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Abstract Let Γ denote a bipartite distance-regular graph with vertex set X and di-
ameter D ≥ 3. Fix x ∈ X and let L (resp., R) denote the corresponding lowering
(resp., raising) matrix. We show that each Q-polynomial structure for Γ yields a cer-
tain linear dependency among RL2, LRL, L2R, L. Define a partial order ≤ on X

as follows. For y, z ∈ X let y ≤ z whenever ∂(x, y) + ∂(y, z) = ∂(x, z), where ∂ de-
notes path-length distance. We determine whether the above linear dependency gives
this poset a uniform or strongly uniform structure. We show that except for one spe-
cial case a uniform structure is attained, and except for three special cases a strongly
uniform structure is attained.

Keywords Distance-regular graphs · Q-Polynomial structure · Uniform posets

1 Introduction

In his thesis [12], Delsarte introduced the Q-polynomial property for a distance-
regular graph Γ (see Sect. 2 for formal definitions). Since then the Q-polynomial
property has been investigated by many authors, such as Bannai and Ito [1], Brouwer,
Cohen and Neumaier [3], Caughman [4–9], Curtin [10, 11], Jurišić, Terwilliger, and
Žitnik [14], Lang [15, 16], Lang and Terwilliger [17], Miklavič [18–21], Pascasio
[22, 23], Tanaka [24, 25], Terwilliger [26, 27, 30, 32], and Weng [33, 34].
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To simplify this investigation, it is sometimes assumed that Γ is bipartite [4–9, 15,
16, 19, 20] and this is the point of view taken in the present paper. For the rest of this
Introduction, assume Γ is bipartite and Q-polynomial. To avoid trivialities, assume
Γ has diameter D ≥ 3 and valency k ≥ 3.

In [28], Terwilliger introduced the subconstituent algebra of Γ . For each vertex x

of Γ , the corresponding subconstituent algebra T = T (x) is generated by the adja-
cency matrix A and a certain diagonal matrix A∗ = A∗(x). The eigenspaces of A∗
are the subconstituents of Γ with respect to x. The matrices A and A∗ satisfy two re-
lations called the tridiagonal relations [29, Lemma 5.4], [31]. The first (resp., second)
tridiagonal relation is of degree 3 in A (resp., A∗) and of degree 1 in A∗ (resp., A).
In [29], the tridiagonal relations are used to describe the combinatorics of Γ . In this
description, it is natural to view Γ as the Hasse diagram for a ranked poset. The
partial order ≤ is defined as follows. For vertices y, z of Γ , let y ≤ z whenever
∂(x, y) + ∂(y, z) = ∂(x, z), where ∂ denotes path-length distance. The poset struc-
ture induces a decomposition A = L + R, where L = L(x) (resp., R = R(x)) is the
lowering matrix (resp., raising matrix) of Γ with respect to x. For vertices y, z of Γ ,
the (y, z)-entry of L is 1 if z covers y, and 0 otherwise. The matrix R is the transpose
of L. In the first tridiagonal relation, if one eliminates A using A = L + R, one finds
that on each x-subconstituent of Γ the elements

RL2, LRL, L2R, L

are linearly dependent. The coefficients in this linear dependence depend on the sub-
constituent. We call this collection of dependencies an R/L dependency structure.

Motivated by these R/L dependency structures, in [27] Terwilliger introduced the
uniform property for a partially ordered set. In that work, he described the algebraic
structure of the uniform posets and displayed eleven infinite families of examples.

In spite of the known connection between the Q-polynomial property and uniform
posets, a careful study of this connection was not completed until now. The goal of the
present paper is to provide this study. As part of this study we introduce a variation on
the uniform property called strongly uniform. Strongly uniform implies uniform. For
each Q-polynomial structure on Γ we determine precisely when the corresponding
R/L dependency structure is uniform or strongly uniform. To describe our results,
let {θi}Di=0 denote the ordering of the eigenvalues of Γ for the given Q-polynomial
structure. Consider the following cases:

(i) Γ is the hypercube H(D,2) with D even and θi = (−1)i(D−2i) for 0 ≤ i ≤ D;
(ii) Γ is the antipodal quotient H(2D,2) and θi = 2D − 4i for 0 ≤ i ≤ D;

(iii) D = 3 and Γ is of McFarland type with parameters (1, t) for some integer t ≥ 2,
and θ0, θ1, θ2, θ3 are t (t + 1), t,−t,−t (t + 1) respectively.

(See Sect. 4 for the meaning of McFarland type.) In Case (i), the corresponding R/L

dependency structure is not uniform. In Cases (ii) and (iii), this structure is uniform
but not strongly uniform. In all other cases, this structure is strongly uniform.

The paper is organized as follows. In Sects. 2 and 3, we discuss the Bose–Mesner
algebra and the dual Bose–Mesner algebra of a distance-regular graph. In Sects. 4
and 5, we consider the bipartite case and discuss the associated poset structure. In
Sect. 6, we consider R/L dependency structures. In Sect. 7, we review the uniform
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property and define the strongly uniform property. In Sects. 8–11, we consider a given
Q-polynomial structure for our graph. We determine precisely when the correspond-
ing R/L dependency structure is uniform or strongly uniform. Our main result is
Theorem 11.9.

