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Abstract In this paper we study a family of scattered Fq -linear sets of rank tn of
the projective space PG(2n − 1, qt ) (n ≥ 1, t ≥ 3), called of pseudoregulus type,
generalizing results contained in Lavrauw and van de Voorde, Des. Codes Crypt.
20(1) (2013) and in Marino et al. J. Combin. Theory, Ser. A 114:769–788 (2007). As
an application, we characterize, in terms of the associated linear sets, some classical
families of semifields: the Generalized Twisted Fields and the 2-dimensional Knuth
semifields.

Keywords Linear set · Subgeometry · Semifield

1 Introduction

In recent years the theory of linear sets has constantly increased its importance mainly
because of its connection with other geometric objects such as blocking sets, transla-
tion ovoids and semifield planes (for an overview see [26]).

In this paper we study a family of maximum scattered Fq -linear sets of the projec-
tive space Λ = PG(2n − 1, qt ) (n ≥ 1, t ≥ 3). They were first introduced in [25] for
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n = 2 and t = 3, and further generalized in [18] for n ≥ 2 and t = 3. If Λ is not a line,
it is possible to associate with any such linear set a family of (qnt − 1)/(qt − 1) pair-
wise disjoint lines admitting exactly two (n−1)-dimensional transversal spaces. Such
a set of lines is called pseudoregulus, in analogy to the pseudoregulus of PG(3, q2)

introduced by Freeman in [8]. For this reason, we refer to the relevant family of linear
sets as linear sets of pseudoregulus type.

All maximum scattered Fq -linear sets of Λ = PG(2n− 1, q3) (n ≥ 2) are of pseu-
doregulus type and they are all equivalent under the action of the collineation group
of Λ (see [25, Propositions 2.7 and 2.8] for n = 2 and [18, Sect. 3 and Theorem
4] for n ≥ 3). In this paper, we characterize Fq -linear sets of PG(2n − 1, qt ) (n ≥ 1,
t ≥ 3) of pseudoregulus type in terms of the associated projected subgeometry and we
prove that, when n > 1 there are ϕ(t)/2 (where ϕ denotes Euler’s phi function) orbits
of such Fq -linear sets under the action of the collineation group of PG(2n − 1, qt )

(Theorems 3.11, 3.13). Also, we show that, when t ≥ 4 and q > 3, there exist exam-
ples of maximum scattered Fq -linear sets of PG(2n − 1, qt ) (n ≥ 1) which are not of
pseudoregulus type (Example 4.6).

Finally, in Sect. 5 we first prove some geometric properties of the Segre Variety
Sn,n of the projective space P = PG(n2 − 1, q). These properties, together with the
results contained in Sects. 3 and 4, allow us to describe and characterize the linear
sets associated with some classical semifields: the Generalized Twisted Fields and
the Knuth semifields 2-dimensional over their left nucleus (Propositions 5.5 and 5.9,
Theorems 5.6 and 5.10).

2 Preliminary results

A (t − 1)-spread of a projective space PG(nt − 1, q) is a family S of mutually dis-
joint subspaces of dimension t − 1 such that each point of PG(nt − 1, q) belongs
to an element of S . A first example of spread can be obtained in the following way.
Let PG(n − 1, qt ) = PG(V ,Fqt ). Any point P of PG(n − 1, qt ) defines a (t − 1)-
dimensional subspace X(P ) of the projective space PG(nt − 1, q) = PG(V ,Fq) and
D = {X(P ) : P ∈ PG(n − 1, qt )} is a spread of PG(nt − 1, q), called a Desargue-
sian spread (see [27], Sect. 25).1 If n > 2, the incidence structure Πn−1(D), whose
points are the elements of D and whose lines are the (2t − 1)-dimensional subspaces
of PG(nt − 1, q) joining two distinct elements of D, is isomorphic to PG(n − 1, qt ).
The structure Πn−1(D) is called the Fq -linear representation of PG(n − 1, qt ).

A Desarguesian (t − 1)-spread of PG(nt − 1, q) can also be obtained as follows
(see [27, Sect. 27], [20] and [3]). Embed Σ � PG(nt − 1, q) in Σ∗ = PG(nt − 1, qt )

in such a way that Σ is the set of fixed points of a semilinear collineation Ψ of Σ∗
of order t . Let Θ = PG(n − 1, qt ) be a subspace of Σ∗ such that Θ , ΘΨ , . . . ,ΘΨ t−1

span the whole space Σ∗. If P is a point of Θ , X∗(P ) = 〈P,P Ψ , . . . ,P Ψ t−1〉qt is a
(t −1)-dimensional subspace of Σ∗ defining a (t −1)-dimensional subspace X(P ) =
X∗(P )∩Σ of Σ . As P varies over the subspace Θ we get a set of qt(n−1) +qt(n−2) +

1In [27] a Desarguesian spread is called “Sistema Grafico Elementare”.
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· · · + qt + 1 mutually disjoint (t − 1)-dimensional subspaces of Σ . Such a set is
denoted by D = D(Θ) and it turns out to be a Desarguesian (t − 1)-spread of Σ .
The (n − 1)-dimensional subspaces Θ , ΘΨ , . . . ,ΘΨ t−1

are uniquely defined by the
Desarguesian spread D, i.e. D(Θ) = D(X) if and only if X = ΘΨ i

for some i ∈
{0,1, . . . , t − 1} and, following the terminology used by Segre [27, p. 29], we will
refer to them as director spaces of D (see also [18, Theorem 3]).

Remark 2.1 Let S be a (t − 1)-spread of Σ = PG(nt − 1, q) embedded in Σ∗ =
PG(nt − 1, qt ) in such a way that Σ = Fix(Ψ ) where Ψ is a semilinear collineation
of Σ∗ of order t . If H is an (n − 1)-dimensional subspace of Σ∗ such that

(i) Σ∗ = 〈H,HΨ , . . . ,HΨ t−1〉qt ;
(ii) X∗ ∩ H 	= ∅ for each (t − 1)-dimensional subspace X∗ of Σ∗ such that X∗ ∩

Σ ∈ S ;

then it is easy to see that D(H) = S , i.e. S is a Desarguesian spread and H is one of
its director spaces.

2.1 Linear sets

Let Λ = PG(r − 1, qt ) = PG(V ,Fqt ), q = ph, p prime, and let L be a set of points
of Λ. The set L is said to be an Fq -linear set of Λ if it is defined by the non-zero
vectors of an Fq -vector subspace U of V , i.e., L = LU = {〈u〉qt : u ∈ U \ {0}}. If
dimFq

U = k, we say that L has rank k. If Ω = PG(W,Fqt ) is a subspace of Λ and
LU is an Fq -linear set of Λ, then Ω ∩ LU is an Fq -linear set of Ω defined by the Fq -
vector subspace U ∩ W , and we say that Ω has weight i in LU if dimFq

(W ∩ U) = i

and we write ωLU
(Ω) = i. If LU 	= ∅, we have

|LU | ≤ qk−1 + qk−2 + · · · + q + 1, (1)

|LU | ≡ 1 (modq). (2)

For further details on linear sets see [26].
An Fq -linear set LU of Λ of rank k is scattered if all of its points have weight 1,

or equivalently, if LU has maximum size qk−1 + qk−2 + · · · + q + 1.
In [4], the authors prove the following result on scattered linear sets.

Theorem 2.2 [4, Theorem 4.2] A scattered Fq -linear set of PG(r − 1, qt ) has rank
at most rt/2.

A scattered Fq -linear set L of PG(r − 1, qt ) of maximum rank rt/2 is called a
maximum scattered linear set.

Remark 2.3 Note that if LU is a scattered Fq -linear set of PG(r − 1, qt ) of rank k

containing more than one point, then by |LU | = qk−1 +qk−2 +· · ·+q+1 and (2), LU

is not an Fqs -linear set for each subfield Fqs of Fqt properly containing Fq . In other
words, a scattered Fq -linear set L of rank k > 1 of PG(r − 1, qt ) is not a linear set of
rank n < k. Also, by Theorem 2.2, a maximum scattered linear set of PG(r − 1, qt )

spans the whole space.
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If dimFq
U = dimFqt V = r and 〈U 〉qt = V , then the Fq -linear set LU is a subge-

ometry of PG(V ,Fqt ) = PG(r − 1, qt ) isomorphic to PG(r − 1, q). If t = 2, then LU

is a Baer subgeometry of PG(r − 1, q2).
In [23], the authors give the following characterization of Fq -linear sets. Let Σ =

PG(k − 1, q) be a subgeometry of Σ∗ = PG(k − 1, qt ), let Γ be a (k − r − 1)-
dimensional subspace of Σ∗ disjoint from Σ and let Λ = PG(r −1, qt ) be an (r −1)-
dimensional subspace of Σ∗ disjoint from Γ . Denote by

L = {〈Γ,P 〉qt ∩ Λ : P ∈ Σ
}

the projection of Σ from Γ to Λ. We call Γ and Λ, respectively, the center
and the axis of the projection. Denote by pΓ,Λ the map from Σ to L defined by
P 
→ 〈Γ,P 〉qt ∩ Λ for each point P of Σ . By definition pΓ,Λ is surjective and
L = pΓ,Λ(Σ).

Theorem 2.4 [23, Theorems 1 and 2] If L is a projection of Σ = PG(k−1, q) to Λ =
PG(r − 1, qt ), then L is an Fq -linear set of Λ of rank k and 〈L〉qt = Λ. Conversely,
if L is an Fq -linear set of Λ of rank k and 〈L〉qt = Λ, then either L is a subgeometry
of Λ or for each (k − r − 1)-dimensional subspace Γ of Σ∗ = PG(k − 1, qt ) disjoint
from Λ there exists a subgeometry Σ of Σ∗ disjoint from Γ such that L = pΓ,Λ(Σ).

