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Abstract John Holte (Am. Math. Mon. 104:138–149, 1997) introduced a family of
“amazing matrices” which give the transition probabilities of “carries” when adding
a list of numbers. It was subsequently shown that these same matrices arise in
the combinatorics of the Veronese embedding of commutative algebra (Brenti and
Welker, Adv. Appl. Math. 42:545–556, 2009; Diaconis and Fulman, Am. Math. Mon.
116:788–803, 2009; Adv. Appl. Math. 43:176–196, 2009) and in the analysis of riffle
shuffling (Diaconis and Fulman, Am. Math. Mon. 116:788–803, 2009; Adv. Appl.
Math. 43:176–196, 2009). We find that the left eigenvectors of these matrices form
the Foulkes character table of the symmetric group and the right eigenvectors are
the Eulerian idempotents introduced by Loday (Cyclic Homology, 1992) in work on
Hochschild homology. The connections give new closed formulae for Foulkes char-
acters and allow explicit computation of natural correlation functions in the original
carries problem.

Keywords Foulkes character · Carry · Eulerian idempotent · Symmetric group

1 Introduction

When n numbers are added in the usual way, “carries” accrue along the way. For
example, working base b = 10, the display shows the carries along the top when
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n = 3 ten-digit numbers are added:

2 22111 12120
78667 51918
65921 47787
88424 99859

2 33013 99564

Here the carries (reading right to left in italic print) are κ0 = 0, κ1 = 2, κ2 = 1, κ3 =
2, . . . . When n numbers are added, the carries can be 0,1,2, . . . , n − 1. If the digits
are chosen uniformly at random in {0,1, . . . , b − 1}, it is easy to see that the car-
ries form a Markov chain: the chance that the next carry is j given the past carries
only depends on the last carry. Thus the distribution of carries is determined by the
transition matrix

M(i, j) = chance{next carry is j | last carry is i}.

The carries process was studied by Holte [17] who showed

M(i, j) = 1

bn

j−�i/b�∑

l=0

(−1)l
(

n + 1

l

)(
n − 1 − i + (j + 1 − l)b

n

)
, 0 ≤ i, j ≤ n − 1.

(1.1)
For example, when n = 3, the matrix is

1

6b2

⎡

⎣
b2 + 3b + 2 4b2 − 4 b2 − 3b + 2

b2 − 1 4b2 + 2 b2 − 1
b2 − 3b + 2 4b2 − 4 b2 + 3b + 2

⎤

⎦ .

Holte found the eigenvalues, eigenvectors, and many amazing properties of these
matrices.

Work of [4, 7, 8] shows that the same matrix arises in the analysis of the Gilbert–
Shannon–Reeds method of shuffling cards and in the Hilbert series of the Veronese
embedding of projective varieties.

The main results of the present paper identify a different area where the matrix ap-
pears. The left eigenvectors of the matrix are the Foulkes characters of the symmetric
group. The right eigenvectors are the Eulerian idempotents that occur in the study of
free Lie algebras and Hochschild homology. We obtain new closed-form expressions
for these characters.

Section 2 gives background on Foulkes characters and presents some new results
for left eigenvectors. Section 3 does the same for the right eigenvectors and applies
some of the new formulae to the original carries process, giving the variance and
covariance of the number of carries. Section 4 gives another connection between
representation theory of the symmetric group (the RSK correspondence) and carries.

In follow-up work to the current paper, Novelli and Thibon [23] prove many of
our results using the theory of noncommutative symmetric functions.
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2 Foulkes characters

This section introduces the Foulkes characters of the symmetric group and some of
their properties (Sect. 2.1). It shows that the Foulkes characters are the left eigenvec-
tors of the transition matrix M of (1.1) (Sect. 2.2). This connection is used to prove
a branching rule (from Sn to Sn−1) and a closed-form formula for Foulkes characters
(Sect. 2.3).

2.1 Background on Foulkes characters

Foulkes characters were discovered by Foulkes [11] as part of the study of the de-
scent patterns in the permutation group. They are developed in [19] and [18] gives a
readable textbook treatment. Gessel and Reutenauer [15] use them to enumerate per-
mutations by descents and conjugacy classes; see [9] for a probabilistic interpretation
of these results. Stanley [28] uses Foulkes characters to develop enumerative results
for alternating permutations by cycle type.

