3.1 Web bases and intermediate crystal bases

We are going to show in this section that Kuperberg’s web basis BS is in fact an
intermediate crystal basis, i.e. we show that it can be obtained from a Leclerc–Toffin
like3 algorithm using q-skew Howe duality, i.e. use the foamation 2-functor ψ from
Definition 2.19 on the level of webs and let the divided powers act on the highest
weight vector v3� .

Throughout the whole section we assume that all partitions λ are partitions of 3�
for some �, i.e. λ ∈ �+(n, 3�), and S denotes a sign string of length n such that
n+ + 2n− = 3�, where n+, n− denote the number of +,− of S.

Definition 3.1 Let T ∈ Stds(λ) ⊂ Col(λ) denote a semi-standard tableau. We asso-
ciate to each such T a string of divided powers of F which we call the LT-generators
of T and we denote it by

LT(T ) =
∏

k

F ( jk)
ik

.

The rule to obtain the string is as follows. We have two different kinds of rules, i.e.
the usual and the extraordinary rules. We generate the string of F’s inductively using
these rules.

Start with the empty product LT(T )0 = 1 and set T0 = T . Assume that we are in
the k-th step. Search for the lowest entry of Tk which is below its own row and not in
a forbidden position, i.e. a position such that lowering this entry by one does not lead
to a semi-standard tableau any more.

3 The reader should compare our definition with the one of Leclerc–Toffin explained in Sect. 2.2.
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Note that we use for simplicity 2 for this entry in the following definition and we
only picture the important parts of the tableau. As long as the tableau Tk is not of the
form

where the 3′ should indicate that there is at least one 3 in the first column, we use the
usual rules, that is, replace all jk occurrences of 2 below its own row by 1 and obtain
a new tableau

Tk+1 = Tk(2 �→ 1 for all 2 below row 2)

and a longer string LT(T )k+1 = LT(T )k F ( jk)
1k

. Otherwise, and this is the extraordinary
step, search for the next higher, that is > 2, value that appears below its own row and
that is not only in the first column or in the first and second column and repeat this
step with it instead of 2.

We denote the length of

LT(T ) =
�(LT(T ))∏

k

F ( jk)
ik

by �(LT(T )) and the total length by �t(LT(T )) = ∑
k jk .

Note that, since we do not allow infinite tableaux, there can not be an infinite string
of extraordinary cases, i.e. a tableau like

does not appear. Hence, the inductive process terminates.

Definition 3.2 (LT-algorithm for webs) Let T ∈ Stds(λ) ⊂ Col(λ) denote a semi-
standard tableau. The Leclerc–Toffin algorithm for sl3-webs is defined by applying
the LT-generators to the highest weight vector v3� using q-skew Howe duality, that is

u(T ) = LT(T )v3� ∈ WS .

We use the notions length and total length of non-elliptic webs �t(u) under the
identification with their semi-standard tableaux (recall that each non-elliptic web u
can be identified with a semi-standard tableau Tu using its unique canonical flow. See
[44] for more details).
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Example 3.3 The only non-elliptic webs whose total length �t(u) ≤ 3 are either arcs

with LT-generators F1 and F (2)1 , or theta webs

with LT-generators F1 F (2)2 and F1 F2 F1 respectively. Moreover, the first three are also
the only examples of length �(u) ≤ 2. The corresponding procedure under q-skew
Howe duality for the third web is

Note that we read form bottom to top when we apply F1 F (2)2 to the highest weight
vector v32 and we label the boundary points from left to right, i.e. an Fi acts between
the boundary point number i and i + 1.

Proposition 3.4 For any T ∈ Stds(3�) we have that Khovanov and Kuperberg’s
growth algorithm and Leclerc and Toffin’s algorithm give the same non-elliptic sl3-
web.

Proof In the growth algorithm there are often cases in which one can choose between
several steps. Khovanov and Kuperberg show in Lemma 1 in [32] that the final web does
not depend on these choices. We are going to show that the Leclerc–Toffin algorithm
makes a particular choice for each step in the growth algorithm, which proves the
proposition.

Suppose we are given a semi-standard tableau and that we have already done some
steps in the Leclerc–Toffin algorithm. The list below gives all possibilities for the next
step. All cases in which one of the entries appears three times are similar, so we have
only given one such example at the bottom of our list. To simplify matters we have
called the entries 0, 1, 2 and 3 etc., instead of k − 1, k, k + 1 and k + 2 etc., and we
have only drawn the relevant part of the tableau. The nodes whose contents is not
relevant for our argument are left empty. Moreover, if a number 3 appears, then we
only assume for simplicity that this number has to appear with the same multiplicity
in the same columns, but is allowed to be above the shown row.

The usual cases are (beware that in the following pictures we use the numbers
+1, 0,−1 from Khovanov–Kuperberg’s growth algorithm, that is they do not indicate
the orientation of the webs)
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In the first extraordinary case, that is

the Leclerc–Toffin algorithm gives the “wrong” answer. That is why we had to add an
extra rule for this case. One easily checks that the extra rule works out as claimed.
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To be more precise, the first extraordinary case, i.e. at least one three in the first
column, is related to the question of nested components of webs. The rules in Definition
3.1 for this case can be read as “outside first”. In fact, choosing the smallest entry that
is not only in the first column or in the first and second columns ensures that this entry
does not have flow 1, while its left neighbour has flow 1. In this case, no matter what
the orientation of the web is, it is always possible to perform a step in the growth
algorithm, i.e. either a Y-move, if the flow is 1 and 0 or 1 and −1 and the orientation
is the same, a H-move, if the orientation is different and the flow is 1 and 0 or an
arc-move otherwise.

In the second extraordinary case (where 3 is the next to be replaced) we can easily
see that the rules forces us to use F2 which is precisely the answer of the growth
algorithm, that is

We should note that the other two cases, where the LT-algorithm gives the “wrong”
answer, i.e.

work out up to isotopies. To see this note that in the first case we get first F1 and then
F2, while we get F (2)2 after F1 in the second case. Hence, the LT-algorithm gives us

while the growth algorithm gives us

It is worth noting that, under the assumption that the next step in the Leclerc–Toffin
algorithm is a step after i − 1, tableaux of the form
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can not appear, since, if we assume that the 1 does not change in this step, one has to
create a tower of non-allowed pairs as illustrated below.

That is the reason why we do not have to take these case in account, since they will
never lead to legal tableaux constructions. ��
Example 3.5 It should be noted that the Leclerc–Toffin algorithm makes a choice of
how to apply Khovanov and Kuperberg’s growth algorithm that avoid doing H-move
with an horizontal arrow pointing to the left, since they would correspond to E’s and
not F’s. For example, instead of doing a move like

the Leclerc–Toffin algorithm makes the following move.

The dots between F1 and F2 should indicate that there could be Fi in between, but for
all those Fi one has i < 1.

We obtain directly from Proposition 3.4 that the LT-algorithm gives the sl3-web
basis BS , since the set of semi-standard tableaux enumerates the web basis.

Corollary 3.6 The LT-algorithm gives the full sl3-web basis BS.

We note that this gives another proof of Khovanov and Kuperberg’s result.

Proof (Theorem 2.10) This follows from the LT-algorithm, i.e. an equation like 2.4
can be verified (by using the “LT-like” algorithm from above) as in [40], Proposition
3.4 and the substitution v = −q−1. Note that the underlying space is changed under
q-skew Howe duality (and therefore the corresponding elementary tensors). ��
Corollary 3.7 Kuperberg’s web basis BS and the dual canonical basis are related by
a change of base matrix which is unitriangular.
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Proof Note again that our small change of the rules does not affect the arguments in
[40].

By Proposition 3.4 the LT-algorithm gives the basis BS . Moreover, since Leclerc and
Toffin showed [40] that their basis is related to the canonical basis by an unitriangular
change of base matrix, see 2.4, and since q-skew Howe duality turns the canonical into
the dual canonical basis (as for example explained in [43]), we obtain the statement.

��
To conclude this section, we note the following simple, but nevertheless important

observation that we need repeatedly.

Lemma 3.8 Let u, v ∈ BS be two non-elliptic webs with the same boundary and let
LT(u),LT(v) denote their LT-generators. Then �t(LT(u)) = �t(LT(v)).

Proof Note that the multiplicities of all the entries in the associated semi-standard
tableaux Tu, Tv for u, v are equal. Therefore, since the LT-generators are obtained
by reducing these semi-standard tableaux Tu, Tv to the one associated to the highest
weight vector, the total length is the same. ��

It should be noted that the length can be different in general, that is �(LT(u)) �=
�(LT(v)), due to Serre relations like

Fi Fi+1 Fi = F (2)i Fi+1 + Fi+1 F (2)i .

3.2 Multipartitions and webs with flow

We are going to show in this and the next section that non-elliptic webs with flows u f

can be obtained from fillings of 3-multitableaux via an extended growth algorithm.
In this section we discuss how we can turn a web with flow into a filling of a 3-
multipartition, while we give the extended growth algorithm in the next section.

The main observation is that there are way more ways to fill a 3-multipartition than
there are webs with flows, because, roughly speaking, a filling of a 3-multipartition
does not see isotopies. This corresponds to the fact that two Morita equivalent algebras
can have different dimensions, e.g. the sl3-web algebra has a way smaller dimension
than the corresponding cyclotomic Hecke algebra. Very roughly, the cyclotomic Hecke
algebra does not see isotopies. We therefore stress that, if we work in B J

S or W J
S as

defined below, then we do not take isotopies into account.
The way we show that the extended growth algorithm is really an algorithm to

obtain every flow on any web is that we construct an injection ι from webs with flow
to fillings of 3-multipartitions and we show that ι is a left-inverse of the extended
growth algorithm (which we discuss in the next section).

We start by extending the Proposition 2.8, that is we give another bijection to a set
of so-called 3-multipartitions �λ = (λ1, λ2, λ3) from Definition 2.1. Recall that Col(λ)
below means that the entry k in the column-strict tableaux of Col(λ) appears with
multiplicity λk .
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Proposition 3.9 There is a bijection between Col(λ), the set of state strings J such
that there exists a web w ∈ BS and a flow f on w which extends J , denoted by B J

S ,
and �+(n, d, 3), i.e. the set of 3-multipartitions of d = 3�.

Proof The first bijection was proven in Proposition 2.8.
We give the bijection from Col(λ) to 3-multipartitions �+(n, d, 3) with d = 3�.