Also, in [17] it has been proven:

Theorem 2.5 [17, Theorem 3] Let L1 = pΓ1,Λ(Σ1) and L2 = pΓ2,Λ(Σ2) be two Fq -
linear sets of rank k of Λ = 〈L1〉qt = 〈L2〉qt , and suppose that Li is not a linear set
of rank n < k. Then L1 and L2 are projectively equivalent if and only if there exists
β ∈ Aut(Σ∗) such that Σ

β

1 = Σ2 and Γ
β

1 = Γ2.

Remark 2.6 Note that, if SΓ = Σ∗/Γ � PG(r − 1, qt ) denotes the (r − 1)-
dimensional space obtained as quotient geometry of Σ∗ over Γ , then the set LΓ,Σ

of the (k − r)-dimensional subspaces of Σ∗ containing Γ and with non-empty in-
tersection with Σ is an Fq -linear set of the space SΓ isomorphic to L = pΓ,Λ(Σ),
for each (r − 1)-dimensional space Λ disjoint from Γ . This means that pΓ,Λ(Σ)

is isomorphic to the Fq -linear set {P + Γ : P ∈ Σ} of the quotient space SΓ , and
hence it does not depend on the choice of the axis Λ, and we will simply denote it as
pΓ (Σ).

3 Maximum scattered Fq -linear sets of pseudoregulus type in PG(2n − 1, qt )

In this section we study a family of maximum scattered linear sets to which a ge-
ometric structure, called pseudoregulus, can be associated. This generalizes results
contained in [15, 25] and [18].

Definition 3.1 Let L = LU be a scattered Fq -linear set of Λ = PG(2n − 1, qt ) of
rank tn, t, n ≥ 2. We say that L is of pseudoregulus type if
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(i) there exist m = qnt−1
qt−1 pairwise disjoint lines of Λ, say s1, s2, . . . , sm, such that

wL(si) = t, i.e. |L ∩ si | = qt−1 + qt−2 + · · · + q + 1 ∀i = 1, . . . ,m;

(ii) there exist exactly two (n − 1)-dimensional subspaces T1 and T2 of Λ disjoint
from L such that Tj ∩ si 	= ∅ for each i = 1, . . . ,m and j = 1,2.

We call the set of lines PL = {si : i = 1, . . . ,m} the Fq -pseudoregulus (or simply
pseudoregulus) of Λ associated with L and we refer to T1 and T2 as transversal
spaces of PL (or transversal spaces of L). Note that, by Remark 2.3, L spans the
whole space and hence the transversal spaces T1 and T2 are disjoint. When t = n = 2,
these objects already appeared in [8], where the term “pseudoregulus” was introduced
for the first time.

If L is a scattered Fq -linear set of the projective space PG(r − 1, qt ), then by
Theorem 2.2 every h-dimensional subspace Xh of PG(r − 1, qt ) intersects L in a
linear set of rank at most (h + 1)t/2, i.e. the weight of Xh in L is at most (h + 1)t/2.
So we get:

Proposition 3.2 If t ≥ 3, then the lines of weight t in a scattered Fq -linear set L of
PG(r − 1, qt ) of rank h are pairwise disjoint and hence the number of such lines is
at most (qh − 1)/(qt − 1).

Proof If � and �′ are distinct lines of PG(r − 1, qt ) of weight t in L and � ∩ �′ 	= ∅,
then the plane π joining � and �′ has weight at least 2t − 1 in L. On the other hand,
since π ∩ L is a scattered Fq -linear set of the plane π , by Theorem 2.2, we also have
that the weight of π in L is at most 3t/2; so we get t ≤ 2, a contradiction. Hence, the
number of lines of PG(r − 1, qt ) having weight t in L is at most

qh−1 + qh−2 + · · · + q + 1

qt−1 + qt−2 + · · · + q + 1
= qh − 1

qt − 1
. �

As a consequence of Proposition 3.2 we get:

Corollary 3.3 If L is an Fq -linear set of pseudoregulus type of the projective space
Λ = PG(2n − 1, qt ), with t ≥ 3, then the associated pseudoregulus is the set of all
the lines of Λ of weight t in L. Hence, the pseudoregulus associated with L and its
transversal spaces are uniquely determined.

Remark 3.4 If t = 2, a scattered Fq -linear set L of rank 2n of the projective space
Λ is a Baer subgeometry isomorphic to PG(2n − 1, q) and each line spread of L

produces a set of lines of Λ satisfying (i) of Definition 3.1 and each Desarguesian
line spread, say D, of L gives a set of lines of Λ satisfying both (i) and (ii) of Def-
inition 3.1. In this last case the transversal spaces are the two (n − 1)-dimensional
director spaces of the Desarguesian spread D. So each maximum scattered Fq -linear
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set L of the projective space Λ = PG(2n − 1, q2) is of pseudoregulus type, but in
this case the associated pseudoregulus is not uniquely defined; also, since these lin-
ear sets are Baer subgeometries, they are all projectively equivalent. The same hap-
pens in the next case, i.e. each maximum scattered Fq -linear set L of the projective
space Λ = PG(2n − 1, q3) (n ≥ 2) is of pseudoregulus type and they are all projec-
tively equivalent (see [25] and [18, Theorem 4, Lemmas 5, 7, Theorem 10]). Whereas,
when t > 3: (i) there exist maximum scattered Fq -linear sets of the projective space
Λ = PG(2n − 1, qt ) which are not of pseudoregulus type (see Example 4.6); (ii) Fq -
linear sets of pseudoregulus type, in general, are not all projectively equivalent (see
Theorem 3.13).

The construction presented in [15, Sect. 2] when t = 3 and n = 2, can be gener-
alized providing a simple way to construct scattered Fq -linear sets of pseudoregulus
type of PG(2n − 1, qt ) for any t, n ≥ 2.

Let Λ = PG(V ,Fqt ), where V = V (2n,Fqt ) = U1 ⊕U2, with dimU1 = dimU2 =
n and let T1 = PG(U1,Fqt ) and T2 = PG(U2,Fqt ). Now, let Φf be a semilinear
collineation between T1 and T2, induced by the invertible semilinear map f : U1 →
U2, having as companion automorphism an element σ ∈ Aut(Fqt ) such that Fix(σ ) =
Fq . Then, for each ρ ∈ F

∗
qt , the set

Wρ,f = {
u + ρf (u) : u ∈ U1

}

is an Fq -vector subspace of V of dimension tn and it is not difficult to see that L =
LWρ,f

is an Fq -linear set of Λ of rank tn of scattered type.2 Also, we can see that
for each line sP joining the points P = 〈u〉qt and P Φf = 〈f (u)〉qt of T1 and T2

respectively, we have that

sP ∩ L = {〈
λu + λσ f (u)

〉
qt : λ ∈ F

∗
qt

}
. (3)

Hence, the line sP , for each P ∈ T1, has weight t in L. Also, if P 	= Q, the lines sP
and sQ are disjoint. This means that L satisfies (i) of Definition 3.1. Moreover, it is
clear that T1 ∩ sP = {P } and T2 ∩ sP = {P Φf } for each P ∈ T1 and that T1 ∩ L =
T2 ∩L = ∅. In addition, T1 and T2 are the only (n−1)-dimensional transversal spaces
of the lines sP . Indeed, if T = PG(U,Fqt ) = PG(n − 1, qt ) were another transversal
space, then T would be disjoint from T1 and T2 and, since T ∩ sP 	= ∅ for each
P ∈ T1, we have that

U = {
u + λuf (u) : u ∈ U1

}
,

where λu ∈ Fqt for each u ∈ U1 and λu 	= 0 for each u 	= 0. Now, since U is an Fqt -
subspace of V , the map f turns out to be an Fqt -linear map of V , a contradiction.
So, also L satisfies (ii) of Definition 3.1 and hence LWρ,f

is a maximum scattered
Fq -linear set of Λ of pseudoregulus type and PL = {sP : P ∈ T1} is its associated
pseudoregulus. Hence we have proved the following:

2More generally, if Fix(σ ) = Fq′ , then LWρ,f
is an Fq′ -linear set of Λ of scattered type.
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Theorem 3.5 Let T1 = PG(U1,Fqt ) and T2 = PG(U2,Fqt ) be two disjoint (n − 1)-
dimensional subspaces of Λ = PG(V ,Fqt ) = PG(2n − 1, qt ) (t > 1) and let Φf be
a semilinear collineation between T1 and T2 having as companion automorphism an
element σ ∈ Aut(Fqt ) such that Fix(σ ) = Fq . Then, for each ρ ∈ F

∗
qt , the set

Lρ,f = {〈
u + ρf (u)

〉
qt : u ∈ U1 \ {0}}

is an Fq -linear set of Λ of pseudoregulus type whose associated pseudoregulus is
PLρ,f

= {〈P,P Φf 〉qt : P ∈ T1}, with transversal spaces T1 and T2.

Remark 3.6 Note that, with the notation of the previous theorem, if Lρ,f ∩Lρ′,f 	= ∅,
then Lρ,f = Lρ′,f and this happens if and only if Nqt/q(ρ) = Nqt/q(ρ′).3 Hence
T1, T2 and the collineation Φf define a set of q − 1 mutually disjoint linear sets of
pseudoregulus type admitting the same associated pseudoregulus P and covering,
together with the transversal spaces T1 and T2, the point set of P .

Up to projective equivalence, the scattered Fq -linear sets Lρ,f only depend on the
field automorphism associated with f . Indeed, we have:

Theorem 3.7 The Fq -linear sets of Λ = PG(2n − 1, qt ) (n ≥ 2, t ≥ 2) Lρ,f and
Lρ′,g are PΓ L-equivalent if and only if σf = σ±1

g where σf and σg are the automor-
phisms associated with f and g, respectively.

