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Abstract Classical planar functions are functions from a finite field to itself and give
rise to finite projective planes. They exist however only for fields of odd character-
istic. We study their natural counterparts in characteristic two, which we also call
planar functions. They again give rise to finite projective planes, as recently shown
by the second author. We give a characterisation of planar functions in characteris-
tic two in terms of codes over Z4. We then specialise to planar monomial functions
f (x) = cxt and present constructions and partial results towards their classification.
In particular, we show that t = 1 is the only odd exponent for which f (x) = cxt is
planar (for some nonzero c) over infinitely many fields. The proof techniques involve
methods from algebraic geometry.
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1 Introduction

A function f : Fq → Fq is planar if

x �→ f (x + ε) − f (x) (1)
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is a permutation of Fq for each ε ∈ F
∗
q . Planar functions have been introduced by

Dembowski and Ostrom [4] to construct finite projective planes and arise in many
other contexts. For example, Ganley and Spence [8] showed that planar functions
give rise to certain relative difference sets, Nyberg and Knudsen [23], among others,
studied planar functions (under the synonym perfect nonlinear functions) for appli-
cations in cryptography, and Carlet, Ding, and Yuan [3], among others, used planar
functions to construct error-correcting codes.

Planar functions cannot exist in characteristic two since, if q is even and x is a
solution to f (x + ε)−f (x) = a for a ∈ Fq , then so is x + ε. This is the motivation to
define a function f : Fq → Fq to be almost perfect nonlinear if (1) is a 2-to-1 map.
Such functions have also been studied extensively for applications in cryptography
and coding theory (see Carlet, Charpin, and Zinoviev [2], for example). However,
there is no apparent link between almost perfect nonlinear functions and finite pro-
jective planes.

Recently, the second author proposed [26] a concept to overcome the problem that
there is no planar function in characteristic two. The definition of a planar function
has to be modified as follows.

Definition 1.1 A function f : F2n → F2n is planar if

x �→ f (x + ε) + f (x) + εx (2)

is a permutation of F2n for each ε ∈ F
∗
2n .

Such functions share many of the properties of planar functions in odd character-
istic. The next section, which is independent of the rest of this paper, provides further
background on planar functions in characteristic two and discusses connections to
finite geometries and coding theory.

Every function from F2n to itself can be uniquely written as a polynomial func-
tion of degree strictly less than 2n. We consider the simplest nontrivial polynomial
functions, namely monomial functions x �→ cxt for some c ∈ F

∗
2n and some inte-

ger t . Such functions are often preferred in applications. We are interested in those
exponents t that give rise to planar functions.

Definition 1.2 An integer t satisfying 0 < t < 2n is a planar exponent of F2n if the
function x �→ cxt is planar on F2n for some c ∈ F

∗
2n .

Trivially, 2k is a planar exponent of all fields F2n satisfying n > k. A nontrivial
example is given in Theorem 3.1, which shows that 2k +1 is a planar exponent of F4k .
In an earlier version of this paper, we conjectured that 4k(4k +1) is a planar exponent
of F64k . This was subsequently proved by Scherr and Zieve [25]. We conjecture that
these examples, summarised in Table 1, form the complete list of planar exponents.

As in odd characteristic, the classification of planar monomials in characteristic
two seems to be a challenging problem. This motivates us to study the relaxed prob-
lem of classifying those numbers that are planar exponents of F2n for infinitely many
n. The only known such numbers are the powers of 2 and we conjecture that there
are no more. Our main result is the following.
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Table 1 Conjectured complete
list of planar exponents of F2n Exponent t Condition Reference

2k None Trivial

2k + 1 n = 2k Theorem 3.1

4k(4k + 1) n = 6k [25, Theorem 1.1]

Theorem 1.3 If t is an odd planar exponent of F2n for infinitely many n, then t = 1.

The problem of classifying the numbers that are planar exponents of F2n for in-
finitely many n parallels the problem of classifying monomial functions x �→ xt on
F2n that are almost perfect nonlinear for infinitely many n. To attack this problem,
Janwa, McGuire, and Wilson [15] proposed to use ideas from algebraic geometry.
These ideas were further developed by Jedlicka [16] and Hernando and McGuire [11],
leading to a complete solution. The same approach has been used by Hernando and
McGuire [12] to prove a conjecture on monomial hyperovals in projective planes and
by Leducq [18] and Hernando, McGuire, and Monserrat [13] to give partial results
towards a classification of monomial functions x �→ xt on Fpn (with p odd) that are
planar for infinitely many n (which was recently completed by Zieve [27] using dif-
ferent techniques). We use a similar approach to prove Theorem 1.3, though our proof
requires several extra ideas.

2 Background and motivation

2.1 Relative difference sets and finite geometries

Let G be a finite group and let N be a subgroup of G. A subset D of G is a relative
difference set with parameters (|G|/|N |, |N |, |D|, λ) and forbidden subgroup N if the
list of nonzero differences of D comprises every element in G\N exactly λ times. We
are interested in relative difference sets D with parameters (q, q, q,1) and a normal
forbidden subgroup, in which case a classical result due to Ganley and Spence [8,
Thm. 3.1] shows that D can be uniquely extended to a finite projective plane.

It is known (see [7, 17]) that, for even q , a relative difference set with parameters
(q, q, q,1) in an abelian group necessarily satisfies q = 2n for some integer n and is
a subset of Zn

4 (where Z4 = Z/4Z) and the forbidden subgroup is 2Zn
4. This fact was

the motivation for the second author to study [26] such relative difference sets, which
then led to the notion of planar functions over fields of characteristic two.

We shall follow an approach that is slightly different from that in [26] and identify
Z

n
4 with the additive group of the Galois ring Rn of characteristic 4 and cardinality

4n. We recall some basic facts about such Galois rings (see [22] or [10], for example).
The unit group Rn \ 2Rn of Rn contains a cyclic subgroup Γ (Rn)

∗ of size 2n − 1 and
Γ (Rn) = Γ (Rn)

∗ ∪ {0} is called the Teichmuller set in Rn. We define addition on
Γ (Rn) by

x ⊕ y = x + y + 2
√

xy (3)
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(where + is addition in Rn). Then (Γ (Rn),⊕, · ) is a finite field with 2n elements [22,
Statement 2]. Every y ∈ Rn can be written uniquely in the form y = a + 2b for
a, b ∈ Γ (Rn).

It is now an easy exercise to show that a relative difference set in Rn with param-
eters (2n,2n,2n,1) can always be written as

D = {
x + 2

√
f (x) : x ∈ Γ (Rn)

}
, (4)

where f is some function from Γ (Rn) to itself. The following result characterises
the functions f for which (4) is a relative difference set.

