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Abstract
Thin films of Cu2CoSnS4 (CCTS) are electrodeposited onto fluorine tin oxide substrate using pulsed electrodeposition mode 
for various time periods followed by sulfurization treatment at 500 °C. The pulse potential (V1) is held constant at 0 V vs. Ag/
AgCl, while (V2) is set at − 1.1 V vs. Ag/AgCl. The effect of pulse duration on the CCTS proprietress is being investigated. 
Cyclic voltammetry was used to study the electrochemical behaviors of Cu–Co–Sn–S precursors, while in situ electrochemical 
impedance spectroscopy investigated the electrical properties of the system during electrodeposition of CCTS at − 1.10 V. 
The impedance spectra revealed a capacitive loop pattern along with Warburg diffusion. The samples were analyzed by X-ray 
diffraction (XRD), Raman spectroscopy, and UV–visible spectroscopy. Both XRD data and Raman spectra indicated that the 
CCTS thin films have a stannite structure. The films deposited for 20 min and 30 min exhibit a predominantly pure CCTS 
phase. Moreover, deposition for 20 min exhibits a homogeneous morphology with a nearly stoichiometric composition along 
with an optical band gap energy of 1.54 eV. Apart from the CCTS phase, noticeable secondary phases are present in films 
deposited at both low and high pulse durations, and they have been observed to slightly affect the gap energy.
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1  Introduction

Extensive research efforts have focused on quaternary 
chalcogenide materials. This surge in interest is due to the 
remarkable electronic and electrical properties of these 
compounds. These properties make them highly promising 
for applications in photonic devices [1]. Recently, a conver-
sion efficiency of 14.9% has been achieved with the read-
ily available solar absorber Cu2ZnSnS4(Se) [2], known for 
its high absorption coefficient (above 104 cm). Cu2CoSnS4 
(CCTS) belongs to the chalcopyrite family of inorganic sem-
iconductors and offers a comparable and viable alternative 
absorbing material. CCTS crystallizing in quadratic system 
(I4m group) [3] and has an ideal bandgap in the range of 
1.2–1.5 eV making it exceptionally well suited for various 
photonic applications. This optimal bandgap range positions 
CCTS as a promising candidate for harnessing solar energy 
and advancing photovoltaic technology [4–7]. Its potential 
for integration into next-generation optoelectronic devices is 
further enhanced by its structural and electronic properties.

Several synthetic techniques, such as, sputtering [8], 
pulsed laser deposition [9], microwave method [10], ther-
mal decomposition [11], chemical vapor deposition [12], 

spray pyrolysis [13, 14], solid-state reaction [15], colloidal 
synthesis [16], and electrochemical deposition (electro-
deposition) [17–20], have been used to fabricate CCTS 
thin films. Among these approaches, electrochemical 
deposition stands out as a highly attractive method. This 
is due to its advantages, including economical equipment, 
inexpensive starting materials, and the ability to perform 
scalable deposition at room temperature. Some research 
has been conducted to investigate the factors that affect 
the electrodeposition process for the preparation of CCTS. 
Electrodeposition techniques include sequential deposition 
of metallic stacked Cu, Zn, and Sn thin films followed by 
sulfur (S) diffusion, simultaneous deposition of metallic 
Cu, Zn, and Sn thin films followed by sulfur (S) diffu-
sion, and single-step deposition of CZTS thin film has 
been reported in several studies. Pulsed electrodeposition 
technique (PED) has found wide application in metal plat-
ing, effectively increasing deposition rates and refining 
film quality [21]. PED has been used in CZTS deposition 
to improve film quality [22–24]. However, its use in the 
growth of CCTS thin films has not been explored. PED 
differs from conventional DC electrodeposition primarily 
in the controlled on/off cycling of the plating currents. 
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This results in the generation of a square wave pattern 
that is characterized by specific pulse parameters, includ-
ing pulse duration (TON), time between pulses (TOFF), and 
the overall deposition duty cycle. Pulsed Electrodeposi-
tion (PED) provides the flexibility to create complex alloy 
compositions. By precisely adjusting metal ion concentra-
tions, current densities and pulse durations, the formation 
of new crystals can be stimulated rather than the growth 
of existing ones. The result is the production of films with 
an exceptionally fine grain structure [25].

2 � Experimental

The pulse electrodeposition (PED) process was per-
formed using a standard three-electrode potentiostat 
(VersaSTAT 3). Fluorine tin oxide (FTO) was employed 
as a working electrode, a Platine electrode was used as 
the counter electrode, while Ag/AgCl/Cl− was used as 
the reference electrode (Fig. 1). The aqueous electrolytic 
solution consists of CuSO4·5H2O (0.02 M), CoCl2·6H2O 
(0.015 M), SnSO4 (0.010 M) and Na2S2O3 (0.02 M), with 
Na3C6H5O7·2H2O (0.2 M) acting as a complex agent. The 

pH of the solution was adjusted to 5.0 by the addition of an 
appropriate amount of tartaric acid. The CCTS thin films 
were prepared by potentiostatic electrodeposition using 
potential-pulsed electrodeposition at − 1.1 V with a pulse 
duration of 1 s and an off-time (0 V) of 1 s (Fig. 2c). The 
total electrodeposition time was 10 min (CCTS1), 20 min 
(CCTS2), and 30 min (CCTS3). The Cu–Co–Sn–S elec-
trodeposited precursor films were sulfurized by exposure 
to an evaporated sulfur environment at T = 500 °C for 1 h 
in an alumina tube furnace, resulting in the formation of 
CCTS films. To eliminate any trace of air, the tube was 
purged with Ar gas for 15 min prior to sulfurization. 0.8 g 
sulfur (with a purity of 99.9%) was used as the source and 
was placed in an alumina boat that was maintained at a 
temperature of 25 °C.

The sulfurized thin films were structurally analyzed 
using X-ray diffraction (XRD) with CuKα radiation 
(λ = 1.5406 Å). A field emission scanning electron micro-
scope (FE-SEM) (model) and an energy dispersive X-ray 
spectrometer (EDS) were used for surface morphologi-
cal and compositional characterization. UV–visible–NIR 
spectroscopy (SHIMADZU, UV-2600i) was used to 
measure the optical properties of the thin films at room 
temperature.

Fig. 1   Schematic of synthesis of 
CCTS thin films
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3 � Results and discussion

3.1 � Electrochemical characterization

Cyclic Voltammetry (CV) is a valuable technique provid-
ing insights into the reduction potential of elements within 
the electrolytic bath, crucial for understanding the electro-
chemical behavior and reactivity of the deposition process 
components. To determine the deposition potential of the 
CCTS precursor, the individual deposition potentials of cop-
per (Cu), cobalt (Co), and tin (Sn) were first determined 
using separate electrolytic baths. Subsequently, the deposi-
tion potential of CCTS films was thoroughly evaluated for 
the influence of complexing agents and thiosulfate elements 
(S2O3

2−). This comprehensive approach ensured a detailed 
understanding of the factors influencing the deposition pro-
cess. The electrochemical behaviors of each element in the 

aqueous solution reveal significant potential differences for 
Cu, Co, and Sn [26].

To refine the potential window, trisodium citrate was used 
as a complexing agent in the electrolytic bath. This com-
pound forms complexes with copper ions (Cu2+), effectively 
shifting the reduction potential of copper to more negative 
values. A more controlled deposition process was achieved 
by this adjustment [26, 27].

Figure 2a depicts the electrochemical behavior of each 
individual element: Cu2+, Co2+, and Sn2+. The curves display 
cathodic and anodic peaks observed between − 1.3 and 0.8 V 
vs. Ag/AgCl. The cathodic peaks of Cu2+, Sn2+, and Co2+ are 
located around − 0.56 V, − 0.98 V, and − 1.10 V vs. Ag/AgCl, 
respectively. Figure 2b presents the cyclic voltammetry (CV) 
curve of the co-electrodeposition bath containing Cu2+, Sn2+ 
and Co2+. The voltammogram showed three distinct peaks. 
These peaks were consistent with the curves of the individual 

Fig. 2   a Cyclic voltammograms in trisodium citrate solution for each 
individual element: Cu2+, Co2+, and Sn2+. b Cyclic voltammetry in 
trisodium citrate solution for combined elements: Cu2+–Co2+–Sn2+–