Proof If t = 2, the assertion follows from Remark 3.4. Let t > 2. Then, by Corol-
lary 3.3 the transversal spaces associated with Lρ,f and Lρ′,g are uniquely deter-
mined. Hence, up to the action of PGL(2n,qt ), we may assume that the transversal
spaces of Lρ,f and Lρ′,g are the same. Also, since Lρ,f = L1,ρ−1f , we may consider
scattered Fq -linear sets of the form L1,f . Suppose that L1,f and L1,g are projectively
equivalent; i.e., there exists a collineation φF of Λ = PG(2n − 1, qt ) = PG(V ,Fqt )

defined by an invertible semilinear map F of the vector space V having compan-
ion automorphism τ , such that φF (L1,f ) = L1,g . By Corollary 3.3 φF ({T1, T2}) =
{T1, T2}. Precisely, either φF (Ti) = Ti , i = 1,2 or φF (Ti) = Tj , {i, j} = {1,2}.

In the first case, we have that F(U1) = U1 and F(U2) = U2. Since φF (L1,f ) =
L1,g , for each u ∈ U1 we have φF (〈u + f (u)〉qt ) = 〈F(u + f (u))〉qt ∈ L1,g ; in other
words, for each vector u ∈ U1 we have

F
(
u + f (u)

) = λu

(
u′ + g

(
u′)) = λuu

′ + λug
(
u′), (4)

where u′ ∈ U1 and λu ∈ F
∗
qt if u 	= 0. On the other hand, we also have F(u+f (u)) =

F(u) + F(f (u)), with F(u) ∈ U1 and F(f (u)) ∈ U2. Taking this fact into account,
since V = U1 ⊕U2, Eq. (4) implies that F(u) = λuu

′ and F(f (u)) = λug(u′). Hence

F
(
f (u)

) = λug

(
F(u)

λu

)
= λu

λ
σg
u

g
(
F(u)

)
. (5)

3Here Nqt /q (·) denotes the norm function from Fqt on Fq .
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Let now u and v be two non-zero vectors of U1. If u and v are Fqt -independent, by
Eq. (5) we have

F
(
f (u + v)

) = λ
1−σg

u+v g
(
F(u)

) + λ
1−σg

u+v g
(
F(v)

)
.

Also, we get

F
(
f (u + v)

) = F
(
f (u)

) + F
(
f (v)

) = λ
1−σg
u g

(
F(u)

) + λ
1−σg
v g

(
F(v)

)
.

Hence λ
1−σg
u = λ

1−σg

u+v = λ
1−σg
v , which implies λu/λv ∈ Fq since Fix(σg) = Fq .

On the other hand, if u and v are Fqt -dependent, choosing a vector w ∈ U1, such
that w /∈ 〈u〉qt , and arguing as above we get λu/λv ∈ Fq .

This means that for each u,v ∈ U1 there exists an element βu,v ∈ Fq such that
λu = βu,vλv .

Let u ∈ U1, u 	= 0. Then, by Eq. (5), we get

F
(
f (αu)

) = ασf τ λ
1−σg
u g

(
F(u)

)
(6)

for each α ∈ Fqt . On the other hand, again by Eq. (5), for each α ∈ Fqt we have

F
(
f (αu)

) = λ
1−σg
αu ατσgg

(
F(u)

)
, (7)

where λαu ∈ Fqt . Since λu/λαu ∈ Fq , we have λ
1−σg
αu = λ

1−σg
u . Taking into account

this fact, by Eqs. (6) and (7) we get ασf τ = ατσg for each α ∈ Fqt , which implies
σf = σg .

In the second case we have F(U1) = U2 and F(U2) = U1 and arguing as in the
previous case we get σg = σ−1

f .
Conversely, suppose that σf = σg and let φF be the collineation of Λ defined by

the map F of the vector space V = U1 ⊕ U2 defined as follows:

F(u1 + u2) = u1 + g
(
f −1(u2)

)
,

where u1 ∈ U1 and u2 ∈ U2. Then φF (L1,f ) = L1,g . On the other hand, if σf = σ−1
g ,

the collineation φF of Λ defined by the following map F of V = U1 ⊕ U2

F(u1 + u2) = g(u1) + f −1(u2)

sends L1,f to L1,g . This concludes the proof. �

As a consequence of Theorem 3.7 we have the following:

Corollary 3.8 In the projective space Λ = PG(2n − 1, qt ) (n ≥ 2, t ≥ 3) there are
ϕ(t)/2 orbits of scattered Fq -linear sets of Λ of rank tn of type Lρ,f under the action
of the collineation group of Λ.

Proof By the previous theorem, two linear sets Lρ,f and Lρ,g are PΓ L-equivalent if
and only if either σf = σg or σf = σ−1

g . So the number of orbits of such Fq -linear sets
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under the action of PΓ L(2n,qt ) is χ/2 where χ is the number of Fq -automorphisms
σ of Fqt with Fix(σ ) = Fq . This means that χ is the number of generators of the
group Gal(Fqt : Fq), i.e. χ = ϕ(t) is the number of positive integers less than t and
coprime with t . �

In what follows we will show that each scattered Fq -linear set of pseudoregulus
type can be obtained as in Theorem 3.5. Let us start by proving the following:

Theorem 3.9 Let Σ � PG(tn − 1, q) be a subgeometry of Σ∗ = PG(V ,Fqt ) =
PG(tn − 1, qt ) defined by the semilinear collineation Ψ of order t of Σ∗. Also, let D
be a Desarguesian (t − 1)-spread of Σ and denote by Θ a director subspace of D.
Then, for each pair of integers i1, i2 ∈ {0,1, . . . , t − 1} such that gcd(i2 − i1, t) = 1,
the linear set obtained by projecting Σ from the subspace Γ = 〈ΘΨ i : i 	= i1, i2〉qt

to Λ = 〈ΘΨ i1
,ΘΨ i2 〉qt is a scattered Fq -linear set of type Lρ,f described in Theo-

rem 3.5.

Proof Since Fix(Ψ ) = Σ , the collineation Ψ is induced by an invertible semilin-
ear map g : V −→ V of order t > 1, with companion automorphism σ such that
Fix(σ ) = Fq . Since Θ = PG(U,Fqt ) is a director subspace of the Desarguesian

spread D, we have that D = D(Θ) and Σ∗ = 〈Θ,ΘΨ , . . . ,ΘΨ t−1〉qt . Let i1, i2 ∈
{0,1, . . . , t − 1} be such that gcd(i2 − i1, t) = 1 and let Γ = 〈ΘΨ i : i 	= i1, i2〉qt

and Λ = 〈ΘΨ i1
,ΘΨ i2 〉qt . Then dimΓ = n(t − 2) − 1, dimΛ = 2n − 1, Γ ∩ Λ =

Γ ∩ Σ = ∅ and hence we can project the subgeometry Σ from the center Γ to the
axis Λ. By Theorem 2.4, the projection L = pΓ (Σ) is an Fq -linear set of Λ of rank
tn and 〈L〉qt = Λ. Also, it is easy to see that

Σ = Fix(Ψ )

= {〈
u + g(u) + g2(u) + · · · + gt−1(u)

〉
qt : u ∈ U \ {0}},

and hence the projection of Σ from Γ into Λ is

L = pΓ (Σ) = {〈
gi1(u)+gi2(u)

〉
qt : u ∈ U \ {0}} = {〈

v +f (v)
〉
qt : v ∈ gi1(U) \ {0}},

where f : v ∈ gi1(U) 
→ gi2−i1(v) ∈ gi2(U). Since f is an invertible semilinear
map whose companion automorphism is σ i2−i1 and gcd(i2 − i1, t) = 1, we have
that Fix(σ i2−i1) = Fq . So, by Theorem 3.5, L is a scattered Fq -linear set of Λ of

pseudoregulus type with ΘΨ i1 and ΘΨ i2 as transversal spaces. �

Remark 3.10 Note that, if gcd(i2 − i1, t) = s, in the previous proof we have
Fix(σ i2−i1) = Fqs , and hence the linear set L obtained projecting Σ from Γ = 〈ΘΨ i :
i 	= i1, i2〉qt , is an Fqs -linear set.

Recall that, by Theorem 2.4, every Fq -linear set L of Λ spanning the whole space
can be obtained projecting a suitable subgeometry. If L is of pseudoregulus type we
can prove the following:
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Theorem 3.11 Put Λ = PG(2n − 1, qt ), Σ∗ = PG(tn − 1, qt ) and Σ = Fix(Ψ ) �
PG(tn − 1, q) where Ψ is a semilinear collineation of Σ∗ of order t . Let L be a
scattered Fq -linear set of Λ of pseudoregulus type with associated pseudoregulus P
obtained by projecting Σ into Λ from an (n(t − 2) − 1)-dimensional subspace Γ

disjoint from Σ . Then

(i) the set

DL = {〈Γ, s〉qt ∩ Σ : s ∈P
}

is a Desarguesian (t − 1)-spread of Σ ;
(ii) there exists a director space Θ̄ of DL such that

Γ = 〈
Θ̄, Θ̄τ , . . . , Θ̄τ t−3 〉

qt , (8)

where τ = Ψ m with gcd(m, t) = 1.

Proof Since each line s of P has weight t in L, it is clear that 〈Γ, s〉qt ∩ Σ is a
(t − 1)-dimensional subspace of Σ . Also, since the lines of P are pairwise disjoint

and |P| = qnt−1
qt−1 , the set DL in (i) is a (t − 1)-spread of Σ .