Theorem 2.1 The set D, given in (4), is a relative difference set with parameters
(2n,2n,2n,1) and forbidden subgroup 2Rn if and only if f is planar.

Proof By definition, D is a relative difference set with parameters (2n,2n,2n,1) and
forbidden subgroup 2Rn if and only if, for every c ∈ R \ 2R, the equation

(
x + 2

√
f (x)

) − (
y + 2

√
f (y)

) = c

has exactly one solution (x, y) ∈ Γ (Rn) × Γ (Rn). Equivalently, writing c = a + 2b

for a ∈ Γ (Rn)
∗ and b ∈ Γ (Rn), the two equations

x ⊕ y = a,
√

f (x) ⊕ √
f (y) ⊕ √

xy ⊕ y = b

hold simultaneously for exactly one pair (x, y) ∈ Γ (Rn) × Γ (Rn). This in turn holds
if and only if the mapping

x �→ f (x ⊕ a) ⊕ f (x) ⊕ ax

is a permutation of Γ (Rn) for every a 	= 0. �

Remark Theorem 2.1 is essentially equivalent to [26, Thm. 2.1], which avoids using
Galois rings at the cost of a more delicate proof.

Let χ : Rn → C be a character of the additive group of Rn. For later reference, we
recall the following standard result (see [24, Chap. 1], for example): D is a relative
difference set in Rn with forbidden subgroup 2Rn if and only if

∣
∣∣∣∣

∑

x∈D

χ(x)

∣
∣∣∣∣

2

=

⎧
⎪⎨

⎪⎩

4n for χ principal,

0 for χ not principal, but principal on 2Rn,

2n otherwise.

(5)

2.2 Coding theory

We assume that the reader is familiar with the basic terminology of coding theory, in
particular of the theory of codes over Z4. Otherwise, we advise to consult the seminal
paper [10].
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Table 2 Weight distribution of
(Cf )⊥ for odd n Weight Frequency

0 1

2n − 2(n−1)/2 2n+1(2n − 1)

2n 2n+2 − 2

2n + 2(n−1)/2 2n+1(2n − 1)

2n+1 1

Let f be a function from F2n to itself satisfying f (0) = 0 and let α be a generator
of F∗

2n . It is well known (see [2, Thm. 5], for example) that for n ≥ 4 the code over
F2 having parity check matrix

[
1 α α2 · · · α2n−2

f (1) f (α) f (α2) · · · f (α2n−2)

]
(6)

has minimum (Hamming) distance 3, 4 or 5, where the value 5 occurs if and only if
f is almost perfect nonlinear. We shall provide a similar characterisation for planar
functions in characteristic two.

Let f be a function from Γ (Rn) to itself and let β be a generator of Γ (Rn)
∗.

Consider the code Cf over Z4 having parity check matrix

[
1 1 1 · · · 1

2
√

f (0) 1 + 2
√

f (1) β + 2
√

f (β) · · · β2n−2 + 2
√

f (β2n−2)

]
.

This code and its dual are free Z4-modules of rank 42n−n−1 and 4n+1, respectively.
We remind the reader that the Lee weights of 0,1,2,3 ∈ Z4 are 0,1,2,1, respec-

tively, and the Lee weight wtL(c) of c ∈ (Z4)
N is the sum of the Lee weights of its

components. This weight function defines a metric in (Z4)
N , called the Lee distance.

Write C for the code Cf when f is identically zero (in which case f is planar).
The dual code C⊥ is the Z4-Kerdock code described in [10]. Let

φ : (Z4)
N → (F2)

2N

be the Gray map, which defines an isometry between (Z4)
N , equipped with the

Lee distance, and (F2)
2N , equipped with the Hamming distance. Then, for n ≥ 3

odd, φ(C⊥) is the classical Kerdock code and φ(C) has the same parameters as the
Preparata code (see [10] for details on these codes).

The Lee weight distribution of C⊥ has been determined in [10]. The following
more general result gives a characterisation of planar functions.

Theorem 2.2 The code (Cf )⊥ has the same Lee weight distribution as C⊥ if and
only if f is planar. In particular, if f is planar, the Lee weight distribution of (Cf )⊥
is given in Table 2 for odd n and in Table 3 for even n.
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Table 3 Weight distribution of
(Cf )⊥ for even n Weight Frequency

0 1

2n − 2n/2 2n(2n − 1)

2n 2n+1(2n + 1) − 2

2n + 2n/2 2n(2n − 1)

2n+1 1

Proof Let ω be a primitive fourth root of unity. If c = (c1, . . . , cN) is an element of
(Z4)

N , then its Lee weight satisfies

wtL(c) = N − Re

(
N∑

i=1

ωci

)

. (7)

Let T : Rn → Z4 be the absolute trace function on Rn. We shall index elements of
codewords by Γ (Rn). For a ∈ Rn and b ∈ Z4, consider the codeword

ca,b = (
T

(
a
(
x + 2

√
f (x)

)) + b
)
x∈Γ (Rn)

.

By a folklore generalisation of Delsarte’s theorem [20, p. 208] to codes over Z4, these
are exactly the 4n+1 codewords of (Cf )⊥. From (7) we have

wtL(ca,b) = 2n − Re
(
ωbSa

)
, (8)

where

Sa =
∑

x∈Γ (Rn)

ωT (a(x+2
√

f (x))).

Since z �→ ωT (az) are exactly the characters of the additive group of Rn, by Theo-
rem 2.1 and (5), the function f is planar if and only if

|Sa|2 =

⎧
⎪⎨

⎪⎩

4n for a = 0,

0 for a ∈ 2Rn \ {0},
2n for a ∈ Rn \ 2Rn.

(9)

Now, let f be planar. Using (8), we easily get the Lee weight distribution of the
codewords ca,b when a ∈ 2Rn and b ∈ Z4. Next assume that a ∈ Rn \ 2Rn and write
Sa = X + ωY for integers X and Y . By Jacobi’s two-square theorem, the only solu-
tions to the Diophantine equation X2 + Y 2 = 2n are

(X,Y ) =
{

(±2(n−1)/2,±2(n−1)/2) for odd n,

(0,±2n/2) or (±2n/2,0) for even n.

Therefore, for odd n, we have

Sa = ±2(n−1)/2 ± 2(n−1)/2ω.
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Hence, as b ranges over Z4 and a ∈ Rn \ 2Rn is fixed, the expression Re(ωbSa) takes
on each of the values ±2(n−1)/2 twice. One can then get the Lee weight distribution
from (8). Likewise, for even n, we have

Sa = ±2n/2 or ± 2n/2ω.