Recall that a permutation σ ∈ Sn has a descent at i if σ(i + 1) < σ(i). The
set of places where descents occur is D(σ) ⊆ [n − 1]. For example, if σ =
4512376, D(σ) = {2,6}. If U ⊆ [n − 1] is any set, Foulkes suggested construct-
ing a ribbon shape (also called a rim hook) R(U) beginning with a single box and
sequentially adding the next box below the last box if i ∈ U , and to the left of the last
box if i /∈ U, 1 ≤ i ≤ n − 1. Thus, if U = {2,6}, boxes are built up as follows:

The final skew shape will have n boxes and be the lower rim of a partition α; in this
example, α is 5,4,1, and the ribbon shape is 5,4,1\3:

Labeling the boxes in the ribbon shape by all ways they can be sequentially removed
from α and reading this from right to left and top to bottom gives all permutations
with the original U as descent set. For example, removing boxes in the order shown
as

gives 1435672. The skew shape R(U) corresponding to U ⊆ [n − 1] gives a skew
character χR(U): if R(U) = α\β and χλ is an irreducible character of the symmetric
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Table 1 Foulkes character table
for n = 5 5 4 3 2 1

0 1 −1 1 −1 1

1 26 −10 2 2 −4

2 66 0 −6 0 6

3 26 10 2 −2 −4

4 1 1 1 1 1

group Sn, the coefficient of χλ in χR(U) is 〈χβ · χλ|χα〉 (see [22, Sect. 1.7]). From
the development above, the dimension of χR(U) is the number of permutations with
descent set U . Solomon [25, Sect. 6] describes a related construction of MacMahon
in his work on Simon Newcomb’s problem.

For fixed k, 0 ≤ k ≤ n − 1, the Foulkes character χn,k is defined as the sum of
χR(U) over all U with n − k − 1 descents. It follows that the dimension of χn,k is
the Eulerian number A(n, k), the number of permutations with k descents. Foulkes
showed that χn,k(σ ) only depends on σ through the number of cycles in σ . In partic-
ular,

χn,n−1 is the trivial character; (2.1)

χn,0 is the alternating character. (2.2)

Most importantly, letting χ
n,k
j denote the value of the Foulkes character on permuta-

tions with j cycles (so the dimension χ
n,k
n = A(n, k)), one has from p. 306 of [18]

that

χ
n,k
j = χ

n−1,k−1
j − χ

n−1,k
j if j < n, k > 0. (2.3)

This, with the starting value χ
1,0
1 = 1, gives an efficient way to build a Foulkes char-

acter table. Let k = 0,1, . . . , n − 1 index the rows and j = n,n − 1, . . . ,1 index the
columns. Table 1 gives the example when n = 5.

Further properties of Foulkes characters appear in Kerber and Thürlings [19]:

〈
χn,k,χλ

〉
> 0 =⇒ λ1 ≤ k + 1, λ′

1 ≤ n − k, (2.4)
〈
χn,k,χj+1,1n−j−1 〉

> 0 ⇔ j = k, (2.5)

The χn,k are linearly independent, (2.6)

If χ : Sn → R denotes a character, depending only on the number of cycles, then

χ =
∑

i

〈χ,χi+1,1n−i−1〉
χi+1,1n−i−1

(id)
χn,i . (2.7)

Thus the χn,k form a Q basis for the characters that only depends on the number
of cycles. Hidden in the proof of (2.7): the hook character χi+1,1n−i−1

is the only
hook occurring in χn,i and it occurs with multiplicity its degree

(
n−1

i

)
. A related fact
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appears in Solomon [25, Theorem 4]. Kerber and Thürlings [19] further determine
the permutation character for Sn acting on {1,2, . . . ,N}n:

χN(σ) := N# cycles in (σ ) (2.8)

has the decomposition

χN =
∑

k

(
N + k

n

)
χn,k.

The χn,k are usually not irreducible, and [19] gives an interesting combinatorial
rule for decomposing χR(U) (and thus χn,k).