S2−. c Current density/mA cm−2 vs. time/s in pulsed electrodeposition 
[E1 = 0.00 V, E2 = − 1.10 V vs. Ag/AgCl]
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metallic elements shown in Fig. 2a (Eqs. 1, 2, 3). This observa-
tion is an indication that the formulation was well suited for the 
deposition of Cu–Co–Sn films (Fig. 2b) [18, 27]. Additionally, 
these elements can be deposited with sulfur in the presence 
of S2O3

2− which can generate colloidal S in acidic medium 
(Eqs. 4, 5) (Fig. 2b) [28]. S2O3

2− could be introduced as a 
complexing agent for Cu2+, as described by (Eqs. 6, 7) [29]. 
The overall electrodeposition reaction of Cu–Co–Sn–S precur-
sors is represented by (Eq. 8).

(1)Cu
2+ + 2e− → Cu

(2)Sn
2+ + 2e− → Sn

(3)Co
2+ + 2e− → Co

(4)S
2
O

2−

3
+ H

+ + 2e → S
2− + HSO

−

3

(5)S + 2e− → S
2−

(6)2S
2
O

2−

3
+ 2Cu

2+
→ 2Cu

+ + S
4
O

2−

6

The deposition of CCTS films was carried out using 
pulsed electrodeposition for durations of 10, 20, and 30 min. 
This involved applying a high potential (On; − 1.1 V) in a 
series of pulses separated by intervals of 1 s with no poten-
tial flow (Off; 0 V) (Fig. 2c) [24].

Electrochemical impedance spectroscopy (EIS) was 
investigated to evaluate the behaviors of the electrochemi-
cal process associated with CCTS electrodeposition. The 
EIS were performed at both the potential of deposition 
(− 1.10 V) and at the potential of (0.00 V). In Fig. 3 the 
dotted curves shows the experimental Nyquist diagrams in 
different situations, while the solid line represents the fit of 
the respective nyquist spectra.

The nyquist plot in Fig. 3a shows an in-situ impedimi-
tric spectra at applied potential of E = 0.00 V titled by an 
angel θ to the y-axis. This implies that the equivalent cir-
cuit comprises either a standalone capacitor C wich rep-
resents the nonfaradaic current results from charging the 
double-layer capacitor [30] or a capacitor C connected in 

(7)Cu
+ + nS

2
O

2−

3
→

[

Cu(I)
(

S
2
O

3

)

n

]−2n+1

(8)
2Cu2+ + Co2+ + Sn2+ + 2S2O2−

3 + 16e− + 12H+

→ Cu2 − Co − Sn − S4 + 6H2O.

Fig. 3   In-situ electrochemical impedance spectroscopy measurements: a CCTS precursor deposition at 0.00 V, b CCTS precursor deposition at 
− 1.1 V, c CCT precursor deposition at − 1.1 V and b without electroactive species at − 1.1 V
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series with a solution resistor Rs [31]. The circuit fitting 
(Fig. 3a) suggests that the impedance is not purely ohmic 
and includes a capacitive element (CPE) [30]. This could 
be due to surface effects, double-layer capacitance, or other 
non-idealities [32]. In another hand, the EIS spectra recored 
at E = − 1.10 V a semicircle at high and medium frequency 
is related to the double layer response and an inclined line 
at low frequency indicated the presence of a warburg imped-
ance due to diffusion of ions into the electrode surface. The 
impedance plotted in Fig. 3b was fit to the equivalent circuit 
shown in the same figure. This circuit consists of a parallel 
combination of a series charge transfer resistance (Rct) and 
a Warburg element (W), along with a constant phase element 
(CPE) representing the double-layer capacitance [33, 34]. In 
addition, the solution resistance is represented by the series 
resistance (Rs). The fitted lines in Fig. 3b correspond to this 
equivalent circuit [34]. The values for the various elements 
are given in Table 1. The effective double-layer capaci-
tance, Q, was determined from the constant phase element 
using a method explained by Mansfeld [35, 36]. Figure 3c 
presented the impedance spectra conducted in situ during 
electrodeposition of Cu–Co–Sn in a free sulfer solution. 
The results shows the presence of a capacitive loop without 
Warburg impedance. This may mean that charge transfer 
at the electrode/electrolyte interface is relatively fast and 
mass transport limitations (typically represented by Warburg 
impedance) are not significant during the electrodeposition 
process. Additionally, The absence of a Warburg impedance 
may indicate that the electrodeposited layer is relatively thin. 
The difference in the impedance spectra between Fig. 3b 
and c can demonstrate the interaction between S2O3