Hence, as b ranges over Z4 and a ∈ Rn \ 2Rn is fixed, the expression Re(ωbSa) is
zero twice and takes on each of the values ±2n/2 once. The Lee weight distribution
follows from (8).

Now, if f is not planar, then it easily follows from (8) and the characterisation (9)
of planar functions that the Lee weight distribution of (Cf )⊥ cannot coincide with
that of C⊥. �

For odd n, we have the following alternative characterisations of planar functions.

Theorem 2.3 For odd n ≥ 3, the code Cf has minimum Lee distance 4 or 6, where
the value 6 occurs if and only if f is planar.

Proof Recall that the type of a codeword is defined as the enumerator of its nonzero
entries. For example a codeword of type 1224 equals 1 at two positions and equals 2
at four positions.

Notice that a nonzero codeword in Cf of Lee weight at most 3 implies that there
exists a codeword in Cf of type 21, 22, or 23. Such codewords however cannot exist
in Cf (for the same reason as the minimum distance of the extended Hamming code
equals 4). Hence the minimum Lee distance of Cf is at least 4.

If f is planar, the Lee weight distribution of Cf is independent of f by Theo-
rem 2.2 and a MacWilliams-type identity (see [10, Sect. II.B], for example). Hence,
if f is planar, the minimum Lee distance of Cf equals that of C, which is 6 [10].

We complete the proof by assuming that f is not planar and show that Cf then
contains a codeword of type 12(−1)2, and so has minimum distance at most 4. The
code Cf contains a codeword of type 12(−1)2 if and only if there exist distinct ele-
ments u,v, x, y in Γ (Rn) satisfying simultaneously the following two equations over
Rn:

u + x = v + y,

u + 2
√

f (u) + x + 2
√

f (x) = v + 2
√

f (v) + y + 2
√

f (y).

By the definition (3) of addition in Γ (Rn), these equations are equivalent to the fol-
lowing two equations over Γ (Rn):

u ⊕ x = v ⊕ y,

ux ⊕ f (u) ⊕ f (x) = vy ⊕ f (v) ⊕ f (y).

From the first equation we infer that there exists z ∈ Γ (Rn) such that u = v ⊕ z and
y = x ⊕ z. The second equation then becomes

f (v) ⊕ f (v ⊕ z) ⊕ vz = f (x) ⊕ f (x ⊕ z) ⊕ xz.

Since f is not planar, this equation has a solution (v, x, z), where v and x are distinct
and z 	= 0. One then verifies that u,v, x, y are also distinct. �
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A consequence of Theorem 2.3 is the following.

Corollary 2.4 For odd n ≥ 3, the code φ(Cf ) punctured in one (arbitrary) coor-
dinate has minimum distance 3, 4, or 5, where the value 5 occurs if and only if f

is planar.

Proof The only part that is not immediate from Theorem 2.3 is that the code cannot
have minimum distance 6. But this value cannot occur since the code then violates a
version of the Johnson bound [9]. �

Let Df be the code over F2 with parity check matrix (6). If f is almost perfect
nonlinear, then Df has parameters (2n − 1,22n−2n−1,5) for n ≥ 4. In contrast, by
Corollary 2.4, if f is planar, then φ(Cf ) punctured in one coordinate has parameters
(2n − 1,22n−2n,5) for even n ≥ 4, and so contains twice as many codewords as Df .
If f is planar, then φ(Cf ) punctured in one coordinate meets a version of the Johnson
bound, and so is nearly perfect [9].

3 Planar monomial functions

We begin with providing a nontrivial example of planar monomial functions, in which

Trm(x) = x + x2 + · · · + x2m−1

denotes the trace function on F2m .

Theorem 3.1 Let c ∈ F
∗
2k be such that Trk(c) = 0. Then the function

x �→ cx2k+1

is planar on F4k .

Proof We have to show that, for each ε ∈ F
∗
4k , the mapping

x �→ c(x + ε)2k+1 + cx2k+1 + εx

is a permutation of F4k , or equivalently, the linear mapping

x �→ x2k

ε + xε2k + εx/c (10)

is a permutation of F4k . This holds if the kernel of the mapping (10) is trivial. Hence,
it is enough to show that

x2k−1 = ε2k−1 + 1/c

has no solution (x, ε) in F
∗
4k × F

∗
4k . Let Γ be the cyclic subgroup of F∗

4k with order

2k + 1. We show that
Γ ∩ (Γ + 1/c) = ∅,

which will prove the theorem.
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Let y be in Γ . Then y2k+1 = 1 and, since c ∈ F
∗
2k ,

(y + 1/c)2k+1 = 1 + 1/c2 + 1/(cy) + y/c. (11)

Now, suppose, for a contradiction, that y also belongs to Γ + 1/c. Then the left-hand
side of (11) equals 1, and thus

y2 + y/c + 1 = 0. (12)

We may set z = yc to transform this quadratic equation into the standard form z2 +
z + c2 = 0, which has two solutions in F2k if and only if Trk(c2) = 0 [20, Chap. 9,
Thm. 15]. Since Trk(c) = 0 and c ∈ F2k , we find that y ∈ F2k . But y is also in Γ , so
that

1 = y2k+1 = y2,

contradicting (12). �

We conjecture that the only planar exponents of F2n are the trivial examples 2k

and those identified in Theorem 3.1 and [25, Thm. 1.1].

Conjecture 3.2 If t is a planar exponent of F2n , then t is one of the values given in
Table 1.

The following partial answer to Conjecture 3.2 is easy to prove.

Proposition 3.3 Let t be an integer satisfying gcd(t − 2,2n − 1) = 1. If t is a planar
exponent of F2n , then t is a power of 2.

Proof Suppose that x �→ cxt is planar on F2n for some c ∈ F
∗
2n . Then

x �→ c(x + ε)t + cxt + εx

is a permutation of F2n for each ε ∈ F
∗
2n . Substituting y = x/ε, we see that

y �→ (y + 1)t + yt + (
ε2−t /c

)
y

is a permutation of F2n for each ε ∈ F
∗
2n . Hence, for each ε ∈ F

∗
2n , the equation

(y + 1)t + yt + (z + 1)t + zt = (
ε2−t /c

)
(y + z)

has no solution (x, y) in F2n × F2n satisfying y 	= z. Equivalently, writing

D =
{

(y + 1)t + yt + (z + 1)t + zt

y + z
: y, z ∈ F2n , y 	= z

}
,

we have D ∩ {ε2−t /c : ε ∈ F
∗
2n} = ∅. But since t − 2 is coprime to 2n − 1, we have

{ε2−t /c : ε ∈ F
∗
2n} = F

∗
2n , hence D = {0}. Therefore, (y + 1)t + yt is constant for all

y ∈ F2n , which implies that t is a power of two. �
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Remark Proposition 3.3 corresponds to case (iv) of [1, Thm. 1.1].