Marty Isaacs conjectured that n! divides the determinant of the Foulkes character
table. In fact, the following is true:

The determinant of the n × n matrix with k, j entry χ
n,k
j is n!(n − 1)! · · ·2!. (2.9)

Proof Construct an n × n matrix A from the (n − 1) × (n − 1) Foulkes character
table by adding a left column consisting of the partial sums of the Eulerian numbers
A(n,0),A(n,0) + A(n,1), . . . , n! and filling out the rest of the top row with zeros.
Thus, when n = 5,

A =

⎛

⎜⎜⎜⎜⎝

120 0 0 0 0
119 1 −1 1 −1
93 11 −3 −1 3
27 11 3 −1 −3
1 1 1 1 1

⎞

⎟⎟⎟⎟⎠
.

The 4 × 4 matrix in the lower right corner is the Foulkes character table for n = 4.
The first column entries are the partial sums of the Eulerian numbers 1, 26, 66,
26, 1. In particular, the (1,1) entry is n!, so by induction the determinant of A is
n!(n − 1)! · · ·2!.

The n × n Foulkes character table is constructed from A as follows: in A, subtract
row 2 from row 1, then row 3 from row 2, and so on. The recurrence (2.3) shows this
gives the n × n Foulkes character table. �

Marty Isaacs observes that while the {χn,k} are not disjoint, they sum up to the
regular character of Sn; see [25, Th. 2] for a proof. Alas, this does not seem to be
enough to have the nice theory of supercharacters [1] carry over, but the parallels are
intriguing. Further properties of Foulkes characters are given in Sect. 2.3 after the
connection with the carries transition matrix is developed.

Rim hook characters are a basic construction of representation theory of Sn; see
[3, 20] and the references there. They are also available for other Coxeter groups
[25]. Foulkes’ innovation, showing that sums of these characters have interesting
properties, has not been explored for general type.
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2.2 The connection with carries

We noticed from Holte’s paper [17] that the matrix of left (row) eigenvectors for the
carries Markov chain on {0,1,2,3,4} (e.g., adding 5 numbers) is

⎛

⎜⎜⎜⎜⎝

1 26 66 26 1
1 10 0 −10 −1
1 2 −6 2 1
1 −2 0 2 −1
1 −4 6 −4 1

⎞

⎟⎟⎟⎟⎠
.

Comparing this with Table 1, the Foulkes character table, leads to the following result.

Theorem 2.1 Let vn
i,j denote the j th entry of the ith left eigenvector of the carries

matrix for addition of n numbers base b (here 0 ≤ i, j ≤ n − 1, and the eigenvalues
are 1/bi ). Then

vn
i,j = χ

n,n−j−1
n−i .

Proof The first case is that i = 0. From [17], vn
0,j = A(n, j). From the dimen-

sion formula, χ
n,n−j−1
n = A(n,n − 1 − j). By symmetry of the Eulerian numbers,

A(n, j) = A(n,n − 1 − j), so the theorem follows in the first case.
The second case is that j = n − 1. By (2.2), χ

n,0
j = (−1)n−j . Thus we need to

show that vn
n−j,n−1 = (−1)n−j . By Holte’s formula for the left eigenvectors of the

carries chain [17, p. 143], it follows that

vn
n−j,n−1 =

n−1∑

r=0

(−1)r
(

n + 1

r

)
(n − r)j .

The result now follows by induction, since

n−1∑

r=0

(−1)r
(

n + 1

r

)
(n − r)j−1(n − r)

= n

n−1∑

r=0

(−1)r
(

n + 1

r

)
(n − r)j−1 −

n−1∑

r=0

(−1)r r

(
n + 1

r

)
(n − r)j−1

= n(−1)n−j+1 − (n + 1)

n−1∑

r=1

(−1)r
(

n

r − 1

)
(n − r)j−1

= n(−1)n−j+1 + (n + 1)

n−2∑

r=0

(−1)r
(

n

r

)
(n − 1 − r)j−1

= n(−1)n−j+1 + (n + 1)(−1)n−j

= (−1)n−j .
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For the remaining cases, i > 0 and j < n − 1. By the recursive formula (2.3), it is
enough to show that

vn
i,j = vn−1

i−1,j − vn−1
i−1,j−1

for i > 0, j < n − 1. From p. 144 of [17],

vn
i,j = Coefficient of xj+1 in (1 − x)n+1

(
x

d

dx

)n−i

(1 − x)−1.

