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Abstract
This investigation reported the performance of PEMFC cathode electrocatalysts produced from platinum, zirconium, and 
nickel alloys with varying atomic ratios. XRD, SEM, and EDX analyses were performed to investigate the structural and 
morphological properties of the synthesized catalysts. The studies evaluated electrochemical properties, specifically the ORR 
and the ECSA activity. Based on XRD data, the average crystallite diameters of Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts were 
calculated to be 4.95 nm, 4.33 nm, and 3.35 nm, respectively. Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts were used as cathode 
electrocatalysts in a single cell, and polarization curves were generated for each catalyst at temperatures of 40 °C, 50 °C, 
60 °C, and 70 °C, respectively. It was determined that the  PtZr2Ni/C and  PtZr2/C catalysts had better performance than the 
Pt/C catalyst. Ozone, a powerful oxidizing agent, is another strategy for enhancing the cathodic process. The activity of 
 PtZr2Ni/C catalyst used as cathode electrocatalyst increased with increasing cell temperature in both  H2/O2 and  H2/O3 usage, 
and the power density values at 70 °C cell temperature were calculated as 165.87  mWcm−2 and 242.08  mWcm−2, respectively.
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1 Introduction

Proton exchange membrane fuel cells (PEMFCs) are a promis-
ing technology, operating at low temperatures with high power 
efficiency and producing environmentally friendly, effective 
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energy and sustainable devices in the energy industry [1–3]. 
The membrane electrode assembly (MEA) is the heart of a 
PEM fuel cell since the oxidation and reduction of half-cell 
processes and proton conduction occurs [4–7]. The preparation 
of anode and cathode electrodes for MEAs involves a vari-
ety of techniques, including impregnation reduction, spread 
and spraying, catalytic powder deposition, catalytic decaling, 
painting, electro-deposition, and sputter deposition [8]. Among 
the existing methods, the impregnation reduction technique is 
prevalent. The impregnation technique is the most widely used 
for the deposition of platinum nanoparticles on the surface 
of carbonaceous supporting materials. impregnation method 
has been widely employed to prepare platinum-based catalyst 
materials as a simple and cost-effective process [9]. The usage 
of platinum (Pt) metal and the slow kinetics of the oxygen 
reduction reaction (ORR) on the cathode side contribute to the 
prohibitively high cost of PEMFCs, which is the primary fac-
tor limiting their widespread use [10–14]. Thus, various Pt–M 
alloys, such as Pt–Cr, Pt–Co, Pt–Fe, Pt–Ni, Pt–Mo, Pt–Cu, and 
Pt–Pd [14–27], have been extensively studied to develop the 
ORR kinetics and stability in the electrodes. The addition of 
an appropriate second metal to Pt to produce a Pt alloy (PtM) 
catalyst affects the geometric and electronic properties of the 
Pt metal, which affects the ORR activity and stability of the 
Pt/C catalyst [28–30].  ZrO2 is desirable for catalyst support 
because it is an amphoteric oxide with acid and basic sites. 
Because it is an amphoteric oxide, which means it has both 
basic and acidic sites, it may be easier for carbon oxides and 
steam to stick to its surface, which lowers its coke resistance 
[31–34]. One way to improve the cathodic reaction's perfor-
mance is to use a powerful oxidizing agent. It is considered 
that ozone  (O3) is one of the most powerful oxidizing agents 
that are currently accessible [35–39]. Researchers have also 
treated fuel cell parts like the carbon support and electrolyte 
membrane with ozone [35, 40]. This study compares the ORR 
activity and stability of the zirconium and nickel metal-doped 
Pt alloy catalyst, which has never been done before as far as 
we know. This study focuses on using zirconium metal, which 
reduces the amount of Pt, is very resistant to temperature and 
corrosion, and shows superconducting properties at low tem-
peratures. In this study, the ORR activity and stability of the 
synthesized catalysts were compared for the first time by dop-
ing both Ni and Zr metals separately into the Pt/C catalyst 
using oxygen and ozone as the cathode gases to reduce the 
Pt loading and increase the catalytic activity of the catalyst.

2  Experimental

2.1  Chemicals

Sodium borohydride (NaBH4, 99%), ethanol (96%), isopro-
pyl alcohol (99.9%), formic acid (85%), and Nafion solution 

(5% dispersion) were purchased from Sigma Aldrich; 
Platinum(II) chloride  (PtCl2), Nickel(II) nitrate hexahydrate, 
and zirconium(IV) chloride  (ZrCl4) are purchased from Alfa 
Aesar. Sulfuric acid is purchased from Merck.

2.2  Synthesis of nanocatalyst

Pt:Ni:Zr (1:2:1 molar ratio) and PtZrx (x = 1, 2, and 3) cata-
lysts based on carbon were synthesized using the chemical 
reduction technique. The reducing agents employed in this 
study were sodium borohydride and formic acid, while the 
metal precursors utilized were platinum chloride, zirconium 
chloride, and nickel nitrate. A metal loading to support 
20 wt% was made to generate all catalysts. First, an appro-
priate quantity of  PtCl2 and a metal precursor like  ZrCl4 were 
dissolved in water to create the PtZr/C,  PtZr2/C, and  PtZr3/C 
catalysts. The details of the experimental study are included 
in our previous work in which we synthesized Pt/C [41].

2.3  PEM fuel cell testing

The active area of the MEAs used in these PEMFC single-
cell tests was 1.0 × 1.0  cm2. The anode layer used the Pt/C 
catalyst, whereas the cathode layer used the Pt/C, PtZrx/C, 
and  PtZr2Ni/C catalysts, respectively. The details of the 
experimental work are included in our previous work [41]. 
Ozone is a gas, but it is highly unstable, thus in order to 
deliver and measure the quantity of ozone that is present at 
the fuel cell input, an ozone generator and a detector were 
used [42–44]. In the  H2/O3 PEMFCs experiment, ozone gas 
that was created by an ozone generator is shown in Fig. 1 as 
a schematic representation of how it was used [35].

2.4  Characterization of the catalysts

To investigate the morphological and structural characteris-
tics of Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts were character-
ized by using scanning electron microscopy (SEM), Energy 
dispersive X-ray spectroscopy (EDX), and X-ray diffraction 
(XRD). The morphological and structural properties of 
catalysts were determined by XRD (Rigaku X-ray diffrac-
tometer with Cu Kα radiation (λ = 154.059 pm), Japan) and 
SEM (ZEISS-EVO 50 instrument, Carl Zeiss NTS GmbH, 
Germany) measurements, respectively. The basic element 
components of catalysts were determined by EDX (Bruker, 
Quantax ED-XS, Germany) analysis.

2.5  Electrochemical measurements of catalysts

Various electrochemical measurement techniques, such 
as electrochemical impedance spectroscopy (EIS), cyclic 
voltammetry (CV), chronoamperometry, and chronopo-
tentiometry are employed for the purpose of conducting 
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electrochemical analyses. The 0.5 M  H2SO4 solution is 
used for the measurements. Electrochemical testing is done 
using the CHI 660E apparatus. The working electrode was 
a glassy carbon electrode with a diameter of 3 mm, the ref-
erence electrode was Ag/AgCl (3 M, KCl), and the counter 
electrode was a platinum (Pt) plate. The cyclic voltammetry 
(CV) measurements were conducted using a scan rate of 
50  mVs−1. The chronoamperometry measurements were 
conducted at a potential of 0.4 V. The chronopotentiometry 
measurements in this experiment are conducted using a cur-
rent of 2 µA. Impedance measurements for alternating cur-
rent are acquired by establishing a voltage level of 0.5 V 
and subjecting the signal to a consistent amplitude of 7 mV 
across a frequency span ranging from  105 to  102 Hz. Before 
CV measurements, the solution was saturated with  N2 gas. 
The solution was saturated with  O2 gas before chronoamper-
ometry, chronopotentiometry and impedance measurements. 
For 30 min, 5 mg of catalyst was sonicated in a solution 
containing 40 µl of nafion (5 wt%) and 960 µl of ethanol.