First we define a standard filling of a diagram with i-rows and j-columns, denoted by
T i

j , by filling all nodes in the i ′-row with i ′ for all 1 ≤ i ′ ≤ i , e.g.

Now, given a T ∈ Col(λ), the tableau T −T i
j (for suitable i, j) has non-negative entries

due to the column-strictness of T . We can now associate for each column 1 ≤ j ′ ≤ j
the column word c j ′ by reading the entries of T − T i

j from bottom to top. This gives
a partition λ j ′ . The reader can easily verify that this is a bijection. ��

Note that the second bijection of Proposition 3.9 is not restricted to tableaux with
only three columns. In fact the whole bijection is not new, i.e. it is well-known. See
[6] for example.

Example 3.10 We have the following correspondence.

Seeing a column-strict tableau T as a 3-multipartition �λ has some advantages.
For example we can fill such a 3-multipartition �λ with non-negative numbers. As in
Definition 2.1, we denote the set of all 3-multitableaux �T of �λwith a standard fillings by
Std(�λ). For example the following tableau is in Std(�λ = ((3, 2, 1), (2, 1), (3, 2, 1))).

In order to give a growth algorithm for webs with flow lines u f ∈ B J
S (that is the set

of all non-elliptic webs ∂u = S with a fixed flow f that extends J ), we first define an
injection of the set of all non-elliptic webs with flows associated to a certain pair (S, J )
(or equivalent a column-strict tableau or a 3-multipartition �λ) into Std(�λ). Moreover,
we denote the set all webs with boundary datum (S, J ) and a chosen flow by W J

S .
Note again that there are in general much more elements in Std(�λ) than in B J

S .
After that we give a method to obtain from an element of Std(�λ) a web with flow and
we show that this map is in fact the left-inverse of the embedding ι : B J

S → Std(�λ).
Hence, we can call this process an extended growth algorithm.
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Definition 3.11 Given a partition λ which is partially filled with numbers and a fixed
number j . Then the highest not filled node N of residue j is the unique (if it exists),
highest node of λ without filling to the north east such that a filling of this node still
gives a legal tableau and r(N ) = j .

Example 3.12 Assume that λ is the following partition (note that m = 3, i.e. the
residue of the nodes is shifted by 3) with the following partially filling.

We have marked the highest node N× with residue r(N×) = 3 by × and the highest
node N◦ with residue r(N◦) = 1 by ◦. Moreover, there is no possible node of residue
2 to be filled.

We start now by defining the map ι. We give it inductively using an inductive
algorithm.

It should be noted that the following algorithm looks very complicated, since it has
many different rules one has to follow. But the main idea is simple and straightforward,
i.e. look at the corresponding pictures and read of the tableau “locally” at the top and the
bottom. Then the k-th step in the algorithm should add nodes labeled k, whose number
depends on the divided power of the F ( jk )

ik
’s, at the corresponding given positions with

residue ik .

Definition 3.13 (Flows to fillings) Given a pair of a sign string and a state string (S, J )
and a web u f ∈ B J

S , we associate to it a standard filling ι(u f ) ∈ Std(�λ) inductively by
going backwards the LT-growth algorithm from Proposition 3.5, i.e. use the canonical
flow on w to determine the LT-generators LT (w) = F ( jn)

in
· · · F ( j1)

i1
for u (note that

we read backwards now).

(1) At the initial stage set �T0 = (∅,∅,∅).
(2) At the k-th step use F ( jk)

ik
to determine the type and color of the operation performed

on �Tk−1. We give a full list of all possible types and colors below together with
the operation

k : �Tk−1 �→ �Tk .

(3) Repeat until k = n. Then set ι(u f ) = �Tn .

The full list of possible types (depending on the orientation of the web) and colors
(depending on the flow line) is the following.

• Arc moves come in two different types, called arc-type a and b, each with three
different colors, called 1, 0,−1. Note that type a corresponds to an F (2), while
type b corresponds to an F (1).
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• Y-moves come in two different types, called a and b, with six different colors, called
1, 1′, 0, 0′ and −1,−1′. Note that all Y-moves belong to a F (1). The Y-moves of
type a are

and the Y-moves of type b are

• H-moves only have one type, since the other type does not appear in the LT-
algorithm (it would use a E (1) instead of a F (1)). But to make the argument later
more convenient, we use two types, again a and b, for them again with six different
colors, again 1, 1′, 0, 0′ and −1,−1′. The H-moves of type a are

while the H-moves of type b are
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• Right shifts come again in two types a and b with three colors, again 1, 0,−1. Note
that type a corresponds to F (1), while type b corresponds to F (2).

• Left shifts come again in two types a and b with three colors, again 1, 0,−1. Note
that type a corresponds to F (2), while type b corresponds to F (1).

• The unique empty shift. Note that type a corresponds to F (3).

Note that the pair (S, J ) gives rise to a 3-multipartition �λ = (λ1, λ2, λ3). The tableau
�Tn should be a 3-multitableau of shape �λ. We build it inductively.

The following list of operators should add the corresponding nodes at the highest
free place of the tableau T 1,2,3 of residue ik (if the step is for F ( jk)

ik
) (as in in Definition

3.11). We use the symbol + for this procedure and denote the tableaux of �Tk−1 by
T 1,2,3

k−1 . The operators for the k-th step are the following.

• For the arc-moves of type a we use

and for the arc-moves of type b we use

• For the Y-moves of type a and colors 1, 1′ we use
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and or the Y-moves of type a and colors 0, 0′ we use

and or the Y-moves of type a and colors −1,−1′ we use

• For the Y-moves of type b and colors 1, 1′ we use similar rules, i.e.

and or the Y-moves of type b and colors 0, 0′ we use

and or the Y-moves of type b and colors −1,−1′ we use

• For the H-moves of type a and colors 1, 1′ we use

and or the H-moves of type a and colors 0, 0′ we use

and or the H-moves of type a and colors −1,−1′ we use

• For the H-moves of type b and colors 1, 1′ we use

and or the H-moves of type b and colors 0, 0′ we use

and or the H-moves of type b and colors −1,−1′ we use
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• For the right shifts of type a and colors 1, 0,−1 we use

and for right shifts of type b and colors 1, 0,−1 we use

• And finally, for the left shifts of type a and colors 1, 0,−1 we use

and for left shifts of type b and colors 1, 0,−1 we use

• For the unique empty shift we use

Thus, we have a map

ι : B J
S → Std(�λ).

We have to show that the algorithm is well-defined, i.e. a priori we could run into
ambiguities if the nodes in one of the three tableaux are already filled with numbers
or that there are no suitable free nodes of residue ik . But the following lemma ensures
that this will never happen. Moreover, the lemma shows that the map ι is an injection.
But we give an example before we state and prove the lemma.

Example 3.14 (a) For example for S = (−,−,−) and J = (1,−1, 0) we have
the half-theta web with the following flow and tableau, 3-multipartition and LT-
generators.

Hence, the algorithm from Definition 3.13 has three steps, i.e. the initial and two
“honest” steps. One gets the following sequence
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which can be easily verified from the following picture

(b) We have two webs with flows for the pair S = (+,−,+,−) and J = (0, 0, 0, 0),
i.e. two either nested or non-nested circles without flow

In this case the tableaux and the 3-multipartitions are the same, but the LT-
generators are different, that is

For the left case one gets the following sequence

while in the right case we get

which can be easily verified from the following picture

It is worth noting that the residues of the nodes match exactly with the correspond-
ing positions.
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Lemma 3.15 The algorithm in Definition 3.13 is well-defined and two webs with flow
u f , v f ′ satisfy

ι(u f ) = ι(v f ′) ⇔ u = v and f = f ′.

Proof To show that the algorithm is well-defined observe that Lemma 3.8 ensures
that the total number of nodes of the 3-multipartition �λu associated to u is exactly
the number of nodes added in total by the algorithm from Definition 3.13. Hence, we
only need to ensure that the placement of the nodes works as claimed, that is, we fill
the nodes without running into a step where there are either no nodes to fill at the
corresponding position or the tableau can not be filled in a suitable standard way any
more.

To show this we use induction on the total length �t(u). One can easily verify that
the placement works for all cases with �t(u) ≤ 3, i.e. the arcs and theta webs from
Example 3.3 with all possible flows.

By induction, given a web with a flow u f and LT-generators

LT(u) =
�(u)∏

k

F ( jk)
ik

,

we know that the placement works for the web with flow u<f < that is obtained from u f

by removing the last step. Note that u<f < has in general a different pair of sign string
S and state string J than u f . Moreover, the total length can drop by maximal three.

A case-by-case check considering all possible steps from Definition 3.13 (since all
of them could be the last step) then shows the statement. They all work the same so
we only illustrate two here, i.e. first an H-move of type a with color 0

where we have illustrated the change for the tableau going from u<f < (bottom) to u f

(top). Note that we for simplicity use the entries 1, 2 again, but this does not affect the
argument.

Hence, the difference between the associated bottom and top 3-multipartition is
that latter has one extra node in the last entry. The rules from Definition 3.13 now tell
us to perform the following move for the H of type a and color 0.

with k = �(u). That the residue of this extra node is exactly 1 is due to induction, since
in one of the steps before (that is for the web u<f < ) we see that the 2 in the middle was
filled with a node that, by the map from Proposition 3.9, has the same residue as the
new node.
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Second, we consider an right shift of type b and color 0, that is

where we have again illustrated the change for the tableau going from u<f < (bottom)
to u f (top). Thus, the top has two more nodes in the first and third partition. The rules
tell us to put two nodes exactly in these partitions, that is

with k = �(u). That these two nodes have the right residue follows by induction again
and the fact that this move corresponds to a F (2)1 and the two extra nodes will be in a
row that starts with residue 1 (by our shift in the residue from Definition 2.1) and was
empty for u<f < (again by Proposition 3.9).

Hence, the placement works out as claimed. Moreover, it follows directly that the
corresponding tableau is still standard.

To show the second statement we use induction on the total length again. First
we consider the case u = v and f �= f ′. Moreover, we can freely assume that the
sign and state string pair is the same for both flows, since otherwise the shape of the
corresponding 3-multitableaux �Tu f ,

�Tu f ′ is already different.
One can check the statement again by hand for the four webs from Example 3.3.

As before, we consider the difference between u<f and u<f ′ by removing the last step
of the LT-algorithm and do a case-by-case check.