Clearly,

Coefficient of xj+1 in (1 − x)n+1
(

x
d

dx

)n−i

(1 − x)−1

= Coefficient of xj+1 in (1 − x)n
(

x
d

dx

)n−i

(1 − x)−1

− Coefficient of xj in (1 − x)n
(

x
d

dx

)n−i

(1 − x)−1,

which implies the result. �

2.3 Some consequences

In [17], Holte gave a closed formula for the left eigenfunctions,

vn
i,j =

j+1∑

r=0

(−1)r
(

n + 1

r

)
(j + 1 − r)n−i . (2.10)

Thus we get an apparently new formula for the Foulkes characters.

Corollary 2.2

χ
n,k
j =

n−k∑

r=0

(−1)r
(

n + 1

r

)
(n − k − r)j .

In rereading Foulkes [11, Sect. 4], we found the formula (Theorem 4.1),

χ
n,k
j =

n−j∑

r=0

(−1)r
(

n − j

r

)
A(j, k + j + r − n).

This seems a little less direct than Corollary 2.2. Corollary 2.2 gives a direct proof of
the following restriction formula of Foulkes characters from Sn to Sn−1.
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Corollary 2.3 [11, Corollary 4.6]

χ
n,k
Sn−1

= (k + 1)χn−1,k + (n − k)χn−1,k−1, 0 ≤ k ≤ n − 1.

Remarks We first learned Corollary 2.3 from Marty Isaacs, who both observed it and
showed that it follows from Corollary 2.2. The well-known recursion formula for the
Eulerian numbers A(n, k) = (k+1)A(n−1, k)+ (n−k)A(n−1, k−1) is the special
case of evaluation at the identity. Thus Corollary 2.3 represents a “categorification”
of this recurrence.

Proof The required formula translates to

χ
n,k
j = (k + 1)χ

n−1,k
j−1 + (n − k)χ

n−1,k−1
j−1 , 0 ≤ k ≤ n − 1, j ≥ 1.

From Corollary 2.2,

(k + 1)χ
n−1,k
j−1 + (n − k)χ

n−1,k−1
j−1

= (k + 1)

n−k−1∑

r=0

(−1)r
(

n

r

)
(n − k − r − 1)j−1 + (n − k)χ

n−1,k−1
j−1

= (k + 1)

n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

+ (n − k)j + (n − k)

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1

= (n − k)j +
n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

+ k

n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

+ n

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1 − k

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1.

Combining the third and fifth terms using
(
n
r

) + (
n

r−1

) = (
n+1

r

)
, one obtains

= (n − k)j + n

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1 +

n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

− k

n−k∑

r=1

(−1)r
(

n + 1

r

)
(n − k − r)j−1.
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Adding and subtracting

n−k∑

r=1

(−1)r (n − r)

(
n + 1

r

)
(n − k − r)j−1

yields

(n − k)j + n

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1 +

n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

+
n−k∑

r=1

(−1)r
(

n + 1

r

)
(n − k − r)j −

n−k∑

r=1

(−1)r (n − r)

(
n + 1

r

)
(n − k − r)j−1

=
[
(n − k)j +

n−k∑

r=1

(−1)r
(

n + 1

r

)
(n − k − r)j

]

+ n

n−k∑

r=1

(−1)r
(

n

r

)
(n − k − r)j−1 +

n−k∑

r=1

(−1)r−1
(

n

r − 1

)
(n − k − r)j−1

−
n−k∑

r=1

(−1)r (n − r)

(
n + 1

r

)
(n − k − r)j−1

= χ
n,k
j +

n−k∑

r=1

(−1)r (n − k − r)j−1
[
n

(
n

r

)
−

(
n

r − 1

)
− (n − r)

(
n + 1

r

)]

= χ
n,k
j .

The penultimate equality used Corollary 2.2 and the final equality used the identity

n

(
n

r

)
−

(
n

r − 1

)
− (n − r)

(
n + 1

r

)
= 0. �

3 Riffle shuffle idempotents and right eigenvectors of the carries matrix

This section simplifies Holte’s formula for the right eigenvectors of the carries ma-
trix, and relates these eigenvectors to representation theory of the symmetric group
(Sect. 3.1). The eigenfunctions are used to compute basic things about carries in
Sect. 3.2.