2 Preliminaries

Let X denote a nonempty finite set. Let MatX(R) denote the R-algebra consist-
ing of the matrices with entries in R, and rows and columns indexed by X. Let
V = R

X denote the vector space over R consisting of the column vectors with en-
tries in R and rows indexed by X. Observe that MatX(R) acts on V by left mul-
tiplication. We refer to V as the standard module of MatX(R). We endow V with
the bilinear form 〈 , 〉 : V × V → R that satisfies 〈u,v〉 = utv for u,v ∈ V , where
t denotes transpose. For y ∈ X let ŷ denote the vector in V that has y-coordinate
1 and all other coordinates 0. Observe that {ŷ |y ∈ X} is an orthonormal basis
for V .

Throughout the paper, let Γ = (X, R) denote a finite, undirected, connected
graph, without loops or multiple edges, with vertex set X, edge set R, path-length
distance function ∂ , and diameter D := max{∂(x, y) |x, y ∈ X}. For x ∈ X and an
integer i, let Γi(x) = {y ∈ X | ∂(x, y) = i}. We abbreviate Γ (x) = Γ1(x). For an
integer k ≥ 0, we say Γ is regular with valency k whenever |Γ (x)| = k for all
x ∈ X. We say Γ is distance-regular whenever for all integers 0 ≤ h, i, j ≤ D and all
x, y ∈ X with ∂(x, y) = h the number ph

ij := |Γi(x) ∩ Γj (y)| is independent of x, y.

The constants ph
ij are known as the intersection numbers of Γ . For convenience,

set ci := pi
1,i−1 (1 ≤ i ≤ D), ai := pi

1i (0 ≤ i ≤ D), bi := pi
1,i+1 (0 ≤ i ≤ D − 1),

ki := p0
ii (0 ≤ i ≤ D), and c0 := 0, bD := 0. For the rest of this paper, assume Γ is

distance-regular with diameter D ≥ 3. By the triangle inequality, for 0 ≤ h, i, j ≤ D

we have ph
ij = 0 (resp., ph

ij 
= 0) whenever one of h, i, j is greater than (resp.,
equal to) the sum of the other two. In particular, ci 
= 0 for 1 ≤ i ≤ D and bi 
= 0
for 0 ≤ i ≤ D − 1. Observe that Γ is regular with valency k = b0 = k1 and that
ci + ai + bi = k for 0 ≤ i ≤ D.

We recall the Bose–Mesner algebra of Γ . For 0 ≤ i ≤ D, let Ai denote the matrix
in MatX(R) with (y, z)-entry

(Ai)yz =
{

1 if ∂(y, z) = i,

0 if ∂(y, z) 
= i
(y, z ∈ X). (1)

We call Ai the ith distance matrix of Γ . We abbreviate A := A1 and call this the
adjacency matrix of Γ . We observe (ai) A0 = I ; (aii) J = ∑D

i=0 Ai ; (aiii) At
i =

Ai (0 ≤ i ≤ D); (aiv) AiAj = ∑D
h=0 ph

ijAh (0 ≤ i, j ≤ D), where I (resp., J ) de-
notes the identity matrix (resp., all 1s matrix) in MatX(R). Using these facts we find
{Ai}Di=0 is a basis for a commutative subalgebra M of MatX(R). We call M the Bose–
Mesner algebra of Γ . By [1, p. 190], A generates M . By [3, p. 45], M has a basis
{Ei}Di=0 such that (ei) E0 = |X|−1J ; (eii) I = ∑D

i=0 Ei ; (eiii) Et
i = Ei (0 ≤ i ≤ D);



228 J Algebr Comb (2013) 38:225–242

(eiv) EiEj = δijEi (0 ≤ i, j ≤ D). We call {Ei}Di=0 the primitive idempotents of Γ .
The primitive idempotent E0 is said to be trivial.

We recall the eigenvalues of Γ . Since {Ei}Di=0 form a basis for M , there exist

scalars {θi}Di=0 in R such that A = ∑D
i=0 θiEi . Combining this with (eiv), we find

AEi = EiA = θiEi (0 ≤ i ≤ D).

We call θi the eigenvalue of Γ associated with Ei . The {θi}Di=0 are mutually distinct
since A generates M . By (ei) we have θ0 = k. By (eii)–(eiv),

V = E0V + E1V + · · · + EDV (orthogonal direct sum). (2)

For 0 ≤ i ≤ D the space EiV is the eigenspace of A associated with θi . Let mi denote
the rank of Ei and note that mi is the dimension of EiV . We call mi the multiplicity
of θi .

We recall the Krein parameters of Γ . Let ◦ denote the entrywise product in
MatX(R). Observe that Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D, so M is closed under ◦.
Thus there exist scalars qh

ij ∈ R (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej = |X|−1
D∑

h=0

qh
ijEh (0 ≤ i, j ≤ D).

The parameters qh
ij are called the Krein parameters of Γ . By [3, Proposition 4.1.5],

these parameters are nonnegative. The given ordering {Ei}Di=0 of the primitive idem-
potents is said to be Q-polynomial whenever for 0 ≤ h, i, j ≤ D the Krein parameter
qh
ij = 0 (resp., qh

ij 
= 0) whenever one of h, i, j is greater than (resp., equal to) the
sum of the other two. Let E denote a nontrivial primitive idempotent of Γ and let
θ denote the corresponding eigenvalue. We say that Γ is Q-polynomial with respect
to E (or θ ) whenever there exists a Q-polynomial ordering {Ei}Di=0 of the primitive
idempotents of Γ such that E1 = E.

3 The dual Bose–Mesner algebra

We continue to discuss the distance-regular graph Γ from Sect. 2. In this section, we
recall the dual Bose–Mesner algebra of Γ . For the rest of the paper, fix x ∈ X. For
0 ≤ i ≤ D let E∗

i = E∗
i (x) denote the diagonal matrix in MatX(R) with (y, y)-entry

(E∗
i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 
= i
(y ∈ X). (3)

We call E∗
i the ith dual idempotent of Γ with respect to x [28, p. 378]. For con-

venience, set E∗
i = 0 for i < 0 or i > D. We observe (esi) I = ∑D

i=0 E∗
i ; (esii)

E∗t
i = E∗

i (0 ≤ i ≤ D); (esiii) E∗
i E∗

j = δijE
∗
i (0 ≤ i, j ≤ D). By these facts, {E∗

i }Di=0
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forms a basis for a commutative subalgebra M∗ = M∗(x) of MatX(R). We call M∗
the dual Bose–Mesner algebra of Γ with respect to x [28, p. 378]. By (esi)–(esiii),

V = E∗
0V + E∗

1V + · · · + E∗
DV (orthogonal direct sum). (4)

For 0 ≤ i ≤ D the subspace E∗
i V has basis {ŷ |y ∈ Γi(x)}. Moreover, the dimension

of E∗
i V is ki .

The algebras M and M∗ are related as follows. By [28, Lemma 3.2],

E∗
i AjE

∗
h = 0 if and only if ph

ij = 0 (0 ≤ h, i, j ≤ D). (5)

Let E denote a nontrivial primitive idempotent of Γ and assume Γ is Q-polynomial
with respect to E. Let A∗ = A∗(x) denote the diagonal matrix in MatX(R) with
(y, y)-entry

A∗
yy = |X|Exy (y ∈ X).

We call A∗ the dual adjacency matrix of Γ that corresponds to E and x. By [28,
Lemma 3.11(ii)], A∗ generates M∗. We recall the dual eigenvalues for our Q-
polynomial structure. Since {E∗

i }Di=0 forms a basis for M∗ there exist scalars {θ∗
i }Di=0

in R such that A∗ = ∑D
i=0 θ∗

i E∗
i . Combining this with (esiii), we find

A∗E∗
i = E∗

i A∗ = θ∗
i E∗

i (0 ≤ i ≤ D). (6)

We call {θ∗
i }Di=0 the dual eigenvalue sequence for the given Q-polynomial structure.

The {θ∗
i }Di=0 are mutually distinct since A∗ generates M∗. For 0 ≤ i ≤ D the space

E∗
i V is the eigenspace of A∗ associated with θ∗

i . By [1, Proposition 3.4.(iv)], we
have that θ∗

0 = rank(E). Let θ denote the eigenvalue of Γ associated with E. By [3,
p. 128],

ciθ
∗
i−1 + aiθ

∗
i + biθ

∗
i+1 = θθ∗

i (0 ≤ i ≤ D), (7)

where θ∗−1 and θ∗
D+1 are indeterminants.

Lemma 3.1 ([29, Lemma 5.4]) Let {Ei}Di=0 denote a Q-polynomial ordering of the
primitive idempotents of Γ and for 0 ≤ i ≤ D let θi denote the eigenvalue of Γ

for Ei . Let {θ∗
i }Di=0 denote the dual eigenvalue sequence for the given Q-polynomial

structure. Then the following (i)–(iii) hold.

(i) There exists β ∈ R such that

β + 1 = θi−2 − θi+1

θi−1 − θi

= θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

(8)

for 2 ≤ i ≤ D − 1.
(ii) There exist γ, γ ∗ ∈ R such that both

γ = θi−1 − βθi + θi+1, γ ∗ = θ∗
i−1 − βθ∗

i + θ∗
i+1 (9)

for 1 ≤ i ≤ D − 1.
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(iii) There exist �,�∗ ∈ R such that both

� = θ2
i−1 − βθi−1θi + θ2

i − γ (θi−1 + θi),

�∗ = θ∗2
i−1 − βθ∗

i−1θ
∗
i + θ∗2

i − γ ∗(θ∗
i−1 + θ∗

i )
(10)

for 1 ≤ i ≤ D.

Lemma 3.2 ([29, Lemma 5.4]) Let E denote a Q-polynomial primitive idempotent
of Γ and let A∗ = A∗(x) denote the corresponding dual adjacency matrix. Then both[

A,A2A∗ − βAA∗A + A∗A2 − γ
(
AA∗ + A∗A

) − �A∗] = 0, (11)

[
A∗,A∗2A − βA∗AA∗ + AA∗2 − γ ∗(A∗A + AA∗) − �∗A

] = 0, (12)

where [r, s] = rs − sr and β,γ, γ ∗, �,�∗ are from Lemma 3.1.

4 Bipartite distance-regular graphs

We continue to discuss the distance-regular graph Γ from Sect. 2. Recall that Γ is
bipartite whenever ai = 0 for 0 ≤ i ≤ D. For Γ bipartite, ph

ij = 0 if h + i + j is odd
(0 ≤ h, i, j ≤ D). In this case,

E∗
i AE∗

h = 0 if |h − i| 
= 1 (0 ≤ h, i ≤ D). (13)

The case in which Γ is bipartite with D = 3 will play an important role.
By [3, Theorem 1.6.1.], Γ is bipartite with D = 3 if and only if Γ is the incidence

graph of a square 2-(v, k, λ) design. In this case, c2 = λ and v = 1 + k(k − 1)/λ. See
[2] for more information and background on square 2-designs.

Pick integers d ≥ 1 and t ≥ 2. A square 2-(v, k, λ) design is said to have McFar-
land type with parameters (d, t) whenever

v = td+1
(

1 + td+1 − 1

t − 1

)
, k = td

td+1 − 1

t − 1
, λ = td

td − 1

t − 1
.

For the moment assume that t is a prime power. By [2, Corollary II.8.17], a square
2-design of McFarland type with parameters (d, t) exists for every integer d ≥ 1. By
[2, p. 982], this design can be realized as a McFarland difference set.

Our graph Γ is said to have McFarland type with parameters (d, t) whenever Γ

is the incidence graph of a square 2-design of McFarland type with parameters (d, t).

5 The bipartite case; lowering and raising matrices

We continue to discuss the distance-regular graph Γ from Sect. 2. For the rest of this
paper, assume that Γ is bipartite.



J Algebr Comb (2013) 38:225–242 231

Define a partial order ≤ on X such that for all y, z ∈ X,

y ≤ z if and only if ∂(x, y) + ∂(y, z) = ∂(x, z).

For y, z ∈ X define y < z whenever y ≤ z and y 
= z. We say that z covers y whenever
y < z and there does not exist w ∈ X such that y < w < z. Note that z covers y if
and only if y, z are adjacent and ∂(x, y) + 1 = ∂(x, z). For 0 ≤ i ≤ D each vertex in
Γi(x) covers exactly ci vertices from Γi−1(x), and is covered by exactly bi vertices
in Γi+1(x). Therefore, the partition {Γi(x)}Di=0 of X is a grading of the poset (X,≤)

in the sense of [27, Sect. 1].

Definition 5.1 Define matrices L = L(x) and R = R(x) by

L =
D∑

i=1

E∗
i−1AE∗

i , R =
D−1∑
i=0

E∗
i+1AE∗

i .

Note that R = Lt and L + R = A.

We have three observations.

Lemma 5.2 Let L,R be as in Definition 5.1. Then the following (i), (ii) hold for
y ∈ X.

(i) Lŷ = ∑
ẑ, where the sum is over all z ∈ X that are covered by y;

(ii) Rŷ = ∑
ẑ, where the sum is over all z ∈ X that cover y.

Motivated by Lemma 5.2, we call L (resp., R) the lowering matrix (resp., raising
matrix) of Γ with respect to x.

Lemma 5.3 Let L,R be as in Definition 5.1. Then the following (i), (ii) hold.

(i) RE∗
i V ⊆ E∗

i+1V for 0 ≤ i ≤ D − 1, and RE∗
DV = 0;

(ii) LE∗
i V ⊆ E∗

i−1V for 1 ≤ i ≤ D, and LE∗
0V = 0.

Lemma 5.4 Let L,R be as in Definition 5.1. Then for 1 ≤ i ≤ D the following (i)–
(iv) hold.

(i) E∗
i−1AE∗

i = LE∗
i ;

(ii) E∗
i−1AE∗

i = E∗
i−1L;

(iii) E∗
i AE∗

i−1 = RE∗
i−1;

(iv) E∗
i AE∗

i−1 = E∗
i R.

Moreover

LE∗
0 = 0, E∗

DL = 0, RE∗
D = 0, E∗

0R = 0. (14)

Lemma 5.5 Let L,R be as in Definition 5.1. Then

E∗
i−1A

3E∗
i = RL2E∗

i + LRLE∗
i + L2RE∗

i

for 1 ≤ i ≤ D.
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Proof Straightforward using A = L + R and Lemma 5.3. �

From now on we use the following notational convention.

Notation 5.6 For the rest of this paper, we assume our distance-regular graph Γ

is bipartite with valency k ≥ 3. Let {Ei}Di=0 denote a Q-polynomial ordering of the
primitive idempotents of Γ and let {θi}Di=0 denote the corresponding eigenvalues.
Abbreviate E = E1. Recall our fixed vertex x ∈ X from Sect. 3. For 0 ≤ i ≤ D let
E∗

i = E∗
i (x) denote the ith dual idempotent of Γ with respect to x. Let A∗ = A∗(x)

denote the dual adjacency matrix of Γ that corresponds to E and x. Let {θ∗
i }Di=0

denote the dual eigenvalue sequence for the given Q-polynomial structure. Let the
scalars β,γ, γ ∗, �,�∗ be from Lemma 3.1. Let the matrices L = L(x) and R = R(x)

be as in Definition 5.1.

With reference to Notation 5.6, we have γ = 0 by [3, Theorem 8.2.1] and since Γ

is bipartite. Thus by (11),[
A,A2A∗ − βAA∗A + A∗A2 − �A∗] = 0. (15)

6 The R/L dependency structure

In this section, we display certain linear dependencies among RL2,RLR,L2R,L.

Lemma 6.1 With reference to Notation 5.6 the following (i), (ii) hold for 1 ≤ i ≤ D.

(i) E∗
i−1A

2A∗AE∗
i = θ∗

i−1RL2E∗
i + θ∗

i−1LRLE∗
i + θ∗

i+1L
2RE∗

i ;
(ii) E∗

i−1AA∗A2E∗
i = θ∗

i−2RL2E∗
i + θ∗

i LRLE∗
i + θ∗

i L2RE∗
i .

Proof Straightforward using A = L + R along with (6) and Lemma 5.3. �

Proposition 6.2 With reference to Notation 5.6, for 1 ≤ i ≤ D the equation

θ∗
i − θ∗

i−1 + (β + 1)(θ∗
i−2 − θ∗

i−1)

θ∗
i − θ∗

i−1
RL2 + (β + 2)LRL

+ θ∗
i − θ∗

i−1 + (β + 1)(θ∗
i − θ∗

i+1)

θ∗
i − θ∗

i−1
L2R = �L (16)

holds on E∗
i V .

Proof Multiply (15) by E∗
i−1 on the left and by E∗

i on the right. Divide the result by
θ∗
i−1 − θ∗

i and simplify using (6) along with Lemmas 5.4(i), 5.5, 6.1. �

We call the equations (16) the R/L dependency structure that corresponds to the
given Q-polynomial structure. We have a comment about the coefficients in line (16).
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Lemma 6.3 With reference to Notation 5.6 the following (i), (ii) hold.

(i) For 3 ≤ i ≤ D,

θ∗
i − θ∗

i−1 + (β + 1)(θ∗
i−2 − θ∗

i−1)

θ∗
i − θ∗

i−1
= θ∗

i−3 − θ∗
i−1

θ∗
i − θ∗

i−1
.

(ii) For 1 ≤ i ≤ D − 2,

θ∗
i − θ∗

i−1 + (β + 1)(θ∗
i − θ∗

i+1)

θ∗
i − θ∗

i−1
= θ∗

i − θ∗
i+2

θ∗
i − θ∗

i−1
.

Proof (i) Evaluate the left-hand side using β + 1 = (θ∗
i−3 − θ∗

i )/(θ∗
i−2 − θ∗

i−1).
(ii) Evaluate the left-hand side using β + 1 = (θ∗

i−1 − θ∗
i+2)/(θ

∗
i − θ∗

i+1). �

7 Uniform structures on a poset

In this section, we discuss the uniform property for a partially ordered set [27]. This
property involves the notion of a parameter matrix. With reference to Notation 5.6,
by a parameter matrix we mean a tridiagonal matrix U = (eij )1≤i,j≤D with entries
in R such that

1. eii = 1 for 1 ≤ i ≤ D;
2. ei,i−1 
= 0 for 2 ≤ i ≤ D or ei−1,i 
= 0 for 2 ≤ i ≤ D;
3. the principal submatrix (eij )r≤i,j≤p is nonsingular for 1 ≤ r ≤ p ≤ D.

We abbreviate e−
i := ei,i−1 for 2 ≤ i ≤ D and e+

i := ei,i+1 for 1 ≤ i ≤ D − 1. For
notational convenience, define e−

1 := 0 and e+
D := 0.

By a uniform structure for Γ we mean a pair (U,f ) where U = (eij )1≤i,j≤D is a
parameter matrix and f = {fi}Di=1 is a vector in R

D such that the equation

e−
i RL2 + LRL + e+

i L2R = fiL (17)

holds on E∗
i V for 1 ≤ i ≤ D. By a strongly uniform structure for Γ we mean a

uniform structure (U,f ) for Γ such that ei,i−1 
= 0 and ei−1,i 
= 0 for 2 ≤ i ≤ D.
Note that a strongly uniform structure is uniform.

Lemma 7.1 With reference to Notation 5.6, let (U,f ) denote a uniform structure
for Γ . Then the equation

e−
i R2L + RLR + e+

i LR2 = fiR

holds on E∗
i−1V for 1 ≤ i ≤ D.

Proof The equation (17) holds on E∗
i V so

(
e−
i RL2 + LRL + e+

i L2R − fiL
)
E∗

i = 0. (18)
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By Lemma 5.4, we have LE∗
j = E∗

j−1L and E∗
j R = RE∗

j−1 for 1 ≤ j ≤ D. Evaluat-
ing (18) using this and (14), we find

E∗
i−1

(
e−
i RL2 + LRL + e+

i L2R − fiL
) = 0. (19)

In line (19), apply the transpose map to each term and recall R = Lt . This yields(
e−
i R2L + RLR + e+

i LR2 − fiR
)
E∗

i−1 = 0,

and the result follows. �

See [27] for more information on uniform posets.
Recall our Q-polynomial structure from Notation 5.6. Our next goal is to deter-

mine in which cases the corresponding R/L dependency structure is uniform or
strongly uniform. We first consider the case in which β = −2, where β is from
line (8).

8 The case β = −2

Recall our Q-polynomial structure from Notation 5.6. In this section, we determine
whether the corresponding R/L dependency structure is uniform or strongly uniform,
for the case β = −2. We will be discussing the D-dimensional hypercube H(D,2).
By [3, Theorem 9.2.1], H(D,2) is distance-regular with diameter D and intersection
numbers

bi = D − i, ci = i (0 ≤ i ≤ D). (20)

By [3, Theorem 9.2.1], the eigenvalues of H(D,2) are {D−2i}Di=0. By [1, p. 304], the
ordering {D−2i}Di=0 is Q-polynomial. For this Q-polynomial structure β = 2. If D is
odd then this Q-polynomial structure is unique. If D is even then H(D,2) has exactly
one more Q-polynomial structure, with eigenvalue ordering {(−1)i(D − 2i)}Di=0 [1,
p. 305]. For this Q-polynomial structure β = −2.

Proposition 8.1 ([26, Theorem 2]) With reference to Notation 5.6, assume β = −2.
Then D is even and Γ is H(D,2) with the following Q-polynomial ordering of the
eigenvalues:

θi = (−1)i(D − 2i) (0 ≤ i ≤ D). (21)

Lemma 8.2 With reference to Notation 5.6, assume Γ is H(D,2) and let {θi}Di=0
denote the Q-polynomial ordering of the eigenvalues (21). Let {θ∗

i }Di=0 denote the
corresponding dual eigenvalue sequence. Then θ∗

i = θi for 0 ≤ i ≤ D. Also

β = −2, γ ∗ = 0, � = 4, �∗ = 4.

Proof We have θ∗
i = θi by [4, Theorem 1.1]. The remaining assertions follow from

Lemma 3.1. �
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Proposition 8.3 With reference to Notation 5.6, assume Γ is H(D,2) and consider
the Q-polynomial ordering of the eigenvalues (21). Then the corresponding R/L

dependency structure is that the equation

2

2i − D − 1
RL2 − 2

2i − D − 1
L2R = 4L (22)

holds on E∗
i V for 1 ≤ i ≤ D.

Proof Evaluate (16) using Lemma 8.2. �

Proposition 8.4 With reference to Notation 5.6, assume Γ is H(D,2) and consider
the Q-polynomial ordering of the eigenvalues (21). Then the corresponding R/L

dependency structure is not uniform.

Proof The equation (22) does not match the form (17). �

9 The case β �= −2

Recall our Q-polynomial structure from Notation 5.6. Until further notice assume
β 
= −2. Under this assumption, we show that the corresponding R/L dependency
structure is uniform. Moreover, we show that this structure is strongly uniform except
in two special cases. The following definition is for notational convenience.

Definition 9.1 With reference to Notation 5.6, assume β 
= −2. Let U = (eij )1≤i,j≤D

denote the tridiagonal matrix with entries

eii = 1 (1 ≤ i ≤ D),

ei,i−1 = θ∗
i − θ∗

i−1 + (β + 1)(θ∗
i−2 − θ∗

i−1)

(β + 2)(θ∗
i − θ∗

i−1)
(2 ≤ i ≤ D),

ei−1,i = θ∗
i−1 − θ∗

i−2 + (β + 1)(θ∗
i−1 − θ∗

i )

(β + 2)(θ∗
i−1 − θ∗

i−2)
(2 ≤ i ≤ D).

For notational convenience, write e−
i = ei,i−1 for 2 ≤ i ≤ D and e−

1 = 0, and also
e+
i = ei,i+1 for 1 ≤ i ≤ D − 1 and e+

D = 0. Define a vector {fi}Di=1 in R
D such that

fi = �/(β + 2) for 1 ≤ i ≤ D.

Proposition 9.2 With reference to Notation 5.6 and Definition 9.1, the equation

e−
i RL2 + LRL + e+

i L2R = fiL (23)

holds on E∗
i V for 1 ≤ i ≤ D.

Proof Divide (16) by β + 2 and use Definition 9.1. �
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Table 1 Special cases
Case Γ Q-polynomial structure

I H(D,2) θi = D − 2i (0 ≤ i ≤ D)

II H(2D,2) θi = 2D − 4i (0 ≤ i ≤ D)

III D = 3, b2 = 1 θ0 = k, θ1 = 1, θ2 = −1, θ3 = −k

IV D = 3, b2 > 1 θ0 = k, θ1 = √
b2, θ2 = −√

b2, θ3 = −k

V D = 3, b2 > 1 θ0 = k, θ1 = −√
b2, θ2 = √

b2, θ3 = −k

Our next general goal is to determine whether the equations (23) give a uniform
or strongly uniform structure. In order to do this, we introduce some parameters q

and s∗.

10 The parameters q and s∗

Recall our Q-polynomial structure from Notation 5.6. We would like to write the
corresponding data in terms of two parameters q and s∗. However, it will be conve-
nient to exclude several special cases. The first special case is H(D,2) with eigen-
value ordering {D − 2i}Di=0. The next special case concerns the antipodal quotient of
H(2D,2). We denote this quotient graph by H(2D,2). By [3, p. 264], H(2D,2) is
distance-regular with diameter D and intersection numbers

bi = 2D − i, ci = i (0 ≤ i ≤ D − 1),

and cD = 2D. By [3, p. 264], the eigenvalues of H(2D,2) are

θi = 2D − 4i (0 ≤ i ≤ D). (24)

By [1, p. 306], the ordering (24) is the unique Q-polynomial structure for H(2D,2).
In order to describe some more special cases, we turn our attention to Notation 5.6
with D = 3. By [3, Proposition 4.2.2.(ii)], b2 = 1 if and only if Γ is antipodal. In
this case, b1 = k − 1, c2 = k − 1, c3 = k. Moreover, Γ has a unique Q-polynomial
structure with eigenvalues θ0 = k, θ1 = 1, θ2 = −1, θ3 = −k [3, p. 432]. For b2 > 1,
Γ has exactly two Q-polynomial structures: θ0 = k, θ1 = √

b2, θ2 = −√
b2, θ3 = −k

and θ0 = k, θ1 = −√
b2, θ2 = √

b2, θ3 = −k [3, p. 432]. In the following table, we
summarize the cases discussed so far.

Lemma 10.1 With reference to Notation 5.6, assume the Q-polynomial structure is
listed in Table 1. Then the corresponding dual eigenvalue sequence {θ∗

i }Di=0 is given
in the table below.

Case Dual eigenvalue sequence

I θ∗
i

= D − 2i (0 ≤ i ≤ D)

II θ∗
i

= 2(D − i)2 − D (0 ≤ i ≤ D)

III θ∗
0 = k, θ∗

1 = 1, θ∗
2 = −1, θ∗

3 = −k

IV, V θ∗
0 = k(k−1)

c2
, θ∗

1 = θ1(k−1)
c2

, θ∗
2 = −1, θ∗

3 = − k
θ1
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Proof The {θ∗
i }Di=0 are computed using (7) with θ = θ1, once θ∗

0 is known. Recall that
θ∗

0 is the rank of E1. In Case I, the rank of E1 is D by [3, Theorem 9.2.1]. In Case
II, the rank of E1 is 2D2 − D by [3, p. 264]. In Case III, the rank of E1 is k by [3,
p. 432]. In Cases IV and V, the rank of E1 is k(k − 1)/c2 by [3, p. 432]. The result
follows. �

Lemma 10.2 With reference to Notation 5.6, assume the Q-polynomial structure is
listed in Table 1. Then β , γ ∗, �, �∗ are given in the table below.

Case β γ ∗ � �∗

I 2 0 4 4
II 2 4 16 4(2D − 1)

III k − 1 0 k + 1 k + 1

IV, V k−θ1
θ1

(k−1)θ1−c2
c2

θ1(θ1 + k)
(k−1)(k+θ1)

c2

Proof Use Lemma 3.1 and Lemma 10.1. �

We have now completed our description of the special cases.

Lemma 10.3 ([9, Lemma 3.2, Lemma 3.3]) With reference to Notation 5.6, assume
the Q-polynomial structure is not listed in Table 1 and β 
= −2. Then there exist
q, s∗ ∈ R such that the following (i)–(iii) hold.

(i) |q| > 1, s∗qi 
= 1 (2 ≤ i ≤ 2D + 1);
(ii) b0 = h(qD − 1) = cD ,

bi = h(qD − qi)(1 − s∗qi+1)

1 − s∗q2i+1
, ci = h(qi − 1)(1 − s∗qD+i+1)

1 − s∗q2i+1

(1 ≤ i ≤ D − 1);
(iii) θi = h(qD−i − qi), θ∗

i = θ∗
0 + h∗(1 − qi)(1 − s∗qi+1)q−i (0 ≤ i ≤ D), where

h = 1 − s∗q3

(q − 1)(1 − s∗qD+2)
, h∗ = (qD + q2)(qD + q)

q(q2 − 1)(1 − s∗q2D)
,

θ∗
0 = h∗(qD − 1)(1 − s∗q2)

q(qD−1 + 1)
.

Note 10.4 With reference to Notation 5.6, assume the Q-polynomial structure is not
listed in Table 1 and β 
= −2. Then by [9, Corollary 6.7] the scalar s∗ from Lemma
10.3 is zero provided D ≥ 12.

Lemma 10.5 With reference to Notation 5.6, assume the Q-polynomial structure is
not listed in Table 1 and β 
= −2. Then

β = q + q−1,
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γ ∗ = (q − 1)(qD−2 + 1)(1 + s∗qD+1)

1 − s∗q2D
,

� = qD−2(q + 1)2(1 − s∗q3)2

(1 − s∗qD+2)2
,

�∗ = q(qD−2 + 1)2(1 − s∗q2)

1 − s∗q2D
,

where q, s∗ are from Lemma 10.3.

Proof Use Lemma 3.1 and Lemma 10.3. �

In Lemma 10.3(i), we cited some inequalities involving q and s∗. We now prove
one more inequality involving q and s∗.

Lemma 10.6 With reference to Notation 5.6, assume the Q-polynomial structure is
not listed in Table 1 and β 
= −2. Then the scalars q and s∗ from Lemma 10.3 satisfy
s∗q 
= 1.

Proof We assume s∗q = 1 and get a contradiction. Recall q ∈ R and |q| > 1. By
[5, Theorem 15.6(ii)], the scalar

q(qD−1 − 1)

qD+1 − 1

is nonnegative. The factors qD−1 − 1 and qD+1 − 1 have the same sign, since D − 1
and D + 1 have the same parity. Therefore, q > 0. By these comments, q > 1. By
[5, Theorem 15.6(iii)], the scalar

(qD − 1)(qD − q)(1 − q3)(1 + qD)

q(q2 − 1)(1 − qD+1)(1 − q2D−1)
(25)

is nonnegative. Since q > 1 the expression (25) is negative, for a contradiction. �

11 The main result

Recall our Q-polynomial structure from Notation 5.6. We are now ready to determine
whether the corresponding R/L dependency structure is uniform or strongly uniform.
We begin with some computations involving the matrix U from Definition 9.1.

Proposition 11.1 With reference to Notation 5.6 and Definition 9.1, the scalars
{e−

i }Di=2, {e+
i }D−1

i=1 , {fi}Di=1 are given in the following table:
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Case e−
i

e+
i

fi

I − 1
2 − 1

2 1

II i−D−2
2D−2i+1

i−D+1
2D−2i+1 4

III e−
2 = 2−k

2 , e−
3 = 1

1−k
e+

1 = 1
1−k

, e+
2 = 2−k

2 1

IV, V e−
2 = θ1−k+1

θ1+1 , e−
3 = − θ2

1
c2

e+
1 = 1

1−k
, e+

2 = θ1−c2
θ1(θ1+1)

θ2
1

other − q2(1−s∗q2i−3)

(q+1)(1−s∗q2i )
− 1−s∗q2i+3

q(q+1)(1−s∗q2i )

qD−1(1−s∗q3)2

(1−s∗qD+2)2

The scalars q, s∗ are from Lemma 10.3.

Proof For Cases I–V use Definition 9.1, Lemma 10.1, and Lemma 10.2. For the
remaining case use Definition 9.1, Lemma 10.3, and Lemma 10.5. �

With reference to Notation 5.6, assume for the moment that D = 3. For an integer
t ≥ 2, the following are equivalent: (i) Γ is of McFarland type with parameters (1, t);
(ii) the intersection numbers of Γ satisfy k = t (t + 1) and c2 = t . Assume that (i),
(ii) hold. Then b1 = t2 + t − 1, b2 = t2, c3 = t (t + 1). Moreover, the eigenvalue θ1 is
either t or −t . The case θ1 = t is contained in Case IV. We call this situation Case IV′.
Let us examine Case IV′ in more detail.