3  Results and discussion

3.1  Characterization

XRD diffraction patterns of synthesized Pt/C,  PtZr2/C, and 
 PtZr2Ni/C catalysts are indicated in Fig. 2. The diffraction 
peak observed at an angle of 2θ = 24.71º corresponds to the 
crystallographic plane denoted as (002) in the hexagonal 
lattice of Vulcan XC-72 carbon.

The diffraction peaks of (111), (200), (220), and (311) 
planes are seen, which correspond to the face-centered cubic 
(FCC) crystalline structure of Pt at 2θ (0) = 39.74, 46.33, 
67.25, and 81.60, in that order [45]. The  PtZr2/C catalyst, 

on the other hand, exhibits planes at 2θ = 39.91, 46.07, 
67.41, and 81.56 for planes (111), (200), (220), and (311), 
respectively. It also exhibits 2θ = 39.625, 45.98, 67.31, and 
81.64 planes for (111), (200), (220), and (311) planes in 
the  PtZr2Ni/C catalyst, respectively [45]. The  PtZr2/C cata-
lyst, on the other hand, exhibits planes at 2θ = 39.91, 46.07, 
67.41, and 81.56 for planes (111), (200), (220), and (311), 
respectively. It also exhibits 2θ = 39.625, 45.98, 67.31, and 
81.64 planes for (111), (200), (220), and (311) planes in the 
 PtZr2Ni/C catalyst, respectively [46, 47].

The PtZr2/C catalyst had a slight positive shift at the 2θ posi-
tion at the characteristic peaks. The PtZr2Ni/C catalyst, on the 
other hand, had a slight negative shift and a slight decrease in 
the intensity of the peaks compared to the Pt/C catalyst. This 

Fig. 1  The experimental the design for  H2/O3 PEMFCs

Fig. 2  XRD analyzes of electrocatalysts



 Journal of Applied Electrochemistry

implies a contraction of the lattice and the formation of an alloy 
[48, 49]. In the XRD results, there are no peaks corresponding 
to Ni metal and its oxides. Therefore, the structure of the alloy 
catalyst PtNi is also fcc [50]. The absence of obvious peaks of 
Zr or its crystalline oxide could be due to either the Zr atoms 
combining with the Pt atoms to form an alloy or their presence 
as amorphous Zr atoms [51]. The Scherer equation [47] was 
employed to determine the average size of crystallites in Pt/C, 
 PtZr2/C, and  PtZr2Ni/C catalysts, utilizing the crystal plane of 
Pt (111) [52].

The average size of a catalyst’s crystallite is calculated 
to be 4.95 nm for Pt/C, 4.33 nm for  PtZr2/C, and 3.35 nm 
for  PtZr2Ni/C. The presence of Zr-doped particles reduced 
the crystallite size of the Pt (111) peak. Figure 3 reveals the 
changes in the Pt/C,  PtZr2/C, and PtZr2Ni/C surface morphol-
ogies. As can be observed, the Pt alloy is distributed randomly 
throughout both surface regions.

Figure 3a shows the clumping of Pt/C on the surface. In 
addition, the inclusion of Zr metal appears to result in the for-
mation of minute voids and distributed agglomerates on the 
catalyst's surface (Fig. 3b). Surface fractures were less notice-
able, and agglomerations resembling cotton formed when Ni 
metal was added (Fig. 3c). The presence of cracks could poten-
tially lead to an increased effective surface area. Catalysts typi-
cally exhibit a microstructure characterized by carbon particles 
with a voluminous and fluffy composition, similar to cotton, 
embedded with Pt alloy catalyst nanoparticles. Elemental map-
ping and EDX analysis confirm the equidistant distribution of 
Pt, Zr, and Ni on the catalyst surface (Fig. 4).

Typical Zr signals at 2.2 keV, Ni signals at 0.9 keV, and 
Pt signals at 2.4 keV were also seen in the EDX spectra of 
platinum, nickel, and zirconium metals in Fig. 4. EDX analy-
ses also showed that these bimetallic samples were free from 
impurities such as chlorine. The EDX spectra in Fig. 4 show 
that Pt is present in Pt/C and coexists with Ni in  PtZr2Ni/C 
[53]. EDX spectra were used to make estimates of the weight 
percent of Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts; the results 
are described in Table 1

The Zr metal is not visible in the EDX spectrum. This may 
be a result of the overlap between the energy peaks of Pt and 
Zr. The presence of Zr metal on the surface likely contributed 
to an increase in the catalyst activity by making the surface 
more porous.