It should be noted that the number of cases we have to check is small, since the
assumption u = v fixes the type of the last performed move, i.e. only the color could be
different, and the assumption that they have the same state string reduces the question
to H-moves of type a. To be more precise, we need to ensure that the H-moves of type
a and colors 1/0, 1′/ − 1 and 0′/ − 1′ perform a different last step, which is indeed
the case. Hence, using induction, we see that

ι(u f ) = ι(u f ′) ⇔ f = f ′.

The case u �= v works in a slightly different vein, i.e. we are going to show that the
two tableaux ι(u f ) and ι(v f ′) already differ at the first step, following the LT-algorithm
for both webs, where the two webs differ.

In order to show this, we note that Proposition 2.8 shows that different webs u and
v with different sign string S or state string J have different column-strict tableaux
and therefore we see that the shapes of ι(u f ) and ι(v f ′) are different.

So let us consider the first step in the LT-algorithm of u that is different form the
one from v. Denote the F obtained in this step for u by F ( jk )

ik
and the one for v by

F
( j ′k)
i ′k

.

123



1040 J Algebr Comb (2014) 40:1001–1076

Since we assume that they differ at this position, we see that ik �= i ′k or jk �= j ′k . In
the first case the residue of the new node with entry k is different by our construction,
since the residue corresponds to the ik and the i ′k . In the second case the total number
of new boxes with entry k are different, since by our construction they correspond to
jk and the j ′k . In both case we see that the tableaux are different.

Hence, we see that

ι(u f ) = ι(v f ′) ⇔ u = v and f = f ′.

This proves the lemma. ��

3.3 Extended growth algorithm

In this section we give the extended growth algorithm

g : Std(�λ) → W J
S ⊃ B J

S ,

i.e. we give a method to obtain from an element of Std(�λ) a web with a flow u f ∈
W J

S (recall that W J
S means the set of all possible webs with boundary pair (S, J )).

In general, this web can be elliptic. We start with some preliminary combinatorial
definitions. It is worth noting that the following definitions can be seen as an extended
version of the definitions in the sl2 case, i.e. the case of the level two Hecke algebras,
see for example [8,9] and [10].

Definition 3.16 Let �T ∈ Std(�λ) be a 3-multitableau �T = (T 1, T 2, T 3) such that
T i is a standard tableau and the numbers are from a fixed set {1, . . . , k}. Then we
associate to �T a sequence of 3-multitableaux ( �T j ) for each j ∈ {0, 1, . . . , k} where
�T j = (T 1

j , T 2
j , T 3

j ) and T 1,2,3
j is obtained from T 1,2,3 by deleting all nodes with

numbers strictly bigger than j .
Moreover, we associate to it a sequence of 3-multipartitions (�λ j ) by removing the

entries of the nodes of ( �T j ).

Example 3.17 Given the following 3-multitableau

one obtains the following sequence. First note that, by definition, �T 0 = (∅,∅,∅) and
the rest is

In order to make connection to webs with flows recall that a flow can be seen as either
+1, if it is pointing downwards, −1, if it is pointing upwards or 0, if there is no flow
at all. We use two extra symbols ◦,× to illustrate the case when there is no web at all.
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Definition 3.18 A sl3-weight diagram � is a Z-graded tuple with entries �i of sym-
bols from the set {◦,−1, 0,+1,×}.

A sl3-weight diagram � is said to be trivial, if �N≤0 ∈ {×} and �N>0 ∈ {◦}.
Example 3.19 An example of a sl3-weight diagram � is the following.

Note that the • indicates the position of �0. And the entries �i with i > 0 are right
of �0, while the entries �i with i < 0 are left of �0.

Definition 3.20 A tower of sl3-weight diagrams (�i )i∈I is a sequence of Z-graded
tuples with entries �i of symbols from the set {◦,−1, 0,+1,×} for a finite index set
I = {0, 1, . . . , k}.

We draw the sequence as a tower starting from the bottom with �0.

Example 3.21 An example of such a tower is the following.

Definition 3.22 Let �T ∈ Std(�λ) be a 3-multitableau and let (�λ j ) denote its associated
sequence of 3-multipartitions. We denote the number of nodes in the 1, 2, 3-th entry
and the l-th row of T 1,2,3

j by |T 1,2,3
j |l . We can associate to it a tower of sl3-weight

diagrams (�i )i∈I with I = {0, . . . , k}, where k is the maximal entry of �T in the
following way.

• First define for each (�λ j ) three N-graded tuples �k j
1,2,3 by

�k j
1,2,3 =

(
|T 1,2,3

j |1, |T 1,2,3
j |2 − 1, |T 1,2,3

j |3 − 2, . . .
)
.

• Set �0 to be the trivial sl3-weight diagram.
• For i = 1, . . . , k we use the convention

�i
l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

×, if l is an entry of �k j
1,2,3,

+1, if l is only an entry of �k j
1,2 or only of �k j

1 ,

0, if l is only an entry of �k j
1,3 or only of �k j

2 ,

−1, if l is only an entry of �k j
2,3 or only of �k j

3 ,

◦, otherwise.
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It should be noted that the convention agrees with the initial convention to set �0 to
be the trivial, since the corresponding 3-multitableau �T 0 will only contain empty sets.

Example 3.23 Suppose one has the following filling of a 3-multipartition �λ, which is
the one from Example 3.14 part (a),

Then we only have to consider three steps, i.e. the initial plus two non-trivial steps.
We illustrate the resulting vectors �k j

1,2,3 below with j increasing from left to right and
�k j

1 in the top row, �k j
2 in the middle and �k j

3 at the bottom.

The associated tower is illustrated below. Note that it is no coincidence that we need
exactly as many steps as in the LT-algorithm for the half-theta web. In fact, the reader
is encourage to draw the half-theta web with the flow from Example 3.14 (a) inside.

Remark 3.24 Usually it is more convenient to extend the notions from Definition 3.22
slightly by allowing the entries +1, 0,−1 to be marked with a ∗. For the webs this has
the advantage that the tower constructed in 3.22 suffices to recover the web completely
by the convention that a ∗-marked entry is a downwards pointing arrow of the web
and an entry +1, 0,−1 without such a marked is a upwards pointing arrow. We use
these notions in the following.

In order to define �i
l with ∗-markers one just have to refine the convention and

also count the number of occurrences in the vectors �k j
1,2,3, i.e. use a ∗-marker iff the

corresponding entry appears twice. Then the example from above would be
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We are now ready to define the extended growth algorithm for sl3-webs.

Definition 3.25 (Extended growth algorithm) The extended growth algorithm is a
map

g : Std(�λ) → W J
S ⊃ B J

S ,

i.e. it assigns to every 3-multitableau �T ∈ Std(�λ) a (possible elliptic) web with a flow
g( �T ).

The g( �T ) is defined to be the web that one obtains by connecting the entries of the
tower (�i )i∈I of Definition 3.22 in the way explained in Remark 3.24.

Theorem 3.26 The extended growth algorithm is well-defined. Moreover, we have

g ◦ ι = idB J
S
,

that is the extended growth algorithm can be used to obtain any non-elliptic web with
any flow and if one start with the unique 3-multitableau ι(·), then the resulting web is
also unique.

Example 3.27 Before we prove the theorem, let us give an more sophisticated example.
We take the web u f with one internal hexagon and with the following flow.

As one can easily check (see also Example 2.9) the corresponding column-strict tableau
is

and the corresponding 3-multipartition is

Moreover, one easily checks that the sequence of LT-generators is

LT (u f ) = F1 F2 F (2)3 F2 F1 F4 F3 F2 F (2)5 F (2)4 F (2)3 ,

which can be verified as we explained above in Sect. 3.1.
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Everything is of course also the same for the web

since the data on the boundary is the same in both cases.
We have to fill the 3-multitableaux with numbers {1, . . . , 11} to distinguish the two

and the algorithm given in Definition 3.13 for the first makes the following twelve
steps.

It is worth noting that the node in the seventh step, due to our convention for the
residue, is placed the way it is. The reader is encourage to try to do the example

that has the same boundary datum as before (and the same LT-generators). The resulting
filling in this case after the last step is

Following the extended growth algorithm one obtains the original web with flow
back. Again we encourage the reader to do it for the case with the reversed flow.
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Proof The main part of this proof is the Lemma 3.15, i.e. ι : B J
S → Std(�λ) is a well-

defined inclusion of webs with flows u f to filled 3-multitableaux ι(u f ). In fact the
only thing we have to see is that the process which we described in Definition 3.25 is
given by reading the process from Definition 3.13 backwards and place the web with
flow u f on a suitable chosen grid.

That the algorithm is well-defined follows by its deterministic nature.
To see that the extended growth algorithm is a left-inverse for the embedding

ι : B J
S → Std(�λ), we note that, by Proposition 3.4, we only have to consider non-

elliptic webs. That the process of Definition 3.13 is literally undone by the process of
Definition 3.25 follows by comparing the two procedures as follows.

We prove the statement again by induction on the total length. It is easy to verify
all the small cases from Example 3.3, so assume that for all 1 ≤ i ≤ j the statement
is true and consider a web whose total length is j = �t(u).

Hence, we have to check all the possible last moves. Since they all work in the
same fashion, we only do two here and leave the rest to the reader. The first move we
discuss is a Y-move of type b and color 0′, i.e.

We assume that this is the j-th step. The rules from Definition 3.13 tells us to add
one extra node labeled j to the first tableau T 1, say in the l-th row. Looking at the
information at the bottom, we see that the N-graded tuples �k j−1

1,2,3 are of the form
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where we have only illustrated the important parts of the tuples. Here l ′ = |T 1
j−1|l −

l + 1.
This is true, because we can use the induction hypothesis and an easy calculation

checking the corresponding residues. It should be noted that the grid is chosen in such
a way that for d = 3� a F ( j�)

� acts between the 0-entry and the 1-entry of the tower.
To see that the step from j −1 to j happens as indicated above, we note that adding

a node only in the first tableau T 1 only effects the tuple �k j−1
1 . Moreover, since we

assume to add the node in the l-row, the only change is as indicated above because
|T 1

j |l = |T 1
j−1|l + 1.

The second move we discuss is an arc-move of type a and color −1, i.e.

We use the same notation as before. Again, looking at the information at the bottom,
we see that the N-graded tuples �k j−1

1,2,3 are of the form

Here l ′ = |T 1,2
j−1|l1,2 − l1,2 + 1 by the same argument as above. Note that this time

the rules from Definition 3.13 tell us to add a j labeled node to the first T 1 and second
T 2 tableau. Note that both nodes will be added in different rows l1,2, but since they
have the same residue, we see that l ′ = l ′1 = l ′2. Therefore the corresponding numbers
for the LT-algorithm have to be in the same row, because their nodes were filled with
the highest appearing numbers at the beginning. Hence, the change is as indicated
above because |T 1,2

j |l1,2 = |T 1,2
j−1|l1,2 + 1.