Denote by T1 and T2 the transversal spaces of P and let K1 be the (n(t − 1) − 1)-
dimensional subspace of Σ∗ joining Γ and T1. Since L is disjoint from T1, we have
that K1 ∩ Σ = ∅, and hence K1 ∩ KΨ

1 ∩ · · · ∩ KΨ t−1

1 = ∅. So Θ = K1 ∩ KΨ
1 ∩ · · · ∩

KΨ t−2

1 is an (n − 1)-dimensional subspace of Σ∗ and Σ∗ = 〈Θ,ΘΨ , . . . ,ΘΨ t−1〉qt .
Now, for each line s of P , let Xs = 〈Γ, s〉qt ∩ Σ be the corresponding element of

the spread DL and denote by X∗
s the (t − 1)-dimensional subspace of Σ∗ such that

Xs = X∗
s ∩ Σ , i.e. X∗

s is the Fqt -extension of Xs in Σ∗. So X∗
s ⊂ 〈Γ, s〉qt and since

X∗
s intersects Σ in a subspace of the same dimension, we have that (X∗

s )
Ψ = X∗

s (see
[20, Lemma 1]). Also, let P be the point s ∩ T1. Then 〈Γ,P 〉qt is a hyperplane of
〈Γ, s〉qt and hence Hs = 〈Γ,P 〉qt ∩X∗

s is a (t −2)-dimensional subspace of X∗
s . Since

Hs ⊆ K1, we have that Hs is disjoint from Σ and hence Hs ∩HΨ
s ∩ · · ·∩HΨ t−1

s = ∅.

So Hs,H
Ψ
s , . . . ,HΨ t−1

s are t independent hyperplanes of X∗
s . This implies that Hs ∩

HΨ
s ∩ · · · ∩ HΨ t−2

s is a point, say Rs , of X∗
s . So

Rs ∈ X∗
s ∩ (

Hs ∩ HΨ
s ∩ · · · ∩ HΨ t−2

s

) ⊂ X∗
s ∩ (

K1 ∩ KΨ
1 ∩ · · · ∩ KΨ t−2

1

) = X∗
s ∩ Θ

for each s ∈ P . By Remark 2.1 we get that DL is a Desarguesian spread of Σ with Θ

as a director space. Also, ΘΨ i ⊂ K1 for each i 	= 1 and hence K1 = 〈ΘΨ i : i 	= 1〉qt

and K1 ∩ ΘΨ = ∅.
Similarly, if K2 = 〈Γ,T2〉qt , we get that K2 ∩ KΨ

2 ∩ · · · ∩ KΨ t−2

2 is a director
space of the Desarguesian spread DL and hence there exists m ∈ {1,2, . . . , t − 1}
such that K2 ∩ KΨ

2 ∩ · · · ∩ KΨ t−2

2 = ΘΨ m
(see [18, Theorem 3]). So ΘΨ i ⊂ K2 for

each i 	= m + 1 and hence K2 = 〈ΘΨ i : i 	= m + 1〉qt and K2 ∩ ΘΨ m+1 = ∅. This
means that

Γ = K1 ∩ K2 = 〈
ΘΨ i : i 	= 1,m + 1

〉
qt .
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So, if Ψ m = τ and Θ̄ = ΘΨ 2m+1
, we get (8) of (ii). Finally, since L is a scattered

Fq -linear set, by Theorem 3.9, Remarks 3.10 and 2.3, we have that gcd(t,m) = 1. �

By Theorems 3.9 and 3.11 we have the following:

Theorem 3.12 Each Fq -linear set of PG(2n − 1, qt ) of pseudoregulus type is of the
form Lρ,f described in Theorem 3.5.

Finally, by Theorem 3.12 and by Corollary 3.8 we can state the following classifi-
cation result which generalizes [18, Theorem 4].

Theorem 3.13 In the projective space Λ = PG(2n − 1, qt ) (n ≥ 2, t ≥ 3) there are
ϕ(t)/2 orbits of maximum scattered Fq -linear sets of pseudoregulus type under the
action of the collineation group of Λ.

4 A class of maximum scattered Fq -linear sets of PG(1, qt )

The arguments proving Theorem 3.5 can be exploited to construct a class of maxi-
mum scattered Fq -linear sets of the projective line Λ = PG(V ,Fqt ) = PG(1, qt ) with
a structure resembling that of an Fq -linear set of PG(2n − 1, qt ) (n, t ≥ 2) of pseu-
doregulus type. To this aim let P1 = 〈w〉qt and P2 = 〈v〉qt be two distinct points of Λ

and let τ be an Fq -automorphism of Fqt such that Fix(τ ) = Fq ; then for each ρ ∈ F
∗
qt

the set

Wρ,τ = {
λw + ρλτ v : λ ∈ Fqt

}
,

is an Fq -vector subspace of V of dimension t and Lρ,τ := LWρ,τ is a scattered Fq -
linear set of Λ.

Definition 4.1 We call the linear sets Lρ,τ of pseudoregulus type and we refer to the
points P1 and P2 as transversal points of Lρ,τ .

If Lρ,τ ∩ Lρ′,τ 	= ∅, then Lρ,τ = Lρ′,τ . Note that Lρ,τ = Lρ′,τ if and only if
Nqt/q(ρ) = Nqt/q(ρ′); so P1, P2 and the automorphism τ define a set of q − 1 mutu-
ally disjoint maximum scattered linear sets of pseudoregulus type admitting the same
transversal points. Such maximal scattered linear sets, together with P1 and P2, cover
the point set of the line Λ = PG(1, qt ).

Remark 4.2 Since the group PGL(2, qt ) acts 2-transitively on the points of Λ, we
may suppose that all Fq -linear sets of pseudoregulus type of Λ have the same
transversal points P1 and P2. This means that all such linear sets are only deter-
mined by ρ and by the automorphism τ . Moreover, it is easy to see that for each
ρ,ρ′ ∈ F

∗
qt the linear sets Lρ,τ and Lρ′,τ are equivalent. Indeed, it is sufficient to

consider the collineation of Λ = PG(V ,Fqt ) induced by the map aw + bv ∈ V 
→
aρτ−1

w + bρ′v ∈ V . It follows that, up to projectively equivalence, we may only
consider Fq -linear sets of type L1,σi

, where σi : x ∈ Fqt 
→ xqi ∈ Fqt , with i ∈
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{1, . . . , t − 1} and gcd(i, t) = 1. Now, by observing that, for each i, j ∈ {1, . . . , t − 1}
with gcd(i, t) = gcd(j, t) = 1,

L1,σi
= {〈(

x, xqi )〉
qt : x ∈ F

∗
qt

} = {〈(
1, xqi−1)〉

qt : x ∈ F
∗
qt

}

= {〈
(1, a)

〉
qt : a ∈ F

∗
qt ,Nqt /q(a) = 1

} = {〈(
x, xqj )〉

qt : x ∈ F
∗
qt

} = L1,σj
,

we have that in Λ = PG(1, qt ) (t ≥ 2) all Fq -linear sets of pseudoregulus type are
equivalent to the linear set L1,σ1 , under the action of the collineation group of Λ. This
result has also been proven in [7, Remark 2.2].

Proposition 4.3 If L is an Fq -linear set of pseudoregulus type of Λ = PG(1, qt ),
t ≥ 3, then its transversal points are uniquely determined.

Proof By Remark 4.2, we may consider the Fq -linear set of pseudoregulus type

L := L1,σ1 = {〈(
λ,λq

)〉
qt : λ ∈ F

∗
qt

}
, (9)

having P1 = 〈(1,0)〉qt and P2 = 〈(0,1)〉qt as transversal points.
Suppose that L has another pair of transversal points P ′

1 = 〈w〉qt and P ′
2 = 〈v〉qt ,

with w = 〈(a, b)〉qt and v = 〈(c, d)〉qt , such that ad 	= bc. Then L = {〈ηw +
ρητ v〉qt : η ∈ F

∗
qt }, with τ ∈ Aut(Fqt ). Moreover, arguing as in the previous remark,

we have that

L = {〈
w + ρητ−1v

〉
qt : η ∈ F

∗
qt

} = {〈
w + ρμq−1v

〉
qt : μ ∈ F

∗
qt

}

= {〈
μw + ρμqv

〉
qt : μ ∈ F

∗
qt

}
. (10)

By (9) and (10), we have that for each λ ∈ F
∗
qt , there exist αλ,μ ∈ F

∗
qt such that

(
λ,λq

) = αλ

(
μw + ρμqv

) = αλ

(
μa + ρμqc,μb + ρμqd

)
.

Then, the above equality implies that

α
q−1
λ = μb + ρμqd

(μa + ρμqc)q
,

which gives Nqt/q(μb + ρμqd) = Nqt/q(μa + ρμqc) for each μ ∈ Fqt , i.e.

t−1∏

i=0

(
μqi

bqi + ρqi

μqi+1
dqi ) =

t−1∏

i=0

(
μqi

aqi + ρqi

μqi+1
cqi )

(11)

for each μ ∈ Fqt . From the last equality we get a polynomial identity in the variable
μ of degree at most 2qt−1 + qt−2 + · · ·+ q3 + q2 + q . If q ≥ 3, then 2qt−1 + qt−2 +
· · · + q3 + q2 + q < qt , hence the polynomials in (11) are the same. So comparing
the coefficients of the terms of maximum degree, we get

d1+q+q2+···+qt−2
bqt−1 = c1+q+q2+···+qt−2

aqt−1
. (12)
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Also, comparing the coefficients of the terms of degree 2qt−1 + qt−2 + · · · + q3 +
q2 + 1, for t > 2, we have

dq+q2+···+qt−2
bqt−1

b = cq+q2+···+qt−2
aqt−1

a. (13)

If bd 	= 0, then ac 	= 0 and dividing both sides of Eqs. (12) and (13), we get d
b

= c
a

,
a contradiction since P ′

1 	= P ′
2. If b = 0, from (12) we have c = 0 and hence P ′

1 = P1
and P ′

2 = P2; if d = 0, then also a = 0 by (12) and hence P ′
1 = P2 and P ′

2 = P1.

If q = 2, reducing (11) modulo μqt − μ, we get that the two polynomials of (11)
have degree at most qt−1 + qt−2 + · · · + q3 + q2 + q + 1. So, comparing the coef-
ficients of the terms of degree qt−1 + qt−2 + · · · + q3 + q2 + 2, and of the terms of
degree qt−2 + qt−3 + · · · + q3 + q2 + 2 (for t > 2), and arguing as above we get the
same result. This completes the proof. �

Remark 4.4 Note that if t = 2, then Lρ,τ is a Baer subline of Λ = PG(1, q2) and
P1 and P2 are conjugated with respect to the semilinear involution of Λ fixing Lρ,τ

pointwise. Hence, in such a case, the transversal points are not uniquely determined.