Lemma 11.2 With reference to Notation 5.6, assume the Q-polynomial structure is
in Case IV′. Then the following (i)–(iii) hold.

(i) The eigenvalues {θi}3
i=0 are

θ0 = t (t + 1), θ1 = t, θ2 = −t, θ3 = −t (t + 1).

(ii) The dual eigenvalues {θ∗
i }3

i=0 are

θ∗
0 = (t + 1)

(
t2 + t − 1

)
, θ∗

1 = t2 + t − 1, θ∗
2 = −1, θ∗

3 = −t − 1.

(iii) The parameters β,γ ∗, �,�∗ from Lemma 3.1 are

β = t, γ ∗ = t2 + t − 2, � = t2(t + 2), �∗ = t3 + 3t2 + t − 2.

Proof (i) Immediate from Table 1.
(ii) Immediate from Lemma 10.1.
(iii) Immediate from Lemma 10.2. �

Lemma 11.3 With reference to Notation 5.6, assume the Q-polynomial structure is
in Case IV’. Then the following (i)–(iii) hold.

(i) e−
2 = 1 − t and e−

3 = −t ;
(ii) e+

1 = −(t2 + t − 1)−1 and e+
2 = 0;

(iii) fi = t2 for 1 ≤ i ≤ 3.
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Proof From Case IV of the table of Proposition 11.1, using k = t (t + 1), c2 = t , and
θ1 = t . �

Corollary 11.4 With reference to Notation 5.6 and Definition 9.1, the following (i)–
(iii) hold.

(i) Assume the Q-polynomial structure is in Case II. Then e+
D−1 = 0.

(ii) Assume the Q-polynomial structure is in Case IV′. Then e+
2 = 0.

(iii) For all other cases e−
i 
= 0 for 2 ≤ i ≤ D and e+

i 
= 0 for 1 ≤ i ≤ D − 1.

Proof (i) Immediate from Case II of the table in Proposition 11.1.
(ii) Immediate from Lemma 11.3(ii).
(iii) Immediate from Proposition 11.1, using Lemma 10.3(i) and Lemma 10.6. �

We recall a result from linear algebra.

Lemma 11.5 ([13, p. 29]) Pick an integer d ≥ 3 and let B = (Bij )1≤i,j≤d denote a
tridiagonal matrix. Then

det(B) = Bdd det
(
(Bij )1≤i,j≤d−1

) − Bd−1,dBd,d−1 det
(
(Bij )1≤i,j≤d−2

)
.

Recall the principal submatrices (eij )r≤i,j≤p from the beginning of Sect. 7.

Proposition 11.6 With reference to Notation 5.6 and Definition 9.1, for 1 ≤ r ≤ p ≤
D the determinant of (eij )r≤i,j≤p is given in the following table:

Case Determinant of (eij )r≤i,j≤p

I p−r+2
2p−r+1

II
(p−r+2)(2D−r−p+1)(D−p+1)p−r

2p−r+2(D−p+1/2)p−r+1

III 1 if p = r; k
2(k−1)

if p = r + 1; 1
k−1 if p = r + 2

IV, V
1 if p = r; kθ1

(k−1)(θ1+1)
if (r,p) = (1,2)

k
c2(θ1+1)

if (r,p) = (2,3); θ1(k−θ1)
(k−1)c2

if (r,p) = (1,3)

other
(qp−r+2−1)(1−s∗qp+r )(s∗q2r+1;q2)p−r

(q+1)p−r+1(q−1)(s∗q2r ;q2)p−r+1

We are using the notation

(a)n = a(a + 1) · · · (a + n − 1),

(a;q)n = (1 − a)(1 − qa) · · · (1 − qn−1a
)
.

Proof For Cases III–V the result follows from a straightforward computation using
Proposition 11.1. For the other cases use Proposition 11.1, Lemma 11.5, and induc-
tion on p − r . �
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Corollary 11.7 With reference to Notation 5.6 and Definition 9.1, for 1 ≤ r ≤ p ≤ D

the principle submatrix (eij )r≤i,j≤p is nonsingular.

Proof Immediate from Lemma 10.3(i) and Proposition 11.6. �

Proposition 11.8 With reference to Notation 5.6 assume β 
= −2. For Case II and
Case IV′ the corresponding R/L-dependency structure is uniform but not strongly
uniform. In all other cases, the corresponding R/L-dependency structure is strongly
uniform.

Proof Immediate from Proposition 9.2, Corollary 11.4 and Corollary 11.7. �

Theorem 11.9 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 3
and valency k ≥ 3. Fix a vertex x and let L (resp., R) denote the corresponding low-
ering (resp., raising) matrix from Definition 5.1. Let {θi}Di=0 denote a Q-polynomial
ordering of the eigenvalues of Γ . Consider the following cases:

(i) Γ is the hypercube H(D,2) with D even and θi = (−1)i(D−2i) for 0 ≤ i ≤ D;
(ii) Γ is the antipodal quotient H(2D,2) and θi = 2D − 4i for 0 ≤ i ≤ D;

(iii) D = 3 and Γ is of McFarland type with parameters (1, t) for some integer t ≥ 2,
and θ0, θ1, θ2, θ3 are t (t + 1), t,−t,−t (t + 1) respectively.

In Case (i), the corresponding R/L-dependency structure is not uniform. In Cases
(ii) and (iii), this structure is uniform but not strongly uniform. In all other cases this
structure is strongly uniform.

Proof Immediate from Propositions 8.4 and 11.8. �
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