All other case work similar, hence this proves the statement. ��

3.4 Degree of tableaux and weight of flows

We are going to recall Brundan, Kleshchev and Wang’s definition of the degree of a
tableau given in [7] in this section. We show that the embedding ι : B J

S → Std(�λ)
is a degree preserving map, where we consider minus the weight of a web with flow

123



J Algebr Comb (2014) 40:1001–1076 1047

u f ∈ B J
S as the degree degwt for B J

S and Brundan, Kleshchev and Wang’s degree
degBKW as the degree for a 3-multitableau �T ∈ Std(�λ).

Note that this shows that degBKW is an isotopy invariant and that Brundan,
Kleshchev and Wang’s degree has a very natural interpretation on the level of webs,
i.e. it is minus the weight of a flow line and is therefore directly connected (to be more
precise: to the slightly changed version) to the LT-coefficients in 2.3, since Khovanov
and Kuperberg showed in Sect. 4 of [32] that the weight of flows gives the coeffi-
cients of the web basis BS with respect to the elementary tensors and we showed in
Proposition 3.4 that BS is in fact an intermediate crystal basis.

Recall the following combinatorial definitions. We only recall the case of a 3-
multitableaux, since we do not need the more general case here.

The reader should be careful that we use a slightly different definition than Brundan,
Kleshchev and Wang, since we are working with divided powers (and therefore we
have in general more than one node with entry j ∈ {1, . . . , k}). This is the reason why
we have some shifts in our definition. For example, an arc-move created by a divided
power differs from the one without the divided power by a digon

and the empty-shift differs from the one without divided powers by a theta web

Definition 3.28 (Brundan, Kleshchev and Wang: Degree of a tableau) Let �T ∈ Std(�λ)
be a (filled with numbers from {1, . . . , k}) 3-multitableau �T = (T 1, T 2, T 3) as in
Definition 3.16. For j ∈ {1, . . . , k} let N j denote the set of all nodes that are filled
with the number j and let �T j denote the 3-multitableau obtained from �T by removing
all nodes with entries > j .

The degree of �T j , denoted by deg( �T j ), is defined to be

deg( �T j ) = |Ak
N ( �T j )| − |Rk
N ( �T j )| − a with a =

⎧
⎪⎨

⎪⎩

0, if |N j | = 1,

1, if |N j | = 2,

3, if |N j | = 3,

where we use the convention to count all nodes with the same number step by step
starting from the leftmost.

The degree of the 3-multitableau �T = (T 1, T 2, T 3), denoted by degBKW(
�T ), is

then defined by

degBKW(
�T ) =

k∑

j=1

deg( �T j ).
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Example 3.29 The following three standard 3-multitableaux have all degree zero.

To see this, we note that in the first case there is no node after 
 the unique node
N 1. Hence, deg( �T1) = 0. In the second case we have to calculate two steps. In the
first step, i.e.

we count one addable node of the same residue which we have marked with a ·, but the
second step there is again no node after 
 the last node anymore. Hence, deg( �T2) = 0,
since we have to take the divided power into account. For the last case we have to
calculate three steps, i.e. the first and the second are

where we have again indicated the addable nodes of the same residue with a ·. The
third step is again as before. Hence, deg( �T3) = 0, because the divided power is 3.

It should be noted that it is possible that the degree (total or local) is negative. For
example the last step of

has no addable nodes after 
 the node N 11 with the same residue, but one removable,
namely the left node filled with the entry 7. Hence, deg( �T 11

4 ) = −1. The total degree
in this case is

degBKW(
�T4) = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 0 + 1 − 1 = 3.

Example 3.30 Given a column-strict tableau T , a string of LT-generators LT(T ) and
a filling, i.e. flow, for its corresponding 3-multitableau �T like

one can easily draw a web with flow u f from this data
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with total degree degwt(u f ) = −wt(u f ) = 2 and local degrees as indicated in the
figure. The degree degBKW(

�T ) of �T is given inductively by ( �T j )5j=1 with

Hence, we get

deg( �T 1) = 1, deg( �T 2) = 0, deg( �T 3) = 0, deg( �T 4) = 0, deg( �T 5) = 1.

Therefore we see that the total degree is

degBKW(
�T ) = 1 + 0 + 0 + 0 + 1 = 2 = degwt(u f )

and the local degrees are exactly the ones we have seen in the figure above.

Recall that the sets B J
S and W J

S are graded with degwt(u f ) = −wt(u f ), while the
set Std(�λ) is graded with the degree from Definition 3.28. In fact the observation from
Example 3.30 that the degree of a web with flow u f ∈ B J

S is exactly the degree of
ι(u f ) ∈ Std(�λ) is no coincidence, i.e. we note that following interesting Proposition.

Proposition 3.31 The map ι : B J
S → Std(�λ) and g : Std(�λ) → W J

S are of degree 0.

Proof The proof is again an inductive case-by-case check. It is easy to verify the
statement for the case where the total length �t(u) ≤ 3, i.e. for the four webs given in
Example 3.3.

So assume that �t(u) > 3 and that the statement is true for all i < �t(u) = k,
i.e. after removing the last LT-generator from u f , which results in a web with flow
denoted by u<< f , we have

degwt(u
<
< f ) = degBKW(ι(u

<
< f )).

Thus, we only have to show that the local changes of minus weight and degBKW(ι(u f )
k)

coincide.
We have to check all the possible cases again. We skip most of them and leave them

to the reader, since they all work in the same vein. We do three as an example, i.e. an
H-move of type a and color 1, an H-move of type a and color −1′, and a right shift of
type b and color 0.

The two H-moves of type a are almost the same, i.e. we have
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That is the H-move of type a and color 1 lowers the degree by one, while the H-move
of type a and color −1′ raises the degree by 1, but both have the same rule to place
the node.

To see why the degree is still different we note that they have a different state string
at the top. In fact, if we use 1 and 2 for simplicity again, we have

Hence, the H-move of color 1 has a removable node of the same residue above the
new node iff the H-move of color −1′ has an addable node of the same residue above
the new node. To see that such a removable (or addable) node exists and is unique
note that this follows from the fact that there will be a last move before the H-moves
that gives rise to the flow at the left side of the H-moves. The node that corresponds
to this move will be, by construction, the removable (or addable) node.

The shift of type b and color 0, that is

can be done in a similar vein. Again we have to take the state string in account. We
have

Thus, the local change in degree is zero, since, by construction, the left new node
will have exactly one addable node of the same residue and the second none. Since
this shift corresponds to a divided power we have to subtract 1 from the degree. Hence,
the local change is zero.

We leave the verification that the map g is also of degree 0 to the reader, since it
follows by similar arguments as given above. ��

Example 3.32 For the filled 3-multitableau �T4 from Example 3.29 we see that the
corresponding web with flow u f is
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where we have indicated the local degree changes in the figure above (the weight of the
flow has a different sign). This corresponds exactly to the calculation from Example
3.29.

Since Khovanov and Kuperberg [32] showed that the weight is invariant under
isotopies, we get the following two corollaries.

Corollary 3.33 Let u f ∈ B J
S be a web with flow. Then degBKW(ι(u f )) is invariant

under isotopies of the web u f .

Corollary 3.34 Let �T1, �T2 ∈ Std(�λ) such that g( �T1) and g( �T2) differ only by isotopies.
Then we have degBKW(

�T1) = degBKW(
�T2).

Moreover, we have the following natural interpretation of Brundan, Kleshchev and
Wang’s degree on the level of webs. Note that, by our more general construction, the
proposition works not just for non-elliptic webs u ∈ BS , but for all webs.

Proposition 3.35 Let u ∈ BS be a non-elliptic web. Moreover, let FJ denote the
possible empty set of all flows on u with boundary J . Denote by eS

J = es1
j1

⊗ · · · ⊗ esn
jn

the corresponding element in the tensor basis. Then

u =
∑

J

c(S, J )eS
J ,

where the coefficients c(S, J ) (recall v = −q−1) are given by

c(S, J ) =
∑

f ∈FJ

vwt(u f ) =
∑

f ∈FJ

±q−degwt(u f ) =
∑

f ∈FJ

±q−degBKW(ι(u f )).
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Proof This is a direct consequence of Khovanov and Kuperberg’s results from Sect.
4 of [32] together with the two Propositions 3.4 and 3.31. ��

4 The categorified picture

4.1 A growth algorithm for foams

In this section we are going to categorify the results from before. That is, we explain
how the extended growth algorithm can be used as a growth algorithm for foams.

It should be noted that we freely use the results from the uncategorified framework
that we discussed in the sections before, e.g. we identify the flows on webs with their
3-multitableaux.

The main idea can be explained as follows. To define a foam F : u → v with
u, v ∈ BS we use the two different types of data, i.e. the pair (S, J ) of the sign and
state string on the line and the two flows on u, v. The first completely determines the
dot placement, while the second gives rise to the topology. It should be noted that the
dot placement, i.e. the combinatorics, is rather mysterious in the foam framework, but
rather “straightforward” in the cyclotomic Hecke algebra framework. The topology
on the other hand is in the foam framework only given by zipping certain edges away.
Recall that we have F(u, v) ∼= F(u∗v). We tend to use the former in the following.

We start and give the definition of the basic idempotent, denoted by e(�λ). It is worth
noting that e(�λ) will in general be a foam between elliptic webs, since we do not use
divided powers.

Definition 4.1 (Idempotent associated to �λ) Given a 3-multipartition �λ with k nodes,
we can associate to it a certain idempotent foam, denoted by e(�λ), using the following
rules. Define a sequence of LT-generators for �λ by (with r(�λ) as in Definition 2.5)

LT(�λ) =
∏

k

Fr(�λ)k = Fr(�λ)c(S) · . . . · Fr(�λ)1 . (4.1)

Define a web w(�λ) to be the web generated by applying LT(�λ) to a highest weight
vector v3� and use q-skew Howe duality. Then

e(�λ) = Id ∈ F(w(�λ),w(�λ)),

that is the identity foam Id : w(�λ) → w(�λ).