3.1 Right eigenfunctions

To begin, let un
j (i) denote the value of the j th right eigenvector of the carries chain

(0 ≤ j ≤ n − 1, eigenvalues 1/bj ) evaluated at i (0 ≤ i ≤ n − 1). We also let s(n, k)
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be the Stirling number of the first kind, defined as (−1)n−k multiplied by the number
of permutations on n symbols with k cycles. It can also be defined by the equation

x(x − 1) · · · (x − n + 1) =
∑

k≥0

s(n, k)xk. (3.1)

Theorem 4 of Holte [17] shows that

un
j (i) =

n∑

k=n−j

s(n, k)

(
k

n − j

)
(n − 1 − i)k−(n−j)

where 00 is taken to be 1. Note that un
j (i) is a polynomial in i of degree j . For

example, un
0(i) = 1, un

1(i) = n(n − 1 − i) − (
n
2

)
.

The next theorem gives a simpler formula for un
j (i).

Theorem 3.1

un
j (i) = n!

∑

k≥0

s(k, n − j)

k!
(

n − i − 1

n − k

)

= n! · Coefficient of xn−j in

(
x + n − i − 1

n

)
.

Proof By Theorem 4 of Holte [17], un
j (i) is n! multiplied by the i, j entry of the

inverse of the matrix of left row eigenvectors. From this and (2.10), proving the first
equality of the theorem is equivalent to proving that

n!
∑

l≥0

∑

k≥0

s(k, n − l)

k!
(

n − i − 1

n − k

) j+1∑

r=0

(−1)r
(

n + 1

r

)
(j + 1 − r)n−l = n!δi,j .

Now

n!
n∑

l=n−k

∑

k≥0

s(k, n − l)

k!
(

n − i − 1

n − k

) j+1∑

r=0

(−1)r
(

n + 1

r

)
(j + 1 − r)n−l

= n!
∑

k≥0

(
n − i − 1

n − k

) j+1∑

r=0

(−1)r
(

n + 1

r

)
1

k!
n∑

l=n−k

s(k, n − l)(j + 1 − r)n−l

= n!
∑

k≥0

(
n − i − 1

n − k

) j+1∑

r=0

(−1)r
(

n + 1

r

)
1

k!
k∑

t=0

s(k, t)(j + 1 − r)t

= n!
∑

k≥0

(
n − i − 1

n − k

)∑

r≥0

(−1)r
(

n + 1

r

)(
j + 1 − r

k

)

= n!
∑

r≥0

(−1)r
(

n + 1

r

)∑

k≥0

(
n − i − 1

n − k

)(
j + 1 − r

k

)
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= n!
∑

r≥0

(−1)r
(

n + 1

r

)(
n + j − i − r

n

)

= n!δi,j .

The third equality used (3.1), the fifth used the basic identity
∑

i

(
a
i

)(
b

n−i

) = (
a+b
n

)

[26, p. 12], and the final equality is from p. 147 of [17].
To prove the second equality of the theorem, write

(
x + n − i − 1

n

)
=

∑

k

(
x

k

)(
n − i − 1

n − k

)

and use (3.1). �

Remark Let En,k be elements of the symmetric group algebra defined by the equation

n∑

k=1

xkEn,k =
∑

w∈Sn

(
x + n − d(w) − 1

n

)
w

where d(w) denotes the number of descents of w. By work of Garsia and Reutenauer
[13], these are orthogonal idempotents of the symmetric group algebra whose sum
is the identity. They also arise in the theory of riffle shuffling [2] and in Hochschild
homology [16]. Their images under the sign map are known as Eulerian idempotents.
In this version, they were discovered by Gerstenhaber–Schack [14] to give Hodge
decompositions of Hochschild homology. They have been developed by Loday [21]
for cyclic homology. Patras [24] gives an unusual treatment involving decompositions
of the n-cube into simplices. For a textbook treatment, see Weibel [29, Sect. 9.4.3].

The eigenvectors of the carries and descent matrix lift to eigenvectors of the full
riffle shuffle matrix. These in turn are identified in Denham [6] and Diaconis–Pang–
Ram [10].

Clearly, the value of En,k on a permutation depends only on its number of de-
scents. Letting En,k(d) denote the value of En,k on a permutation with d descents,
we have the following corollary of Theorem 3.1.

Corollary 3.2

un
j (i) = n!En,n−j (i).

It would be nice to have a more conceptual proof of Corollary 3.2. The paper [23]
is a development along these lines.