3.2  Electrochemical properties of nanocatalysts

3.2.1  Cyclic voltammetry measurement

Figure 5 displays the cyclic voltammograms of nanocata-
lysts composed of Pt/C,  PtZr2/C, and  PtZr2Ni/C. Peaks in 

(1)d = 0, 9�∕(�cos�)

the −0.25 V to 0.1 V CV potential range were attributed to 
hydrogen adsorption and desorption on the catalyst surface. 
The electrochemically active surface area of Pt is correlated 
with the magnitude of these peaks.

Fig. 3  Presents scanning electron microscopy (SEM) images of three 
catalysts: a Pt/C, b  PtZr2/C, and c  PtZr2Ni/C
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The size of the electrochemically active surface area 
is also critical for increasing oxygen reduction activity 
[54]. Determining the electrochemically active surface 
area involves the division of the charge quantities obtained 
for these peaks by the conversion factor specific to plati-
num, which is 210 µCcm−2 [55–57]. The catalysts Pt/C, 
 PtZr2/C, and  PtZr2Ni/C have electrochemically active 
surface areas of 78, 195, and 214  m2gPt

−1, respectively. 
ECSA increased approximately two and a half times due 
to the addition of Zr to the Pt/C structure. It was observed 
that the ECSA value of the  PtZr2Ni/C catalyst formed by 
adding nickel to the  PtZr2/C structure increased slightly. 
These values show that PtZr/C and PtZr2Ni/C catalysts 
have very high electrochemically active surface areas, but 
they also indicate that the PtZr/C and PtZr2Ni/C catalysts 
have a higher active surface area than the Pt/C catalyst. 
The large electrochemically active surface area values of 
PtZr/C and  PtZr2Ni/C were thought to be related to the 
synergistic effect and the particle sizes. Generally, there 
is a negative relationship between the size of particles and 
the electrochemically active surface area (ECSA) value. 
In other words, catalysts with a large particle size have a 

low ECSA value, while catalysts with a small particle size 
have a high ECSA value.

3.2.2  Chronoamperometry and chronopotentiometry 
measurements

The investigation of stability of catalysts and the electro-
chemical activity in fuel cells may benefit greatly from 

Fig. 4  EDX mapping and analysis for  PtZr2Ni/C catalyst

Table 1  Atomic percent and 
weight percent of catalysts

Pt/C PtZr2/C PtZr2Ni/C

Pt C Pt Zr C Pt Zr Ni C

Wt% 18.2 81.8 11.4 6.6 82.0 10.8 6.0 1.2 82.0

Fig. 5  Cyclic voltammograms of Pt/C,  PtZr2/C, and  PtZr2Ni/C cata-
lysts at a scan rate of 50  mVs−1
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chronoamperometric experiments [58, 59]. Chronoamper-
ometry tests on Pt/C  PtZr2/C and  PtZr2Ni/C catalysts are 
shown in Fig. 6. It revealed that the change in current values 
remained remarkably stable after a sharp initial decline. The 
PtZr2Ni/C catalyst exhibited superior activity compared to 
the other catalysts. An increase in electroactivity is indicated 
by a rise in current density. The current exhibited a rapid 
decline, despite the fact that the continuous activity reached 
a stable state at a relatively high current density. Chronopo-
tentiometry is considered a valuable qualitative method for 
screening catalysts due to its ability to simulate the operation 
of a fuel cell under a constant current [60]. The potential 
drop for Pt/C is more significant than that for PtZr/C and 
 PtZr2Ni/C, as Fig. 6 illustrates based on the starting potential 
values. Based on these findings,  PtZr2Ni/C is a more potent 
catalyst than Pt/C and  PtZr2/C.