Recall that there is an C-linear involution ∗ : F → F of the foam space

FS =
⊕

∂u,∂v=S

F(u, v)

that turns the foams around (and changes some internal boundary orientations). For
example
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Lemma 4.2 The idempotent e(�λ) is well-defined, that is it is not zero and an idempo-
tent. Moreover, for all 3-multipartitions �λ, �μ we have

e(�λ)e( �μ) = e( �μ)e(�λ) = δ�λ, �μe(�λ) = δ�λ, �μe( �μ), δ�λ, �μ =
{

1, if r(�λ) = r( �μ),
0, if r(�λ) �= r( �μ).

Moreover, we have

e(�λ)∗ = e(�λ),

that is e(�λ) is fixed by the involution ∗.

Proof To see that it is well-defined, i.e. that LT(�λ) does not kill the highest weight
vector, we have to use Theorem 3.26. That is the Theorem 3.26 ensures that there
is a web with a flow that has exactly the corresponding multitableaux T�λ. Thus, the
idempotent can not be zero.

That the element is an idempotent follows from the fact that it is just the identity
foam on a certain web w(�λ).

The other statements follow directly from the definition of the multiplication, that
is different 3-multipartition �λ, �μ give rise to different webs w(�λ) and w( �μ) iff r(�λ) �=
r( �μ), since the convention to obtain the webs from the multitableaux only depends on
the residue sequence, see 4.1. Moreover, the composition is zero if the webs are not
the same. by convention.

That the idempotents are fixed by the involution is clear by the definition of ∗, i.e.
it just turns the foams around (and inverts some arrows). ��

Example 4.3 If the 3-multipartition is the one from Example 3.14 part (b), that is

then we get LT(�λ) = F1 F3 F2 F2 F1 F3 F2 and therefore w(�λ) will be
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Hence, the idempotent (we have skipped the orientations below) for �λ is

An important property of this idempotent is the square (if we ignore the digon) in
the back, since it allows use to change to both webs that can be associated to �λ for
“free”, i.e. without changing the degree.

Definition 4.4 (Dot placement associated to �λ) Given a 3-multipartition �λ as in Def-
inition 4.1 together with its associated idempotent e(�λ) and its LT-generators

LT(�λ) =
∏

k

Fr(�λ)k = Fr(�λ)c(S) · . . . · Fr(�λ)1 .

Recall that each of the Fr(�λ)k corresponds to a ladder-move (with some possible deleted
edges) on the level of webs. Therefore, each Fr(�λ)k corresponds to a
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for the foam e(�λ). We place mk dots on Fr(�λ)k on the middle facet

where mk = A
k
N
(T�λk ), i.e. is the number of addable nodes after the node N with

entry k in T�λk with the same residue as the node N . We denote the dotted idempotent
associated to �λ by e(�λ)d(�λ), where

d(�λ) =
∏

k

dmk
k

should indicate the number of dots on the different facets.

It should be noted that it is not clear that e(�λ)d(�λ) is well-defined. We show this fact
in a lemma below, but first we give an example.

Example 4.5 We consider the 3-multipartition from Example 3.14 part (b) again, i.e.

As before, we have LT(�λ) = F1 F3 F2 F2 F1 F3 F2 (that is k = 1, . . . , 7 =
c((+,−,+,−))) and

Thus, we see that mk = 0 unless k = 1 or k = 4, where m1 = 2 and m4 = 1.
Therefore, we have
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Lemma 4.6 The dot placement of Definition 4.4 is well-defined. Moreover, we have

e(�λ)d(�λ) = d(�λ)e(�λ) = (e(�λ)d(�λ))∗.

Proof To see that the dot placement is well-defined it suffices to show that the middle
facet always exists, i.e. it is not removed because its corresponding number is 0 or 3.
That this is indeed the case follows from the fact that all possible ladder-moves in our
convention from Definition 3.13.

The second statement follows directly from the definition of the involution ∗, the
Lemma 4.2 and the fact that the corresponding foams are just identity foams. ��

It should be noted that Sk−1 acts on the set of strings of F’s of length k with a fixed
number of occurrences of the F’s by defining the action of the j-th transposition τ j by
exchanging the neighboring entries j − 1 and j reading from right to left. We denote
a transposition τ j that exchanges a Fa and a Fb by τ j (a, b), i.e.

τ j (a, b) · (Fk · · · Fb Fa︸ ︷︷ ︸
pos. j

· · · F1) = Fk · · · Fa Fb︸ ︷︷ ︸
pos. j

· · · F1.

Definition 4.7 (Foam between LT-generators) Given two strings of LT-generators

LT1 =
∏

k

Fik and LT2 =
∏

k

Fi ′k

such that LT1 and LT2 differ only by a permutation σ ∈ Sk−1 of their F’s. Let
w1 = LT1v3� andw2 = LT2v3� be the corresponding webs obtained by q-skew Howe
duality. We assume that σ ∈ Sk−1 is already decomposed into a string of transpositions

σ = τi1 . . . τil ,

such that σLT1 = LT2. Then we associate to LT1, LT2 and σ a foam

Fσ (LT1,LT2) : w1 → w2, Fσ (LT1,LT2) = F(τi1(ai1 , bi1))

◦ · · · ◦ F(τil (ail , bil )) ◦ Idw1
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by composing the identity Idw1 on w1 from the bottom with the foams

and

where the not pictured parts should be the identity and we use the usual rules to read
these foams and the usual signs ε ∈ {+,−}, i.e. the ones given by categorified q-skew
Howe duality. Note that, by our conventions, this procedure really gives a foam from
w1 to w2.

The action defined above can be stated in a different way just on the level of tableaux
without multiple entries. That is, the group Sk−1 acts on the set of all 3-multitableaux
Std(�λ) ∪ {∗} by defining the action of the transposition τ j by

τ j ( �T1)=
{ �T2 = �T1( j �→ j +1, j +1 �→ j), if the result is a standard 3-multitableau,

∗, otherwise.

Finally, for a fixed 3-multipartition �λ and a corresponding 3-multitableau �T ∈
Std(�λ) we choose a fixed permutation σ ∈ Sk−1 such that

σ−1( �T ) = T�λ
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by searching for the lowest j ∈ {1, . . . , k} such that the node N with entry k in
�T is not the same as the node N ′ with entry k in T�λ. Apply a minimal sequence
of transpositions until they match and repeat the process until σ−1( �T ) = T�λ. By
construction, the permutation σ ∈ Sk−1 will be of minimal length with respect to the
property σ−1( �T ) = T�λ.

It is worth noting that we put a σ−1 here because we usually want a foam with a
web associated to T�λ at the top. One easily verifies that

σ( �T1) = �T2 ⇔ σ−1( �T2) = �T1 for all �T1, �T2 ∈ Std(�λ), σ ∈ Sk−1.

We denote the foam associated to this permutation σ by Fσ .

Lemma 4.8 The definition of the foam Fσ (LT1,LT2) is well-defined, i.e. one does not
run into ambiguities and the resulting foam is a foam between w1 and w2. Moreover,
the definition via the LT-generators and via actions on 3-multitableaux agree.

Proof To see that the definition is well-defined, note that, using Lemma 3.8 and the
observation that, without divided powers, the total length and the length agree, each
step of the action of Fσ (LT1,LT2) on the top web changes the boundary of the web
to the bottom boundary as indicated in the pictures above. Thus, each step is a legal
move between a web at the top and a web at the bottom. That is, starting from w1 at
the top, one builds inductively a foam going stepwise from w1 to w2, i.e.

w1 �→ wil �→ wil−1 �→ · · · �→ wi2 �→ wi1 �→ w2,

where each step is well-defined and one of the foams pictured above. Hence, we get
a well-defined foam

Fσ (LT1,LT2) : w1 → w2.

To see that the two actions agree we note again that the residue r(N ) of the node
N with entry k is exactly the Fr(N ). Thus, reading the two residue sequences for �T
and T�λ, we see that they give rise to a web on the bottom and the top and the action
on 3-multitableaux is exactly defined such that the result of the action of τ j depends
in the same way on the residue of the two nodes N j and N j+1 as the action via foams
depends on the difference ai − bi . Then one repeats the inductive argument from
before, that is, a direct comparison of the LT-generators in each step shows that each
step is a legal permutation and the end result are exactly the LT-generators associated
to w2.

It should be noted that this also shows that our rules to define σ ensure that the
action of the transpositions of σ on the tableaux never produce a non-standard tableau.

��
Definition 4.9 (Foam for u f ∈ B J

S ) Given a non-elliptic web with a flow u f ∈ B J
S ,

we associate to it a foam

Fu f : u f → w(�λ),
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where �λ is the corresponding boundary datum and w(�λ) is as in Definition 4.1, in
the following way. Change the 3-multitableau ι(u f ) associated to u f by replacing the
lowest multiple entry j of multiplicity j ′ of ι(u f ) decreasing from left to right with
consecutive numbers j, . . . , j + j ′ and shift all other entries by j ′. Repeat until no
multiple entries occur and obtain ι(u f )

′, see 2.1. Set

Fu f = FR ◦ Fσ (ι(u f )
′, T�λ) : u f → w(�λ),

with Fσ (ι(u f )
′, T�λ) for the LT-generators LT1,2 corresponding to ι(u f )

′ and T�λ respec-
tively. The foam FR is given by removing the generated internal digons (pictured
below 2.12) with a dot-free digon removal and the internal theta-foams with a dot-free
identity. It should be noted that these are the only possible differences for the webs
associated to g(ι(u f )) and g(ι(u f )

′).

Example 4.10 If we consider Example 3.14 part (b) again, that is

and consider the right example u f , then we have

Therefore, σ ∈ S6 is given by σ = τ4τ5τ3τ4τ5τ2, since

This can be reinterpreted as an action on the two LT-strings, that is (reading backwards
now)

LT(T�λ) = F1 F3 F2 F2 F1 F3 F2
τ4�→ F1 F3 F2 F2 F1 F3 F2

τ5�→ F1 F2 F3 F2 F1 F3 F2
τ3�→ F1 F2 F3 F1 F2 F3 F2

τ4�→ F1 F2 F1 F3 F2 F3 F2
τ5�→ F1 F1 F2 F3 F2 F3 F2

τ2�→ F1 F1 F2 F3 F3 F2 F2

= LT(ι(u f )
′).

When we re-read the strings of F’s using q-skew Howe duality as webs, then we
see how this procedure gives rise to a foam between the web associated to LT(T�λ)
(as shown in Example 4.3) and the web associated to LT(ι(u f )

′) as shown below.
Each of the τ j corresponds to one of the basic generators pictured in Definition 4.7—
depending on the difference of the residues of the exchanged nodes. For example, the
foam associated to the last step τ2 is locally
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that is a zip, and the identity outside of this local picture. The bottom of this local
picture is the part of the web associated to w f marked with a square on the left and
the top is shown on the right

and unzips the marked edge. The foam FR then just removes the three digons and we
obtain the original web from Example 3.14 part (b) back.