Remark 4.5 Let Lρ,f be an Fq -linear set of pseudoregulus type of PG(2n − 1, qt ),
n > 1, and let PLρ,f

be the associated Fq -pseudoregulus. By (3) and Definition 4.1,
we observe that for each line s ∈ Pρ,f , the set Lρ,f ∩s is a linear set of pseudoregulus
type whose transversal points are the intersections of s with the transversal subspaces
of PLρ,f

.

We conclude this section by giving some examples of maximum scattered Fq -
linear sets which are not of pseudoregulus type.

Example 4.6

(i) Let

Lρ = {〈(
x,ρxq + xqt−1)〉

qt : x ∈ F
∗
qt

}
,

where ρ ∈ Fqt such that Nqt/q(ρ) 	= 1. By [22, Theorem 2] Lρ is a scattered Fq -
linear set of rank t . Moreover, if q > 3, ρ 	= 0 and t ≥ 4, by [22, Theorem 3], there
is no collineation of PG(1, qt ) mapping Lρ to L1,σ1 . Hence, by Remark 4.2, Lρ

is a maximum scattered Fq -linear set which is not of pseudoregulus type when
q > 3.

(ii) Let

L = {〈(
x0, x1, . . . , xn−1, ρx

q

0 + x
qt−1

0 , x
q

1 , . . . , x
q

n−1

)〉
qt : xi ∈ Fqt

}
,

with ρ ∈ F
∗
qt and Nqt/q(ρ) 	= 1. It is easy to see that L is a scattered Fq -linear set

of rank tn. Also, the line r with equations x1 = x2 = · · · = xn−1 = 0 is a line of
weight t in L and, by the previous arguments r ∩ L is an Fq -linear set which is
not of pseudoregulus type for q > 3. So by Remark 4.5 and by point (i), for each
q > 3, t ≥ 4 and n ≥ 2, L is not of pseudoregulus type.
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5 Linear sets and the variety Ω(Sn,n)

Let M = M(n, q) (n ≥ 2) be the vector space of the matrices of order n × n with
entries in Fq and let PG(n2 − 1, q) = PG(M,Fq). The Segre variety Sn,n = Sn,n(q)

of PG(n2 − 1, q) is the set of all points 〈X〉q of PG(n2 − 1, q) such that X is a matrix
of rank 1. Here below we list some well known properties of such a variety, that can
be found in [9, pp. 98–99], [10] and [11, Sect. 25.5]. Precisely,

• |Sn,n| = (
qn−1
q−1 )2;

• maximal subspaces of Sn,n have dimension n − 1;
• there are two families R1 and R2 of maximal subspaces of Sn,n, which are the sys-

tems of Sn,n. Spaces of the same system are pairwise skew and any two spaces of
different systems meet in exactly one point. The elements of each system partition
Sn,n. Moreover, |R1| = |R2| = qn−1

q−1 ;
• the automorphism group Aut(Sn,n) of Sn,n is isomorphic to (PΓ L(n, q) ×

PΓ L(n, q)) � C2, and it is the group of all collineations of PG(n2 − 1, q) fix-
ing or interchanging the two systems of Sn,n.

A k-dimensional subspace S of PG(n2 − 1, q) is a kth secant subspace to Sn,n when
S = 〈P1,P2, . . . ,Pk+1〉q and {P1,P2, . . . ,Pk+1} ⊂ S ∩ Sn,n. The (n − 2)th secant
variety Ω(Sn,n) of Sn,n is the set of all points of PG(n2 − 1, q) belonging to an
(n − 2)th secant subspace to Sn,n. Note that

Ω(Sn,n) = {〈X〉q | X ∈ M(n, q) \ {0},detX = 0
}
, (14)

i.e. Ω(Sn,n) is the algebraic variety, also called determinantal hypersurface, defined
by the non-invertible matrices of M(n, q).

Regarding Fqn as an n-dimensional vector space over Fq and fixing an Fq -basis
B of Fqn , each matrix M of M = M(n, q) defines an Fq -endomorphism ϕM of Fqn ,
and conversely. The map φM : M ∈ M 
→ ϕM ∈ E, where E = End(Fqn,Fq) is the
n2-dimensional vector space of all the Fq -endomorphisms of Fqn , is an isomorphism
between the vector spaces M and E. By using such an isomorphism, we have that
the elements of E with rank 1 define in PG(E,Fq) = PG(n2 − 1, q) the Segre variety

Sn,n. Recalling that each element ϕ ∈ E can be written as ϕ(x) = ∑n−1
i=0 βix

qi
, with

βi ∈ Fqn , we get the following result.

Proposition 5.1 Let P= PG(E,Fq) = PG(n2 − 1, q) and let Sn,n be the Segre vari-
ety of P defined by the elements of E with rank 1. Then4

Sn,n = {〈tλ ◦ Tr◦ tμ〉q : λ,μ ∈ F
∗
qn

}
,

where tα : x ∈ Fqn 
→ αx ∈ Fqn , with α ∈ Fqn and Tr : x ∈ Fqn 
→ x + xq + · · · +
xqn−1 ∈ Fq . Moreover, R1 = {X(λ) : λ ∈ F

∗
qn} and R2 = {X′(λ) : λ ∈ F

∗
qn}, where

X(λ) = {〈tα ◦ Tr◦ tλ〉q : α ∈ F
∗
qn

}
and

X′(λ) = {〈tλ ◦ Tr◦ tα〉q : α ∈ F
∗
qn

}
,

4◦ stands for composition of maps.
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are the two systems of Sn,n. Finally, Ω(Sn,n) is defined by the non-invertible elements
of E.

Proof Note that, for each λ,μ ∈ F
∗
qn , we have

ker(tλ ◦ Tr◦ tμ) = 1

μ
ker Tr,

so dim(ker(tλ ◦ Tr◦ tμ)) = n − 1 (i.e., tλ ◦ Tr◦ tμ is an element of E of rank 1) and
hence 〈tλ ◦ Tr◦ tμ〉q ∈ Sn,n. Also, for each λ′,μ′ ∈ F

∗
qn , tλ ◦ Tr◦ tμ = tλ′ ◦ Tr◦ tμ′

if and only if λ
λ′ = μ

μ′ ∈ F
∗
q . Then direct computations show that |{〈tλ ◦ Tr◦ tμ〉q :

λ,μ ∈ F
∗
qn}| = (

qn−1
q−1 )2, and hence Sn,n = {〈tλ ◦ Tr◦ tμ〉q : λ,μ ∈ F

∗
qn}.5

Also, it is easy to prove that for each λ ∈ F
∗
qn , the sets X(λ) and X′(λ) are (n−1)-

dimensional subspaces of P contained in Sn,n. Moreover, for each λ,μ ∈ F
∗
qn , two

subspaces X(λ) and X(μ) are either disjoint or equal, and this latter case holds true if
and only if λ

μ
∈ F

∗
q . The same happens for X′(λ) and X′(μ). This implies that |{X(λ) :

λ ∈ F
∗
qn}| = |{X′(λ) : λ ∈ F

∗
qn}| = qn−1

q−1 . Also, X(λ) ∩ X′(μ) = {〈tμ ◦ Tr◦ tλ〉q} is a
point. Then R1 = {X(λ) : λ ∈ F

∗
qn} and R2 = {X′(λ) : λ ∈ F

∗
qn} are the systems of

Sn,n. Finally, by (14) the last part of the assertion follows. �

For each ϕ ∈ E, where ϕ(x) = ∑n−1
i=0 βix

qi
, the conjugate ϕ of ϕ is defined by

ϕ(x) = ∑n−1
i=0 β

qn−i

i xqn−i
. Precisely, ϕ̄ is the adjoint map of ϕ with respect to the

non-degenerate bilinear form of Fqn

β(x, y) = Trqn/q(xy). (15)

The map

T : ϕ ∈ E 
→ ϕ ∈ E,

is an involutory Fq -linear permutation of E and straightforward computations show
that

ϕ ◦ ψ = ψ ◦ ϕ, ϕ−1 = (ϕ)−1 for each ϕ,ψ ∈ E; (16)

tλ = tλ for each λ ∈ Fqn . (17)

Moreover, it can be easily checked that kerϕ = (Imϕ)⊥, where ⊥ is the polarity
defined by (15), and hence dim(kerϕ) = dim(kerϕ). Then T induces in P a linear in-
volutory collineation ΦT preserving the varieties Sn,n and Ω(Sn,n) and interchanging
the systems R1 and R2 of Sn,n. Indeed, we have

X(μ)ΦT = X′(μ) for each μ ∈ F
∗
qn . (18)

5Alternatively, by [19, Theorem 2.24] it can be easily seen that the maps tλ ◦ Tr◦ tμ are all the Fq -
endomorphisms of Fqn with rank 1.
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The subgroup H(Sn,n) of PΓ L(n2, q) fixing the systems R1 and R2 of Sn,n is
isomorphic to PΓ L(n, q) × PΓ L(n, q), and such a group has index 2 in the group
Aut(Sn,n) = Aut(Ω(Sn,n)) � (PΓ L(n, q) × PΓ L(n, q)) � C2 (see [13, Theorem 3]
and [11]). Hence Aut(Sn,n) = 〈H(Sn,n),ΦT 〉.

Let I := {〈tλ〉q : λ ∈ F
∗
qn}. Then I is an (n−1)-dimensional subspace of P disjoint

from the variety Ω(Sn,n) and

D1(I) = {{〈tα ◦ ϕ〉q : α ∈ F
∗
qn

} : ϕ ∈ E \ {0}}

and

D2(I) = {{〈ϕ ◦ tα〉q : α ∈ F
∗
qn

} : ϕ ∈ E \ {0}}

are two Desarguesian spreads of P (see, e.g., [3, Exercise 3 and Theorem 14]) such
that

(I1) I ∈Di (I) and Ri ⊂ Di (I), for each i ∈ {1,2}.
Also, we explicitly note that

(I2) ΦT fixes I pointwise and, by (18), D1(I)ΦT = D2(I).