3.2 Applications

This section gives some applications of the explicit form of the right eigenvectors of
the carries chain for the addition of n numbers base b. We note that another applica-
tion (to lower bounding the convergence rate of the carries chain) appears in [8].
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The transition matrix of the carries chain is viewed as a linear operator on func-
tions in the usual way: Kf (x) = ∑

y K(x, y)f (y). We let κr denote the value of the
carry from column r − 1 to column r . We also recall that the covariance Cov(Z1,Z2)
between two random variables Z1,Z2 is E(Z1Z2) − E(Z1)E(Z2).

Proposition 3.3 Suppose that the carries chain is started from its stationary distri-
bution π . Then for n ≥ 2,

Cov(κ0, κr ) = 1

br

n + 1

12
> 0.

Proof Since P(κ0 = i) = π(i),

E(κ0κr) =
∑

i

iπ(i)E(κr |κ0 = i).

By Theorem 3.1, un
1 is a right eigenvector of the carries chain with eigenvalue 1/b.

Dividing by −1/n, we have the eigenvector f (i) = i − n−1
2 ,

E(κr |κ0 = i) = Kr

(
f + n − 1

2

)
(i) = 1

br

(
i − n − 1

2

)
+ n − 1

2
.

It follows that

E(κ0κr) =
∑

i

i

[
1

br

(
i − n − 1

2

)
+ n − 1

2

]
π(i). (3.2)

From [17] or [8], the stationary distribution of the carries chain is π(i) =
A(n, i)/n! (here A(n, i) is the number of permutations on n symbols with i descents).
It is known [5] that for n ≥ 2 the mean and variance of the Eulerian numbers are n−1

2
and n+1

12 . This, together with (3.2), gives

E(κ0κr) = 1

br

[
Var(κ0) + E(κ0)

2] − 1

br

(
n − 1

2

)2

+
(

n − 1

2

)2

= 1

br

n + 1

12
+

(
n − 1

2

)2

,

and the result follows since E(κ0)E(κr) = ( n−1
2 )2, which is true since the chain

started from its stationary distribution π . �

A similar calculation allows us to compute the covariance started from the state 0,
as in the usual carries process.

Proposition 3.4 Suppose that the carries chain is started from 0, and that n ≥ 2.
Then

1. E(κs) = (1 − 1
bs )

n−1
2 .
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2. Var(κs) = (1 − 1
b2s )

n+1
12 .

3. Cov(κs, κs+r ) = 1
br

n+1
12 (1 − 1

b2s ) > 0.

Proof Parts 1 and 2 are proved in Theorem 4.1 of [7]. For part 3, arguing as in the
proof of Proposition 3.3,

E(κsκs+r ) =
∑

i

iP (κs = i)E(κs+r |κs = i)

=
∑

i

iP (κs = i)

[
1

br

(
i − n − 1

2

)
+ n − 1

2

]

= 1

br

[
Var(κs) + E(κs)

2] +
(

1 − 1

br

)
n − 1

2
E(κs).

By parts 1 and 2, this is equal to

1

br

[(
1 − 1

b2s

)
n + 1

12
+

(
1 − 1

bs

)2
(n − 1)2

4

]
+

(
1 − 1

br

)
(n − 1)2

4

(
1 − 1

bs

)

= 1

br

n + 1

12

(
1 − 1

b2s

)
+ (n − 1)2

4

(
1 − 1

bs

)[
1

br

(
1 − 1

bs

)
+

(
1 − 1

br

)]

= 1

br

n + 1

12

(
1 − 1

b2s

)
+ (n − 1)2

4

(
1 − 1

bs

)(
1 − 1

bs+r

)

= 1

br

n + 1

12

(
1 − 1

b2s

)
+ E(κs)E(κs+r ). �

The eigenvectors of the carries matrix can be used to give a simple proof that the
sum of χn,k gives the regular character. Holte [17] shows that if V is the matrix whose
rows are left eigenvectors and U is the matrix whose columns are right eigenvectors,
then V U = n! × I . Just looking at products involving the first column of U (which is
identically one) we get that the χn,k sum up to the regular character.

It is instructive to see the problems encountered in trying to use the available
eigenstructure to bound the rate of convergence of the carries chain to its stationary
distribution A(n, j)/n!. Let Mb(i, j) be the transition matrix (1.1) corresponding
to adding n numbers base b. Let Mk

b (i, j) be the kth power of this matrix. From
elementary linear algebra,

Mk
b(i, j) = A(n, j)

n! +
n−1∑

a=1

1

bak
ra(i)la(j)

where la, ra are the left and right eigenvectors of Mb normed so that l0(j) = A(n,j)
n!

