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Abstract
Facile synthesis of perovskite materials for the electrochemical sensing applications are remains challenging. In the cur-
rent work, a simplified electrochemical sensor system based on an electrode modifier containing  LaNiO3 was developed 
to detect catechol (CC). The surface micrograph of  LaNiO3 was examined using X-ray diffraction pattern (XRD), X-ray 
photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HRTEM). Besides, the  LaNiO3 
reveals a remarkable electrooxidation response for the detection of catechol by cyclic voltammetry (CV) and amperometry 
techniques. The suggested sensor platform shows a broad linear range for catechol detection from 5 µM to 2000 µM with 
LOD and sensitivity of 0.6 µM and 54 µA  cm−2  mM−1, respectively, under optimised conditions. Furthermore,  LaNiO3 
altered GCE was fruitfully implemented for the quantification of catechol in tap water sample.
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1 Introduction

Catechol (CC, 1, 2 dihydroxybenzene) is a significant phe-
nolic compound. It is a toxic pollutant to livestock and the 
environment [1]. Meanwhile, synthetic phenolic compounds 
are also toxic and constitute pollutants in soil, water and 
food. Therefore, sensing of phenolic compounds is essen-
tial for humans and the environment [2]. Catechol is widely 
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used in the manufacture of rubber as a curing agent, skin 
anti-septic, antioxidant, fungicide, additives in electroplat-
ing, photographs, dyes, cosmetics, and many others [3]. It 
has been reported that catechol affects human health such 
as upper respiratory tract irritation, high blood pressure, and 
kidney damage due to its high toxicity and harmful effects 
on the environment and human health [4]. For the above 
reason, the determination of catechol is important in the field 
of environmental monitoring and industrial processes.

Numerous methods are available to determine catechol 
such as spectroscopic [5], chromatographic [6], chemilumi-
nescence [7], and fluorescence [8]. The above-mentioned 
methods are feasible but complicated, time-consuming and 
costly which has limited further commercial application. In 
comparison to the above method, the electrochemical sen-
sor is the best tool for detecting catechol using modified 
electrodes [9]. Moreover, the electrooxidation of catechol 
on bare glassy carbon electrode (GCE) is very poor due to 
its sluggish electron transfer. Instead of that, modification 
with nanomaterials has attained higher catalytic activity 
with lower oxidation potential. Previously, different types of 
modified electrodes were used to detect catechol like MWC-
NTs/SPCE [10], Tyr-AuNPs-DHP/GCE [11], AuNPs/Fe3O4-
APTEs-GO/GCE [12], Au/Ni(OH)2/rGO/GCE [13], AuNPs/
ZnO-Al2O3/GCE [14], and NiAl-layered/LDHs/GCE [15].

In recent years, interests have focused on nanostructured 
materials, particularly perovskites attained extensive use in 
analytical chemistry including solar cells, catalysis, biologi-
cal sensors, optics, and electronics etc. More interestingly, 
perovskite material with  ABO3 type metal oxide possesses 
higher electronic and ionic conductivity with enhanced cata-
lytic activity, chemical and thermal stability by employing 
variation in oxygen content [16]. Specifically,  LaNiO3 is an 
excellent material that exhibits fascinating chemical and 
physical characteristics and can be applied as an electro-
chemical sensing platform to enhance catalytic performance 
with higher sensitivity [17].  LaNiO3 is a well-known con-
ducting mixed oxide material at room temperature without 
the use of conducting carbon additive which influences the 
activity [18]. There are many methods to synthesize  LaNiO3 
such as sol–gel, hydrothermal, and microwave techniques 
with diverse nanostructures such as homogeneous and ani-
sotropic morphology, higher conductivity with abundant 
surface area. Compared with other methods, the simple 
precipitation method is very effective, low cost, and less 
time-consuming. Therefore,  LaNiO3 is prepared by a sim-
ple precipitation method and applied for the electrochemical 
sensing of catechol [17, 19, 20].

In the present work, we developed  LaNiO3 based sensor 
platform for the sensing of catechol by cyclic voltammetry 

and amperometry techniques. Synthesized catalyst has been 
characterized for material purity, elemental composition and 
morphological studies by XRD, XPS, and HRTEM. The as-
synthesized material was used as an electrocatalyst for the 
detection of phenolic pollutant, catechol. Tap water provided 
an actual sample to demonstrate the practical application of 
the  LaNiO3 modified electrode.

2  Experimental methods

2.1  Materials

Lanthanum nitrate, nickel nitrate sodium hydroxide,  NaH2PO4, 
 Na2HPO4, sodium dodecyl sulfate (SDS), dimethyl formamide 
(DMF), hydroxylamine, sodium nitrite  (NaNO2), sodium 
nitrate  (NaNO3), and sodium sulphite  (Na2SO3) were sourced 
from Sigma-Aldrich. Catechol, dopamine and uric acid were 
obtained from Sigma Aldrich. All chemicals have been used 
without additional purification. A double distillation of de-
ionized water from the Milli-Q system was used for the prepa-
ration of all solutions.

2.2  Synthesis of  LaNiO3

LaNiO3 nanoparticle was synthesized by a simple precipita-
tion method. A stoichiometric amount of lanthanum nitrate 
(0.01 M) and nickel nitrate (0.01 M) were dissolved in 500 
mL distilled water at constant stirring. Then, 0.05 M of glycine 
was added dropwise into the stirred solution at 100 °C. 0.01 M 
SDS was injected drop by drop into the hot solution and kept 
for 12 h at constant stirring. After 12 h, the mixture color was 
transferred to a dark green precipitate. The precipitate was 
treated to cool down to room temperature and washed many 
times with ethanol and water followed by dried in an oven at 
85 °C for 12 h and calcinated at 600 °C for 5 h with a heating 
rate of 5 °C per minute. The final black color material was used 
as an electrocatalyst for the detection of catechol.

2.3  Fabrication of  LaNiO3 modified electrode

Primarily, mirror-like surface of GCE was cleaned using 0.05 
micron alumina powder on a polishing pad. Further, the elec-
trode was washed with water and sonicated to remove alumina 
particles. The catalyst slurry was prepared by mixing 5 mg of 
 LaNiO3 in 1 mL of DMF solvent and sonicated for 30 min. 
After sonication, 3 µL catalyst was dropped over precleaned 
GCE and allowed to dry. Finally, the obtained  LaNiO3 modi-
fied GCE was used to detect CC in the present study as shown 
in Scheme 1.
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3  Result and discussion

3.1  Physical characterization of  LaNiO3

The XRD pattern of  LaNiO3 is shown in Fig. 1.  LaNiO3 
displays the perovskite phase with crystal planes of (101), 
(110), (021), (003), (202), (211), (122), (220), (312), and 
(214) corresponding 2θ values at 23°, 32°, 40°, 41°, 47°, 
53°, 58°, 68°, 78°, and 79°, respectively. The distinctive 
diffraction peaks of  LaNiO3 exactly match with the ICDD 
number 00-034-1028 and a hexagonal structure [21]. We 
can conclude from the XRD results that  LaNiO3 exists in a 
well-crystalline, hexagonal form with no impurities being 
visible. As a result, the synthesized  LaNiO3 is of a high 

purity, proving that the synthesis approach can be applied 
for large-scale preparation.

HRTEM is mainly used for the detection of higher-
resolution surface morphology and SAED pattern. Fig-
ure 2 shows the surface morphology and SAED pattern of 
 LaNiO3. Several magnifications such as 200 nm, 100 nm, 
and 50 nm are shown in Fig. 2A, B, and C, respectively. 
The selected area electron diffraction pattern (SAED) of 
 LaNiO3 is shown in Fig. 2D. Figure 2D confirms that our 
synthesized  LaNiO3 was perfectly crystalline in nature. The 
d spacing values were estimated from the SAED pattern and 
the value are well matched with the XRD results. Based on 
the HRTEM micrographs, the synthesized  LaNiO3 had well-
crystalline nature and nanostructured material.

The XPS survey spectrum displays multiple peaks that 
are related to Ni 2p, La 3d, and O 1s which is shown in 
Fig. 3A. Figure 3B shows peaks for La  3d5/2 and La  3d3/2 at 
836 eV and 854 eV, respectively, which is comparable with 
the results of lanthanum in a La (III) oxidation state that 
have been reported [22]. The higher-resolution XPS studies 
of Ni  2p1/2 and Ni  2p3/2 peaks and corresponding satellite 
peaks of  LaNiO3 are shown in Fig. 3C. Figure 3C clearly 
indicates that Ni  2p1/2 and Ni  2p3/2 peaks were exhibited 
at 872 eV and 854 eV, respectively [23]. As exhibited in 
Fig. 3D, the binding energy (BE) of O 1s peaks observed at 
529 eV and 531 eV [24, 25]. 

3.2  Electrochemical characterization studies 
of  LaNiO3 modified electrode

3.2.1  Cyclic voltammetry

Synthesized  LaNiO3 was utilized for the electrochemical 
oxidation of catechol.  LaNiO3 altered GCE was employed 
for the electrochemical oxidation of catechol in 0.1 M PBS 
using CV technique (pH = 7). Figure 4 shows CVs of bare 
GCE and  LaNiO3/GCE in the presence and absence of cat-
echol. Curve ‘a’ and ‘b’ indicate that bare GCE and  LaNiO3 
altered GCE in the absence of catechol. There was no cur-
rent response in pure PBS electrolyte. Curve ‘c’ and ‘d’ indi-
cate the bare GCE and modified GCE with the existence of 1 
mM catechol at 10 mV  s−1 scan rate. However, compared to 
bare GCE,  LaNiO3 modified GCE shows higher current den-
sity response towards the sensing of catechol. The observed 
higher current response of  LaNiO3/GCE to the electrooxida-
tion of catechol is attributed to the electrocatalytic activity 
of  LaNiO3.

The pH effect on electrochemical sensing of catechol at 
 LaNiO3/GCE was investigated using CV studies with 1 mM 
catechol at a sweeping rate of 10 mV  s−1. Figure 5A exhibits 
CVs of catechol at different pH such as 6.0, 6.5, 7.0, 7.5, 
and 8.0. Figure 5B illustrates the increment in peak current 
when the pH increases from pH 6 to pH 7, then it starts 

Scheme 1  Stepwise fabrication of  LaNiO3 modified GC electrode for 
catechol sensing

Fig. 1  XRD pattern of as-prepared  LaNiO3
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to diminish when pH increases further. Therefore, the opti-
mized PBS (pH = 7) was chosen for further electrochemical 
studies. From the results, the probable reaction mechanism 
of catechol at  LaNiO3 altered GCE is displayed in Fig. 5C.

Electrocatalytic behavior of  LaNiO3/GCE at various con-
centrations of catechol has been investigated using CV in 0.1 
M PBS in pH = 7 (10 mV  s−1). The CV responses for elec-
trocatalytic determination of catechol at  LaNiO3/GCE upon 
each addition of catechol are disclosed in Fig. 6A. Anodic 
peak current augmented with the increment of catechol con-
centration from 0.05 to 10 mM. Figure 6B displayed that 
anodic peak current varies linearly with catechol concentra-
tion in the range from 0.05 to 7 mM. From the calibration 
curves in Fig. 6B, the obtained sensitivity value is 95 µA 
 cm−2  mM−1 with its corresponding linear regression equa-
tion  Ip.a. = 95x + 39 × (C) mM  (R2 = 0.989).

To understand kinetics, CVs of  LaNiO3/GCE in 0.1 M 
PBS with the existence of 1 mM catechol were recorded 
at various scan rates. Figure 6C shows the oxidative peak 
current amplified steadily with an increment of scan rate 
starting from 10 to 150 mV  s−1 and further positive shift 
was observed in the peak potential. The peak current was 

correlated with scan rate as displayed in Fig. 6D  (R2 = 0. 
992). Linear response was observed for the current density 
with square root of scan rate, which signifies the electron 
transfer process was under mass-transfer control.

3.2.2  Amperometric study

Amperometric measurement was carried out at an optimized 
applied potential of 0.3 V using  LaNiO3/GCE by succes-
sive addition of different concentrations of catechol in 0.1 
M PBS (pH 7). Figure 7A exhibits the response of modified 
electrode at different concentrations of catechol from 5 µM 
to 8 mM. Figure 7B displays the current response of  LaNiO3 
for the successive addition of catechol. By increasing the 
catechol concentration from 5 to 2000 µM, current response 
increased gradually. From the calibration plot in Fig. 7B, 
sensitivity and detection limit (LOD) were calculated as 54 
µA  cm−2  mM−1 and 0.6 µM, respectively, with  Ip.a. = 54 
x + 4.9 × (C) mM linear regression equation  (R2 = 0.994). 
A comparison of analytical parameters of our proposed 
sensor with other modified electrodes for catechol sensing 
is displayed in Table 1. It can be seen that our proposed 

Fig. 2  A HRTEM of  LaNiO3 
with 200 nm scale magnifica-
tion size; B, C Corresponds 
to 100 nm and 50 nm magni-
fication images and D SAED 
pattern of  LaNiO3
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electrode shows wide concentration range compared to other 
electrodes.

Selectivity of the proposed sensor for the sensing of 
catechol was further assessed by amperometric analysis at 
0.3 V (0.1 M PBS). Figure 8A depicts the amperometric 
response of  LaNiO3/GCE for the determination of catechol 
in the existence of common interferents with 50-fold higher 
concentration of resorcinol, hydroquinone, ammonia nitrate, 

sodium nitrite, sodium bromate, potassium chloride, calcium 
carbonate, sodium sulfite, ascorbic acid, glucose, and urea. 
The obtained amperometric response clearly indicates that 
our proposed sensor could selectively sense the catechol and 
no significant current change was observed for the addition 
of other interferents. Figure 8B depicts the corresponding 
bar diagram of the interference which are included along 
with catechol. The above result clearly explains that our pro-
posed sensor has high selectivity to detect catechol even in 
the presence of a high concentration of common interferent 
exist in solution.

3.2.3  Practical application

Real time application of  LaNiO3/GCE sensor examined with 
the utilization of real sample (tap water). The tap water was 
collected from our institute (Karaikudi, Tamil Nadu, India). 
To perform a real sample analysis of catechol, a known 
amount (10 mM) of catechol was spiked in the water sample. 
The amperometric measurements were carried out by adding 
different known concentrations of catechol via the stand-
ard spiking method. A known quantity of standard catechol 
solution (25 and 50 µM) was spiked into the 0.1 M PBS as 
illustrated in Fig. 9A. The corresponding linear calibration 
plot of different addition of catechol into the real sample is 
shown in Fig. 9B. The obtained data validate that our sensor 

Fig. 3  XPS spectra (A) Survey 
scan of  LaNiO3; B La 3d; C Ni 
2p and D O 1s spectrum

Fig. 4  CV of bare GCE;  LaNiO3/GCE in pure 0.1 M PBS with 
pH = 7; bare GCE and  LaNiO3 /GCE with 1 mM catechol. Sweeping 
rate = 10 mV  s−1
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could be effective for catechol detection in water samples 
with good RSD values.

3.2.4  Stability and reproducibility

Stability of the  LaNiO3/GCE was determined with 1 
mM of catechol by continuously recording 100 cyclic 

voltammograms as shown in Fig. 10. Stable current was 
observed with less than 5% relative standard deviation 
(RSD) in their current values. The CV results reveal that the 
 LaNiO3/GCE modified electrodes exhibits appreciable sta-
bility. