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Abstract In this paper we prove that a point set in PG(2, q) meeting every line in 0, 1 or

r points and having a unique tangent at each of its points is either an oval or a unital. This

answers a question of Blokhuis and Szőnyi [1].
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1. Introduction

In PG(2, q) ovals and unitals have the common property that they have a unique tangent at

each of their points. For the definiton and properties of ovals and unitals, we refer to [2].

Such a set in general is called a semioval. For more examples, see [3], [4], and [6].

In [1] the authors raise the question, whether the extra property, that every secant of such

a set meets it in a constant number of points characterizes ovals and unitals. Such sets were

called regular semiovals. In this paper we answer this question affirmatively. The proof is

based on the technique often refered to as Segre’s lemma. Our approach is similar to that of

Thas in [6]. The main difference is in the choice of the base points and that we also need an

extra lemma (Lemma 2.4) which separates Hermitian curves from another possible example.

We end this introduction by recalling some results from Blokhuis-Szőnyi [1] and stating

our theorem.

Result 1.1. Suppose K is a regular semioval in PG(2, q) with line intersection sizes {0, 1, r},
which is neither a unital, nor an oval. Then the following holds.
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(i) r |q − 1 ([1] Theorem 2);

(ii) r − 1 is not 0 in G F(q) ([1] Theorem 4);

(iii) tangents through points of any r -secant are concurrent ([1] Theorem 5);

(iv) through any point out of the semioval, there are either 0, or r tangents, in the latter case

the points of tangency are collinear ([1] Theorem 2 and 5).

Note that by (iv), tangents in the dual plane form a regular semioval with the same parameters.

Our aim is to use these properties to deduce the following.

Theorem 1.2. In PG(2, q) any regular semioval is either an oval or a unital.

2. Proof of Theorem 1.2

Throughout this text we use homogeneous coordinates for points and lines in PG(2, q),

where q = pe is an arbitrary prime power. The point (a, b, c) is incident to the line [A, B, C]

if and only if Aa + Bb + Cc = 0. The points (0, 0, 1), (0, 1, 0), (1, 0, 0) will be called base
points, the lines [0, 0, 1], [0, 1, 0], [1, 0, 0] base lines, finally, the union of points of the base

lines will be called base triangle. Let K denote the semioval and r the intersection size

besides 0 and 1. Suppose that K is neither an oval (hence r ≥ 3), nor a unital (hence r − 1

is not zero modulo p by 1.1 (ii)).

Choose homogeneous coordinates in such a way that (1, 0, 0), (0, 1, 0) and (0, 0, 1) are

points of K and let the equation of tangents at these points be

X2 = C X1, X0 = B X2, X1 = AX0.

Note that ABC �= 1, since otherwise these lines would be concurrent, contradicting 1.1 (iv).

A simple calculation shows that the intersection points of the tangents above are P(1, A, AC),

Q(BC, 1, C), R(B, AB, 1).

Let the intersection of K and the base triangle (without vertices) be

{(1, εi , 0) : i = 1, . . . , r − 2},
{(δi , 0, 1) : i = 1, . . . , r − 2},
{(0, 1, γi ) : i = 1, . . . , r − 2}.

Lemma 2.1.

(ε1 . . . εr−2 · δ1 . . . δr−2 · γ1 . . . γr−2) · (ABC)r−1 = (−1)r−1.

Proof: Let P1, . . . , P|K |−3r+3 denote the points of K not on any base line. Let Pi be the

intersection of lines

X1 = ai X0, X0 = bi X2, X2 = ci X1.

Note that this implies ai bi ci = 1. Multiplicities of field elements in the multi-set

{a1, . . . , a|K |−3r+3} correspond to intersection sizes of non-base lines through (0, 0, 1) and
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the part of K out of the base triangle. Hence A has multiplicity zero, the εi s have multiplic-

ity r − 2, all other non-zero field elements have multiplicity r − 1. Since the product of all

non-zero field elements is (−1), we get

a1 . . . a|K |−3r+3 Ar−1ε1 . . . εr−2 = (−1)r−1.

The same argument for lines through the other two base points gives

b1 . . . b|K |−3r+3 Br−1 · δ1 . . . δr−2 = (−1)r−1,

c1 . . . c|K |−3r+3Cr−1 · γ1 . . . γr−2 = (−1)r−1.

Multipying the three equations and using ai bi ci = 1 for every i , we get the promised

equation. �

Lemma 2.2. (ABC)r = 1.

Proof: We wish to use the previous lemma in the dual plane. By 1.1 (iii) and (iv), in the

dual setting the original tangents become points of the semioval and vice versa, r -secants

become points out of the oval with r tangents and lines not meeting K become points on

zero tangents.

The three tangents will play the role of the base points, instead of tangents at base points,

we have to consider points of tangencies, finally, instead of points on the base triangle, we

will need the tangent lines through these points.

We apply a transformation which takes the three tangents X1 = AX0, X0 = B X2, X2 =
C X1 to the lines X2 = 0, X1 = 0, X0 = 0, respectively. A little calculation shows that the

following matrix is appropriate:

⎛⎝ 0 C −1

−1 0 B
A −1 0

⎞⎠ .

It is easy to see that after the transformation, the tangency points of the base lines will

be the images of the base points, that is (0, −1, A), (C, 0, −1) and (−1, B, 0), which means

that in the new setting A′ = 1
B , B ′ = 1

C and C ′ = 1
A .

To find the image of the tangent at the point (1, εi , 0), first note that (by 1.1 (iii)) the

original tangent was the line joining the point (1, εi , 0) to the point Q(BC, 1, C), hence

we are looking for the line joining the images of these two points, which turns out to be

[1, Cεi , 0]. Similarly, we get that the tangent through the image of (δi , 0, 1) is [Aδi , 0, 1] and

of (0, 1, γi ) is [0, 1, Bγi ].

Now we can use the previous lemma to get

((Cε1) · · · (Cεr−2) · (Aδ1) · · · (Aδr−2) · (Bγ1) · · · (Bγr−2)) ·
(

1

BC A

)r−1

= (−1)r−1.

This equation and the one from the previous lemma gives (ABC)r = 1. �
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Lemma 2.3.

{εi : i = 1, . . . , r − 2} = 1

BC

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
; (1)

{δi : i = 1, . . . , r − 2} = 1

AC

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
; (2)

{γi : i = 1, . . . , r − 2} = 1

AB

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
. (3)

Proof: We use a transformation which fixes (0, 1, 0) and (0, 0, 1), but takes (1, εi , 0) to

(1, 0, 0) (here i is any fixed index). After the transformation we calculate the new A, B and

C and use the previous lemma.

The following matrix is easily seen to be appropriate:

⎛⎝ 1 0 0

−εi 1 0

0 0 1

⎞⎠ .

To calculate equations of the new tangents at base points (that is, to find out the new

A, B and C), first note that the tangent at (1, 0, 0) will be the line joining it to the image of

Q(BC, 1, C) (which is (BC, 1 − BCεi , C)), this turns out to be [0, −C, 1 − BCεi ], hence

C ′ = C
1−BCεi

.

Similarly, the tangent at (0, 1, 0) is the line joining it to the image of Q, this gives B ′ = B.

Finally, for A′ we have to calculate the image of R(B, AB, 1) (which is (B, B(A − εi ), 1))

and consider the line joining it to (0, 0, 1), this is [A − εi , −1, 0], hence A′ = A − εi .

Now from the previous lemma, we get

(
(A − εi )BC

1 − BCεi

)r

= 1.

Write η = (A−εi )BC
1−BCεi

for the corresponding r -th root of unity. A little calculation shows that

this implies

εi = 1

BC

ABC − η

1 − η
.

Since there are r − 2 different choices for εi , we get (1). The proof of (2) and (3) are

similar. �
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Proof of Theorem 1.2. We study further the transformation investigated in the previous

lemma. It is easy to see that the points (0, 1, γ j ) are all fixed, so using (3), this implies

1

AB

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
= 1

A′ B ′

{
A′ B ′C ′ − η

1 − η
: ηr = 1, η �= 1, η �= A′ B ′C ′

}
.

On the other hand, we had A′ = A − εi , B ′ = B and C ′ = C
1−BCεi

, hence

1

AB

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
= 1

(A − εi )B

{
u − η

1 − η
: ηr = 1, η �= 1, η �= u

}
,

where u = A′ B ′C ′ = (A−εi )BC
1−BCεi

. We conclude that

A − εi

A

{
ABC − η

1 − η
: ηr = 1, η �= 1, η �= ABC

}
=

{
u − η

1 − η
: ηr = 1, η �= 1, η �= u

}
.