(and r0(j) = 1) for 0 ≤ j ≤ n − 1. Here
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la(j) = 1

n!χ
n,n−j−1
n−a with χ

n,n−j−1
n−a the Foulkes characters of Sect. 2.

ra(j) = un
a(j) with un

a(j) given in Theorem 3.1.

The total variation distance to stationarity, starting at i = 0, after k steps is

1

2

n−1∑

j=0

∣∣∣∣M
k
b (0, j) − A(n, j)

n!
∣∣∣∣.

From the formulae above,

∣∣∣∣M
k
b (0, j) − A(n, j)

n!
∣∣∣∣ =

∣∣∣∣∣

n−1∑

a=1

1

bak
ra(0)la(j)

∣∣∣∣∣.

While bounding this is feasible, it is a bit of a mess. In [8, Sect. 3], a different rep-
resentation is used to prove that the carries chain is close to stationarity after order
1
2 logb(n) steps.

4 Carries and the RSK correspondence

In this section, we use the RSK correspondence to derive a generating function for
descents after a br -riffle shuffle on a deck of n cards. Recall that an a-riffle shuffle is
given by first cutting the n cards into packet sizes k1, . . . , ka with multinomial proba-
bility n!

an
∏

i ki ! . The cards are then dropped one at a time with probability proportional

to packet size. So if the packet sizes are X1, . . . ,Xa at a given time, the next card
drops from packet i with probability Xi/(X1 + · · ·+Xa). For further background on
riffle shuffles, the reader can see [2].

By a main result of [7], the generating function for descents after a br -riffle shuffle
on a deck of n cards is equal to the generating function for the r th carry κr when n

numbers are added base b (and one can give another proof of Theorem 4.1 using
Holte’s formula for P(κr = i)).

Theorem 4.1 Let P(w) be the probability of w following a br -riffle shuffle on a deck
of n cards started at the identity, and let d(w) denote the number of descents of w.
Then

∑

w∈Sn

P (w)td(w)+1 = (1 − t)n+1

brn

∑

k≥1

tk
(

brk + n − 1

n

)
. (4.1)

Proof Let w be a permutation produced by a br riffle shuffle. The RSK correspon-
dence associates to w a pair of standard Young tableaux (P (w),Q(w)) of the same
shape. Moreover, there is a notion of descent set for standard Young tableaux, and by
Lemma 7.23.1 of [27], the descent set of w is equal to the descent set of Q(w). It
is known from [12] that if w is produced by a br shuffle, then the chance that Q(w)

is equal to any particular standard Young tableau of shape λ is sλ(
1
br , . . . ,

1
br ), where
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there are br variables. Letting fλ(a) denote the number of standard Young tableaux
of shape λ with a descents, it follows that

P
(
d(w) = a

) =
∑

|λ|=n

fλ(a)sλ

(
1

br
, . . . ,

1

br

)
.

By (7.96) of [27],
∑

a≥0

fλ(a)ta+1 = (1 − t)n+1
∑

k≥1

sλ(1, . . . ,1)tk

where in the kth summand, sλ(1, . . . ,1) denotes the Schur function with k variables
specialized to 1. Thus

∑

a≥0

P
(
d(w) = a

) · ta+1

=
∑

a≥0

∑

|λ|=n

fλ(a)sλ

(
1

br
, . . . ,

1

br

)
· ta+1

= (1 − t)n+1
∑

k≥1

tk
∑

|λ|=n

sλ

(
1

br
, . . . ,

1

br

)
sλ(1, . . . ,1)

= (1 − t)n+1
∑

k≥1

tk
[
un

]∑

n≥0

∑

|λ|=n

sλ

(
1

br
, . . . ,

1

br

)
sλ(1, . . . ,1) · un

where [un]g(u) denotes the coefficient of un in a power series g(u). Applying the
Cauchy identity for Schur functions [27, p. 322], this becomes

(1 − t)n+1
∑

k≥1

tk
[
un

](
1 − u/br

)−br k = (1 − t)n+1

brn

∑

k≥1

tk
(

brk + n − 1

n

)

as desired. �
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