We now focus on the relaxed problem of classifying the numbers that are planar
exponents of F2n for infinitely many n. The only known such numbers are the powers
of 2 and we have the following weaker form of Conjecture 3.2.

Conjecture 3.4 If t is a planar exponent of F2n for infinitely many n, then t is a
power of 2.

Our main result, Theorem 1.3, is a partial answer to this conjecture. This result
will be proved in the remainder of this paper. The method is outlined below.

Let f : F2n → F2n be of the form f (x) = cxt for some c ∈ F
∗
2n and let ε ∈ F

∗
2n .

Then the condition that (2) is a permutation is equivalent to the condition that the
polynomial

c(U + ε)t + c(V + ε)t + cUt + cV t + ε(U + V )

has no zeros (u, v) over F2n satisfying u 	= v. Substituting U = εX and V = εY , we
see that this condition is in turn equivalent to the condition that the polynomial

(X + 1)t + (Y + 1)t + Xt + Y t + a(X + Y) (13)

has no zeros (u, v) over F2n satisfying u 	= v, where a = ε2−t /c. The polynomial (13)
is divisible by X + Y . We are therefore interested in the zeros of the polynomial

Ft,a(X,Y ) = (X + 1)t + (Y + 1)t + Xt + Y t + a(X + Y)

X + Y
(14)

(which however could still have zeros on the line X + Y ). We consider the affine
plane curve defined by Ft,a (and follow the usual convention to denote the curve and
a defining polynomial by the same symbol). Then, defining a subset of F2n by

An = {
ε2−t /c : ε ∈ F

∗
2n

}
, (15)

the function x �→ cxt is planar on F2n if and only if the curve Ft,a has no rational
points (u, v) over F2n satisfying u 	= v for some a ∈An.

The number of rational points on a curve can be estimated using Weil’s theorem,
which we quote in the following form (see [5, Thm. 5.4.1], for example).

Weil’s theorem Let F ∈ Fq [X,Y ] be an absolutely irreducible polynomial of degree
d and let N be the number of rational points over Fq on the affine plane curve F .
Then

|N − q − 1| ≤ (d − 1)(d − 2)
√

q + d.

A consequence of Weil’s theorem is the following.

Proposition 3.5 If Ft,a has an absolutely irreducible factor over F2n for some a 	= 1
in An and n is sufficiently large, then t is not a planar exponent of F2n .
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Proof Let a ∈ An satisfy a 	= 1 and suppose that Ft,a has an absolutely irreducible
factor over F2n . By the above discussion, it is sufficient to show that, if n is suffi-
ciently large, then the curve Ft,a has rational points (u, v) over F2n satisfying u 	= v.
Since the degree of Ft,a is at most t − 2, by Weil’s theorem the number of rational
points over F2n on the curve Ft,a is at least

2n − (t − 3)(t − 4)2n/2 − t + 3.

By taking partial derivatives of the numerator of Ft,a , we see that Ft,a is never divis-
ible by X + Y since a 	= 1 (this fails for t = 2s + 1 with s > 0 if we allow a = 1).
Hence, if (u,u) is on the curve Ft,a , then u is a root of a nonzero polynomial of
bounded degree. Therefore, if n is sufficiently large, the curve Ft,a has rational points
(u, v) over F2n satisfying u 	= v. �

In view of Proposition 3.5, Conjecture 3.4 is proved by showing that, when t is
not a power of 2, Ft,a has an absolutely irreducible factor over F2n for some a ∈ An

satisfying a 	= 1 and all sufficiently large n.
The following corollary to Lucas’ theorem will be useful.

Lemma 3.6 The binomial coefficient
(
m
k

)
is even if and only if at least one of the

base-2 digits of k is greater than the corresponding digit of m.

Instead of looking at Ft,a directly, we consider its homogenised version Ht,a(X,Y,

Z). If t is not a power of two, we find from Lemma 3.6 that

Ht,a(X,Y,Z) = (X + Z)t + (Y + Z)t + Xt + Y t + a(X + Y)Zt−1

Z2j
(X + Y)

, (16)

where j is the largest power of 2 that divides t . Of course, Ft,a has an absolutely
irreducible factor if and only if Ht,a has an absolutely irreducible factor. Our strategy
is to consider the projective plane curve defined by Ht,a over the algebraic closure F

of F2 and derive a contradiction to Bezout’s theorem (see [6, Sect. 5.3], for example)
under the assumption that Ht,a has no absolutely irreducible factor over F2n .

Bezout’s theorem Let A and B be two projective plane curves over an algebraically
closed field K, having no component in common. Then

∑

P

IP (A,B) = (degA)(degB),

where the sum runs over all points in the projective plane P
2(K).

Notice that IP (A,B) is the intersection number of A and B at P , whose precise
definition is neither recalled nor required in this paper. We shall rather use some
properties of the intersection number, which allows us to compute it in certain cases of
interest. In Sect. 4, we shall obtain general upper bounds on the intersection number
IP (A,B), where Ft,a = AB is an arbitrary factorisation of Ft,a and P is a point in
the plane P

2(F). The desired contradiction to Bezout’s theorem is then derived in
Sect. 5.
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4 Computation of intersection numbers

4.1 Some results on intersection numbers

Let F be an affine plane curve (which we always assume to be defined over an alge-
braically closed field), let P = (u, v) be a point in the plane, and write

F(X + u,Y + v) = F0(X,Y ) + F1(X,Y ) + F2(X,Y ) + · · · ,

where Fi is either zero or a homogeneous polynomial of degree i. The multiplicity of
F at P , written as mP (F), is the smallest integer m such that Fm 	= 0 and Fi = 0 for
i < m; the polynomial is Fm is the tangent cone of F at P . A divisor of the tangent
cone is called a tangent of F at P . The point P is on the curve F if and only if
mP (F) ≥ 1. If P is on F , then P is a simple point of F if mP (F) = 1, otherwise P

is a singular point of F .
Now, let F ∗(X,Y,Z) be the homogenised polynomial of F(X,Y ) and write P ∗ =

(u, v,1) (in homogeneous coordinates). Then the multiplicity of the projective plane
curve F ∗ at P ∗, also written as mP ∗(F ∗), is by definition mP (F). Likewise, the
intersection number IP ∗(A∗,B∗) is by definition IP (A,B), where A∗ and B∗ are the
homogenised polynomials of A and B , respectively (see [6, Chap. 5] for details). We
may therefore restrict our analysis to affine plane curves.