Let Πn−1(D1(I)) be the Fq -linear representation of the projective space PG(n −
1, qn) defined by the Desarguesian spread D1(I) of P. Let Υ1 be the linear
collineation of P defined as

Υ1 : 〈ϕ〉q ∈ P 
→ 〈
ϕ′〉

q
∈ P,

where ϕ′(x) = ∑n−1
i=0 a

q

i−1x
qi

if ϕ(x) = ∑n−1
i=0 aix

qi
, taking the indices i modulo n.

(I3) The collineation Υ1 fixes the Desarguesian spread D1(I) and induces a
collineation Ῡ1 in Πn−1(D1(I)) of order n whose fixed point set consists of
the elements of R1. Hence, R1 turns out to be a subgeometry of Πn−1(D1(I))

isomorphic to PG(n − 1, q).

We explicitly note that

IΥ
j
1 = {〈

x 
→ λxqj 〉
q

: λ ∈ F
∗
qn

}
and

〈
I,IΥ1, . . . ,IΥ n−1

1
〉
q

= P. (19)

So I , in Πn−1(D1(I)), is a point whose orbit under the action of the cyclic group
〈Ῡ1〉 has maximum size n.

In the same way,

(I4) the collineation Υ2 = Φ−1
T ◦ Υ1 ◦ ΦT fixes the Desarguesian spread D2(I) and

induces a collineation Ῡ2 in Πn−1(D2(I)) of order n whose set of fixed points
consists of the elements of R2.

Also,

(I5) IΥ i
2 = IΥ n−i

1 .
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Let OI be the orbit, under the action of the group H(Sn,n), of the (n−1)-dimensional
subspace I of P. A subspace belonging to this orbit will be called a D-subspace of P.
In the following we will study the geometric properties of the D-subspaces of P under
the action of H(Sn,n).

Theorem 5.2 Let X be a D-subspace of P = PG(E,Fq) = PG(n2 − 1, q), then there
exist two Desarguesian spreads D1(X) and D2(X) of P such that:

(D1) X ∈Di (X) and Ri ⊂ Di (X) for each i = 1,2,
(D2) there is a semilinear collineation Ξ̄i of Πn−1(Di (X)) of order n induced by a

linear collineation Ξi of P fixing the Desarguesian spread Di (X). Moreover,
Ri = Fix Ξ̄i is a subgeometry of Πn−1(Di (X)) isomorphic to a PG(n − 1, q).

Also, there exists an involutory collineation Φ of P such that

(D3) Φ fixes X pointwise,
(D4) D1(X)Φ = D2(X).

Proof Let g be an element of H(Sn,n) such that Ig = X. By (I1), Di (X) := Di (I)g ,
for each i ∈ {1,2}, is a Desarguesian spread of P containing X and the system Ri ,
i.e. (D1) is satisfied. Putting Ξi := g ◦ Υi ◦ g−1 and Φ := g ◦ ΦT ◦ g−1 and taking
(I2), (I3) and (I4) into account, (D2), (D3) and (D4) follow. �

This allows us to give the following

Definition 5.3 Let X be a D-subspace of P and let Ξi (i ∈ {1,2}) be one of the

two collineations of P described in (D2). Each of the D-subspaces XΞ
j
i , with j ∈

{0,1, . . . , n − 1}, is said to be a conjugate of X. Note that, by (I5), XΞ
j
2 = XΞ

n−j
1 .

Remark 5.4 If n = 2, then E = End(Fq2 ,Fq) and S2,2 is the hyperbolic quadric
Q+(3, q) of P = PG(E,Fq) = PG(3, q) defined by the quadratic form

ϕ ∈ E 
→ aq+1 − bq+1 ∈ Fq,

where ϕ(x) = ax + bxq . Hence, the group H(S2,2) is the subgroup of the orthogo-
nal group PΓ O+(4, q) fixing the reguli of Q+(3, q). Also, the H(S2,2)-orbit of the
line I , is the set of all external lines to the quadric. Moreover, the involutory linear
collineation Υ1 of P described above is

〈
x 
→ ax + bxq

〉
q


−→ 〈
x 
→ bqx + aqxq

〉
q
.

This means that the conjugate of I is the line IΥ1 = {〈x 
→ μxq〉q : μ ∈ F
∗
q2}, which

is the polar line of I with respect to the quadric Q+(3, q).

5.1 Linear sets and presemifields

A finite semifield is a finite division algebra which is not necessarily associative and
throughout this paper the term semifield will always be used to denote a finite semi-
field (see, e.g., [16, Chap. 6] for definitions and notations on finite semifields). Every
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field is a semifield and the term proper semifield means a semifield which is not a
field. The left nucleus Nl and the center K of a semifield S are fields contained in S

as substructures (K is a subfield of Nl) and S is a vector space over Nl and over K.
Semifields are studied up to an equivalence relation called isotopy and the dimensions
of a semifield over its left nucleus and over its center are invariant up to isotopy.

Let S be a semifield with center K and left nucleus Nl and let (Fq,Fqt ) be a pair
of fields such that Fq ≤K and Fqt ≤Nl ; then S is a finite extension of Fqt and hence
it has size qnt for some integer n ≥ 1. If S is a proper semifield, then n ≥ 2. Also, up
to isotopy, we may assume that S = (Fqnt ,+, �), where

x � y = ϕy(x)

with ϕy ∈ E = End(Fqnt ,Fqt ). The set

CS = {ϕy : x ∈ Fqnt 
→ x � y ∈ Fqnt |y ∈ Fqnt } ⊂ E

is the semifield spread set associated with S (spread set for short): CS is an Fq -
subspace of E of rank nt and each non-zero element of CS is invertible. Hence, for
each pair (Fq,Fqt ) ⊆ (K,Nl ), we can associate with S the Fq -linear set of rank nt

of the projective space P = PG(E,Fqt ) = PG(n2 − 1, qt ) defined by the non-zero
elements of CS. Such a linear set turns out to be disjoint from the variety Ω(Sn,n(q

t ))

of P defined by the non-invertible elements of E. Isotopic semifields produce in
P = PG(n2 − 1, qt ) linear sets which are equivalent with respect to the action of the
group H(Sn,n(q

t )), and conversely (see [21] for n = 2 and [14] for n ≥ 2). Among
all the pairs (Fq,Fqt ) such that Fq ⊆ K and Fqt ⊆ Nl , the pair (K,Nl ) has the fol-
lowing properties: (i) maximizes the field of linearity of the linear set associated
with S, (ii) minimizes the dimension of the projective space P in which the linear set
is embedded, and (iii) minimizes the group H(Sn,n). For instance, if S = Fq , then
Nl = K = Fq and hence the linear set associated with the field Fq , with respect to the
pair (Fq,Fq), is the point PG(Fq,Fq); whereas, if Fq ′ is a subfield of Fq , q = q ′n,
then the linear set associated with Fq , with respect to the pair (Fq ′ ,Fq ′), is an (n−1)-
dimensional subspace of P = PG(n2 − 1, q ′) disjoint from the variety Ω(Sn,n(q

′))
of P, which is a D-subspace of P, and conversely (see [13, Theorem 20]). In what
follows, we will call the linear set associated with S with respect to the maximum
pair (K,Nl ), the relevant linear set associated with S.

In the next sections we will characterize, up to the action of the group H(Sn,n),
the relevant linear sets associated with some classical semifields: the Generalized
Twisted Fields and the Knuth semifields 2-dimensional over their left nucleus.

5.2 Generalized Twisted Fields

If S satisfies all the axioms for a semifield except, possibly, the existence of the iden-
tity element for the multiplication, then it is a presemifield. In such a case the nuclei
and the center of S are defined as fields of linear maps contained in End(S,Fp) (where
p is the characteristic of S) (see, e.g., [24, Theorem 2.2]) and all that we stated and
defined above for semifields can be applied to presemifields.
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The Generalized Twisted Fields are presemifields constructed by A.A. Albert in
[2]. By [1, Lemma 1] a Generalized Twisted Field G with center of order q , n-
dimensional over its left nucleus (n ≥ 2) and tn-dimensional over its center is of
type G = (Fqnt ,+, �) (q = pe, p prime) with

x � y = yx − cyqm

xqtl

, (20)

where c ∈ F
∗
qnt , c 	= xqtl−1yqm−1 for every x, y ∈ Fqnt , and 1 ≤ l ≤ n − 1, 1 ≤ m ≤

nt − 1, m 	= t l. Since we required dimKG = nt and dimNl
G = n, we also have

gcd(l, n) = gcd(t,m) = 1. From the previous conditions we get q > 2 and, if t = 1,
then n ≥ 3. In terms of linear maps, by [24, Theorem 2.2] and by [1, Lemma 1] we
can describe the left nucleus and the center of G as follows:

Nl = {tλ : x ∈ Fqnt 
→ λx ∈ Fqnt |λ ∈ Fqt } ⊂ E,

K = {tλ : x ∈ Fqnt 
→ λx ∈ Fqnt |λ ∈ Fq} ⊂ E,

where E = End(Fqnt ,Fqt ) = V (n2,Fqt ). The spread set associated with G is

C = {ϕy : x ∈ Fqnt 
→ x � y ∈ Fqnt |y ∈ Fqnt } ⊂ E

and it is an Fq -subspace of E of dimension nt . Hence C defines an Fq -linear set of
rank nt in the projective space P = PG(E,Fqt ) = PG(n2 − 1, qt ); precisely

L(G) = LC = {〈ϕy〉qt : y ∈ F
∗
qnt

}
,

which is the relevant linear set associated with G. Since the non-zero elements of C
are invertible, L(G) is disjoint from the variety Ω(Sn,n(q

t )) of P defined by the non-
invertible elements of E. By (20) it is clear that L(G) is contained in the subspace
Λ = PG(2n−1, qt ) of P joining the D-space I = {〈tλ〉qt : λ ∈ F

∗
qnt } and its conjugate

IΥ l
1 = {〈x 
→ λxqtl 〉qt : λ ∈ F

∗
qnt }, precisely

Λ = {〈
x 
→ Ax + Bxqlt 〉

qt : A,B ∈ Fqnt

}
.