We are now able go give a growth algorithm for foams. We will see later that this
gives rise to a graded cellular basis in the sense of Hu and Mathas [25]. Hence, in the
spirit of Proposition 3.4, we can call this a categorification of the intermediate crystal
bases.

Definition 4.11 (Growth algorithm for foams) Given a pair of a sign string and a state
string (S, J ), the corresponding 3-multipartition �λ and two Kuperberg webs u, v ∈ BS

that extend J to u f and v f ′ receptively.
We define a foam following Definition 4.9

F �λ
ι(u f ),ι(v f ′ ) : u → v

by

F �λ
ι(u f ),ι(v f ′ ) = Fu f e(�λ)d(�λ)F∗

v f ′ .
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Example 4.12 Let us consider t he following example. The web is the right theta-foam
from Example 3.3. Note that the Kuperberg bracket gives [2][3] = q−3 + 2q−1 +
2q + q3. All the six different flows are indicated below.

To illustrate why the growth algorithm for foams gives (up to a sign) the result above,
let us do the top left uc in more detail. We have

Thus, the foam e(�λ)d(�λ) will be a dotted (the dot comes from the node labeled 1)
identity for the web F2 F1 F1v31 , which is a theta-foam with an extra digon. It is worth
noting that this dot is unexpected from the foam framework. But the permutation from
ι(uc) to T�λ is given by σ = τ2τ1 and thus we see that

F2 F1 F1
τ1�→ F2 F1 F1

τ2�→ F2 F1 F2,

where u = F1 F2 F1v31 . The corresponding foam Fuc will be a composite of the top left

foam from Definition 4.7 and an unzip. Therefore, the final foam F �λ
ι(uc),ι(uc)

: u → u
contains a so-called singular bubble with a dot. As Khovanov explains in [28], this
bubble can be bursted which removes the bubble and the dot. The reader is encouraged
to do the other five, but we note that two of them will also create “two many” dots,
which will be bursted.

Note that it is no coincidence that there are always two basis elements that are
“dual” to each other, i.e. cupping them of with its “dual” gives ±1 while cupping it
of with all the others gives 0. This is related to the “dual” cellular basis given in [25].
We note that this could be useful to evaluate “foams” for N > 3.

Lemma 4.13 The growth algorithm for foams from Definition 4.11 is well-defined.
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Proof That the algorithm is well-defined follows from the Lemmata 4.2, 4.6 and 4.8
above. ��

4.2 Foam basis

We are going to show in this section that the growth algorithm for foams given in
Definition 4.11 suffices to produce all foams, i.e. it can be used to generate a basis of
the foam space. Moreover, we show that this basis is homogeneous. We show in the
next section that it is indeed a graded cellular basis in the sense of Hu and Mathas
[25].

The main observation is that the foams F(τi (ai , bi )) defined in Definition 4.7 are
either zip or unzip foams (in the case |ai − bi | = 1), two digon removals (in the case
ai = bi ) or just shifts (all the other cases). Since this is not trivial, we state it as a
lemma. Recall that degq denotes the q-degree of the foam space.

We start with some useful Lemmata.

Lemma 4.14 Given the same data as in Definition 4.7, we have that for all τi ∈ Sk−1
the foams F(τi (ai , bi )) split into three disjoint cases.

(a) F(τi (ai , bi )) : w1 → w2 is a zip or a unzip iff |ai − bi | = 1. We have
degq(F(τi (ai , bi ))) = 1 in this case.

(b) F(τi (ai , bi )) : w1 → w2 removes two digons iff ai = bi . We have degq(F(τi (ai ,

bi ))) = −2 in this case.
(c) F(τi (ai , bi )) : w1 → w2 is just a shift iff |ai − bi | > 1. We have degq(F(τi (ai ,

bi ))) = 0 in this case.

Proof (a): A case by case check of all the possibilities how the local picture of the webs
w1 at the top and w2 at the bottom could look like. Note that both webs are generated
by a sequence of LT-generators, thus not all combinations are possible. Since all cases
work in the same vein we only illustrate four here. So five in total, i.e. counting the
one from Example 4.10. In fact the Example 4.10 is a blueprint of all cases. The four
other cases are the following.

and
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We have indicated the important face for our argument with color in all the pictures.
To be more precise, the foam in the top left is a unzip between a Y-move and a flipped
Y-move at the top and two H-moves at the bottom, the foam in the bottom left is
between two shifts and a Y-move and a flipped Y-move, the foam in the top right is
between a Y-move and arc pair and a H-move and a flipped Y-move at the bottom and
the lower right is between two H-moves and a Y-move and a flipped Y-move.

All other cases are similar. It should be noted that the number of case-by-case
checks reduces if one takes rotational symmetries into account, e.g. the foam in the
top left picture and the one in the right bottom are essentially the same.

Moreover, it is worth noting that the ambiguous case, i.e. two similar moves at the
bottom and top, does not occur by construction, since the action of Fi Fi+1 will be
different than the action of Fi+1 Fi and will therefore always give two different local
webs.

(b): As before a case-by-case check. In fact the number of cases is small, that is
only two can occur, since a H-move after a H-move is not possible because at least one
of the H-moves would correspond to an E . Thus, we only the following two cases.

(4.2)

We have smoothen the first picture a little bit to make it more visible. We have indicated
the important face with color again.

(c): This is clear by the definition of the local changes of the foam pictured in
Definition 4.7, because it will be the identity foam up to isotopy.

Since the q-degree of a zip or unzip is 1, the q-degree of a digon removal is −1 and
the q-degree of the identity is zero, we conclude that the degrees work out as stated
which finishes the proof. ��
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Lemma 4.15 Let the foam

F �λ
ι(u f ),ι(v f ′ ) = Fu f e(�λ)d(�λ)F∗

v f ′ : u → v

be as in Definition 4.11. Then

degq(F
�λ
ι(u f ),ι(v f ′ )) = degwt(u f )+ degwt(v f ′) = degBKW(ι(u f ))+ degBKW(ι(v f ′)).

Proof We only have to show the first equality, since the second already follows as a
consequence of the Proposition 3.31.

We start by noting that

degq(e(�λ)d(�λ)) = degq(d(�λ)) = 2nd ,

where nd is the number of dots. This is true, because both are topological just the
identity and a dot has q-degree 2. This implies, since we spread dots using a convention
of adding dots per addable nodes and T�λ does not have removable nodes, that

degq(e(�λ)d(�λ)) = 2degBKW(T�λ).

It should be noted that the extra removing of the internal faces from Definition 4.9
corresponds exactly to the change in degree from ι(u f ) to ι(u f )

′. So to simplify our
notation, we can freely assume that ι(u f ) = ι(u f )

′ and ι(v f ′) = ι(v f ′)′.
Hence, the results of the two Lemmata 4.8 and 4.14 imply now that we only have

to check that the degree works out on the level of actions on tableaux, because the
action defined via foams agrees with the one on the tableaux (part two of Lemma 4.8)
and, as a consequence of Lemma 4.14, we see that it has exactly the same degree as
the action defined on tableaux.

Thus, we can use a result from the side of the cyclotomic Hecke algebra, i.e.
Corollary 3.14 of Brundan et al. [7], and we get

degBKW(ι(u f )) = degBKW(T�λ)+ degq(Fu f ) and degBKW(ι(v f ′))

= degBKW(T�λ)+ degq(Fv f ′ ).

Hence, we have

degq(F
�λ
ι(u f ),ι(v f ′ )) = degq(Fu f e(�λ)d(�λ)F∗

v f ′ ) = degq(Fu f )

+ degq(e(�λ)d(�λ))+ degq(Fu f )

= degBKW(ι(u f ))− degBKW(T�λ)+ 2nd

+ degBKW(ι(v f ′))− degBKW(T�λ)
= degBKW(ι(u f ))− nd + 2nd + degBKW(ι(v f ′))− nd

= degBKW(ι(u f ))+ degBKW(ι(v f ′)) = degwt(u f )+ degwt(v f ′)
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which proves the statement. ��
Lemma 4.16 Let the foam

F �λ
ι(u f ),ι(v f ′ ) = Fu f e(�λ)d(�λ)F∗

v f ′ : u → v

be as in Definition 4.11 and let ∗ denote the involution on the foam space. Then

(F �λ
ι(u f ),ι(v f ′ ))

∗ = F �λ
ι(v f ′ ),ι(u f )

: v → u.

Proof This is a direct consequence of Lemma 4.2, because we have

(F �λ
ι(u f ),ι(v f ′ ))

∗ = (Fu f e(�λ)d(�λ)F∗
v f ′ )

∗

= ((Fv f ′ )
∗)∗(e(�λ)d(�λ))∗F∗

u f

= Fv f ′ e(�λ)d(�λ)F∗
u f
,

where the second equality is due to the definition of the involution ∗. ��
The next proposition shows that the growth algorithm for foams is a “foamy” version

of Hu and Mathas graded cellular basis [25].

Proposition 4.17 Let S be any sign string and let

JS = {J | (S, J ) is a pair of a sign and state string for some web w ∈ BS}

and let

B J
S = {w f | w ∈ BS, f is a flow with boundary J extending to w}.

Then (S, J, u f , v f ′)with J ∈ JS and u f , v f ′ ∈ B J
S gives rise to a foam F �λ

ι(u f ),ι(v f ′ ) ∈
KS.

This foam is obtained from the application of the foamation functor to the HM-basis
element with the datum (the multipartition �λ is the one associated to (S, J ))

(�λ, ι(u f )
′ ∈ Std(�λ), ι(v f ′)′ ∈ Std(�λ))

and removing the internal faces using digon removals or theta removals.

Proof The first statement is just a collection of the results of the sections before, i.e.
that a pair (S, J ) gives rise to a 3-multitableau �λ is proven in Theorem 3.26, that
the webs with flows u f , v f ′ give rise to a unique filling ι(u f ), ι(v f ′) ∈ Std(�λ) of
the 3-multitableau �λ is proven in Lemma 3.15 and finally the definition of the foam
F �λ
ι(u f ),ι(v f ′ ) is given in Definition 4.11.
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To see that the second statement is true, we observe that the Sect. 3.1 and q-skew
Howe duality imply that we can read the HM-basis elements as foams in the following
way. Given a 3-multipartition �λ with residue sequence r(�λ) = (r1, r2, . . . ), we can
read it as a 2-morphism in U(sln) as indicated below

reading from right to left and all arrows pointing downwards. This can be translated to a
web for the top and bottom string of residues by applying the corresponding sequence
of F to the highest weight vector v3� as explained in the Sect. 3.1 and reading the
residues ri as Fri as explained in and around the Definition 3.25.