3.2.3  Electrochemical impedance spectroscopy 
measurements

For the catalysts Pt/C,  PtZr2/C, and  PtZr2Ni/C, the elec-
trochemical impedance measurements are carried out in 
 O2 saturated 0.5 M  H2SO4 solution. Figure 7 shows the 
Nyquist curves of catalysts. Electrochemical impedance 
spectroscopy studies of the Nyquist curves in the high-fre-
quency range show a partial semicircle. The charge transfer 
resistance is represented by the diameter of this incomplete 
semicircle. The charge transfer resistance increases with 
increasing diameter. Because the charge transfer resistance 
and the pace of the electrochemical reaction are inversely 
correlated, a low charge transfer resistance indicates strong 

electrochemical activity [61]. As can be seen in Fig. 7, 
the charge transfer resistance of the electrodes with the 
 PtZr2/C and  PtZr2Ni/C catalysts is lower than that of the 
electrodes with the Pt/C catalyst because the diameter of 
the partial semicircles in the high-frequency zone is smaller 
for the  PtZr2/C and  PtZr2Ni/C catalysts. The value where 
the Nyquist curves intersect with the X-axis in the high-
frequency region shows the equivalent series resistance. 
Equivalent series resistance includes some resistances such 
as electrolyte resistance and active material resistance. A 
lower equivalent series resistance means lower electrical 
resistance. Equivalent series resistance for the  PtZr2Ni/C is 
lower than the equivalent series resistance of the  PtZr2/C 
and Pt/C. These point to greater electrochemical activity in 
the  PtZr2Ni/C catalyst compared to the Pt/C and  PtZr2/C 

Fig. 6  Chronoamperometry (0.4 V) and chronopotentiometry (2 µA) curves of the catalysts in 0.5 M  H2SO4 solution saturated with  O2

Fig. 7  Nyquist curves of Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts meas-
ured by electrochemical impedance spectroscopy in an  O2 saturated 
0.5 M  H2SO4 solution
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catalysts, supporting earlier findings. Chronoamperometry 
and cyclic voltammetry findings support this theory as well. 
The observed phenomenon can potentially be elucidated by 
considering the hypothesis that the electrochemical kinetics 
of the oxygen reduction reaction (ORR) are enhanced as a 
result of the increasing current density within the region of 
low polarization [62].

3.3  Fuel cells performance

The unit cell test served as the final evaluation criterion for 
the optimal synthesized electrocatalyst. We used electrocata-
lysts (PtZr/C, PtZr2/C, and PtZr3/C) designed for ORR at 
the cathode for PEM fuel cell testing for the MEA. The Pt/C 
catalyst served as the anode electrocatalyst for all MEAs. 
Before sandwich pressing the MEA, the anode and cathode 
catalysts were evenly brushed onto the GDLs on each side 
of the Nafion membrane. To maintain the moisture content 
of the Nafion membrane, the  H2/O2 gases were subjected 
to the process of humidification. The electrochemical reac-
tions occur at the interface between the electrolyte and the 
membrane, specifically on the surface of the catalyst. Hydro-
gen, fed from one side of the membrane, breaks down into 
its main components, which are protons and electrons. One 
electron and one proton make up every hydrogen atom in 
the universe [63, 64]. Although protons pass through the 
membrane, electrons pass via external circuits, electrically 
conducting electrodes, and current collectors, where they 
perform useful functions before returning to the other side. 
The protons that have traversed the membrane and the oxy-
gen molecules provided on the same side of the membrane 
converge at the catalyst sites located at the interface between 
the membrane and the opposite electrode [65]. The elec-
trochemical reaction produces water, which the cell then 
expels along with an increased oxygen flow. The concurrent 
processes result in a continuous flow of electrons along an 
external circuit, commonly referred to as a direct electrical 
current. The activation of polarization occurred when the 
single cell was situated between the open circuit voltage and 
the higher current density [66, 67].

