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Abstract Motivated by the theory of cluster algebras, F. Chapoton, S. Fomin, and
A. Zelevinsky associated to each finite type root system a simple convex polytope,
called generalized associahedron. They provided an explicit realization of this poly-
tope associated with a bipartite orientation of the corresponding Dynkin diagram.

In the first part of this paper, using the parametrization of cluster variables by their
g-vectors explicitly computed by S.-W. Yang and A. Zelevinsky, we generalize the
original construction to any orientation. In the second part we show that our construc-
tion agrees with the one given by C. Hohlweg, C. Lange, and H. Thomas in the setup
of Cambrian fans developed by N. Reading and D. Speyer.

Keywords Generalized associahedra · Cluster algebras · Cluster complexes ·
g-vectors · c-sortability · Cambrian fans

1 Introduction

Much information on the structure of a cluster algebra A can be deduced directly
from a purely combinatorial gadget: its cluster complex. It is an abstract simplicial
complex whose vertices are the cluster variables of A and whose maximal simplices
are given by clusters. In this paper we restrict our attention to finite type cluster
algebras; under such assumption the cluster complex is finite.

A complete classification of finite type cluster algebras was given in [5]: it is iden-
tical to the Cartan–Killing classification of semisimple Lie algebras and crystallo-
graphic root systems. In the same paper, under the assumption that the initial cluster
is bipartite, Fomin and Zelevinsky provided an explicit combinatorial description of
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the cluster complex obtained by labeling its vertices with almost-positive roots in the
corresponding root system.

They constructed a function on ordered pairs of labels, called compatibility degree,
encoding whether the corresponding cluster variables are compatible (i.e. they belong
to the same cluster), exchangeable or neither. Its definition is purely combinatorial
and does not refer to the cluster algebra but just to the labels. The description of
the cluster complex they presented is in terms of this function: compatible pairs of
almost-positive roots form its 1-skeleton; higher dimension simplices are given by
the cliques of the 1-skeleton.

In [6] the authors improved on this combinatorial model explaining how almost-
positive roots give a geometric realization of the cluster complex. They showed that
the positive real span of the labels in any simplex of the cluster complex is a cone in
a complete simplicial fan: the cluster fan. Among the applications of this realization
there is a parametrization of cluster monomials in A with points of the root lattice Q

and an explicit formula for all the exchange relations in the coefficient-free case.
Further study ([3]) of the cluster fan showed that it is the normal fan of a distin-

guished polytope: the generalized associahedron of the given type. Its description is
completely explicit: the authors discussed all the constrains that its support function
must satisfy and then provided a concrete function that meets them.

As noted above the construction in [6] and [3] depends on the labeling of cluster
variables of A by almost-positive roots; such a parametrization is provided by their
denominator vectors with respect to a bipartite initial cluster. Using the notion of
g-vectors from [7], in [18] Yang and Zelevinsky generalized this parametrization of
cluster variables to a family of parametrizations, one for each acyclic initial cluster,
by a subset Π(c) of the associated weight lattice (as is customary we use a Coxeter
element c in the Weyl group to keep track of the orientation of the initial cluster; see
(1) and (2) for details on the conventions we adopt).

The first goal of this paper is to extend the results from [6] and [3] to each of
these new parametrizations. Retracing the steps in those papers, for any choice of
acyclic initial cluster, we will construct a complete simplicial fan realizing the cluster
complex and we will show that it is the normal fan to a geometric realization of a
generalized associahedron. We can summarize our claims as follows:

Theorem 1 Let A be a cluster algebra of finite type with an acyclic initial cluster
and let c be the Coxeter element encoding the initial orientation. Let Π(c) be the
labeling set and (•||•)c its compatibility degree function both constructed in [18].
Then

1. Every c-cluster in Π(c) (i.e. every maximal subset of Π(c) consisting of pairwise
compatible weights) is a Z-basis of the weight lattice P .

2. The positive linear spans of the simplices in the clique complex induced by (•||•)c
on Π(c) form a complete simplicial fan F Π

c realizing the cluster complex. Cluster
monomials of A are in bijection with points of P .

3. F Π
c is the normal fan to a simple polytope: a geometric realization of the associ-

ated generalized associahedron.
4. If A is coefficient-free then all its exchange relations are explicitly determined by

the labels of exchangeable cluster variables.
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The proof will be split into sub-statements, namely Theorems 2, 3, 4, and 5. Some
of these results were already proved in less generality or were already conjectured;
we will provide explicit references in Sect. 2.

It turns out that our polytopes are the same as those studied in [11] in the setup
of Cambrian fans developed by Reading and Speyer. The construction we propose,
however, is different from the one by Hohlweg, Lange, and Thomas. This provides us
with an alternative prospective on c-cluster combinatorics that allows us to recover all
the exchange relations of the associated coefficient-free cluster algebra and to answer
positively to Problem 4.1 posed in [10].

To explain what we mean by “different” recall that the definition of Cambrian fans
is given in terms of its maximal cones as opposed to the definition of cluster fans that
builds up from the 1-skeleton. Indeed to each Coxeter element c of a finite type Weyl
group W one can associate a lattice congruence on the group itself (seen as a lat-
tice for the right weak order). This produces a coarsening of the associated Coxeter
fan obtained by glueing together cones corresponding to elements in the same class
(recall that the Coxeter fan is the complete simplicial fan in the weight space of W

whose maximal cones are the images of the fundamental Weyl chamber under the
action of the group). The approach used in [11] to show that the Cambrian fans are
polytopal follows the same philosophy: they begin from the generalized permutahe-
dron associated to W seen as intersection of half-spaces and, again using the lattice
congruence induced by c, they remove a certain subset of them to make it into a
generalized associahedron.

The second goal of this paper is to show that the generalizations of the cluster
fans we propose coincide with the Cambrian fans of Reading and Speyer. To do so
it suffices to show that the polyhedral models for the generalized associahedra we
build are the same as the realizations given in [11]. Note that in type A the interaction
between the geometric realizations of the associahedron by Hohlweg, Lange, and
Thomas and the original realization by Chapoton, Fomin, and Zelevinsky has been
already investigated in [2].

The paper is structured as follows: in Sect. 2, after having recalled the required
terminology and having set up some notations, we discuss in more detail our general-
izations of the results in [6] and [3] and we provide an idea of the strategy we adopt to
prove them. We then recall some more terminology and explain how our construction
relates to Cambrian fans and to the polytopes from [11].

In Sect. 3 we introduce the main tool of the paper: the set of c-almost-positive
roots Φap(c). Many arguments from [6] and [3] require to perform an induction on
the rank of the cluster algebra; the labeling of cluster variables by almost-positive
roots is ideal for such a purpose. In our case, however, we are given a set of weights
to parametrize the vertices of the cluster complex therefore we cannot generalize
those proofs directly. The solution we adopt is to identify the weight lattice with the
root lattice in such a way that the restriction to a smaller rank cluster sub-algebra can
be expressed easily in terms of the labels in a new set Φap(c) (the image of Π(c)

under this identification).
Section 4 deals with bipartite orientations. We show that, in this case, our results

follow directly from their analogues from [6] and [3].
Section 5 contains the proofs of some technical results we need in Sect. 6 where

we complete the proofs of the main results of the first part of the paper.
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The paper is concluded by Sect. 7 where we show that our realizations of the
generalized associahedra coincide with those constructed by Hohlweg, Lange, and
Thomas and therefore that our generalization of cluster fans is a different presentation
of Cambrian fans.

2 Preliminaries

We start by setting up notation and recalling some terminology and results from [18].
Let I be a finite type Dynkin diagram; with a small abuse of notation denote by I

also its vertex set. Let W be the associated Weyl group with simple reflections {si}i∈I

and let A = (aij )i,j∈I be the corresponding Cartan matrix.
Recall that an element c of W is said to be Coxeter if every simple reflection ap-

pears in a reduced expression of c exactly once. To each Coxeter element c associate
a skew-symmetrizable matrix B(c) = (bij )i,j∈I as follows. For i and j in I , write
i ≺c j if i and j are connected by an edge and si precedes sj in a reduced expression
of c. Set then

bij :=
⎧
⎨

⎩

−aij if i ≺c j

aij if j ≺c i

0 otherwise.
(1)

Note also that Coxeter elements are in bijection with orientation of I under the con-
vention

j → i ⇔ i ≺c j. (2)

Remark 1 In each Weyl group there is a distinguished class of Coxeter elements (call
them bipartite) corresponding to orientations of I in which each node is either a
source or a sink. Following the notation of [6], we denote bipartite Coxeter elements
by t .

For a given Coxeter element c denote by A0(c) the coefficient-free cluster algebra
with the initial B-matrix B(c). Let {ωi}i∈I be the set of fundamental weights asso-
ciated to I and w0 the longest element in W . Set h(i; c) to be the minimum positive
integer such that

ch(i;c)ωi = −ωi∗

where ωi∗ := −w0ωi (cf. Proposition 1.3 in [18]).
By Theorem 1.4 in [18] the set of weights

Π(c) := {
cmωi : i ∈ I,0 ≤ m ≤ h(i; c)}

parametrizes the cluster variables in A0(c). The correspondence is given associating
to each cluster variable its g-vector as defined in [7]; in particular cluster variables in
the initial cluster correspond to fundamental weights.

The set Π(c) can be made into an abstract simplicial complex of pure dimen-
sion n − 1 (the c-cluster complex) as follows. The cluster algebra structure induces a
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permutation on Π(c)

τΠ
c (λ) :=

{
ωi if λ = −ωi

cλ otherwise

and a (unique) τΠ
c -invariant c-compatibility degree function defined by the initial

conditions

(ωi ||λ)Πc := [(
c−1 − 1

)
λ;αi

]

+
where [•;αi] is the coefficient of αi in • expressed in the basis of simple roots and
[•]+ denotes max{•,0} (cf. Proposition 5.1 in [18]).