One important property of the intersection number is that IP (A,B) = 0 if P is not
a singular point of AB . This is a special case of the following more general property.

Lemma 4.1 [6, Chap. 3, Property (5)] Let A and B be two affine plane curves and
suppose that the tangent cones of A and B do not share a common factor. Let P be a
point in the plane. Then IP (A,B) = mP (A)mP (B).

It is an easy exercise to obtain the following result as a corollary of Lemma 4.1
(see Janwa, McGuire, and Wilson [15, Prop. 2]).

Corollary 4.2 Let F be an affine plane curve and suppose that F = AB . Let P =
(u, v) be a point in the plane and write

F(X + u,Y + v) = Fm(X,Y ) + Fm+1(X,Y ) + · · · ,

where Fi is zero or a homogeneous polynomial of degree i and Fm 	= 0. Let L be a
linear polynomial and suppose that Fm = Lm and L � Fm+1. Then IP (A,B) = 0.

We shall require one further result to compute intersection numbers, whose proof
idea follows that of [12, Lemma 8].

Lemma 4.3 Let F be an affine plane curve over a field of characteristic two and
suppose that F = AB . Let P = (u, v) be a point in the plane and write

F(X + u,Y + v) = Fm(X,Y ) + Fm+1(X,Y ) + · · · ,
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where Fi is zero or a homogeneous polynomial of degree i and Fm 	= 0. Let L be
a linear polynomial and suppose that Fm = Lm and L ‖ Fm+1. Then IP (A,B) = 0
or m.

Proof Write

A(X + u,Y + v) = Ar(X,Y ) + Ar+1(X,Y ) + · · ·

and

B(X + u,Y + v) = Bs(X,Y ) + Bs+1(X,Y ) + · · · ,

where Ai and Bi are zero or homogeneous polynomials of degree i and Ar and Bs are
nonzero. Since Fm = Lm, we have, up to constant factors, Ar = Lj and Bs = Lm−j

for some j ∈ {0, . . . ,m}. Also,

Fm+1 = ArBs+1 + Ar+1Bs, (17)

and since L ‖ Fm+1, we find that gcd(Ar,Bs) = 1 or L. If gcd(Ar,Bs) = 1, then
either mP (A) = 0 or mP (B) = 0 and IP (A,B) = 0 by Lemma 4.1.

Now, suppose that gcd(Ar,Bs) = L, which implies that m ≥ 2. Without loss of
generality, we may assume that Ar = L and Bs = Lm−1, so that r = 1 and s = m−1.
Define

C(X,Y ) = A(X,Y )L(X − u,Y − v)m−2 + B(X,Y ).

Then, by a general property of intersection numbers [6, Chap. 3, Property (7)], we
find that

IP (A,B) = IP (A,C).

We have

C(X + u,Y + v) = A2(X,Y )L(X,Y )m−2 + Bm(X,Y ) + higher order terms.

If m = 2, then it follows from L ‖ Fm+1 and (17) that L � A2 + B2. If m > 2, we
find from (17) that L � Bm. In either case, the tangent cones of A and C do not
share a common factor and therefore IP (A,C) = mP (A)mP (C) by Lemma 4.1. This
completes the proof since mP (A) = 1 and mP (C) = m. �

4.2 Singular points at infinity of Ht,a

We now study the intersection numbers IP (A,B), where Ht,a = AB is some fac-
torisation and P is a singular point at infinity of Ht,a , namely a point of the form
(u, v,0). Since Ht,a is symmetric in X and Y , we can assume that v = 1. It is then
sufficient to consider the dehomogenisation

Gt,a(X,Z) = Ht,a(X,1,Z),
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so that

Gt,a(X,Z) = (X + Z)t + (Z + 1)t + Xt + a(X + 1)Zt−1 + 1

Z(X + 1)
.

The result of this section is the following.

Lemma 4.4 Let t be a number of the form 2k
 + 1 for integers k ≥ 1 and odd 
 ≥ 3.
Let P = (u,0) be a singular point of Gt,a and suppose that Gt,a = AB is a factori-
sation over F. Then IP (A,B) ≤ 4k−1.

Proof Write G̃t,a for the numerator of Gt,a , namely

G̃t,a(X,Z) = Z(X + 1)Gt,a(X,Z). (18)

Next we compute the multiplicities of Gt,a and G̃t,a at P . Write

Gt,a(X + u,Z) = G0(X,Z) + G1(X,Z) + G2(X,Z) + · · ·
and

G̃t,a(X + u,Z) = G̃0(X,Z) + G̃1(X,Z) + G̃2(X,Z) + · · · ,

where Gi and G̃i are either zero or homogeneous polynomials of degree i. From (18)
we find that

G̃i(X,Z) = XZGi−2(X,Z) + Z(u + 1)Gi−1(X,Z), (19)

where, by convention, G−1 = G−2 = 0. We have

G̃t,a(X + u,Z) =
t∑

j=0

(
t

j

)[
ut−j

(
(X + Z)j + Xj

) + Zj
] + a(X + u + 1)Zt−1 + 1.

Since P is a singular point of Gt,a , and so is a singular point of G̃t,a , we have
G̃0 = G̃1 = 0. From Lemma 3.6 we see that G̃i = 0 for each i ∈ {2, . . . ,2k − 1}.
Furthermore, since 
 ≥ 3,

G̃2k (X,Z) = (
ut−2k + 1

)
Z2k

(20)

and

G̃2k+1(X,Z) = ut−2k−1((X + Z)2k+1 + X2k+1) + Z2k+1.

We now see that the multiplicity of G̃t,a at P = (1,0) is 2k + 1, while that of G̃t,a at
P = (u,0) for u 	= 1 can be either 2k or 2k + 1. Using (19), it is then straightforward
to work out the corresponding multiplicities of Gt,a . The results are summarised in
Table 4.

We shall need the following observation, which will be proved at the end of this
section.



J Algebr Comb (2014) 40:503–526 517

Table 4 Multiplicities of Gt,a

and G̃t,a at their singular points Type Point P mP (G̃t,a) mP (Gt,a)

A (1,0) 2k + 1 2k − 1

B (u,0), u 	= 1 2k + 1 2k

C (u,0), u 	= 1 2k 2k − 1

Claim 4.5 G̃2k+1 splits into 2k + 1 distinct factors over its splitting field.