Then the second statement follows now from the sequence of Lemmata 4.6, 4.8
and 4.14, i.e. the Lemma 4.6 shows that the dotted HM-idempotent, after applying the
foamation functor, is essentially the same as the dotted idempotent from Definition
4.4, since in both pictures the idempotent e(�λ) is obtained from the residue sequence
r(�λ) and the dots are obtained from the set of addable nodes explained in Definition
4.4. Moreover, the Lemmata 4.8 and 4.14 show that the HM-element ψι(u f )

′ , after
applying the foamation functor, is the same as the foam Fu f (plus the extra internal
face removals while passing from ι(u f )

′ to ι(u f )), since we have the correspondence

by Lemma 4.14 and the different local pictures are spread in essentially the same way
in both cases by Lemma 4.8. Hence, we conclude that the HM-basis element with the
datum

(�λ, ι(u f )
′ ∈ Std(�λ), ι(v f ′)′ ∈ Std(�λ))

corresponds to the foam F �λ
ι(u f ),ι(v f ′ ) ∈ KS (plus the relevant internal face removals).

��
We are now able to proof that the growth algorithm for foams given in Definition

4.11 gives a basis of the sl3-web algebra KS .

Theorem 4.18 The growth algorithm for foams gives a homogeneous basis of KS.

Proof We will show that the growth algorithm gives a linear independent set of foams
denoted by

F = {F �λ
ι(u f ),ι(v f ′ ) ∈ KS | (S, J, u f , v f ′), J ∈ JS, u f , v f ′ ∈ B J

S }.
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By a counting argument we see that this set forms a basis, since we know that every
triple

(�λ, ι(u f ) ∈ Std(�λ), ι(v f ′) ∈ Std(�λ))

corresponds exactly to one closed web w = u∗v with a fixed flow by Theorem 3.26.
Thus, because KS has a basis indexed by closed webs with flows as we have recalled
in Remark 2.13, we conclude that the linear independence of F suffices to show that
the set F forms a basis.

To see linear independence we use Proposition 4.17 and pull F back to the cyclo-
tomic Hecke algebra. We denote the pullback (by not removing the internal faces)
restricted to the datum

(�λ, ι(u f ) ∈ Std(�λ), ι(v f ′) ∈ Std(�λ))

by ψ−1(F).
Since Hu and Mathas showed that their definition gives rise to a basis, we conclude

that the corresponding set ψ−1(F) is linear independent.
In 4.3.3. of [39] Lauda, Queffelec and Rose showed that all the foam relations in

F(w) follow from certain relations in U(sln). Moreover, they argue that the sl3-foam
category can be obtained from U(sln) by modding out certain relations involving
bubbles of weight 3. But our convention to only use 3-multitableaux ensures that the
elements of ψ−1(F) do not contain any of these relations, while all the other relevant
relations are true independent of n. Hence, a possible linear independence of F can not
be created by the foamation functor ψ (which is an additive functor) nor by modding
out by the cyclotomic relation 2.2.

Thus, the set F must be linear independent, since, as Khovanov showed in Propo-
sition 7 and 8 of [28], the internal face removals give rise to a isomorphism of graded
vector spaces and the foams without the internal face removals form a linear inde-
pendent set for a version of the sl3-web algebra between the webs without the face
removals.

That F is homogeneous follows from Lemma 4.15. ��
Remark 4.19 Hu and Mathas proof that their set is linear independent relies on the
connection to another basis that is known for the cyclotomic Hecke algebra, the so-
called Dipper, James and Mathas standard basis which can be seen as a “higher
version” of the classical construction of the basis for Specht modules. The proof that
this standard basis is in fact a basis is non-trivial, see Dipper, James and Mathas [16].

In our framework, since everything is inductively build from small cases, it is
possible to proof most statements by an inductive case-by-case check. In fact, there is
such an alternative proof of Theorem 4.18 in our framework.

The alternative “by hand” proof of the statement 4.18 is roughly as follows. One
does induction on the number of faces of u∗v to conclude that the restriction of F to
u Kv gives a basis of latter. The small cases can all be verified easily and the induction
step is similar to the induction that shows that the basis from Remark 2.17 is in fact
a basis. To be more precise, all the three basic moves, called circle removal, digon
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removal and square removal, have a local inverse. One then verifies “by hand” all
possible cases how a face in u∗v with flow can look like. If one does so, then one
realizes that the growth algorithm for foams has a summand that looks like one of
these face removals and all the other summands are killed by the inverse. To see this
one does a case-by-case check. It should be noted that Lemma 4.14 ensures that the
growth algorithm “almost” remove faces anyway, since the face removing foams are
just local zips. One just have to be careful that sometimes not the right edges will be
unziped. But one can always use the relations DR, SqR and Dot Migration to show
that at least one of the summands is exactly the desired face removal (and the other is
killed by the inverse).

Hence, one can conclude that the set F is related by a non-singular change of base
matrix to the basis from Remark 2.17. But since there are a lot of cases to check, we
do not do it here.

We can reprove Brundan and Kleshchev’s graded dimension formula, i.e. Theorem
4.20 in [5], as a direct consequence of Theorem 4.18 in a very simple fashion for our
framework. Note that we see g(T�λ)K g(T�μ) in the following theorem by abuse of notation
as an analogue of the sl3-web algebra between the possible non-elliptic sl3-web given
by the extended growth algorithm from Definition 3.25.

Theorem 4.20 (Brundan and Kleshchev: Graded dimension formula) For 3-multi-
partitions �λ, �μ of c(S), we have (where {n} is the shift by the number of strands)

dimq e(�λ)Rc(S)e( �μ){n} = dimq g(T�λ)K g(T�μ){n} =
∑

�T1∈Std(�λ)
�T2∈Std( �μ)

qdegB K W (
�T1)+degB K W (

�T2).

Proof The second equality follows from the fact that Brundan, Kleshchev and Wang’s
degree is given by minus the weight of the corresponding flow, i.e. Proposition 3.31,
and the fact that the q-degree of the sl3-web algebra is given by the Kuperberg bracket
(up to the shift {n})—even if the underlying web space consists of non-elliptic sl3-
webs.

The first equality follows from Proposition 4.17 and Theorem 4.18 if we regard
g(T�λ)K g(T�μ) as an analogue of the usual KS with a possible different underlying sl3-
web space. The details of this slightly modified version of the sl3-web algebra can be
verified as in the usual case demonstrated in [44]. ��

4.3 Cellularity

We are able to show now that F is a cellular basis of KS . First we recall the definition
of a graded cellular algebra due to Graham and Lehrer [23] in the ungraded setting and
Hu and Mathas [25] in the graded setting. Note that graded always means Z-graded.

Definition 4.21 (Graham–Lehrer, Hu–Mathas) Suppose A is a graded free alge-
bra over some field K of finite rank. A graded cell datum is an ordered quintuple
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(P, T ,C, i, deg), where (P,�) is the weight poset, T (λ) is a finite set for all λ ∈ P,
i is an involution of A and C is an injection

C :
∐

λ∈P

T (λ)× T (λ) → A, (s, t) �→ cλst .

Moreover, the degree function deg is given by

deg :
∐

λ∈P

T (λ) → Z.

The whole data should be such that the cλst form a homogeneous K -basis of A with
i(cλst ) = cλts and deg(cλst ) = deg(s)+ deg(t) for all λ ∈ P and s, t ∈ T (λ). Moreover,
for all a ∈ A

acλst =
∑

u∈T (λ)
ra(s, u)cλut (mod A�λ). (4.3)

Here A�λ is the K -submodule of A spanned by the set {cμst | μ� λ and s, t ∈ T (μ)}.
An algebra A with such a quintuple is called a graded cellular algebra and the cλst

are called a graded cellular basis of A (with respect to the involution i).

We are now able to show that

F = {F �λ
ι(u f ),ι(v f ′ ) ∈ KS | (S, J, u f , v f ′), J ∈ JS, u f , v f ′ ∈ B J

S }.

is a graded cellular basis.

Theorem 4.22 (Graded cellular basis) The algebra KS is a graded cellular algebra
in the sense of Definition 4.21 with the cell datum

(P3
c(S), ι(B

J
S ),F,

∗, degBKW),

where P3
c(S) is the set of all multipartitions of c(S) with at most three non-zero entries

that all are gathered in the last three entries ordered by the dominance order � from
Definition 2.3, ι(B J

S ) is the image of the set of all webs given by the LT-algorithm
together with flows, the involution ∗ on the foam space and the degree degBKW on the
tableaux in ι(B J

S )
4.

Proof We have to prove four statements. To shorten our notation in the following
equations, we write u f = ι(u f ), v f ′ = ι(v f ′) and B J

S = ι(B J
S ) as a shorthand and

hope the reader does not get confused since the left hand side is a flow on a web and the

4 Note that the formulation can be done alternatively using sl3-web notions as described in the sections of
3.
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right hand side is a multitableau. Moreover, the scalars below should all only depend
on the element on the left side of the multiplication.

(a) Each F �λ
u f ,v f ′ is homogeneous of degree

degq(F
�λ
u f ,v f ′ ) = degBKW(u f )+ degBKW(v f ′).

(b) The set F is a basis of the graded C-algebra KS .
(c) The involution satisfies

(F �λ
u f ,v f ′ )

∗ = F �λ
v f ′ ,u f

.

(d) Given �λ, �μ ∈ P3
c(S), u f , v f ′ ∈ Std(�λ) and ũ f̃ , ṽ f̃ ′ ∈ Std( �μ), then there exist

scalars ru f ,w f ′′ which do not depend on v f ′ , such that

F �μ
ũ f̃ ,ṽ f̃ ′ F

�λ
u f ,v f ′ =

∑

w f ′′ ∈B J
S

ru f ,w f ′′ F
�λ
w f ′′ ,v f ′ (mod K �λ

S ). (4.4)

In fact most of the statements follow directly from the work we have already done
in the sections before. To be more precise, points (a)+(b) are true because of Lemma
4.15 and Theorem 4.18, while the statement (c) is just Lemma 4.16. Hence, we only
have to verify (d), i.e. Eq. 4.4 (it is worth noting that, by linearity, it is sufficient to
show Eq. 4.4 to get Eq. 4.3).