Note that the action of τΠ
c on Π(c) is, by construction, compatible with the ac-

tion of w0 on I ; that is any τΠ
c -orbit contains a unique pair {ωi,ωi∗} (or a single

fundamental weight ωi if i = i∗).
Call two weights λ and μ in Π(c) c-compatible if

(λ||μ)Πc = 0.

This definition makes sense since the c-compatibility degree satisfies

(λ||μ)Πc = 0 ⇔ (μ||λ)Πc = 0.

The c-cluster complex ΔΠ
c is defined to be the abstract simplicial complex on

the vertex set Π(c) whose 1-skeleton is given by c-compatible pairs of weights and
whose higher dimensional simplex are given by the cliques of its 1-skeleton. We
refer to its maximal simplices as c-clusters; this name already appeared in the work
of Reading and Speyer in a different setup, we will discuss later on how the two
notions are related.

The first step in order to construct a complete simplicial fan realizing the c-cluster
complex is to show that we can associate an n-dimensional cone to each c-cluster.

Theorem 2 Each c-cluster in ΔΠ
c is a Z-basis of the weight lattice P .

Remark 2 Theorem 2 was conjectured in [7] (Conjecture 7.10(2)) and then proved
in [4] (Theorem 1.7) under the assumption that the initial exchange matrix is skew-
symmetric.

Let F Π
c be the collection of all the cones in PR that are positive linear span of

simplices in the c-cluster complex.

Theorem 3 F Π
c is a complete simplicial fan.

Remark 3 This is a generalization of Theorem 1.10 in [6], and our proof is inspired
by the one in that paper. In particular we will deduce the result from the following
proposition (mimicking Theorem 3.11 in there).
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Proposition 1 Every point μ in the weight lattice P can be uniquely be written as

μ =
∑

λ∈Π(c)

mλλ (3)

where all the coefficients mλ are non-negative integers and mλmν = 0 whenever
(λ||ν)Πc �= 0

The expression (3) is called the c-cluster expansion of μ.
A simplicial fan is said to be polytopal if it is the normal fan to a simple poly-

tope. Recall that, given a simple full-dimensional polytope T in a vector space V , its
support function F is the piecewise-linear function on V ∗ defined by

F : V ∗ −→ R

ϕ 	−→ max
{
ϕ(x)|x ∈ T

}

and its normal fan is the complete simplicial fan in V ∗ whose maximal cones are the
domains of linearity of F . Note that in dimension greater than 2 not every simplicial
fan needs to be the normal fan of a polytope (see for example Sect. 1.5 in [8]).

Our next goal is to show that the c-cluster fans we constructed so far are poly-
topal. In view of Theorem 3, each function defined on Π(c) extends uniquely to a
continuous, piecewise-linear function on PR linear on the maximal cones of F Π

c . In
particular, every function

f : I −→ R

satisfying f (i) = f (i∗) gives rise to a continuous, τΠ
c -invariant, piecewise-linear

function Fc = Fc;f , by setting

Fc

(
cmωi

) := f (i)

for all cmωi ∈ Π(c), and then extending it to PR as above.
Let Assof

c (W) be the subset of P ∗
R

defined by

Assof
c (W) := {

ϕ ∈ P ∗
R

|ϕ(λ) ≤ Fc(λ), ∀λ ∈ Π(c)
}
. (4)

Theorem 4 If f : I → R is such that

1. for any i ∈ I

f (i) = f
(
i∗

)

2. for any j ∈ I
∑

i∈I

aij f (i) > 0

then Assof
c (W) is a simple n-dimensional polytope with support function Fc. Fur-

thermore, the domains of linearity of Fc are exactly the maximal cones of F Π
c , hence

the normal fan of Assof
c (W) is F Π

c .
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Remark 4 Theorem 4 is a generalization of Theorem 1.5 in [3]. Its proof uses the
result by Chapoton, Fomin, and Zelevinsky as base case.

The following examples illustrate the above results. We represent a point ϕ ∈ P ∗
R

by a tuple (zi := ϕ(ωi))i∈I . We also use the standard numeration of simple roots and
fundamental weights from [1].

The construction carried on in this paper, as it will be explained in detail in Sect. 4,
coincides with the one in [6] and [3] when c is a bipartite Coxeter element. Therefore
the first example in which something interesting arises is c = s1s2s3 in type A3. In
this case Π(c) consists of two τΠ

c -orbits:

ω1
τc −ω1 + ω2

τc −ω2 + ω3

τc −ω3

τc

ω3
τc −ω1

τc

and

ω2
τc −ω1 + ω3

τc −ω2

τc

It is not surprising that the number of orbits and their lengths are the same as the
A3 example in [3]: they depend only on the type of the cluster algebra and not on
the choice of a Coxeter element. Since in this case w0ω1 = −ω3 we have 1∗ = 3
therefore we need to impose f (1) = f (3); condition (2) in Theorem 4 becomes

0 < f (1) < f (2) < 2f (1)

and the corresponding polytope Assof
c (W) is defined by the inequalities

max{z1,−z1 + z2,−z2 + z3,−z3, z3,−z1} ≤ f (1)

max{z2,−z1 + z3,−z2} ≤ f (2).

This polytope is shown in Fig. 1. Note that, to make pictures easier to plot and
view, the angles between fundamental weights are not drawn to scale, and each facet
is labeled by the weight it is orthogonal to.

Now let c = s1s2s3 in type C3. Then the set Π(c) consists of three orbits:

ω1
τc −ω1 + ω2

τc −ω2 + ω3

τc −ω1

τc

ω2
τc −ω1 + ω3

τc −ω1 − ω2 + ω3

τc −ω2

τc
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ω3
τc −2ω1 + ω3

τc −2ω2 + ω3

τc −ω3

τc

Condition (2) in Theorem 4 reads

f (2) < 2f (1)

f (1) + f (3) < 2f (2)

f (2) < f (3)

as in the corresponding example in [3]. The polytope is given by the inequalities

max{z1,−z1 + z2,−z2 + z3,−z1} < f (1)

max{z2,−z1 + z3,−z1 − z2 + z3,−z2} < f (2)

max{z3,−2z1 + z3,−2z2 + z3,−z3} < f (3)

and it is shown in Fig. 2 using the same conventions of Fig. 1.
To prove the results we discussed so far will use two types of argument. The first

one is induction on the rank of I . Unfortunately the set Π(c), and in general the whole
weight lattice P , does not behave nicely when considering sub-diagrams of I . It is
then convenient to introduce an auxiliary set of labels: the c-almost-positive roots:

Φap(c) := (
c−1 − 1

)
Π(c)

whose behavior is more manageable. On the one hand the new set is related to the
old one by a linear transformation therefore any property proved for Φap(c) can be
transported back to Π(c).

On the other hand Φap(c) is modeled after the set Φ≥−1 introduced in [6]. It differs
from the latter in several respects: first it still consists of g-vectors (in an odd-looking

Fig. 1 Assof
c (W) in type A3

for c = s1s2s3
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Fig. 2 Assof
c (W) in type C3

for c = s1s2s3

basis) and not denominator vectors; second it contains all the positive roots (as Φ≥−1

does) but the negative simples are replaced by other negative roots depending on the
choice of the Coxeter element c. However, contrary to what happens for Π(c), it
retains a notion of subset corresponding to a Dynkin sub-diagram. In order to use in-
duction on |I | it will then suffice to show that the c-compatibility degree on Φap(c) is
preserved when restricting to a sub-diagram of I (this is the content of Proposition 5).

To explain the second type of argument we need an observation on Coxeter ele-
ments. For a given Coxeter element c, we call a simple reflection si initial (resp. final)
if c admits a reduced expression of the form c = siv (resp. c = vsi ). Conjugating any
Coxeter element by an initial or final reflection produces another Coxeter element;
call such a conjugation an elementary move and call two Coxeter elements related by
a single elementary move adjacent. The following is a well-known fact.

Lemma 1 Any Coxeter element can be reached from any other via a sequence of
elementary moves.

A proof can be found in [9] Theorem 3.1.4.
We will construct maps σ±1

i relating sets of c-almost-positive roots for adjacent
Coxeter elements. These maps will not be linear so, a priori, they might not preserve
all the properties we are interested into. Our strategy will be to show that, for any
Coxeter element c, there exist a bipartite Coxeter element t and a sequence of ele-
mentary moves relating the two, such that all the corresponding maps σ±1

i preserve
the desired properties. This will reduce our statements to the bipartite case. Our re-
sults will then follow from another important property of the set of c-almost-positive
roots: when the Coxeter element is bipartite, there exists a bijection

t− : Φ≥−1 → Φap(t)

which is induced by a linear map. This will allow us, in this particular case, to deduce
our results from their analogs from [6] and [18].
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As a byproduct of the construction we get an explicit description of the exchange
relations of A0(c). Two cluster variables xλ,c and xμ,c in it are exchangeable if and
only if (λ||μ)Πc = 1 = (μ||λ)Πc . Denote by T the cyclic group generated by τΠ

c . The
proof of Theorem 4 relies on the fact that, except in some degenerate cases, for any
pair of weights λ and μ in Π(c) corresponding to a pair of exchangeable cluster
variables, the set

{
τ
(
τ−1(λ) + τ−1(μ)

)}

τ∈T

consists of two vectors: λ + μ and another one denoted by λ �c μ.
Use Theorem 3 to label all cluster monomials in A0(c) by points of P :

x∑
mλλ,c :=

∏
x

mλ

λ,c.