We resume the proof of Lemma 4.4 and distinguish three cases for P , according
to Table 4.

• P is a point of type A. In this case, the multiplicity of Gt,a at P is 2k − 1 and
from (19) we have

G̃2k+1(X,Z) = XZG2k−1(X,Z).

Therefore, by Claim 4.5, G2k−1, the tangent cone of Gt,a at P , has no multiple
factors over its splitting field. Lemma 4.1 then implies IP (A,B) = mP (A)mP (B).

• P is a point of type B. In this case, the multiplicity of Gt,a at P is 2k and from (19)
we have

G̃2k+1(X,Z) = Z(u + 1)G2k (X,Z).

Thus by Claim 4.5, G2k , the tangent cone of Gt,a at P , has no multiple factors
over its splitting field and so Lemma 4.1 gives IP (A,B) = mP (A)mP (B).

• P is a point of type C. Now, the multiplicity of Gt,a at P is 2k − 1. From (19) we
find that

G̃2k (X,Z) = Z(u + 1)G2k−1(X,Z),

G̃2k+1(X,Z) = XZG2k−1(X,Z) + Z(u + 1)G2k (X,Z).

From (20) we see that the tangent cone of Gt,a at P equals

G2k−1(X,Z) = ut−2k + 1

u + 1
Z2k−1

and then, by Claim 4.5, Z � G2k . Thus IP (A,B) = 0 by Corollary 4.2.

Now, from the three cases above we conclude that IP (A,B) equals either zero or
mP (A)mP (B). But since

mP (A) + mP (B) = mP (Gt,a) ≤ 2k,

we find that IP (A,B) ≤ (2k−1)2, as required. �

It remains to prove the claim invoked in the proof of Lemma 4.4.

Proof of Claim 4.5 We show that

gcd(G̃2k+1, ∂G̃2k+1/∂X) ∈ F[Z] (21)
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and

gcd
(
G̃2k+1, ∂G̃2k+1/∂Z

) ∈ F[X]. (22)

The assertion (21) follows since

∂G̃2k+1/∂X = (
u
−1Z

)2k

.

To prove (22), first observe that P = (0,0) is not a singular point of G̃t,a since then
G̃1(X,Z) = Z, and so it is not a singular point of Gt,a . Hence we may assume that
u 	= 0. We have

∂G̃2k+1/∂Z = (
u
−1X + (

u
−1 + 1
)
Z

)2k

.

Hence ∂G̃2k+1/∂Z has only one factor, namely

X + u
−1 + 1

u
−1
Z. (23)

We readily verify that

G̃2k+1

(
u
−1 + 1

u
−1
Z,Z

)
= u(
−1)(2k−1)

(
u
−1 + 1

)
Z2k+1.

Hence, since u 	= 0, (23) divides G̃2k+1 only if u = 1. However, for u = 1, (23) equals
X, which proves (22). �

4.3 Affine singular points of Ht,a

We are now interested in the intersection numbers IP (A,B), where Ht,a = AB and
P is an affine singular point of Ht,a , namely P is of the form (u, v,1). We work with
the dehomogenisation

Ft,a(X,Y ) = Ht,a(X,Y,1),

as given in (14). Let F̃t,a(X,Y ) be the numerator of Ft,a(X,Y ), so that

F̃t,a(X,Y ) = (X + 1)t + (Y + 1)t + Xt + Y t + a(X + Y).

Our analysis crucially relies on restricting a to values in a subset of An, which we
define next.

Definition 4.6 Let Bn be the set of all a ∈ An such that all singular points (u, v) of
F̃t,a satisfy each of

(u + 1)t−2k 	= ut−2k

,

(u + 1)t−2k−1 	= ut−2k−1,

(v + 1)t−2k−1 	= vt−2k−1.
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Lemma 4.7 The set Bn contains an element not equal to 1 for all sufficiently large n.

Proof Let P be the set of points (u, v) ∈ F× F that satisfy at least one of

(u + 1)t−2k + ut−2k = 0,

(u + 1)t−2k−1 + ut−2k−1 = 0,

(v + 1)t−2k−1 + vt−2k−1 = 0.

Since t − 2k is constant, we find by a degree argument that P has finite size. Then,
by Definition 4.6, a ∈ An belongs to Bn if no point in P is a singular point of F̃t,a .
By looking at the homogeneous part of degree 1 of F̃t,a(X + u,Y + v), we see that a
necessary condition for (u, v) to be a singular point of F̃t,a is

(u + 1)t−1 + ut−1 = a. (24)

But from the definition (15) of An we have

|An| = 2n − 1

gcd(2n − 1, t − 2)
≥ 2n − 1

t − 2
,

and so, for all sufficiently large n, we can choose an a 	= 1 in An such that (24) is not
satisfied for each (u, v) ∈ P . This a ∈ An belongs to Bn since none of the points in
P is a singular point of F̃t,a . �

We now state the main result of this section.

Lemma 4.8 Let t be a number of the form 2k
 + 1 for integers k ≥ 1 and odd 
 ≥ 1
and let a ∈ Bn. Suppose that Ft,a = AB is a factorisation over F and let P be a
singular point of Ft,a .

(i) If P = (u,u), then mP (Ft,a) = 2k − 1 and IP (A,B) = 0.
(ii) If P = (u, v) with u 	= v, then mP (Ft,a) = 2k and IP (A,B) = 2k .

Proof We shall first compute the multiplicities of Ft,a and F̃t,a at P = (u, v). Write

Ft,a(X + u,Y + v) = F0(X,Y ) + F1(X,Y ) + F2(X,Y ) + · · ·
and

F̃t,a(X + u,Y + v) = F̃0(X,Y ) + F̃1(X,Y ) + F̃2(X,Y ) + · · · ,

where Fi and F̃i are either zero or homogeneous polynomials of degree i. We have

F̃t,a(X + u,Y + v)

= a(X + Y + u + v)

+
t∑

j=0

(
t

j

)([
(u + 1)t−j + ut−j

]
Xj + [

(v + 1)t−j + vt−j
]
Y j

)
. (25)
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Since P is a singular point of Ft,a , and so is a singular point of F̃t,a , we have
F̃0 = F̃1 = 0. From Lemma 3.6 we see that F̃i = 0 for each i ∈ {2, . . . ,2k − 1}.
Furthermore,

F̃2k (X,Y ) = (
(u + 1)t−2k + ut−2k )

X2k + (
(v + 1)t−2k + vt−2k )

Y 2k

. (26)

Since a ∈ Bn, we see from Definition 4.6 that F̃2k is never zero and so

mP (F̃t,a) = 2k. (27)

To compute the multiplicity of Ft,a at P , we use

F̃i(X,Y ) = (X + Y)Fi−1(X,Y ) + (u + v)Fi(X,Y ), (28)

where, by convention, F−1 = 0. We now prove the two cases of the lemma separately,
using the following claim proved at the end of this section.