We want to use the foamation functor ψ again together with Proposition 4.17 and
the fact that Hu and Mathas proved [25] that their basis is cellular with almost the
same poset.

In fact, the difference between the poset Hu and Mathas use is that they consider
all multipartitions of c(S) instead of only the 3-multipartitions. But our convention
how we see the 3-multipartitions �λ as such multipartitions, i.e. embed into the last
three entries, ensures that all multipartitions �ν with a node left to the last three entries
are bigger in the dominance order, i.e. �ν � �λ, than all 3-multipartitions. On the
same side the foamation functor and our conventions how to place dots kills all those
multipartitions �ν, since the first (that is leftmost) node in T�ν will have three or more
addable nodes of the same residue. Thus, the corresponding foam e(�ν)d(�ν) will have
a face with three or more dots and is therefore killed anyway. Hence, we do not need
to consider them in order to prove Eq. 4.4.

Another difference is the fact that we have to use additional face removals, because
otherwise, as explained before, we would not have the Kuperberg basis as an under-
lying web basis. But since the corresponding removals are just digon and theta foam
removals, it is quite easy to handle them and the crucial case (where we need the
underlying combinatorics of the cyclotomic Hecke framework) is in fact the cases
ι(u f ) = ι(u f )

′ and ι(ṽ f̃ ′) = ι(ṽ f̃ ′)′ and we can prove the rest by induction on the
number n(face) of extra needed face removals in the multiplication of the middle part
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F∗
ṽ f̃ ′ Fu f . Moreover, from now on we consider the case u = ṽ, since the other case is,

by our multiplication convention, zero anyway.
Case n(face) = 0: So given the two elements F �μ

ũ f̃ ,ṽ f̃ ′ ,F
�λ
u f ,v f ′ ∈ F, we can pull

them back to the HM-basis. We denote the pullbacks by ψ �μ
ũ f̃ ,ṽ f̃ ′ and ψ �λ

u f ,v f ′ (and in

a similar way all the other HM-basis elements). By Hu and Mathas results we almost
obtain the result we want, i.e.

ψ
�μ

ũ f̃ ,ṽ f̃ ′ψ
�λ
u f ,v f ′ =

∑

�T ∈Std(�λ)
ru f , �Tψ

�λ
�T ,v f ′ (mod R��λ

c(S)). (4.5)

Moreover, by Proposition 3.9, we can be sure that all possible 3-multipartitions �λ
have an interpretation as some web w with boundary S together with some flow f .
Those, by Lemma 4.13 and Theorem 4.18, give always rise to a non-zero foam in our
basis F given by applying the foamation to a HM-basis element with the same �λ by
Proposition 4.17. That is, there can not be any gaps in the partial ordering � on the
side of the foams, i.e. we can restrict our attention to the part of Eq. 4.4 and 4.5 with
�λ as the underlying 3-multipartition.

In fact the only problem is the appearance of the full set Std(�λ), because not all of
them give rise to a web w f ∈ B J

S , since there are in general much more fillings for
such tableaux than flows on webs. But it turns out, by locality of the construction, that
this can only happen on intermediate layers of the foams (where this is allowed by
construction), but not at the top or bottom. To be more precise, after translating Eq.
4.5 to the foam picture, we obtain almost Eq. 4.4, i.e. we have

F �μ
ũ f̃ ,ṽ f̃ ′ F

�λ
u f ,v f ′ =

∑

�T ∈Std(�λ)
ru f , �T F �λ

�T ,v f ′ (mod K �λ
S ). (4.6)

But the �T ∈ Std(�λ), which in general does not correspond to a flow on a web in the
LT-basis, certainly, by the extended growth algorithm from Definition 3.25 and the
result of Theorem 3.26, corresponds to a web with flow w f and boundary pair (S, J ).
But, due to the definition of the multiplication of KS , this web has to be ũ, since we
have

ũ K ṽ ⊗ u Kv → ũ Kv

and ũ Kv is closed under addition. Hence, we have

ru f , �T =
{

r̃u f , if g( �T ) = ũ f̃ ,

0, if g( �T ) = fw with w �= ũ,
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where the scalar r̃u f is a certain (we have no further control here) sum of scalars
ru f ,w̃ f ′′ for some webs w̃, but, and that is the crucial observation, all the webs w̃ are
non-elliptic.

To summarise, we see that Eq. 4.6 can be restricted to

F �μ
ũ f̃ ,ṽ f̃ ′ F

�λ
u f ,v f ′ =

∑

w f ′′ ∈B J
S

ru f ,w f ′′ F
�λ
w f ′′ ,v f ′ (mod K �λ

S ),

which proves the point (d).
Case n(face) �= 0: Since internal theta removals are completely independent from

the rest, we can freely ignore them, since they do not affect point (d) at all.
First note that the digon removal all commute with each other because they exists

as digons in the web ṽ = u and are therefore not neighbors) as we see below.

(4.7)

Note that the case where a certain digon removal on the left side corresponds to a
mirror digon removal on the right side follows easy from induction since we would
get a local picture as pictured in Eq. 4.2.

With the observation diplayed in 4.3 above, we can then slide such a pair to the
right side (or the left) such that all other digon removals are left to the fixed pair. This
local pair can then be regarded as a legal move for some other flow on the middle web
ṽ = u by Lemma 4.14. Therefore, we get the requirement (d) without difficulties by
induction.

Note that, by construction, all digon removals are always mirrored on the other
side, since we assume that ṽ = u. Thus, we obtain the statement by induction.

It should be noted that the scalars are in general, due to our case-by-case argumen-
tation from above, not the same for the cyclotomic Hecke algebra and KS . ��
Remark 4.23 It is worth noting that Theorem 4.22 can also be verified (at least in
theory) “by hand” again, i.e. without using the fact that HM-basis is cellular. Latter
relies on the highly non-trivial fact that the standard basis of Dipper, James and Mathas
[16] is cellular. Thus, on “higher” Specht theory.

The cellularity proof “by hand” can be done in a similar vein as Brundan and
Stroppel did for the sl2 case [8]. Of course the number of case one has to check is
bigger in our context.
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To be slightly more precise, one can check how the local behaviour of the compo-
sition

F �μ
ũ f̃ ,ṽ f̃ ′ F

�λ
u f ,v f ′

changes the 3-multipartition �λ. Due to the locality of the construction, we only have
to consider compositions of the five cases from Lemma 4.14 and see that the either
increase the number of dots (which corresponds to a higher or equal order in the
dominance order �). Hence, one only has to check that the one of the same order do
not depend on ũ f̃ . But this follows again from the locality of the construction, since
we can pull the middle, i.e. F∗

ṽ f̃ ′ Fu f , of

F �μ
ũ f̃ ,ṽ f̃ ′ F

�λ
u f ,v f ′ = Fũ f̃

e( �μ)d( �μ)F∗
ṽ f̃ ′ Fu f e(�λ)d(�λ)F∗

v f ′

by shifting it to the left side using

F(τik (aik , bik ))e(�λ) = e(τik · �λ)F(τik (aik , bik )).

This will, by construction, in the end correspond to a linear combination of foams as
in 4.6, since we do not affect the right side at all and due to the fact that each each
such summand will correspond as a consequence of Theorem 3.26 to a basis element.

As a direct consequence of the cellularity Theorem 4.22 we construct a complete
set of pairwise non-isomorphic, graded, simple KS-modules and a complete set of
pairwise non-isomorphic, graded, projective indecomposable KS-modules.

Let us denote the graded cell modules5 (also called Specht modules in our context),
whose existence is guaranteed by Theorem 4.22, for �λ ∈ P3

c(S) by S�λ and their heads
or tops by

D
�λ = S

�λ/rad(S
�λ)

and the projective cover of the D�λ by P �λ. Moreover, define P3
0 = {�λ ∈ P3

c(S) | D�λ �=
0}.

By an abstract theorem about graded cellular algebras, due to Graham and Lehrer
[23] in the ungraded stetting and Hu and Mathas [25] is the graded setting, we get the
following theorem.

Theorem 4.24 The sets

D = {D
�λ{k} | �λ ∈ P3

0, k ∈ Z} and P = {P
�λ{k} | �λ ∈ P3

0, k ∈ Z}
form a complete set of pairwise non-isomorphic, graded, simple KS-modules and pair-
wise non-isomorphic, graded, projective indecomposable KS-modules respectively.

5 A definition can be found in [25]. We only note that the action is given by the scalars ru f ,w f ′′ from Eq.
4.4.
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It is worth noting that a direct consequence of Theorem 4.24 is that the set P3
0 is noting

else than the set of all semi-standard tableau Stds(3�) by Corollary 2.11 in [25], since
it is well-known that the elements of BS , which can be identified with the elements
of Stds(3�), enumerate the set P , i.e. forgetting the grading. These multipartitions are
sometimes called Kleshchev multipartitions and it is in general highly non-trivial to
give an explicit characterization which multipartitions are Kleshchev multipartitions,
see [25].

Remark 4.25 We note that one can closely follow the approach indicated in [43], i.e.
using the strong 2-representation (in the sense of Cautis and Lauda [14]) on the abelian
category W(3�) (which can be restricted to the additive category W p

(3�)
) defined in

[44], where W(3�) and W p
(3�)

are the categories of all finite dimensional, graded, unital
K3�-modules and of all finite dimensional, graded, unital, projective K3�-modules
respectively, to show that the bases D and P (note that K3� , as a direct sum of graded
cellular algebras, is itself a graded cellular algebra) of the (split) Grothendieck groups

K (⊕)
0 (W(p)

(3�)
)Q(q) = K (⊕)

0 (W(p)
(3�)
)⊗Z[q,q−1] Q(q)

corresponds to the canonical basis of the co-standard form of the sl3-web space W ∗
(3�)

and to the dual canonical basis of the sl3-web space W(3�) respectively (up to shifts as
explained by Mackaay in [43]). This can be verified almost similar to the approach of
Mackaay in [43], since his arguments are based on Brundan and Kleshchev [5] proof
about the graded Specht modules ST of

V� = R�-Modgr and V p
� = R�-pModgr,

where R� is the cyclotomic KL-R algebra from Definition 2.7, which can be identified
with the corresponding ones coming from Hu and Mathas graded cellular basis, due
to Corollary 5.10 in [25].
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