Note that Λ defines a line PG(1, qnt ) in the Fqt -linear representation Πn−1(D1(I)).
Also, since gcd(t,m) = 1, it is easy to verify that, if t ≥ 2, then L(G) is a maximum
scattered Fq -linear set of Λ and, hence, Λ = 〈L(G)〉qt .

Proposition 5.5 Let G = (Fqnt ,+, �) be a Generalized Twisted Field n-dimensional
over its left nucleus and tn-dimensional over its center. Let P = PG(E,Fqt ) =
PG(n2 −1, qt ) (where E = End(Fqnt ,Fqt )), Λ = {〈x 
→ Ax+Bxqlt 〉qt : A,B ∈ Fqnt }
and Πn−1(D1(I)) be the Fq -linear representation of PG(n − 1, qn).

(a) If t = 1, then (a. i) L(G) is an (n − 1)-dimensional subspace of P = PG(n2 −
1, q) contained in Λ and in the linear representation Πn−1(D1(I)) � PG(n −
1, qn); (a. ii) L(G) induces an Fqt -linear set of pseudoregulus type with

transversal points I and IΥ l
1 .
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(b) If t ≥ 2, then L(G) is a scattered Fq -linear set of rank tn of pseudoregulus type

of Λ with I and IΥ l
1 as transversal spaces.

Proof (a) If t = 1, then C is an Fq -subspace of E = End(Fqn ,Fq); i.e. L(G) is just
an (n − 1)-dimensional subspace of P contained in Λ. Note that the map

Φ : {〈tλ ◦ ϕ〉q : λ ∈ F
∗
qn

} ∈ D1(I) 
→ 〈
(a0, a1, . . . , an−1)

〉
qn ∈ PG

(
n − 1, qn

)
,

where ϕ(x) = ∑n−1
i=0 aix

qi
is a linear collineation between Πn−1(D1(I)) and PG(n−

1, qn) such that IΦ = 〈(1,0, . . . ,0)〉qn , IΥ l
1Φ = 〈(0, . . . ,1, . . . ,0)〉qn and ΛΦ is

the line of PG(n − 1, qn) with equations xi = 0 for i 	= 0, l. Also L(G)Φ =
{〈(y,0,0, . . . ,−cyqm

,0, . . . ,0)〉qn : y ∈ F
∗
qn} is an Fq -linear set contained in the line

ΛΦ of PG(n−1, qn). By Definition 4.1, L(G)Φ is a maximum scattered Fq -linear set

of pseudoregulus type of ΛΦ , with transversal points IΦ and IΥ l
1Φ . This proves (a).

(b) If t ≥ 2, then the collineation

Φf : 〈ty : x 
→ yx〉qt ∈ I 
→ 〈
f (ty) : x 
→ −cyqm

xqlt 〉
qt ∈ IΥ l

1 ,

is a semilinear collineation between I and IΥ l
1 with companion automorphism

σ : α ∈ Fqt 
→ αqm ∈ Fqt and, since gcd(t,m) = 1, Fix(σ ) = Fq . Hence, by Theo-
rem 3.5, LW1,f

is an Fq -linear set of Λ of pseudoregulus type with transversal spaces

I and IΥ l
1 , and since

W1,f = {
ty + f (ty) : y ∈ Fqnt

} = {
x 
→ yx − cyqm

xqtl |y ∈ Fqnt

} = C.

Case (b) follows. �

Now, we will prove that the properties of L(G) described in Proposition 5.5 com-
pletely characterize, up to isotopy, the Generalized Twisted Fields.

Theorem 5.6 Let S be a presemifield of order qnt with Fq contained in its center and
Fqt contained in its left nucleus and let L(S) be the associated linear set with respect
to the pair (Fq,Fqt ). Also, assume that L(S) is contained in a (2n − 1)-dimensional
subspace of P = PG(n2 − 1, qt ) joining two conjugated D-spaces X and X′ of P.
Suppose that either Case (a) or Case (b) below holds:

(a) t = 1 and L(S) induces, in the linear representation Πn−1(D1(X)) � PG(n −
1, qn), an Fq -linear set of pseudoregulus type of the line PG(1, qn) of
Πn−1(D1(X)) joining the points X and X′, with transversal points X and X′;

(b) t ≥ 2 and L(S) is a maximum scattered Fq -linear set of pseudoregulus type of
〈X,X′〉qt with X and X′ as transversal spaces;

then S is isotopic to a Generalized Twisted Field.

Proof Without loss of generality we may assume that S = (Fqnt ,+,∗) with Fq con-
tained in K and Fqt contained in Nl . Let E = End(Fqnt ,Fq) and let C = {ϕy : x ∈
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Fqnt 
→ x ∗ y ∈ Fqnt |y ∈ Fqnt } be the spread set defined by S. Note that describing
S corresponds, up to isotopy, to describing the associated linear set L(S) = LC in
the projective space P = PG(E,Fqt ) = PG(n2 − 1, qt ), up to the action of the group
H(Sn,n(q

t )). Since all the D-spaces of P belong to the same H(Sn,n(q
t ))-orbit, we

may assume, up to isotopy, that X = I , so X′ = IΥ l
1 for some l ∈ {1, . . . , n − 1}

(see (19)).

(a) By Definition 4.1, L(S) = Lρ,τ where ρ ∈ F
∗
qn and τ : x 
→ xqm

is an automor-
phism of Fqn such that gcd(m,n) = 1. This implies that

C = {
ϕy : x ∈ Fqn 
→ xy + ρyqm

xql ∈ Fqn |y ∈ Fqn

}
.

Hence x ∗y = xy − cyqm
xql

where c = −ρ, i.e. S, up to isotopy, is a Generalized
Twisted Field.

(b) By Theorem 3.12, L(S) is of type Lρ,f with transversal spaces I and IΥ l
1 . Hence,

there exist a semilinear collineation

Φf : 〈ty〉qt ∈ I 
→ 〈
f (ty)

〉
qt ∈ IΥ l

1

with companion automorphism σ ∈ Aut(Fqt ) such that Fix(σ ) = Fq and an ele-
ment ρ ∈ F

∗
qnt such that

C = {
ty + ρf (ty) : y ∈ Fqnt

}
.

This implies that

f (ty) : x 
→ ηyqm

xqtl

,

where η ∈ F
∗
qnt , 1 ≤ m ≤ nt − 1 and gcd(t,m) = 1. Hence, putting c = −ηρ, we

have

C = {
ϕy : x ∈ Fqnt 
→ xy − cyqm

xqtl ∈ Fqnt |y ∈ Fqnt

}
,

this means that x ∗y = xy−cyqm
xqtl

, and hence S, up to isotopy, is a Generalized
Twisted Field. �

Note that if n = 2 then t ≥ 2 and by Remark 5.4, we can restate Theorem 5.6 as
follows, which is a generalization of [5, Theorems 4.3, 3.7] and [25, Theorems 4.12,
4.13].

Corollary 5.7 Let S be a presemifield of order q2t with center Fq and left nucleus
Fqt . If L(S) is an Fq -linear set of PG(3, qt ) of pseudoregulus type with transversal
lines external to the quadric S2,2 = Q+(3, qt ) pairwise polar with respect to the
polarity defined by Q+(3, qt ), then S is isotopic to a Generalized Twisted Field.

5.3 2-Dimensional Knuth semifields

The Knuth semifields 2-dimensional over the left nucleus and 2t-dimensional (t ≥ 2)
over the center Fq are the following:
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K17 = (Fqt × Fqt ,+,∗) and K19 = (Fqt × Fqt ,+, �) (see [6, p. 241 (multiplica-
tions (17) and (19))]), with

(u, v) ∗ (x, y) = (u, v)

(
x y

fyσ xσ + yσ g

)

and

(u, v) � (x, y) = (u, v)

(
x y

fyσ−1
xσ + yg

)
,

where σ ∈ Aut(Fqt ), Fixσ = Fq , and f and g are non-zero elements in Fqt such that
the polynomial xq+1 + gx − f has no root in Fqt .

The spread sets (of matrices) associated with K17 and K19 are

C17 =
{(

x y

fyσ xσ + yσ g

)
: x, y ∈ Fqt

}
⊂ M

and

C19 =
{(

x y

fyσ−1
xσ + yg

)
: x, y ∈ Fqt

}
⊂ M,

respectively, where M = M(2, qt ) is the vector space of the 2 × 2-matrices over Fqt .
The sets C17 and C19 are Fq -subspaces of M of dimension 2t and hence they

define Fq -linear sets of rank 2t in the projective space P = PG(M,Fqt ) = PG(3, qt ).
Precisely, using the coordinatization

( x0 x1
x2 x3

) 
→ (x0, x1, x2, x3),

L(K17) = {〈(
x, y,fyσ , xσ + gyσ

)〉
qt : x, y ∈ Fqt , (x, y) 	= (0,0)

}
(21)

and

L(K19) = {〈(
x, y,fyσ−1

, xσ + gy
)〉

qt : x, y ∈ Fqt , (x, y) 	= (0,0)
}

(22)

are the relevant linear sets associated with the semifields K17 and K19, respectively.
Recall that L(K17) and L(K19) are disjoint from the hyperbolic quadric Q+(3, qt )

of P defined by the non-invertible matrices of M. Let R1 be the regulus of Q+(3, qt )

containing the line x2 = x3 = 0 and let R2 be the opposite one.