Claim 4.9 F̃2k+1 splits into 2k + 1 distinct factors over its splitting field.

• P = (u,u). In this case, we have mP (Ft,a) = 2k −1 by (27) and (28). Furthermore,
from (28),

F̃2k (X,Y ) = (X + Y)F2k−1(X,Y ),

F̃2k+1(X,Y ) = (X + Y)F2k (X,Y ),

and then from (26),

F2k−1(X,Y ) = (
(u + 1)t−2k + ut−2k )

(X + Y)2k−1.

By Claim 4.9, F̃2k+1 has no multiple factors over its splitting field, and so X + Y

does not divide F2k . Thus IP (A,B) = 0 by Corollary 4.2.
• P = (u, v) with u 	= v. In this case, we have mP (Ft,a) = 2k by (27) and (28).

From (28) we have

F̃2k = (u + v)F2k ,

F̃2k+1 = (X + Y)F2k + (u + v)F2k+1.

Since F̃2k+1 has no multiple factors by Claim 4.9, we conclude that F2k and F2k+1
share at most one factor. Furthermore, from (26), we see that

F2k (X,Y ) = (a1X + a2Y)2k

for some a1, a2 ∈ F.

If a1X + a2Y does not divide F2k+1, then IP (A,B) = 0 by Corollary 4.2, so as-
sume that F2k and F2k+1 share the factor a1X+a2Y . This factor must divide F2k+1
exactly and thus IP (A,B) = 0 or 2k by Lemma 4.3.

This completes the proof. �

We now prove the claim invoked in the proof of Lemma 4.8.
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Proof of Claim 4.9 From (25) we find that F̃2k+1(X,Y ) equals

(
(u + 1)t−2k−1 + ut−2k−1)X2k+1 + (

(v + 1)t−2k−1 + vt−2k−1)Y 2k+1.

Since a ∈ Bn, we readily verify with Definition 4.6 that

gcd(F̃2k+1, ∂F̃2k+1/∂X) = gcd(F̃2k+1, ∂F̃2k+1/∂Y ) = 1.

This proves the claim. �

5 Proof of Theorem 1.3

Let t > 1 be an odd integer. Recall that, in view of Proposition 3.5, we wish to show
that Ft,a , given in (14) (or equivalently Ht,a , given in (16)) has an absolutely irre-
ducible factor over F2n for some a 	= 1 in An and for all sufficiently large n.

The case that t = 2k + 1 is particularly easy to handle.

Proposition 5.1 Let t be a number of the form 2k + 1 for integral k ≥ 1. Then Ft,a

has an absolutely irreducible factor for some a 	= 1 in An and for all sufficiently
large n.

Proof Notice that Ft,a simplifies to

Ft,a(X,Y ) = (X + Y)2k−1 + a + 1.

We claim that, for all sufficiently large n, we can choose a 	= 1 in An such that

a + 1 = b2k−1.

for some b ∈ F
∗
2n . This will prove the proposition since then X + Y + b divides Ft,a .

By the definition (15) of An, the claim is equivalent to the existence of ε, b ∈ F
∗
2n

such that, for all c ∈ F
∗
2n ,

ε1−2k

/c + 1 = b2k−1, (29)

which in turn is equivalent to

ε2k−1 + x2k−1 = 1/c, (30)

where x = εb. It is well known [19, Example 6.38] that the number of solutions
(ε, x) ∈ F2n × F2n to the equation (30) is at least

2n − (
2k − 2

)(
2k − 3

)
2n/2 − 2k + 2.

Since there are at most 2k −1 solutions of the form (0, x) and at most 2k −1 solutions
of the form (ε,0), we find that, for all sufficiently large n, there exist ε, x ∈ F

∗
2n sat-

isfying (30). Hence, for all sufficiently large n, there exist ε, b ∈ F
∗
2n satisfying (29),

as required. �
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Henceforth, we assume that t = 2k
 + 1 for integers k ≥ 1 and odd 
 ≥ 3. We
shall factor Ht,a into putative factors A and B over some extension of F2n and de-
rive a contradiction to Bezout’s theorem, using our estimates for IP (A,B). Since
IP (A,B) = 0 if P is a simple point of AB , the sum in Bezout’s theorem can be taken
over the singular points of AB . The main results of Sect. 4 can be restated as follows
((i) follows from Lemma 4.4 and the remarks preceding it, and (ii) and (iii) follow
from Lemmas 4.7 and 4.8).

Corollary 5.2 Let t be a number of the form 2k
+1 for integers k ≥ 1 and odd 
 ≥ 3.
Let P be a singular point of Ht,a and suppose that Ht,a = AB is a factorisation of
Ht,a over F. Then, for some a 	= 1 in An and all sufficiently large n, the following
holds:

(i) If P = (u, v,0), then IP (A,B) ≤ 4k−1.
(ii) If P = (u,u,1), then mP (Ht,a) = 2k − 1 and IP (A,B) = 0.

(iii) If P = (u, v,1) and u 	= v, then mP (Ht,a) = 2k and IP (A,B) ≤ 2k .

It remains to count the number of singular points of Ht,a . To do so, we consider
the numerator of Ht,a , namely

H̃t,a(X,Y,Z) = (X + Z)t + (Y + Z)t + Xt + Y t + a(X + Y)Zt−1.

Recall that a point P on a projective plane curve defined by H(X,Y,Z) is a singular
point of H if and only if the partial derivatives of H with respect to X, Y , and Z

vanish at P . Since t is odd, we have

∂H̃t,a/∂X = (X + Z)t−1 + Xt−1 + aZt−1,

∂H̃t,a/∂Y = (Y + Z)t−1 + Y t−1 + aZt−1,

∂H̃t,a/∂Z = (X + Z)t−1 + (Y + Z)t−1.

Recalling that t = 2k
 + 1 and 
 ≥ 3, it is then readily verified that the possible
singular points of H̃t,a are of one of the following types:

• Points at infinity: (u,1,0) satisfying u
 = 1,
• Affine points: (u, v,1) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u + 1)
 = u
 + a2−k

,

(v + 1)
 = v
 + a2−k

,

(u + 1)
 = (v + 1)
.