2− and 
metal ions in the electrodeposition process, as indicated by 
Eqs. (2) and (3). Furthermore, the electrochemical imped-
ance behaviors of FTO electrode in the citrate electrolyte 
at the same potential (− 1.10 V) and in absence of the 
electroactive elements was studied. Figure 3d presents the 
impedance spectra obtained by the experiment. It reveals the 
presence of high-frequency capacitive loop, associated with 
double layer capacitance, and the appearance of inductive 
loop representing the relaxation phenomena. This relaxation 
is likely dependent of the presence of (Sn(IV))ads≡(SnH4)g 
as an adsorbed intermediate species in the reduction reaction 
tin oxyde (comprising 95% FTO [37]) [34]. This reduction 
reactions denoted by Eqs. (9) and (10) is induced by cathodic 
polarisation on the surface of the FTO electrode [38, 39].

3.2 � Structural characterization

The precursor electrodeposited samples of CCTS were sul-
furized at a temperature of 500 °C for one hour in the pres-
ence of sulfur powder.

3.2.1 � XRD analysis

Figure 4a shows the XRD patterns of CCTS films obtained 
by pulsed electrodeposition of Cu–Co–Sn–S precursor 
films at 10, 20 and 30 min. All the films aligned with the 
tetragonal structure of CCTS, as indicated by the four dis-
tinctive peaks (112), (204), and (312) observed at 2θ values 
of 28.90°, 47.92°, and 56.72°, respectively, in accordance 
with JCPDS 96-153-3608. The secondary phases produced 
in all cases is CoS2 at 32.5° (card no. 00-041-1471) [40]. 
Additionally, the peak observed around 31.6° in samples 
electrodeposited for 20 and 30 min indicates the presence of 
CuS (card no. 00-006-0464) [41]. The other peaks located 
at 26.9°, 38.1°, 51.74°, 61.7°, and 65.7° are associated with 
the FTO substrate [27, 28, 42]. Using the Gaussian fitting 
(Fig. 4b), the average crystallite sizes of the CCTS films 
were determined by calculating the full width at half maxi-
mum (FWHM) of the peak through the application of the 
Debye–Scherrer equation. The CCTS film crystallite sizes 

(9)
SnO

2
+ 4H

+ + 4e− → Sn + 2H
2
O + E◦ = − 0.1 V (vs. SHE)

(10)
Sn + 4H

+ + 4e− → SnH
4
(g) E◦ = −1.1 V (vs. SHE).

Table 1   Simulated impedance 
parameters

Element R1/Ohm Q1/mF n1 R2/Ohm W1/Ohm s−0.5 R3/Ohm L1/H

(a) 254.7 3.204 0.934 – – – –
(b) 47.90 0.276 0.883 50.92 20.67 – –
(c) 45.95 43.76 0.927 363.90 – – –
(d) 58.48 10.22 0.919 1170.00 – 1999.00 70.00

Fig. 4   X-ray diffraction analysis of CCTS thin films for various pulse 
durations
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resulting from electrodeposition of CCSS precursor films at 
duty 10 min, 20 min and 30 min were 28.36.6 nm, 27 nm, 
and 24 nm, respectively (Table 2). According to the observa-
tions mentioned earlier, an increase in deposition time led to 
a minor reduction in crystallite sizes, aligning well with the 
findings from scanning electron microscopy (SEM) (Fig. 6).

3.2.2 � Raman analysis

Figure 5 shows the Raman spectra (200–600 cm−1) of the 
CCTS samples deposited for different time periods. The 
spectra obtained showed a principal sharp peak at 470 cm−1 
consistently in all cases, along with a less prominent peak 
at 265  cm−1. Both peaks are characteristic of a crystal-
line structure, indicating a single crystal of CuS [43]. The 
several peaks located at 280–290 cm−1 and 318–334 cm−1 
correspond to the Cu2CoSnS4 phase. The most prominent 
peak occurs in the range of 318–319 cm−1 and is associated 
with the A1 symmetry of the CCTS stannite structure. The 
peak located at 490 cm−1 in 30 min sample my indicate the 
presence of CoS phase [44]. As a result, the samples elec-
trodeposited for 20 and 30 min confirm the presence of a 
pure CCTS phase.