Figure 8 shows the polarization curves of the cathode 
electrocatalysts at temperatures ranging from 40 to 70 °C. 
The efficiency of the single-cell fuel cell diminishes with 
increasing cell temperature when PtZr/C (1:1), PtZr/C (1:2), 
and Pt/C catalysts are used as cathode catalysts. The fuel cell 
efficiency increases as the temperature of the cell increases 
when PtZr/C (1:3) and  PtZr2Ni/C catalysts are used as the 
cathode electrocatalysts. The catalysts' active surface area 
increases as the temperature rises because more activated 
molecules are present on the surface. Although the Pt:Zr 
ratios in the PtZr/C electrocatalyst are different, this experi-
ment shows that they significantly affect the performance 
of the cell not only in the activation region at high voltage 

but also during the ohmic field at medium and low voltage. 
Figure 8e displays the polarization curve of the synthesized 
PtZr2Ni/C electrocatalyst upon the addition of Ni to the 
 PtZr2/C catalyst. The  PtZr2Ni/C electrocatalyst exhibited 
superior activity compared to the  PtZr2/C electrocatalyst, 
even at low temperatures. The activity of the  PtZr2Ni/C 
electrocatalyst's surface area increases with higher cell tem-
peratures. Additionally, when the number of surface cracks 
decreases, the surface becomes more active. SEM images 
also confirm this. With increasing cell operating tempera-
tures, the PtZr2Ni/C electrocatalyst demonstrated better 
activity than the other catalysts (Fig. 8f). Electrochemi-
cal measurements confirmed that the  PtZr2Ni/C electro-
catalyst had better performance and surface area than other 
electrocatalysts.

In the subsequent phase of the study, an ozone-gener-
ating generator fed ozone gas to the cathode part in place 
of oxygen gas. As shown in Fig. 9, adding  O3 gas to the 
cathode side decreased resistance as the cell temperature 
in the ohmic loss region decreased compared to using  O2 
gas [36, 68].

A pair of coaxial cylindrical electrodes, positioned fac-
ing each other, form the generator. A high voltage poten-
tial across the electrodes creates a potent electric field that 
dynamically interacts with the oxygen flow. The aforemen-
tioned phenomenon leads to the generation of oxygen radi-
cals. The hydrogen/ozone PEMFCs recorded an observed 
open circuit voltage (OCV) of 1.65 V, which is significantly 
higher than the OCV of the hydrogen/oxygen PEMFCs [35, 
69, 70]. At a point that is referred to as “the attained current 
density” [36, 41, 71], there is a sudden voltage drop, and 
the cell starts to act like that of an  H2/O2 PEMFC when the 
current density is 10  mAcm−2. The increase in power density 
causes an elevation in the  H2/O3 PEMFC polarization curve, 
surpassing the  H2/O2 PEMFC polarization curve. As the fuel 
cell temperature rose, the performance of hydrogen–oxygen 
 (H2/O2) and hydrogen-ozone  (H2/O3) PEMFCs went down 
as the fuel cell temperature went up. This phenomenon 
was particularly evident when we used PtZr/C and  PtZr2/C 
catalysts as the cathode electrocatalysts. However, it was 
observed that the performance of the  PtZr3/C and  PtZr2Ni/C 
catalysts demonstrated an improvement with the elevation of 
temperature. The polarization curves of Pt/C,  PtZr2/C, and 
 PtZr2Ni/C electrocatalysts used as cathode catalysts revealed 
that the activity of  PtZr2Ni/C electrocatalyst outperformed 
other electrocatalysts at the 70 °C cell temperature of  H2/O3 
PEM fuel cells (Fig. 9f). Table 2 displays the voltage–cur-
rent density and power density of the electrocatalysts used 
in PEMFCs operating at various temperatures.

At 70 °C cell operating temperature, the performance of 
PEMFCs using  H2/O2 was 165.87  mWcm−2 with the maxi-
mum power density obtained by the  PtZr2Ni/C cathode cata-
lyst, while maximum power densities of 64.68  mWcm−2, 
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83.46  mWcm−2, 83.44  mWcm−2, and 107.52  mWcm−2 were 
achieved for the Pt/C, PtZr/C,  PtZr2/C, and  PtZr3/C cath-
ode catalysts, respectively. At the same temperature, using 

 H2/O3, the maximum power density obtained by  PtZr2Ni/C 
cathode catalyst was 242.08   mWcm−2, while the maxi-
mum power densities of Pt/C, PtZr/C,  PtZr2/C, and  PtZr3/C 