(31)

Lemma 5.3 Let t be a number of the form 2k
 + 1 for integers k ≥ 1 and odd 
 ≥ 3.
Then, for each nonzero a ∈ F, the curve Ht,a has at most 
 singular points at infinity
and at most (
 − 1)(
 − 2)/2 affine singular points (u, v,1) satisfying u 	= v.
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Proof First observe that each singular point of Ht,a is also a singular point of H̃t,a .
It is readily verified that H̃t,a has at most 
 singular points at infinity, thus Ht,a has at
most 
 such singular points.

We now show that H̃t,a has at most (
−1)(
−1)/2 affine singular points (u, v,1)

satisfying u 	= v. Let a ∈ F be nonzero. Since 
 ≥ 3 is odd, the first two conditions
of (31) are not trivially satisfied. Thus we find from a degree argument that there are
exactly (
 − 1)(
 − 2) pairs (u, v) with u 	= v that satisfy the first two conditions
of (31). Notice that, if (u, v) is such a pair, then (u + 1, v) also satisfies the first
two conditions of (31). Now, let (u, v,1) be a singular point of H̃t,a , so that the pair
(u, v) satisfies (31). We claim that (u + 1, v,1) is not a singular point of H̃t,a , for
if (u + 1, v) satisfies all three conditions of (31), then (u + 1)
 = u
, which implies
a = 0 and so contradicts our assumption that a is nonzero. Hence there are at most
(
 − 1)(
 − 2)/2 affine singular points on Ht,a . �

We now show that Ht,a has an absolutely irreducible factor for some a 	= 1 in An

and all sufficiently large n.

Proposition 5.4 Let t be a number of the form 2k
 + 1 for integers k ≥ 1 and odd

 ≥ 3. Then Ht,a has an absolutely irreducible factor over F2n for some a 	= 1 in An

and all sufficiently large n.

To prove the proposition, we shall need one further standard result (see Hernando
and McGuire [11, Lemma 10], for example).

Lemma 5.5 Let F ∈ Fq [X1, . . . ,Xm] be a polynomial of degree d , irreducible
over Fq . Then there exists a natural number s | d such that, over its splitting field,
F splits into s absolutely irreducible polynomials, each of degree d/s.

Proof of Proposition 5.4 If Ht,a = AB is a nontrivial factorisation of Ht,a and A

and B are not relatively prime, then by definition,
∑

P IP (A,B) = ∞. However, by
Lemma 5.3 and Corollary 5.2, Ht,a has a finite number of singular points P , each
having a finite intersection number IP (A,B). Hence we can assume that A and B are
relatively prime, which allows us to use the conclusion of Bezout’s theorem.

Write

Ht,a = Q1Q2 · · ·Qr,

where Qi is irreducible over F2n . Let di be the degree of Qi . By Lemma 5.5 there
exist natural numbers si such that Qi splits into si absolutely irreducible factors over
F, each of degree di/si . If si = 1 for some i ∈ {1, . . . , r}, then Ht,a has an absolutely
irreducible factor over F2n and we are done. Thus assume, for a contradiction, that
si > 1 for each i ∈ {1, . . . , r}.

We arrange the factors of Qi into three polynomials, Ci , Di , and Ri , such that
degCi = degDi and such that Ri = 1 if si is even and degRi = di/si if si is odd.
Write C = C1 · · ·Cr , D = D1 · · ·Dr , and R = R1 · · ·Rr . Let δ be the degree of C

(and of D) and let ρ be the degree of R. Since CDR is a factorisation of Ht,a , which
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has degree t − 2, we find that

2δ + ρ = t − 2, (32)

and, since si > 1,

ρ ≤ t − 2

3
, (33)

which gives

(degCR)(degD) = (δ + ρ)δ

= (2δ + ρ)2 − ρ2

4

≥ 2

9
(t − 2)2.

Bezout’s theorem then gives

∑

P

IP (CR,D) ≥ 2

9
(t − 2)2. (34)

On the other hand, we find from Lemma 5.3 and Corollary 5.2 that, for some a 	= 1
in An and for all sufficiently large n,

∑

P

IP (CR,D) ≤ 
4k−1 + (
 − 1)(
 − 2)

2
2k.

This contradicts (34) for k ≥ 2 since 
 > 1. We now consider the case k = 1, so that
t = 2
 + 1. Choose a 	= 1 in An and take n sufficiently large so that the assertions
of Corollary 5.2 hold. Since k = 1, we find from Corollary 5.2 that all affine singular
points of Ht,a are of the form (u, v,1) with u 	= v and the multiplicity of such a
singular point equals 2. Hence an affine singular point of Ht,a can only be a point
of at most two of the factors of Ht,a . Given two factors F and G of Ht,a , let NFG

be the number of affine singular points of Ht,a that are on both F and G. Then, by
Corollary 5.2,

NCD + NCR + NDR ≤ (
 − 1)(
 − 2)

2
. (35)

Bezout’s theorem gives

∑

P

IP (CD,R) = 2δρ,

∑

P

IP (CR,D) = (δ + ρ)δ,

∑

P

IP (DR,C) = (δ + ρ)δ.
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We estimate the left-hand sides using Lemma 5.3 and Corollary 5.2 and obtain

2(NCR + NDR) + 
 ≥ 2δρ,

2(NCD + NDR) + 
 ≥ (δ + ρ)δ,

2(NCD + NCR) + 
 ≥ (δ + ρ)δ.

Summing these equations gives

2δ2 + 4δρ ≤ 4(NCD + NCR + NDR) + 3
 ≤ 2(
 − 1)(
 − 2) + 3
,

using (35). Since t = 2
 + 1, we have from (32) that


 = 2δ + ρ + 1

2

and therefore

2δ(2ρ + 1) ≤ ρ(ρ − 1) + 6. (36)

From (32) and (33) we conclude that δ ≥ ρ, so that

2ρ(2ρ + 1) ≤ ρ(ρ − 1) + 6,

or equivalently ρ(ρ + 1) ≤ 2, forcing ρ ≤ 1. But, if ρ = 0, then t is even by (32);
a contradiction. Hence ρ = 1 and then from (36) we find that δ = 1, giving t = 5
by (32). But t = 5 cannot be written as 2
+1 for odd 
, which completes the proof. �

Now, our main result, Theorem 1.3, follows from Propositions 3.5, 5.1, and 5.4.

6 Final remarks

Since the submission of this paper, various new results have been obtained by other
authors. Most notably, Müller and Zieve [21] give a characterisation of low-degree
planar monomials, thereby proving Conjecture 3.4 and providing a different proof of
Theorem 1.3. New examples of planar functions, in particular planar binomials, have
been found by Hu, Li, Zhang, Feng, and Ge in [14].
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