3.3 � Morphological characterization

Figure 6a–c, shows SEM images of CCTS pulsed elec-
trodeposited thin films on the FTO substrate at different 
deposition time. The sample deposited for 10 min shows a 
uniform morphology (Fig. 6a), but as the deposition time 
increases to 20 min (Fig. 6b), a decrease in grain size is 
observed. This phenomenon can be attributed to increased 
nucleation leading to the formation of a wider number of 
smaller grains. On the other hand, prolonging the deposition 
time to 30 min through pulsed electrodeposition (Fig. 6c) 
results in smaller grain sizes. Simultaneously, an additional 
morphology with a hexagonal sheet-like structure appears, 
possibly associated with the secondary phase CuS [45].

Quantitative EDS analysis was performed on thin films 
electrodeposited for 10, 20, and 30 min. Figure 7 shows an 
EDS spectrum showing the presence of different peaks asso-
ciated with Cu, Co, Sn and S, corresponding to the deposited 
CCTS thin film. In addition, the presence of an O peak origi-
nating from the FTO substrates was observed. The atomic 
composition (Table 3) indicates the sulfur-rich nature of the 
films. The presence of Cu is likely contributed by the CuS 
phases, and the 10 min sample shows Sn-rich grains, possi-
bly due to its association with one of the FTO compositions. 
The ratio (Cu/(Co + Sn)) decreases, reaching approximately 
1 as the deposition time increases. The proportion of Co 
increases while the amount of Sn decreases. The ratio (Cu/
(Co + Sn)) decreases, reaching approximately 1 as the depo-
sition time increases (Table 3).

3.4 � Optical characterization

The UV–Vis absorption spectra of the CCTS electrodepos-
ited samples are shown in Fig. 8a. These spectra were 

Table 2   Structural parameters 
of CCTS thin films

Deposition time (hkl) 2Theta/° FWHM /° D /nm d-spacing/Å a/Å c/Å

10 min 112 29.195 0.27 31.3 3.056 5.367 10.309
204 46.929 0.264 33.9 1.934
312 57.08 0.469 19.9 1.612

20 min 112 28.942 0.221 38.5 3.082 5.374 10.540
204 48.005 0.392 22.6 1.893
312 56.876 0.461 19.9 1.617

30 min 112 28.995 0.255 33.2 3.077 5.376 10.478
204 48.039 0.443 20 1.892
312 56.89 0.489 18.8 1.617

Fig. 5   Raman spectra analysis of CCTS samples
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measured in the absorbance mode over the wavelength 
range of 400–1200 nm. The absorption spectra show a 
decrease in intensity with increasing deposition time. This 
is likely due to an increase in thickness uniformity of the 
film as the deposition time increases. The straight-line seg-
ments of the Tauc’s plots shown in Fig. 8b are extended 
to the point where the absorption coefficient reaches zero, 
providing intercepts or values for the band gap. The band 
gap values for the 10 min, 20 min, and 30 min films are 
1.57 eV, 1.54 eV, and 1.43 eV, respectively. The band gap 
(Eg) values show a slight decrease over time, increasing 
by 0.03 eV from CCTS 10 min to CCTS 20 min, and by 
0.11 eV from CCTS 20 min to CCTS 30 min. This change 
is attributed to variations in structural composition and 
morphology [46], as illustrated in Figs. 5, 6, and Table 3. 
Despite the slight impact of deposition time on the Eg 
values of CCTS thin films due to the presence of second-
ary phases [18], all films have a band gap aligned with the 
optimum energy range for thin film solar cells, making 
them suitable for applications in thin film solar cells with 
high conversion efficiency. This value is consistent with 

those reported in the literature [14, 47]. Table 4 presents a 
comparative analysis of CCTS thin films elaborated by co-
electrodeposition and our study, which investigated pulsed 
mode electrodeposition.