Fig. 8  Polarization curves for a Pt/C (0.15  mg(Pt)cm−2), b PtZr/C (0.13  mg(Pt)cm−2), c  PtZr2/C(0.10  mg(Pt)cm−2), d  PtZr3/C(0.075  mg(Pt)
cm−2), e  PtZr2Ni/C(0.035 mg(Pt)cm−2), and f 70 °C cell temperature
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cathode catalysts were 102.40  mWcm−2, 57.72  mWcm−2, 
148.5   mWcm−2 and 116.64   mWcm−2, respectively. For 
the  PtZr2Ni/C catalyst in the use of  H2/O2 and  H2/O3, the 
peak power has been reported to be 165.87  mWcm−2 and 

242.08   mWcm−2, which is much higher than the power 
recorded in cells with Pt and various Pt:Zr atomic composi-
tions, which is noteworthy, respectively.

Fig. 9  Polarization curves of a Pt/C, b PtZr/C, c  PtZr2/C, d  PtZr3/C, e  PtZr2Ni/C, and f comparison of Pt/C,  PtZr2/C, and  PtZr2Ni/C catalysts at 
70 °C cell temperature
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Single-cell polarization data show that Pt-painted 
spinal has improved fuel cell performance by encour-
aging the ORR process. The ORR catalytic activ-
ity of the synthesized electrocatalysts was found to be 
 PtZr2Ni/C >  PtZr2/C > PtZr/C > Pt/C >  PtZr3/C when using  H2/
O2, but it was  PtZr2Ni/C >  PtZr2/C > Pt/C >  PtZr3/C > PtZr/C 
when using  H2/O3.

One could be said that the utilization of ozone instead of 
oxygen exhibits an enhancement in the efficacy of  PtZr3/C 
catalysts, which are characterized by suboptimal reactivity. 
Therefore, it can be stated that the following factors con-
tribute to the performance decline with rising temperatures: 
(1) The act of monitoring the voltage of the cell and ascer-
taining resistances associated with ohmic, charge transfer, 
and diffusion phenomena during ozone exposure provides 
evidence that the injection of ozone substantially acceler-
ates the degradation rate of the MEA [42, 43]. Following 
the introduction of ozone into the system, it was observed 
that the measurements of the catalyst's surface area change 
would result in a decrease in the catalyst's activity [42, 44]. 
(2) The presence of ozone has been observed to hinder the 

rates at which protons and water are transferred in the pro-
cess of oxygen reduction. However, it has also been found 
to accelerate the dissolution of platinum (Pt) particles in the 
catalyst [42, 45, 72, 73] and Additionally, the inclusion of 
cationic species such as Zr metal in the membrane leads to 
an increase in resistance [31, 54, 56, 57]. As a result, when 
the Pt:Ni atomic ratio is low (high Zr content is present), a 
low degree of catalyst aggregation with a high level of dis-
persion is seen. A tiny number of pores are formed on the 
electrode layer as a consequence of this.

Consequently, less fuel is transferred from the electrode 
layer to the cathode, resulting in a higher OCV. The val-
ues of the potential and the current density may be utilized 
to show the oxygen reduction reaction activity of the dual 
electrocatalyst while taking into account the impact of the 
Pt:Zr atomic ratios on the performance of the cell in the 
activation-controlled area [74]. The PtZr/C electrocatalyst's 
ORR activity increases as Zr concentration in the catalyst 
increases. This suggests that the Zr content of the PtZr/C 
electrocatalyst greatly affected ORR activity. Likewise, it 

Table 2  Performance of catalysts in  H2/O2 and  H2/O3

Tem.(ºC) H2/O2 H2/O3

OCV (V) Operating 
voltage (V)

Current density 
 (mWcm−2)

Power density 
 (mWcm−2)

OCV (V) Operating 
voltage (V)

Current density 
 (mAcm−2)

Power density 
 (mWcm−2)

Pt/C
 40 0.95 0.38 248 94.24 1.60 0.51 281 143.31
 50 0.94 0.36 247 88.92 1.53 0.48 278 133.44
 60 0.90 0.34 238 80.92 1.49 0.44 269 118.36
 70 0.86 0.37 231 64.68 1.45 0.40 256 102.40

PtZr/C
 40 0.96 0.45 256 115.2 1.56 0.46 168 77.28
 50 0.96 0.42 230 96.60 1.55 0.44 162 71.28
 60 0.96 0.40 226 90.40 1.55 0.42 158 66.36
 70 0.95 0.39 214 83.46 1.55 0.39 148 57.72

PtZr2/C
 40 0.97 0.53 264 139.92 1.61 0.56 282 157.92
 50 0.97 0.56 282 157.92 1.65 0.62 315 195.30
 60 0.95 0.50 254 127.00 1.61 0.58 286 165.98
 70 0.94 0.56 149 83.44 1.55 0.54 275 148.50

PtZr3/C
 40 0.9 0.38 162 61.56 1.58 0.52 182 94.64
 50 0.9 0.45 197 88.65 1.62 0.52 203 105.56
 60 0.91 0.46 210 96.60 1.64 0.57 230 131.10
 70 0.93 0.48 224 107.52 1.64 0.54 216 116.64

PtZr2Ni/C
 40 0.93 0.41 253 103.73 1.61 0.49 260 127.40
 50 0.93 0.44 259 113.96 1.63 0.52 275 143.00
 60 0.98 0.51 279 142.29 1.65 0.64 321 205.44
 70 0.98 0.57 291 165.87 1.65 0.68 356 242.08
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was observed that doping Ni metal to the  PtZr2/C catalyst 
further increased the activity of the electrocatalyst.

4  Conclusion

In this study, Pt/C, PtZrx/C (x = 1, 2, 3), and  PtZr2Ni/C elec-
trocatalysts were produced for ORR and PEM fuel cells. The 
studies, conducted at four different temperatures, determined 
that the  PtZr2Ni/C catalyst was the most active electrocatalyst as 
a cathode. The face-centered cubic structure of Pt was found to 
be compatible with the diffraction peaks seen in Pt/C,  PtZr2/C, 
and  PtZr2Ni/C catalysts. As the electrochemical experiment 
showed, the  PtZr2/C catalyst had a higher peak current density 
and more electrocatalytic activity than the Pt/C catalyst, but it 
had a lower starting potential. The presence of Zr resulted in a 
decrease in particle size while increasing ECSA. Electrochemi-
cal measurements and physical analysis determined that the 
 PtZr2Ni/C catalyst was more active than the  PtZr2/C catalyst, 
and high temperature PEM fuel cell applications detected it. 
Likewise, the presence of Ni metal reduced the particle size 
and made the catalyst surface more active than Zr metal. In 
the performance of the PEM fuel cell, the  PtZr2Ni/C catalyst 
showed good activity not only in the activation loss region but 
also in the ohmic and concentration loss regions, compared 
to both Pt/C and at different atomic ratios Pt:Zr catalysts. The 
 PtZr2Ni/C cathode electrocatalyst's performance increased as 
the cell temperature rose. Additionally, both  H2/O2 and  H2/
O3 demonstrated strong performance in both applications, 
yielding maximum power densities of 165.87  mWcm−2 and 
242.8  mWcm−2, respectively. The  PtZr2Ni/C electrocatalyst 
achieved the highest ORR activity and peak power. The ORR 
catalytic activity of the cathode electrocatalysts was found to 
be  PtZr2Ni >  PtZr2/C > PtZr/C > Pt/C >  PtZr3/C when using 
 H2/O2, but it was  PtZr2Ni >  PtZr2/C > Pt/C >  PtZr3/C > PtZr/C 
when using  H2/O3. The higher performance of the  PdZr2Ni/C 
catalyst is assumed to be a result of its uniformly dispersed 
nanoparticles and more crystalline lattice defects. The findings 
show that the  PtZr2Ni/C catalyst had great activity, which had 
a big effect on the performance of the PEM fuel cell and the 
activity of the cathode electrocatalyst. Since the  PtZr2Ni/C cata-
lysts described in this article have excellent characteristics and 
are simple to fabricate, it is anticipated that future studies will 
result in less expensive electrocatalysts for PEM fuel cells that 
are currently being developed.
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