Theorem 5 All the exchange relations in A0(c) are of the form

xλ,cxμ,c = xλ+μ,c + xλ�cμ,c.

We now discuss the connection of F Π
c with the Cambrian fan defined in [14]. First

recall some definitions and results from [11].
Let D be the fundamental Weyl chamber, i.e., the R+-span of the fundamental

weights. The Coxeter fan F is the complete simplicial fan in PR whose maximal
cones are the images of D under the action of W . It is well known that the correspon-
dence

w 	→ w(D)

is a bijection between W and the set of maximal cones of F ; moreover F is the
normal fan to a distinguished polytope: the permutahedron (see e.g. [12]).

Using the (right) weak order, W can be regarded as a lattice with minimal and
maximal element e and w0, respectively. To each lattice congruence on W corre-
sponds a fan that coarsens F as shown in [13]; maximal cones in the new fan are
obtained gluing together cones of F corresponding to elements of W belonging to
the same equivalence class.

Fix a Coxeter element c and one of its reduced expressions. For any subset J ⊂ I ,
denote by cJ the sub-word of c obtained omitting the simple reflections {si}i∈I\J .
Let c∞ be the formal word obtained concatenating infinitely many copies of c. Every
reduced expression of w ∈ W can be seen as a sub-word of c∞; call the c-sorting
word of w the lexicographically first sub-word of c∞ realizing it. The c-sorting word
of w can be encoded by a sequence of subsets I1, I2, . . . Ik of I (the c-factorization
of w) so that

w = cI1cI2 · · · cIk
.

Note that the c-factorization of w is independent on the reduced expression chosen
for c: it depends only on the Coxeter element itself.



J Algebr Comb (2013) 38:121–158 131

Definition 1 An element w in W is

– c-sortable if its c-factorization is such that

I1 ⊇ I2 ⊇ · · · ⊇ Ik

– c-antisortable if ww0 is c−1-sortable

As an example pick c = s1s2s3 in type A3, then s2s3s2 is c-sortable with the c-
factorization {2,3}, {2}, the element s2s3s1s2s1 is c-antisortable while s2s3s2s1 is nei-
ther.

For any element w in W , again in the weak order, there exist a unique minimal c-
antisortable element above it and a unique maximal c-sortable below it; denote them
by π

↑
c (w) and πc↓(w), respectively.

Proposition 2 (cf. [15]) For any w ∈ W the sets

(
πc↓

)−1(
πc↓(w)

)

and
(
π↑

c

)−1(
π↑

c (w)
)

coincide; they are intervals in the lattice W with minimal element πc↓(w) and maximal

element π
↑
c (w).

Define a lattice congruence on W by setting

v ∼ w ⇔ πc↓(v) = πc↓(w). (5)

The c-Cambrian fan F C
c (defined in [16]) is the complete simplicial fan obtained

from F by coarsening with respect to the lattice congruence (5); its maximal cones
are parametrized by c-sortable elements.

In [11] it was shown that, for any point a in the fundamental Weyl chamber, there
is a unique simple polytope Assoa

c (W) with normal fan F C
c and such that a is a vertex

of Assoa
c (W).

We have now all the required notations to state our last result.

Theorem 6 For every f : I → R satisfying the hypothesis of Theorem 4 there exists
a point a ∈ D such that the polytopes Assoa

c (W) and Assof
c (W) coincide.

As a direct consequence we get

Corollary 1 The c-Cambrian fan F C
c and the c-cluster fan F Π

c coincide.
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3 The set Φap(c)

Fix a Dynkin diagram I and let Φ = Φ+ � Φ− be the corresponding root system.
For convenience we identify I with {1, . . . , n} so that a chosen Coxeter element is
c = s1 · · · sn.

For i ∈ I let

βc
i := sn · · · si+1αi. (6)

Remark 5 It is known that the roots (6) are exactly the positive roots that are mapped
into negative roots by c; moreover they form a Z-basis of the root lattice Q since the
linear map sending each αi to βc

i is unitriangular.

We call Φap(c) := Φ+ ∪ {−βc
i }i∈I the set of the c-almost-positive roots and define

a bijection τΦ
c : Φap(c) → Φap(c) by setting, for α ∈ Φap(c),

τΦ
c (α) :=

{−βc
i if α = βc

i

cα otherwise.

Definition 2 The c-compatibility degree on Φap(c) is the unique τΦ
c -invariant func-

tion

(•||•)Φc : Φap(c) × Φap(c) −→ N

defined by the initial conditions

(−βc
i ||α

)Φ

c
:= [α;αi]+.

These definitions are justified by the following proposition.

Proposition 3 The linear map

φc := (
c−1 − 1

) : PR −→ QR

is invertible and restricts to an isomorphism of the weight lattice P with the root
lattice Q sending Π(c) to Φap(c). Moreover φc intertwines τΠ

c and τΦ
c and transform

the compatibility degree (•||•)Πc on Π(c) into the compatibility degree (•||•)Φc on
Φap(c).

Proof To show that φc is a lattice isomorphism, in view of Remark 5, it suffices to
establish that

φc(ωi) = −βc
i .

Using the well-known property

siωj =
{

ωi − αi if i = j

ωj otherwise,
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we have

φc(ωi) = sn · · · s1ωi − ωi = sn · · · si+1(siωi − ωi) = sn · · · si+1(−αi) = −βc
i .

The sets Π(c) and Φap(c) have the same cardinality. Indeed Proposition 1.7 in
[18] states that, for every i, the sum h(i, c) + h(i∗, c) is equal to the Coxeter number
h, hence

∣
∣Π(c)

∣
∣ =

∑

i∈I

(
h(i, c)+1

) = 1

2

∑

i∈I

(
h(i, c)+h

(
i∗, c

)+2
) = 1

2

∑

i∈I

(h+2) = ∣
∣Φap(c)

∣
∣.

To conclude the proof of the first part it suffices to check that any weight in Π(c)\
{ωi}i∈I is mapped to a positive root. This was already showed in [18] during the proof
of the inequalities (1.8) in it.

To show that, for any α ∈ Φap(c),

φ−1
c

(
τΦ
c (α)

) = τΠ
c

(
φ−1

c (α)
)

there are two cases to consider:

1. if α = βc
i then

φ−1
c

(
τΦ
c

(
βc

i

)) = φ−1
c

(−βc
i

) = ωi = τΠ
c (−ωi) = τΠ

c

(
φ−1

c

(
βc

i

))

2. if α �= βc
i for any i then

φ−1
c

(
τΦ
c (α)

) = φ−1
c (cα) = (

c−1 − 1
)−1

cα = c
(
c−1 − 1

)−1
α = τΠ

c

(
φ−1

c (α)
)
.

To conclude the proof it is sufficient to show that both compatibility degrees satisfy
the same initial conditions. On the one hand we have

(−βc
i ||α

)Φ

c
= [α;αi]+

and on the other
(
φ−1

c

(−βc
i

)||φ−1
c (α)

)Π

c
= (

ωi ||φ−1
c (α)

)Π

c
= [(

c−1 − 1
)(

c−1 − 1
)−1

α;αi

]

+. �

Remark 6 As in the case of Π(c) the action of τΦ
c on Φap(c) and the action of w0 on

I are compatible, i.e. there exists m ∈ Z such that
(
τΦ
c

)m(−βc
i

) = −βc
j

if and only if j = i or j = i∗.

We can now rephrase Theorems 2, 3, 4, 5, and Proposition 1 in this new setup.
Let ΔΦ

c be the abstract simplicial complex having elements of Φap(c) as vertices
and with subsets of pairwise compatible roots as simplices; similarly to the case of
Π(c), we call c-clusters the maximal (by inclusion) simplices.

In view of Proposition 3, Theorem 2 is equivalent to the following.
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Theorem 7 Each c-cluster in ΔΦ
c is a Z-basis of the root lattice Q.

Definition 3 For any γ in Q we call a c-cluster expansion of γ an expression

γ =
∑

α∈Φap(c)

mαα

where all the coefficients mα are non-negative integers such that mαmδ = 0 whenever
(α||δ)Φc �= 0.

The counterpart of Proposition 1 is the following:

Proposition 4 Any γ in the root lattice Q admits a unique c-cluster expansion.

Remark 7 Our proof of Proposition 4 will mimic, step by step, the proof of Theo-
rem 3.11 in [3]. A sketch of a different proof, more similar to the others in this paper,
will be also given.

Let F Φ
c be the set of all the cones in the space QR that are the positive linear

span of simplices of the complex ΔΦ
c . A direct consequence of Proposition 4 is the

following counterpart of Theorem 3.

Theorem 8 F Φ
c is a complete simplicial fan.

As for the case of Π(c), once Theorem 8 is established, any function defined
on Φap(c) can be extended to a continuous, piecewise-linear function on QR that is
linear on the maximal cones of F Φ

c . In particular, any function

f : I −→ R

such that f (i) = f (i∗) gives rise to a τΦ
c -invariant, continuous, piecewise-linear

function

Fc = Fc;f : QR −→ R

by setting

Fc

(−βc
i

) := f (i)

and extending, first to Φap(c) and then to QR, as prescribed.

Let Assof,Φ
c (W) be the subset of Q∗

R
defined by

Assof,Φ
c (W) := {

ϕ ∈ Q∗
R

| ϕ(α) ≤ Fc(α) ∀α ∈ Φap(c)
}
. (7)

Theorem 9 If f : I → R is such that

1. for any i ∈ I

f (i) = f
(
i∗

)
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2. for any j ∈ J
∑

i∈I

aij f (i) > 0

then Assof,Φ
c (W) is a simple n-dimensional polytope with support function Fc. Fur-

thermore, the domains of linearity of Fc are exactly the maximal cones of F Φ
c , hence

the normal fan of Assof,Φ
c (W) is F Φ

c .