Note that by Lemma 2.2, ur = 1. Using the lemma after this proof (with x = A−εi
A , y =

ABC , z = u), we find the following equation:

u(1 + ABC)2 = ABC(1 + u)2.

Here ABC is fixed, while u can take any r -th root of unity except for 1 (to see this, note

that different choices of εi give different values for u by ABC �= 1, and u = ABC is also

appropriate, this corresponds to the case when we put 0 in the place of εi ).

Hence we have the following divisibility condition of polynomials:

Xr − 1|(X − 1)(ABC(X + 1)2 − (ABC + 1)2 X ).

This immediately implies r ≤ 3, so we only have to exclude r = 3.

For r = 3 there is a unique u /∈ {ABC, 1}, we have u2 = ABC , u(ABC) = 1, and also

u2 + u + 1 = (ABC)2 + (ABC) + 1 = 0. In the equation ε1 = 1
BC

ABC−η

1−η
, η is necessarily

u and we have ε1 = 1
BC

u2−u
1−u = −u

BC .

Note that for r = 3 we can also use the other equation from the next lemma (y = −1

is not possible, because it would imply (−1)3 = 1, that is −1 = 1, so ABC = 1, a contra-

diction). Equation x = z+1
y+1

gives A−ε1

A = u+1
ABC+1

. Using u + 1 = −u2 and ABC + 1 = −u,

this implies A−ε1

A = u. On the other hand, A−ε1

A = A+u/BC
A = ABC+u

ABC = − 1
u2 = −u. Hence

u = −u, so the characteristic is 2, but this contradicts Result 1.1 (ii).
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Lemma 2.4. Suppose x, y and z are field elements with yr = zr = 1; y �= 1, z �= 1; r | q − 1

and satisfying

x

{
y − η

1 − η
: ηr = 1, η �= 1, η �= y

}
=

{
z − η

1 − η
: ηr = 1, η �= 1, η �= z

}
.

If r − 1 is not divisible by the characteristic of the field, then

y(z + 1)2 = z(y + 1)2.

If y = z = −1 does not hold, then we also have

x = z + 1

y + 1
.

Proof: First note that we can ommit the conditions η �= y and η �= z, since this adds zero

to both sets. The set x{ y−η

1−η
: ηr = 1, η �= 1} is exactly the set of zeros of the polynomial

f (T ) = (T − xy)r − (T − x)r . This can be seen by writing (T − xy) = (T − x)η for an

r -th root of unity η, and expressing T in terms of η.

Similarly, { z−η

1−η
: ηr = 1, η �= 1} is the set of zeros of the polynomial g(T ) = (T − z)r −

(T − 1)r . Since these are non-zero polynomials of degree at most r − 1, the condition we

have is equivalent to the equation f (T ) ≡ cg(T ) for a constant c. Calculating the coefficients

of T r−1, T r−2, T 2 and T on both sides we find the following four equations for x, y, z and c:

−r (xy − x) = −rc(z − 1);(
r

2

)
x2(y2 − 1) =

(
r

2

)
c(z2 − 1);

(
r

r − 2

)
(−1)r−2(xr−2 yr−2 − xr−2) =

(
r

r − 2

)
(−1)r−2c(zr−2 − 1);

(
r

r − 1

)
(−1)r−1(xr−1 yr−1 − xr−1) =

(
r

r − 1

)
(−1)r−1c(zr−1 − 1).

The conditions of the lemma assure that r , ( r
2
), ( r

r−2
) and ( r

r−1
) are non-zero, so after dividing

with them and for the third and fourth equations also using yr = zr = 1, we find

x(y − 1) = c(z − 1);

x2(y2 − 1) = c(z2 − 1);

xr−2

(
1

y2
− 1

)
= c

(
1

z2
− 1

)
;

xr−1

(
1

y
− 1

)
= c

(
1

z
− 1

)
.

Springer



J Algebr Comb (2006) 23: 71–77 77

Since y �= 1, z �= 1, we can have zero on both sides of any of these equations if y = z =
−1. In this case y(z + 1)2 = z(y + 1)2 is obviously true.

If y = z = −1 does not hold, then dividing the first two equations with each other, we

have

x = 1 + z

1 + y
,

while dividing the third and fourth and after a little manipulation we find

x = (1 + y)z

(1 + z)y
.

Comparing the two right hand sides, we get y(z + 1)2 = z(y + 1)2. �
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