4 � Conclusion

In this study, we present an economical approach for 
manufacturing CCTS thin films on an FTO-coated glass 
surface. The pulsed electrodeposition method (PED), 
followed by a sulfurization treatment at 500 °C in argon 
atmosphere, proved successful in the fabrication of CCTS 
films. The crucial parameter in pulsed electrodeposition 
(PED) is the pulse duration with predefined potentials. 
The electrochemical behaviors of CCTS precursors have 
been studied individually using cyclic voltammetry, as 
well as together in the same bath containing trisodium 
citrate. In-situ electrochemical impedance spectroscopy 
(EIS) has investigated the mechanism of deposition at the 
electrode–electrolyte interface. The impedance spectra 
reveal a loop capacitive behavior, and in the presence of 

Fig. 6   SEM-images of CCTS thin films; electrodeposited for: a 10 min, b 20 min and c 30 min
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S2O3
2−, they indicate the presence of Warburg diffusion, 

suggesting a diffusion phenomenon. CCTS deposited for 
20 min exhibited a pure CCTS phase, compact morphol-
ogy, and nearly stoichiometric composition. Conversely, 

pulsed electrodeposition of CCTS for 10 min revealed the 
presence of secondary phases. The optical gap energy is 
slightly affected by the deposition time and was found to 
be around 1.50 eV, making it well-suited for utilization 

Fig. 7   EDS analysis of CCTS 
thin films; a 10 min, b 20 min 
and c 30 min
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as an absorber in high-performance solar cells based on 
CCTS.

Author contributions  Omar Ait Layachi: wrote the main manuscript 
text and prepared figuresAll authors  reviewed the manuscript.

Table 3   Elemental composition 
of CCTS thin films

Cu (%) Co (%) Sn (%) S (%) [Cu]/
([Co] + [Sn])

[Co]/[Sn] S/metal

10 min 19.1 3.6 10.1 51.2 1.39 0.35 1.56
20 min 18.0 5.4 6.0 45.3 1.57 0.9 1.54
30 min 17.3 9.9 5.5 50.1 1.12 1.8 1.53

Fig. 8   a UV–visible absorption 
measurements, b Tauc plots of 
CCTS thin films electrodeposi-
tion

Table 4   Comparative analysis of CCTS electrodeposition results

Mode electrodeposition Electrolyte Deposition conditions Substrate Important results References

Co-electrodeposition Tartaric acid, pH 4.8 Ed = − 0.850, − 0.90 and − 
0.950 V (vs SCE) for 20 min

Sulfurization: 500 °C

FTO As the (Ed) increases from − 
850 to − 950 mV, the optical 
gap expands from 1.50 to 
1.60 eV

[17]

Co-electrodeposition Tartaric acid
Trisodium citrate, pH 4–5

Ed = − 0.95 V (vs SCE) for 
15 min

Sulfurization: 500 °C for 60 min

Mo Tetragonal structure, gap 
energy = 1.56 eV

[18]

Co-electrodeposition Trisodium citrate, pH 4–5 Ed = − 0.95 V (vs. SCE) for 
15 min, 30 min and 45 min, 
Sulfurization: 500 °C for 
60 min

Mo Stannite structure
Eg = 1.4–1.5 eV, slightly influ-

enced by deposition time

[48]

Co-electrodeposition Tartaric acid, pH 5 Ed = − 0.9 V vs. (SCE). Deposi-
tion time: 20 min. Sulfuriza-
tion: 500 °C

Mo The CCTS optical gap reduces 
from 1.68 to 1.48 eV when 
copper concentrations 
increase from 0.015 to 
0.030 M

[49]

Co-electrodeposition Trisodium citrate, (additive 
effects), pH 5

Ed = − 1.1 V vs. Ag/AgCl. 
Deposition time = 10 min. 
Sulfurization: 550 °C

FTO Stannite structure. Additives 
influenced the CCTS proper-
ties

Gap energy = 1.5 Ev

[50]

Pulsed electrodeposition Trisodium citrate, pH 5 Eon = − 1.1 V vs. Ag/AgCl 
(On)

Eoff = 0 V
Deposition tiem: 10, 20, and 

30 min
Sulfurization: 500 °C

FTO Stannite structure
The deposition time has a minor 

influence on the gap energy

This work
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