Again by Proposition 3, Theorem 9 implies Theorem 4.
The proof of Theorem 9 is based on an explicit characterization of the roots

in Φap(c) belonging to adjacent maximal cones of F Φ
c . Namely there exist two c-

clusters Cα and Cγ such that Cα \ {α} = Cγ \ {γ } if and only if

(α||γ )Φc = 1 = (γ ||α)Φc

(cf. Lemma 9). For all such pairs of roots the set

{(
τΦ
c

)−m((
τΦ
c

)m
(α) + (

τΦ
c

)m
(β)

)}

m∈Z

consists (when I has no connected component with only one node) of precisely two
vectors, α + γ and α �c γ ; their c-cluster expansion are supported on Cα ∩ Cγ and
they are disjoint (cf. Proposition 14 and Corollary 4).

Let A0(c) the coefficient-free cluster algebra with initial orientation given by c;
label its cluster variables by roots in Φap(c) and, in view of Proposition 4, its cluster
monomials by points in the root lattice. Using this notation Theorem 5 can be restated
as follows.

Theorem 10 All the exchange relations in A0(c) are of the form

xα,cxγ,c = xα+γ,c + xα�cγ,c

for suitable c-almost positive roots α and γ such that

(α||γ )Φc = 1 = (γ ||α)Φc .

As mentioned before the main advantage of the labels Φap(c) over Π(c) is that it
is easier to set up inductions on |I |. Let J ⊂ I be a sub-diagram of I . Fix a Coxeter
element c for I and denote by cJ the sub-word of c obtained omitting all the simple
reflections {si}i∈I\J . By construction cJ is a Coxeter element in the Weyl group WJ

(we denote by WJ the standard parabolic subgroup of W generated by {sj }j∈J ). Let

ι = ιc : ΦJ
ap(cJ ) −→ Φap(c)

be the “twisted” inclusion map given by

ι(α) :=
{−βc

i if α = −β
cJ

i , i ∈ J

α otherwise.
(8)
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From this moment on, unless it is not clear from the context, superscripts Φ and
Π will be omitted in order to make notation less heavy.

Denote by (•||•)JcJ
the cJ -compatibility degree on ΦJ

ap(cJ ). The key property is
this:

Proposition 5 Let α and γ be roots in ΦJ
ap(cJ ). Then

(
ι(α)||ι(γ )

)

c
= (α||γ )JcJ

.

Remark 8 In the setup of almost positive roots the analog of this statement is point
3 of Proposition 3.3 in [6]; there the map ι is the ordinary inclusion. A proof of
Proposition 5 will be given in Sect. 5.

The original construction in [6] does not distinguish among the possible bipartite
orientations of I . With this motivation in mind consider the map α 	→ α between
Φap(c) and Φap(c

−1) defined by

α :=
{−βc−1

i if α = −βc
i , i ∈ I

α otherwise.
(9)

Proposition 6 For any α and γ in Φap(c)

(α||γ )c = (α||γ )c−1 .

Proof Initial conditions agree:

(−βc
i ||α

)

c
= [α;αi]+ = [α;αi]+ = (−βc−1

i ||α)

c−1 = (−βc
i ||α

)

c−1 .

It suffices then to show that, for any α ∈ Φap(c),

τc(α) = τ−1
c−1(α).

There are three cases to be considered.

1. If α = −βc
i for some i ∈ I then on the one hand

τc

(−βc
i

) = −cβc
i = −s1 · · · sn(sn · · · si+1αi) = s1 · · · si−1αi = βc−1

i ;
on the other hand

τ−1
c−1

(−βc
i

) = τ−1
c−1

(−βc−1

i

) = βc−1

i .

2. When α = βc
i

τc

(
βc

i

) = −βc
i = −βc−1

i = s1 · · · siαi

multiplying and dividing by si+1 · · · sn we get

s1 · · · si(si+1 · · · snsn · · · si+1)αi = (
c−1)−1

βc
i = τ−1

c−1

(
βc

i

) = τ−1
c−1

(
βc

i

)
.
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3. Finally for α �= ±βc
i

τc(α) = cα = cα = (
c−1)−1

α = τ−1
c−1(α). �

4 The bipartite case

In this section we assume that the Dynkin diagram I is connected; the statements in
the general case are easily reduced to this. Since any connected Dynkin diagram is a
tree, we can split I into two disjoint subsets I+ and I− such that every edge in it has
one endpoint in I+ and one in I−. Up to relabeling, this can be done in a unique way.
A bipartite Coxeter can thus be written as

t = tεt−ε (10)

where ε denotes a sign and

tε :=
∏

i∈Iε

si

(the expression makes sense since the factors commute with each other). By our
assumption there are precisely two bipartite Coxeter elements in W : t = t+t− and
t−1 = t−t+.

Let Φ≥−1 be the set of almost positive roots, i.e.

Φ≥−1 := Φ+ ∪ {−αi}i∈I

introduced in [6] to parametrize cluster variables in the special case of a bipartite
initial cluster. On it there are two involutions τ+ and τ− defined by

τε(α) =
{

α if α = −αi and i ∈ I−ε

tεα otherwise

and a unique {τ+, τ−}-invariant compatibility degree function (•||•)≥−1 satisfying

(−αi ||γ )≥−1 = [γ ;αi]+.

Call two almost positive roots α and γ compatible if

(α||γ )≥−1 = 0 = (γ ||α)≥−1. (11)

The cluster complex Δ≥−1 is the abstract simplicial complex induced on Φ≥−1 by
the compatibility degree function; its simplices are subsets of pairwise compatible
almost-positive roots. As before call the maximal simplices clusters and consider the
set F≥−1 of all simplicial cones generated by simplices.

As we mentioned in the introduction our construction is based on the results for
the bipartite case given in [6] and [3]. From the first paper we will need the following.
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Proposition 7

1. [Proposition 3.3 (2)] For any pair of almost positive roots α and γ , we have

(α||γ )≥−1 = 0

if and only if (γ ||α)≥−1 = 0.
2. [Proposition 3.3 (3)] Let J be a subset of I and denote by ΦJ

≥−1 the corresponding

set of almost positive roots. Let α and γ be roots in ΦJ
≥−1, then

(α||γ )≥−1 = (α||γ )J≥−1

where (•||•)J≥−1 denotes the compatibility degree function on ΦJ
≥−1.

3. [Theorem 1.8] Each cluster in the cluster complex is a Z-basis of the root lat-
tice Q.

4. [Theorem 3.11] Any γ ∈ Q admits a unique cluster expansion. In other words γ

can uniquely be written as

γ =
∑

α∈Φ≥−1

mαα

so that all the coefficients mα are non-negative integers and mαmα′ = 0 if
(α||α′)≥−1 �= 0.

5. [Theorem 1.10] F≥−1 is a complete simplicial fan in QR.

The results we will need from [3] can be summarized as follows.

Proposition 8 Suppose that I has at least two vertices. Let α and γ be almost posi-
tive roots such that (α||γ )≥−1 = 1 = (γ ||α)≥−1. Then we have:

1. [Theorem 1.14] The set

{
τ
(
τ−1(α) + τ−1(γ )

)}

τ∈T

where T denotes the group generated by τ+ and τ−, consists of exactly two ele-
ments α + γ and α � γ .

2. [Lemma 2.3] Any root appearing with a positive coefficient in the cluster expan-
sion of α + γ or α � γ is compatible with both α, γ , and with any other root
compatible with both α and γ .

3. [Lemma 2.4] Let f : I → R+ be any function such that, for any i ∈ I ,

f (i) = f
(
i∗

)

and
∑

i∈I

aij f (i) > 0

for any j ∈ I . Let F≥−1 : QR → R be the continuous piecewise-linear function on
QR that is linear on the maximal cones of F≥−1, invariant under the action of T ,



J Algebr Comb (2013) 38:121–158 139

and such that

F≥−1(−αi) = f (i).

Then,

F≥−1(α) + F≥−1(γ ) > max
{
F≥−1(α + γ ),F≥−1(α � γ )

}
.

The statements regarding α � γ are not expressed explicitly in [3] but can be
recovered immediately from the corresponding statements about α + γ . Indeed, let τ

be such that

α � γ = τ−1(τ(α) + τ(γ )
)
.

Any root appearing with positive coefficient in the cluster expansion of τ(α � γ ) is
compatible with τ(α), τ(γ ) and with any root compatible with both. Since τ pre-
serves the compatibility degree we get 2. Similarly for 3:

F≥−1
(
τ(α)

) + F≥−1
(
τ(γ )

)
> F≥−1

(
τ(α) + τ(γ )

) = F≥−1
(
τ(α � γ )

)

since F≥−1 is invariant under the action of τ we can conclude

F≥−1(α) + F≥−1(γ ) > F≥−1(α � γ ).

We need to translate the above results to Φap(t); in order to do so we need a
bijection between Φ≥−1 and Φap(t) induced by a linear map. Note that Proposition 3
together with Lemma 5.2 in [18] already provide a bijection but it is not induced by
a linear map.

Note also that, for a bipartite Coxeter element t = t+t−, the negative roots in
Φap(t) are the roots −βt

i given by

−βt
i =

{−αi i ∈ I−
−t−αi i ∈ I+.

Proposition 9 The linear involution

t− : QR −→ QR

restricts to an automorphism of Q and to a bijection

t− : Φ≥−1 −→ Φap(t).

Proof It suffices to show that, for any root α in Φ≥−1, we have t−(α) ∈ Φap(t). Let
us first deal with roots whose image is negative.

– If i ∈ I+, then

t−(−αi) = −t−αi = −βt
i .

– If i ∈ I−, then

t−(αi) = siαi = −αi = −βt
i .
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This also shows that t−(−αi) = βt
i if i ∈ I−. For any other root α in Φ≥−1, that is,

for any positive root not in {αi}i∈I− , the image t−(α) is positive since the support of
any positive root is a connected sub-diagram of the Dynkin diagram and t− sends any
root to itself plus a linear combination of simple roots indexed by I−. �

Proposition 10 The map t− intertwines τt with τ−τ+ and preserves compatibility
degree. In other words, for any almost-positive roots α and γ , we have

τt (t−α) = t−τ−τ+(α)

and

(α||γ )≥−1 = (t−α||t−γ )t .

Proof Proceed by direct inspection;

– if t−α = αi = βt
i for i ∈ I−, that is if α = −αi with i ∈ I−, then

τt

(
t−(−αi)

) = τt

(
βt

i

) = −βt
i = −αi = t−αi = t−τ−τ+(−αi)

– if t−α = βt
i for i ∈ I+, i.e. if α = αi with i ∈ I+, then

τt (t−αi) = τt

(
βt

i

) = −βt
i = −t−αi = t−(−αi) = t−τ−τ+(αi)

– in any other case

τt (t−α) = t t−α = t+α = t−t−t+α = t−τ−τ+(α).

To conclude the proof it is enough to show that

(−αi ||γ )≥−1 = (−t−αi ||t−γ )t

for any γ ∈ Φ≥−1 and any i ∈ I . If i is in I+ then

(−αi ||γ )≥−1 = [γ ;αi]+ = [t−γ ;αi]+ = (−βt
i ||t−γ

)

t
= (

t−(−αi)||t−γ
)

t

where the second equality holds because t− does not contain si . If i ∈ I− then, on the
one hand we have (−αi ||γ )≥−1 = [γ ;αi]+ on the other

(
t−(−αi)||t−γ

)

t
= (αi ||t−γ )t = (τtαi ||τt t−γ )t = (−βt

i ||τt t−γ
)

t
= [τt t−γ ;αi]+.

Now there are three cases:

1. if γ is αj with j ∈ I+ then τt t−γ = τt (β
t
j ) = −βt

j and

[αj ;αi]+ = 0 = [−βt
j ;αi

]

+.

2. If γ is −αj with j ∈ I− then

τt t−γ = τt

(
βt

j

) = −βt
j = −αj = γ.
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3. For any other γ we have τt t−γ = t t−γ = t+γ and

[t+γ ;αi]+ = [γ ;αi]+
since si does not appear in t+. �

Since the map t− is linear, all the properties of Φ≥−1 translate to Φap(t):

Corollary 2

1. For any α and γ in Φap(t) we have (α||γ )t = 0 if and only if (γ ||α)t = 0.
2. For any J ⊂ I and any pair of roots α and γ in ΦJ

ap(tJ )

(ια||ιγ )t = (α||γ )JtJ .

3. Each t-cluster in the simplicial complex ΔΦ
t is a Z-basis of the root lattice Q.

4. Any γ ∈ Q admits a unique t-cluster expansion. That is, γ can be uniquely written
as

γ =
∑

α∈Φap(t)

mαα

so that all the coefficients mα are non-negative integers and mαmα′ = 0 whenever
(α||α′)t �= 0.

5. The set Ft is a complete simplicial fan in QR.

Proof The only non trivial claim is (2); it is enough to show that it holds when I \J =
{j}. Since t is bipartite, sj is either initial or final (cf. (10)). Using Proposition 6 we
can assume it is initial, i.e. j ∈ I+. We have then

(ια||ιγ )t = (t−ια||t−ιγ )≥−1 = (t−α||t−γ )J≥−1 = (α||γ )JtJ

where the second equality holds since, for any root α in ΦJ
ap(tJ ),

[
t−ι(α);αj

] = 0

hence t−ι(α) is in ΦJ . Indeed if α is positive then t−α contains αj only if α does
since sj does not appear in t−; if α = −β

tJ
i with i ∈ I− then t−ι(−β

tJ
i ) = αi and

finally if α = −β
tJ
i with i ∈ I+ \ {j} then t−ι(−β

tJ
i ) = −αi . �

Corollary 3 Suppose that I has at least 2 vertices. If α and γ in Φap(t) are such that
(α||γ )t = 1 = (γ ||α)t , then

1. The set
{
τm
t

(
τ−m
t (α) + τ−m

t (γ )
)}

m∈Z

consists of exactly two elements α + γ and α �t γ .



142 J Algebr Comb (2013) 38:121–158

2. Any root appearing with a positive coefficient in the cluster expansion of α + γ or
α �t γ is compatible with both α, γ , and with any other root compatible with both
α and γ .

3. Let f : I → R+ be any function such that, for any i ∈ I ,

f (i) = f
(
i∗

)

and
∑

i∈I

aij f (i) > 0

for any j ∈ I . Let Ft : QR → R be the continuous piecewise-linear function on
QR that is linear on the maximal cones of Ft , invariant under the action of τt , and
such that

Ft

(−βt
i

) = f (i).

Then,

Ft(α) + Ft (γ ) > max
{
Ft(α + γ ),Ft (α � γ )

}
.

5 Some technical results

As anticipated we need to lift elementary moves to the level of Φap(c). We con-
centrate first on conjugation by initial simple reflections. Fix the Coxeter element
c = s1 · · · sn and consider the bijection

σ1 : Φap(c) −→ Φap(s1cs1)

defined by

σ1(α) :=
{

α1(= β
s1cs1
1 ) if α = −βc

1
s1α otherwise.

(12)

Note that σ1 sends −βc
i to −β

s1cs1
i for any i �= 1.

Proposition 11 The map σ1 intertwines τc and τs1cs1 , i.e., for any α in Φap(c), we
have

τs1cs1

(
σ1(α)

) = σ1
(
τc(α)

)
.

Moreover it preserves the compatibility degree, i.e. for any α and γ in Φap(c)

(α||γ )c = (σ1α||σ1γ )s1cs1 .

Proof It suffices to notice that σ1 is the composition

Φap(c)
φ−1

c−→ Π(c)
ψ−1

s1cs1,c−→ Π(s1cs1)
φs1cs1−→ Φap(s1cs1)
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where ψ−1
s1cs1,c

is the bijection

ψ−1
s1cs1,c

(λ) :=
{−ω1 if λ = ω1

s1λ otherwise

defined by Lemma 5.3 in [18] and φc is the map of Proposition 3. Indeed, if α �= −βc
1

then

φs1cs1 ◦ ψ−1
s1cs1,c

◦ φ−1
c (α) = (

s1c
−1s1 − 1

)
s1

(
c−1 − 1

)−1
α = s1α = σ1(α)

and

φs1cs1 ◦ ψ−1
s1cs1,c

◦ φ−1
c

(−βc
1

) = (
s1c

−1s1 − 1
)
(−ω1) = α1 = σ1

(−βc
1

)
.

The bijection σ1 satisfies the desired property because all the maps that define it
do. �

To use simultaneously induction on the rank of I and elementary moves we need
to prove some type of compatibility between σ1 and ι. It suffices to inspect their
interaction in the case when ι is induced removing only one node (say i) from I .

Proposition 12 For J = I \ {i} and i �= 1 let cJ be the Coxeter element of WJ ob-
tained by deleting si from c and let σJ

1 be the map corresponding to the conjugation
by s1 in WJ . For any root α in ΦJ

ap(cJ ) we have

σ1
(
ιc(α)

) = ιs1cs1

(
σJ

1 (α)
)
.

Proof There are three cases to be considered.

1. If α = −β
cJ

1 then

σ1
(
ιc

(−β
cJ

1

)) = σ1
(−βc

1

) = α1 = ιs1cs1(α1) = ιs1cs1

(
σJ

1

(−β
cJ

1

))
.

2. If α = −β
cJ

j and j �= 1 then ιc(−β
cJ

j ) = −βc
j therefore

σ1
(
ιc

(−β
cJ

j

)) = −β
s1cs1
j = ιs1cs1

(−β
s1cJ s1
j

) = ιs1cs1

(
σJ

1

(−β
cJ

j

))
.

3. If α is positive

σ1
(
ιc(α)

) = σ1(α) = s1α = ιs1cs1(s1α) = ιs1cs1

(
σJ

1 (α)
)
.

The last equality holds since, α being positive, s1α �= α1 and the third because if
s1α is not positive then α = α1 and −β

s1cs1
1 = −β

s1cJ s1
1 = −α1.

�

Remark 9 The definition of σ1 can be replicated to get the maps σi corresponding
to conjugation by any initial simple reflection si . It is clear that, to get the maps
corresponding to elementary moves that conjugate c by a final simple reflection, it
suffices to consider the inverses σ−1

i .
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As a first application of the elementary moves let us show that the definition of
c-compatible pair of roots make sense.

Lemma 2 For any α and γ in Φap(c)

(α||γ )c = 0 ⇔ (γ ||α)c = 0.

Proof If c is bipartite the statement is true by point 1 in Corollary 2. It is then
enough to show that the property is preserved under σ±1

i . Suppose that it holds for
c = s1 · · · sn. If (α||γ )s1cs1 = 0 then

(
σ−1

1 α||σ−1
1 γ

)

c
= 0 = (

σ−1
1 γ ||σ−1

1 α
)

c
.

Therefore (γ ||α)s1cs1 = 0. �

Our next goal is to show that “distant” roots are compatible. We need to introduce
some terminology. For any positive root α define its support to be the set

Supp(α) := {
i ∈ I |[α;αi] �= 0

}
(13)

and extend the definition to Φap(c) declaring

Supp
(−βc

i

) := {i}. (14)

Remark 10 If α and γ are roots with supports contained in two different connected
components of I then (α||γ )c = 0 since τc preserves connected components.