Remark 5.8 Note that the collineation ΦT of P defined by the transpose operation
on matrices fixes the quadric Q+(3, qt ) and interchanges the reguli R1 and R2 and
ΦT (L(K17(σ,f, g))) = L(K19(σ, 1

f σ−1 ,
g
f
)). In other words, the family K19 is the

transpose family of K17 (see [12, Sect. 5]).

Proposition 5.9 (1) L(K17) is an Fq -linear set of P = PG(3, qt ) of pseudoregulus
type, whose transversal lines belong to R1.

(2) L(K19) is an Fq -linear set of P = PG(3, qt ) of pseudoregulus type, whose
transversal lines belong to R2.
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Proof Let r and r ′ be the lines of R1 with equations r : x2 = x3 = 0 and r ′ : x0 =
x1 = 0. Then the map

f : (x, y,0,0) 
→ (
0,0, fyσ , xσ + gyσ

)

induces a semilinear collineation Φf between r and r ′ having σ as a companion
automorphism. Then, by Theorem 3.5, L1,f is an Fq -linear set of pseudoregulus
type. Since L1,f = L(K17) we get (1).

Case (2) follows from Remark 5.8 and Case (1). �

In the next theorem we prove that the descriptions of L(K17) and L(K19) given in
Proposition 5.9 characterize the semifields K17 and K19 up to isotopism, generalizing
some results contained in [5] and [25] for t = 2.

Theorem 5.10 Let S be a presemifield of order q2t with Fq contained in its center
and Fqt contained in its left nucleus and let L(S) be the associated linear set with
respect to the pair (Fq,Fqt ). If L(S) is an Fq -linear set of pseudoregulus type of
P = PG(3, qt ) with associated transversal lines r and r ′ contained in Q+(3, qt ),
then S is isotopic to a Knuth semifield K17 or K19. Precisely, if r, r ′ ∈ R1, then S is
isotopic to a semifield K17, whereas, if r, r ′ ∈ R2, then S is isotopic to a semifield
K19.

Proof Without loss of generality, we may assume that S = (Fqt × Fqt ,+,◦), with
Fqt × {0} contained in its left nucleus. This implies that

(u, v) ◦ (x, y) = (u, v)M,

where M = Mx,y ∈M. So, the spread set of matrices associated with S is

C = {
Mx,y =

(
m0(x, y) m1(x, y)

m2(x, y) m3(x, y)

)
: x, y ∈ Fqt

}

and

LC = L(S)

= {〈(
m0(x, y),m1(x, y),m2(x, y),m3(x, y)

)〉
qt : x, y ∈ Fqt , (x, y) 	= (0,0)

}
,

where mi(x, y) are Fq -linear maps. Assume that the transversal lines r and r ′ of
L(S) are contained in R1. Since the group H(S2,2) = G (see Remark 5.4) acts
2-transitively on the lines of R1, we can suppose that r = {〈(x0, x1,0,0)〉qt : x0, x1 ∈
Fqt , (x, y) 	= (0,0)} and r ′ = {〈(0,0, x2, x3)〉qt : x2, x3 ∈ Fqt , (x, y) 	= (0,0)}. Note
that the stabilizer G{r,r ′} in the group G of the lines r and r ′ acts transitively on the
points of r . If P is any point of r , then the stabilizer G{r,r ′,P } of P in G{r,r ′} fixes
the point P ⊥ ∩ r ′ and acts transitively on the remaining points of r ′. This means that
we can suppose, without loss of generality, that the line s with equations x1 = x2 = 0
belongs to the pseudoregulus associated with L(S). Let R = r ∩ s = 〈(1,0,0,0)〉qt

and R′ = r ′ ∩ s = 〈(0,0,0,1)〉qt . By Theorems 3.13 and 3.5 there exist a semi-
linear collineation Φ : 〈(x, y,0,0)〉qt ∈ r 
→ 〈(0,0, h(x, y), g(x, y))〉qt ∈ r ′ having
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σ ∈ Aut(Fqt ), with Fixσ = Fq , as companion automorphism, and an element ρ ∈ F
∗
qt

such that

L(S) = {〈(
x, y,ρh(x, y), ρg(x, y)

)〉
qt : x, y ∈ Fqt , (x, y) 	= (0,0)

}
.

Since Φ is semilinear with companion automorphism σ , we have that

h(x, y) = a1x
σ + a2y

σ and g(x, y) = b1x
σ + b2y

σ ,

where a1, a2, b1, b2 ∈ Fqt . Also, since the line s belongs to the pseudoregulus
associated with L(S), we have Φ(R) = R′, i.e. h(1,0) = a1 = 0. So L(S) =
{〈(x, y,αyσ ,βxσ + γyσ )〉qt : x, y ∈ Fqt , (x, y) 	= (0,0)}, where α = ρa2, β = ρb1,
γ = ρb2. Note that L(S) ∩ Q+(3, qt ) = ∅ implies β 	= 0. The collineation ω of
P defined as ω : 〈(x0, x1, x2, x3)〉qt 
→ 〈(x0, x1, x2/β, x3/β)〉qt fixes the reguli of
Q+(3, qt ) and

L(S)ω = {〈(
x, y,fyσ , xσ + gyσ

)〉
qt : x, y ∈ Fqt , (x, y) 	= (0,0)

}
,

where f = α
β

and g = γ
β

, i.e., up to isotopy, S is a K17 Knuth semifield. Finally, if the

transversal lines of L(S) belong to R2, arguing as in the previous case, we get that S
is isotopic to a K19 Knuth semifield. �

Acknowledgements We thank the referees for their valuable comments; these have increased the read-
ability of the article. Also, we wish to thank G. Donati and N. Durante for their helpful suggestions regard-
ing Remark 4.2.

References

1. Albert, A.A.: Isotopy for generalized twisted fields. An. Acad. Bras. Ciênc. 33, 265–275 (1961)
2. Albert, A.A.: Generalized twisted fields. Pac. J. Math. 11, 1–8 (1961)
3. Bader, L., Lunardon, G.: Desarguesian spreads. Ric. Mat. 60, 15–37 (2011)
4. Blokhuis, A., Lavraw, M.: Scattered spaces with respect to a spread in PG(n, q). Geom. Dedic. 81(1–

3), 231–243 (2000)
5. Cardinali, I., Polverino, O., Trombetti, R.: Semifield planes of order q4 with kernel F

q2 and center
Fq . Eur. J. Comb. 27, 940–961 (2006)

6. Dembowski, P.: Finite Geometries. Springer, Berlin (1968)
7. Donati, G., Durante, N.: Scattered linear sets generated by collineations between pencils of lines,

submitted
8. Freeman, J.W.: Reguli and pseudo-reguli in PG(3, s2). Geom. Dedic. 9, 267–280 (1980)
9. Harris, J.: Algebraic Geometry. A First Course. Springer, New York (1992)

10. Herzer, A.: Generalized Segre varieties. Rend. Mat. 7, 1–36 (1986)
11. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)
12. Knuth, D.E.: Finite semifields and projective planes. J. Algebra 2, 182–217 (1965)
13. Lavrauw, M.: On the isotopism classes of finite semifields. Finite Fields Appl. 14, 897–910 (2008)
14. Lavrauw, M.: Finite semifields with a large nucleus and higher secant varieties to Segre varieties. Adv.

Geom. 11(3), 399–410 (2011)
15. Lavrauw, M., Marino, G., Polverino, O., Trombetti, R.: Fq -pseudoreguli of PG(3, q3) and scattered

semifields of order q6. Finite Fields Appl. 17, 225–239 (2011)
16. Lavrauw, M., Polverino, O.: Finite semifields. In: De Beule, J., Storme, L. (eds.) Current Research

Topics in Galois Geometry. NOVA Academic Publ., New York (2011) Chap. 6. ISBN: 978-1-61209-
523-3



J Algebr Comb (2014) 39:807–831 831

17. Lavrauw, M., Van de Voorde, G.: On linear sets on a projective line. Des. Codes Cryptogr. 56, 89–104
(2010)

18. Lavrauw, M., Van de Voorde, G.: Scattered linear sets and pseudoreguli. Electronic J. Comb. 20(1)
(2013)

19. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia Math. Appl., vol. 20. Addison-Wesley, Reading
(1983). Now distributed by Cambridge University Press

20. Lunardon, G.: Normal spreads. Geom. Dedic. 75, 245–261 (1999)
21. Lunardon, G.: Translation ovoids. J. Geom. 76, 200–215 (2003)
22. Lunardon, G., Polverino, O.: Blocking sets and derivable partial spreads. J. Algebr. Comb. 14, 49–56

(2001)
23. Lunardon, G., Polverino, O.: Translation ovoids of orthogonal polar spaces. Forum Math. 16, 663–669

(2004)
24. Marino, G., Polverino, O.: On the nuclei of a finite semifield. In: Theory and Applications of Finite

Fields. Contemp. Math., vol. 579, pp. 123–141. Amer. Math. Soc., Providence (2012)
25. Marino, G., Polverino, O., Trombetti, R.: On Fq -linear sets of PG(3, q3) and semifields. J. Comb.

Theory, Ser. A 114, 769–788 (2007)
26. Polverino, O.: Linear sets in finite projective spaces. Discrete Math. 310, 3096–3107 (2010)
27. Segre, B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl.

64, 1–76 (1964)


	Maximum scattered linear sets of pseudoregulus type and the Segre variety Sn,n
	Abstract
	Introduction
	Preliminary results
	Linear sets

	Maximum scattered Fq-linear sets of pseudoregulus type in PG(2n-1,qt)
	A class of maximum scattered Fq-linear sets of PG(1,qt)
	Linear sets and the variety Omega(Sn,n)
	Linear sets and presemiﬁelds
	Generalized Twisted Fields
	2-Dimensional Knuth semiﬁelds

	Acknowledgements
	References