We can improve on Remark 10.

Definition 4 Call two roots α and γ spaced if, for any i ∈ Supp(α) and for any
j ∈ Supp(γ ), aij = 0.

Remark 11 Note that if (−βc
i ||α)c �= 0 then α and −βc

i are not spaced.

Proposition 13 Let α and γ be roots in Φap(c). If α and γ are spaced then

(α||γ )c = 0.

Proof Using Remark 10 we can assume that I is connected. If any of α and γ is a
negative root we are done by Lemma 2 and Remark 11. Let then both α and γ be
positive roots.

Supports of positive roots are connected subgraphs of the Dynkin diagram I . Since
α and γ are spaced, there must exist at least one vertex on the shortest path connecting
Supp(α) and Supp(γ ) not belonging to either of the supports. Let i be the nearest to
Supp(α) of such vertices. Let I ′ be a connected component of I \ {i} of type A and
containing one of the two support; there exists such a component because we are in
finite type. Assume α is the root whose support is contained in I ′ (the other case is
identical). We will proceed by induction on the cardinality of I ′.
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Let j be the only vertex in Supp(α) connected to i. Without loss of generality we
can assume j ≺c i, i.e., sj precedes si in any reduced expression of c. If this is not the
case we can use Proposition 6 since two roots are spaced if and only if their images
under the involution δ 	→ δ are spaced.

Apply τ−1
c to both α and γ ; they are positive so τ−1

c acts as c−1 on them. By
construction we have

Supp
(
τ−1
c α

) ⊆ I ′ \ {j}
and

Supp
(
τ−1
c γ

) ⊆ (
I \ I ′) ∪ {i}

where both relations hold since sj is applied before si and α belongs to a type A

component of I . If one among τ−1
c α and τ−1

c γ is negative we are done (again using
Lemma 2 if needed) otherwise the statement follows by induction on |I ′|. �

To complete the proof of Proposition 5 we need to sharpen Lemma 1. From this
moment on we will denote a word on the alphabet {si}i∈I (up to commutations) by
w; the corresponding element in W will be denoted by w. For convenience we will
record a sequence of elementary moves by the corresponding word. As an example in
type A4 (again using the standard numeration of simple roots from [1]) the sequence
of elementary moves

s1s2s3s4 → s2s3s4s1 → s1s3s4s2

will be encoded by w = s2s1; indeed

(s2s1)(s1s2s3s4)(s2s1)
−1 = s1s3s4s2.

The key observation is given by the following Lemma.

Lemma 3 For any pair of Coxeter elements c and c′ and for any i ∈ I , there exists a
sequence of elementary moves connecting c and c′ that does not contain si .

Proof The result is obvious once we notice that both the sequences of simple moves
w = s1 and w′ = s2 · · · sn acts in the same way on c = s1 · · · sn. �

The Dynkin diagram I is in general a forest. For any leaf i in I , i.e., for any node
belonging to a single edge, denote by i# the only other node of I connected to i.

Lemma 4 For any leaf i ∈ I and for any Coxeter element c there exist a bipartite
Coxeter element t and a sequence of elementary moves w such that

1. c = wtw−1

2. w contains neither si , nor si# .

Proof According to Lemma 3 we can find a sequence of elementary moves w not
containing si# that transform c into either of the bipartite Coxeter elements. By con-
struction si commutes with all reflections appearing in w since it commutes with all
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the simple reflections except si# . Therefore, using commutations relations, we can
always find such a w containing at most one copy of si . Choosing now a bipartite
Coxeter element t in which si and si# appear in the same order in which they appear
in c we see that w does not contain si . �

Let i be a leaf of I and c be any Coxeter element. Let t and w be, respectively,
the bipartite Coxeter element and the sequence of elementary moves constructed in
Lemma 4. To fix ideas suppose that si appears on the left of si# in c (and in t); the
other case can be dealt with exactly in the same way but multiplying on the right
instead of on the left. Denote by cJ and tJ the corresponding Coxeter elements for
the Dynkin sub-diagram J = I \ {i}. By our assumption cJ = sic and tJ = si t .

Lemma 5 In the notation just established w is a sequence of elementary moves in
WJ conjugating tJ and cJ .

Proof

cJ = sic = siwtw−1 = wsi tw−1 = wtJ w−1. �

We now have all the required tools to prove Proposition 5.

Proof (Proposition 5) We can assume, without loss of generality, I to be connected.
It suffices to show that the result holds when J is obtained from I removing one node
i. Let α and γ be roots in Φap(cJ ). There are two cases to consider depending on the
relative position of Supp(α), Supp(γ ) and i.

1. If Supp(α) and Supp(γ ) belong to different connected components of J then

(α||γ )JcJ
= 0 = (

ι(α)||ι(γ )
)

c
.

The first equality holds because of Remark 10 and the second one is an instance
of Proposition 13.

2. If Supp(α) and Supp(γ ) belong to the same connected component of the Dynkin
diagram J then we can assume i to be a leaf of I . Let i# be the only vertex in I

connected to i. By Lemmata 4 and 5, there exist a sequence of elementary moves
w and a bipartite Coxeter element t such that

c = wtw−1

cJ = wtJ w−1

and w contains neither si , nor si# . Denote by σw the composition of the maps σi

corresponding to w. By construction neither of σwα and σwγ contains i in its
support. Using point 2 of Corollary 2 we can conclude

(α||γ )c = (σwα||σwγ )t = (σwα||σwγ )JtJ = (α||γ )JcJ
. �
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6 Proof of the main results

To prove Theorem 7 we will use the following easy observation.

Lemma 6 Let J ⊂ I be a Dynkin sub-diagram. There is a bijection between c-
clusters in Φap(c) containing {−βc

i }i∈I\J and cJ -clusters in ΦJ
ap(cJ ).

The existence of such a bijection is a direct consequence of the fact that if −βc
i is

in a c-cluster C, then for any other root γ in that c-cluster i �∈ Supp(γ ). In particular
any positive root in C is contained in a complement of the space generated by

{−βc
i

}

−βc
i ∈C∩Φ− .

Definition 5 Call a c-cluster C in Φap(c) positive if C ⊂ Φ+.

Proof (Theorem 7) As already mentioned in Remark 5, the set

{−βc
i

}

i∈I

is a Z-basis of Q. By Lemma 6 it suffices to show that the theorem holds for any
given positive cluster C. Apply τ−1

c to C; since it is positive τ−1
c acts on all the roots

in it as c−1. Since c−1 is a product of reflections, C is a Z-basis if and only if τ−1
c C is

a Z-basis. Continue to apply τ−1
c until one of the roots is sent to a negative one. This

will happen because, similarly to the case of Π(c), any τc-orbit contains precisely
two negative roots {−βc

i ,−βc
i∗} or a single negative root −βc

i if i = i∗. Remove the
negative root just obtained again using Lemma 6 and conclude by induction on the
rank of the root system. �

Remark 12 The proof just proposed is a straightforward adaptation of the proof of
Theorem 1.8 in [6] to the new setup of c-almost positive roots.

Proof (Proposition 4) Let c = s1 . . . sn; for γ ∈ Q write

γ = −
∑

i∈I

m−βc
i
βc

i + γ+

where the coefficients m−βc
i

are the non-negative integers uniquely defined (since the
change of basis αi 	→ βc

i is triangular) by the recursive formula

m−βc
i
:=

[

−γ −
i−1∑

j=1

m−βc
j
βc

j ;αn

]

+

(we use the convention that the empty sum is 0). By construction γ+, the positive part
of γ , is in the positive cone of the sub-root lattice generated by

{αi |m−βc
i
= 0}.
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Clearly γ ∈ Q has a unique c-cluster expansion if and only if γ+ does. Without loss
of generality we can thus assume that γ is in the positive cone Q+.

The root −βc
i can appear with a positive coefficient in a c-cluster expansion of γ

only if the coefficient [γ ;αi] is negative therefore the result holds for γ = 0 and we
can assume γ �= 0.

If
∑

α∈Φ+ mαα is a c-cluster expansion of γ then

τ−1
c γ = c−1γ = c−1

( ∑

α∈Φ+
mαα

)

=
∑

α∈Φ+
mαc−1α =

∑

α∈Φ+
mατc−1α

is a c-cluster expansion of τ−1
c γ . In other words γ has a unique c-cluster expan-

sion if and only if τ−1
c γ does. Applying τ−1

c a sufficient number of times γ can be
moved outside of the positive cone. We can then take its positive part and conclude
by induction on the rank of the root system. �

Remark 13 This proof, as its analog in [6], has the advantage of considering one
Coxeter element at a time. An alternative strategy could have been the following. The
claim holds for bipartite Coxeter elements by point 4 in Corollary 2. Using the fact
that the maps σi preserve compatibility degree one can then transfer the property to
other sets of c-almost positive roots.

As in [6], Theorem 8 follows from Proposition 4. For the sake of completeness we
replicate the proof here.

Proof (Theorem 8) It suffices to show that

1. no two cones of F Φ
c have a common interior point

2. the union of all cones is QR.

Assume by contradiction that there exists a point in the common interior of two cones.
Since QQ is dense in QR we may assume that such point is in QQ. Clearing the
denominators there is then a common point in Q which contradicts the uniqueness of
the c-cluster expansion. Therefore the interiors of any two cones are disjoint.

Since any γ ∈ Q has a c-cluster expansion the union of all the cones R+C contains
Q; since this union is closed in QR and stable under the action of R+ it must contain
all of QR and we are done. �

To prove Theorem 9 we will apply the criterion provided by Lemma 2.1 in [3]. Let
us restate it in the particular case we need.

Lemma 7 Let Fc be a continuous piecewise-linear function

Fc : QR −→ R

linear on the maximal cones of the fan F Φ
c (as such Fc is uniquely determined by its

values on Φap(c)). Then F Φ
c is the normal fan to a unique full-dimensional polytope

with support function Fc if and only if Fc satisfy the following system of inequalities.
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For any pair of adjacent c-clusters Cα and Cγ let α be the only root in Cα \ Cγ and
γ the only root in Cγ \ Cα . Let

mαα + mγ γ =
∑

δ∈Cα∩Cγ

mδδ (15)

be the unique (up to non-zero scalar multiple) linear dependence on the elements of
Cα ∪ Cγ with mα and mγ positive. Then

mαFc(α) + mγ Fc(γ ) >
∑

δ∈Cα∩Cγ

mδFc(δ). (16)

In particular the domains of linearity of Fc are exactly the maximal cones of F Φ
c .

To apply Lemma 7 we make the relations (15) more explicit by exploring the
interaction of σ1 and τc. Note that, having established Theorem 8, any vector-valued
function on Φap(c) can be extended to a continuous piecewise-linear map on QR; in
particular this is the case for τc and σi .

To avoid degenerate cases, from now on, assume that every connected component
of I contains at least 2 vertices. As before, let c be s1 · · · sn.

Lemma 8 Let α and γ be roots in Φap(c) such that

(α||γ )c = 1 = (γ ||α)c.

Then

σ−1
1

(
σ1(α) + σ1(γ )

)

is either α + γ or

τc

(
τ−1
c (α) + τ−1

c (γ )
)

and it is different from α + γ only if one of the two roots (say, α) is −βc
1 ; in this case

σ−1
1

(
σ1

(−βc
1

) + σ1(γ )
) = γ − α1 ∈ Q+.

Proof If both α and γ are positive roots then

σ−1
1

(
σ1(α) + σ1(γ )

) = σ−1
1 (s1α + s1γ ) = σ−1

1

(
s1(α + γ )

)
.

Let

α + γ =
∑

δ∈Φap(c)

mδδ

be the c-cluster expansion of α + γ ; all the roots δ such that mδ �= 0 are positive;
therefore

σ−1
1

(
s1(α + γ )

) = σ−1
1

(
s1

(∑
mδδ

))
= σ−1

1

(
σ1(α + γ )

) = α + γ.
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It remains to consider the case in which one of the two roots is negative (they
cannot be both negative); we can, by symmetry, assume α to be the negative one. If
α = −βc

i with i �= 1 then

σ−1
1

(
σ1

(−βc
i

) + σ1(γ )
) = σ−1

1

(−s1β
c
i + s1γ

) = σ−1
1

(
s1

(
γ − βc

i

))
.

Let

γ − βc
i =

∑

δ∈Φap(c)

mδδ

be the c-cluster expansion of γ − βc
i . None of the roots δ appearing with a positive

coefficient is −βc
1 since

[
γ − βc

i ;α1
] ≥ 0

(−βc
1 is the only negative root in Φap(c) having α1 with non-zero coefficient). There-

fore on γ − βc
i the actions of s1 and of σ1 are the same. We get

σ−1
1

(
σ1

(−βc
i

) + σ1(γ )
) = σ−1

1

(
s1

(
γ − βc

i

)) = σ−1
1

(
σ1

(
γ − βc

i

)) = γ − βc
i .

Finally if α = −βc
1 then on the one hand we have

σ−1
1

(
σ1

(−βc
1

) + σ(γ )
) = σ−1

1 (α1 + s1γ ) = σ−1
1

(
s1(γ − α1)

)

γ − α1 is in Q+ therefore

σ−1
1

(
s1(γ − α1)

) = σ−1
1

(
σ1(γ − α1)

) = γ − α1.

On the other hand

τc

(
τ−1
c

(−βc
1

) + τ−1
c (γ )

) = τc

(
βc

1 + c−1γ
) = τc

(
c−1(γ − α1)

)

we can interchange c−1 and τ−1
c because γ − α1 is in Q+ and conclude

τc

(
c−1(γ − α1)

) = τc

(
τ−1
c (γ − α1)

) = γ − α1. �

Proposition 14 Let α and γ be roots in Φap(c) such that

(α||γ )c = 1 = (γ ||α)c.

Then
{
τm
c

(
τ−m
c (α) + τ−m

c (γ )
)}

m∈Z

consist of exactly two elements, one is α + γ ; denote the other by α �c γ .

Proof If c is bipartite there is nothing to prove by point 1 in Corollary 3. In view of
Lemma 8, for any other Coxeter element c = s1 · · · sn and any integer m we have

τm
s1cs1

(
τ−m
s1cs1

(
σ1(α)

) + τ−m
s1cs1

(
σ1(γ )

)) = σ1τ
m
c σ−1

1

(
σ1τ

−m
c (α) + σ1τ

−m
c (γ )

)
.
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For a suitable m′ in {m,m + 1} we get

σ1τ
m
c σ−1

1

(
σ1τ

−m
c (α) + σ1τ

−m
c (γ )

) = σ1τ
m′
c

(
τ−m′
c (α) + τ−m′

c (γ )
)
.

Therefore

{
σ1(α) + σ1(γ ), σ1(α) �s1cs1 σ1(γ )

} ⊆ σ1{α + γ,α �c γ }
and the claim follows reversing the role of c and s1cs1. �

Remark 14 Following Remark 1.15 in [3], if I contains a component of type A1 let α1
and −α1 be the corresponding roots. In view of Remark 10 they are both compatible
with any root in Φap(c) \ {α1,−α1}. By direct inspection, we have

(−α1||α1)c = 1 = (α1|| − α1)c.

In this case their sum is 0 and it is natural to declare −α1 �c α1 to be 0 too.

Corollary 4 If

(α||γ )c = 1 = (γ ||α)c

then every root appearing with positive coefficient in the cluster expansion of either
α + γ or α �c γ is compatible with α, γ and with any other root compatible with
both α and γ .

Proof The statement is true in the bipartite case by point 2 in Corollary 3. For an
arbitrary Coxeter element c = s1 · · · sn the result can be deduced using elementary
moves: from the previous proof we have

{
σ1(α) + σ1(γ ), σ1(α) �s1cs1 α1(γ )

} = σ1
({α + γ,α �c γ }) (17)

and the claim follows since σ1 preserves compatibility degrees. �

Lemma 9 In every dependence relation (15) we have

(α||γ )c = 1 = (γ ||α)c. (18)

Furthermore, after normalization the relation (15) is just the c-cluster expansion of
α + γ :

α + γ =
∑

δ∈Φap(c)

mδδ.

Proof Normalize (15) so that coefficients are coprime integers. By Theorem 7 all the
coefficients in

α = −mγ

mα

γ +
∑

δ∈Cα∩Cγ

mδ

mα

δ
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are integers forcing mα = 1 (it is positive by hypothesis). In a similar fashion mγ = 1.
To show (18), using the τc-invariance of the compatibility degree, it suffices to

consider the case α = −βc
i . We have

γ = βc
i +

∑

δ∈C−βc
i
∩Cγ

mδδ

and thus
(−βc

i ||γ
)

c
= [γ ;αi]+ = 1

since i is not in Supp(δ) for any δ in C−βc
i
∩ Cγ .

The fact that, after the normalization, the dependence (15) is the c-cluster expan-
sion of α +γ is a direct application of Corollary 4. Any root appearing with non-zero
coefficient in the cluster expansion of α + γ is compatible with α, γ , and with any
other root compatible with both α and γ , therefore it is a root in Cα ∩ Cγ . �

Proposition 14 together with Corollary 4 and Lemma 9 allow us to compute ex-
change relations. Let A0(c) be the coefficient-free cluster algebra with initial ex-
change matrix B(c) and denote by {xα,c}α∈Φap(c) its cluster variables. Due to Propo-
sition 4 all the cluster monomials are in bijection with points of Q. Namely we can
write

xγ,c :=
∏

δ∈Φap(c)

x
mδ

δ,c

where

γ =
∑

δ∈Φap(c)

mδδ

is the cluster expansion of γ ∈ Q.

Proof (Theorem 10) The statement is true when c is a bipartite Coxeter element (cf.
(5.1) in [5]). Let c = s1 · · · sn. We have

xα,s1cs1xγ,s1cs1 = x
σ−1

1 (α),c
x
σ−1

1 (γ ),c

= x
σ−1

1 (α)+σ−1
1 (γ ),c

+ x
σ−1

1 (α)�cσ
−1
1 (γ ),c

= x
σ1(σ

−1
1 (α)+σ−1

1 (γ )),s1cs1
+ x

σ1(σ
−1
1 (α)�cσ

−1
1 (γ )),s1cs1

= xα+γ,s1cs1 + xα�s1cs1 γ,s1cs1 . �

Recall Remark 6: by construction of the map τc, there is one τc-orbit in Φap(c) for
each w0-orbit in I , i.e., there exists −βc

j such that

τm
c

(−βc
i

) = −βc
j

if and only if j ∈ {i, i∗}.
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Since σj sends −βc
i to {±β

sj csj
i } the τc-orbit of −βc

i gets mapped to the τsj csj -

orbit of −β
sj csj
i . In particular, for any function

f : I −→ R

such that

f (i) = f
(
i∗

)

we get a family of maps, one for each Coxeter element c,

Fc = Fc;f : Φap(c) −→ R

defined setting Fc(−βc
i ) := f (i) and extending by τc-invariance. These maps are

invariant under the action of σi , that is

Fsicsi

(
σi(α)

) = Fc(α) (19)

for any c, any i initial in c, and any α in Φap(c). From now on assume that Fc has
been defined in this way and extend it to a continuous, piecewise-linear function

Fc : QR −→ R

linear on maximal cones of Fc.

Proposition 15 Fix any function

f : I −→ R

such that

1. for any i ∈ I

f (i) = f
(
i∗

)

2. for any j ∈ I
∑

i∈I

aij f (i) > 0.

Then for any pair of roots α and γ in Φap(c) such that

(α||γ )c = 1 = (γ ||α)c

the following inequality holds:

Fc(α) + Fc(γ ) > max
{
Fc(α + γ ),Fc(α �c γ )

}
.

Proof The bipartite case was taken care of by point 3 in Corollary 3. Let c = s1 · · · sn
be any Coxeter element. Using elementary moves, (17) and (19) we get
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Fs1cs1

(
σ1(α)

) + Fs1cs1

(
σ1(γ )

)

= Fc(α) + Fc(γ )

> max
{
Fc(α + γ ),Fc(α �c γ )

}

= max
{
Fs1cs1

(
σ1(α + γ )

)
,Fs1cs1

(
σ1(α �c γ )

)}

= max
{
Fs1cs1

(
σ1(α) + σ1(γ )

)
,Fs1cs1

(
σ1(α) �s1cs1 σ1(γ )

)}

as desired. �

Proof (Theorem 9) It is enough to note that the Proposition 15 together with
Lemma 9 satisfy the requirements of Lemma 7. �

7 Relation between FΠ
c and the c-Cambrian fan FC

c

We start by recalling some results and terminology from [11].

Definition 6 (cf. Proposition 1.1 in [11]) Fix a Coxeter element c and call an element
w ∈ W a c-singleton if w is both c-sortable and c-antisortable.

Note that both w0 and the identity element of W are c-singletons for any choice
of c. Denote by w0 the c-sorting word of w0.

Theorem 11 (cf. Theorem 1.2 in [11]) An element w ∈ W is a c-singleton if and only
if it has a reduced expression which is a prefix of w0 up to commutations.

Theorem 12 (cf. Theorem 2.6 in [11]) For any ray ρ of F C
c , there exist a unique

fundamental weight ωi and a (non unique) c-singleton w such that

ρ = R+ · wωi.

Conversely for any c-singleton w and any fundamental weight ωi , the weight wωi ,
lies on a ray of F C

c .

We will use Theorems 11 and 12 to relate the rays of F C
c to the elements of the

set Π(c).

Definition 7 Given a Coxeter element c ∈ W , we call a reduced expression c =
s1 · · · sn greedy if

h(i, c) ≥ h(j, c)

whenever i < j .

Lemma 10 Any Coxeter element c admits a greedy reduced expression.
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Proof Consider a reduced expression s1 · · · sn for c and suppose h(i, c) < h(i + 1, c)

for some i. Let i be the minimal index with this property. Using Proposition 1.6 in
[18] we can deduce that i and i + 1 are not connected in the Coxeter graph. Indeed
if they were connected then we would have i ≺c i + 1 and thus h(i, c) ≥ h(i + 1, c)

which is in contradiction with our assumption. Therefore si and si+1 commute and
s1 · · · si+1si · · · sn is another reduced expression for c; we can now conclude by in-
duction. �

Remark 15 Greedy reduced expressions, in general, are not unique; for example
s2s4s1s3 and s4s2s1s3 are both greedy reduced expression of the same Coxeter el-
ement in type A4 (again we used the standard numeration of roots from [1]).

Lemma 11 For any vertices i and j of the Dynkin diagram at distance d from each
other the difference h(i, c) − h(j, c) is at most d .

Proof It is enough to observe that if i and j are adjacent then either i ≺c j or
j ≺c i so |h(i, c) − h(j, c)| ≤ 1 by Proposition 1.6 in [18]. Therefore each step on
the minimal path in I connecting i and j contribute at most 1 to the difference
h(i, c) − h(j, c). �

Fix a greedy reduced expression for c. With some abuse of notation, we denote
this expression also as c. Denote by wm the sub-word of cm obtained by omitting in
the lth copy of c all the transpositions si such that h(i, c) < l. Observe that having
taken a greedy reduced expression for c, if we write I1, . . . Im for the c-factorization
of wm, then

I1 ⊇ I2 · · · ⊇ Im.

In particular if wm is a reduced word then wm, the corresponding element of W ,
is c-sortable. Let mc = maxi∈I {h(i, c)}, our goal is to show that the word wmc is a
reduced expression for w0.

Proposition 16 For any i ∈ I and any m ≤ h(i, c) we have cmωi = wmωi .

Proof Let I1, . . . , Im be the c-factorization of wm with respect to the fixed greedy
reduced expression of c. Observe that, for any j appearing in Il+1 and for any k

missing from Il ,
∣
∣h(k, c) − h(j, c)

∣
∣ ≥ 2

and so, by Lemma 11, sk and sj commute. Consider now the element

w = cI\I1cI\I2 · · · cI\Im.

Since m ≤ h(i, c), the reflection si will not appear in w and so wωi = ωi hence
wmwωi = wmωi . Form the previous consideration we can move all the elements in
the lth copy of c in w up to the lth block of wm and obtain

cmωi = cI1cI\I1 · · · cImcI\Imωi = wmwωi = wmωi. �
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Proposition 17 wmc is a reduced expression of w0.

Proof To show that wmc is an expression of w0 it is enough to show that both w0 and
wmc act in the same way on the weight space (the representation of W as reflection
group of PR is faithful). Fundamental weights form a basis of the weight space so it
is enough to see how w0 and wmc act on them. For any i we have w0ωi = −ωi∗ . On
the other hand, using Proposition 16, we conclude that

wmcωi = wh(i,c)ωi = ch(i,c)ωi = −ωi∗ .

Therefore wmc is a word representing w0. The fact that it is a reduced expression
follows from considerations on its length; each reflection si appears exactly h(i, c)

times in it. Proposition 1.7 in [18] states that, for every i, the sum h(i, c)+h(i∗, c) is
equal to the Coxeter number h, hence

∑

i∈I

(
h(i, c) + h

(
i∗, c

)) = |I |h = |Φ|

but in this way we are counting the contribution of each i twice, i.e.

l(wmc) ≤
∑

i∈I

h(i, c) = 1

2

∑

i∈I

(
h(i, c) + h

(
i∗, c

)) = 1

2
|Φ| = |Φ+| = l(w0).

�

Note that, in view of last Proposition, for any m ≤ mc , wm is a reduced expression
in W (and wm is c-sortable).

Proposition 18 Fix a greedy reduced expression for c. Then wmc is the lexicograph-
ically first reduced expression of w0 as a sub-word of c∞. In other words wmc is the
c-sorting word of w0.

Proof It is enough to show that wmαi is a negative root for any i not in Im. We have

0 < (αi,ωi) = (wmαi,wmωi) = (wmαi,w0ωi) = (wmαi,−ωi∗)

thus (wmαi,ωi∗) < 0 and so wmαi is a negative root. �

Remark 16 Combining together Theorem 11 and Proposition 18 we get another char-
acterization of c-singletons: they are all the prefixes of wmc up to commutations.

Proposition 19 The sets of rays of F Π
c and F C

c coincide.

Proof Fix a greedy reduced expression for c. Let ρ be a ray of F C
c . By Theorem 12

there exist a c-singleton w and a fundamental weight ωi such that

ρ = R+wωi.

Let m be the minimum integer such that w is a prefix of wm. By Proposition 16

wωi = wmωi = cmωi ∈ Π(c).
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On the other hand, given any element cmωi of Π(c), let wm be the corresponding
sub-word of cm as in Proposition 16; it is a c-singleton therefore cmωi = wmωi is a
point on a ray of F C

c by Theorem 12. �

We can now define the polytope Assoa
c (W). For any point a in PR and for any ray

ρ of F C
c such that ρ = R+ · wωj , denote by Ha

ρ the half-space

Ha
ρ := {

ϕ ∈ P ∗
R

| ϕ(wωj ) ≤ (a,ωj )
}
.

The main result in [11] is that, if a lies in the interior of the fundamental Weyl cham-
ber, the intersection of half-spaces

Assoa
c (W) :=

⋂
Ha

ρ

as ρ runs over all rays of F C
c is a simple polytope and its normal fan is F C

c .

Proof (Theorem 6) In view of Proposition 19, the two polytopes become

Assoa
c (W) = {

ϕ ∈ P ∗
R

| ϕ(
cmωi

) ≤ (a,ωi)∀i ∈ I,0 ≤ m ≤ h(i, c)
}

and

Assof
c (W) = {

ϕ ∈ P ∗
R

| ϕ(
cmωi

) ≤ f (i)∀i ∈ I,0 ≤ m ≤ h(i, c)
}
.

For any function f : I −→ R let a be the point in PR defined by the conditions

(a,ωi) := f (i)

for all i ∈ I . Imposing condition 2 of Theorem 4 on f is equivalent to ask for a to lie
in the fundamental Weyl chamber; indeed a is in it if and only if the scalar product
(αj , a) is positive for every j ∈ I . Since αj = ∑

i∈I aijωi we have

(αj , a) =
(∑

i∈I

aijωi, a

)

=
∑

i∈I

aij (a,ωi) =
∑

i∈I

aij f (i) > 0.

We can thus conclude that, for any function f : I −→ R satisfying conditions 1 and
2 of Theorem 4, choosing a as above, we get

Assoa
c (W) = Assof

c (W). �

Remark 17 It is clear that, imposing condition 1 of Theorem 4, from our construction
we get only the polytopes from [11] obtained from points a invariant under the action
of −w0.
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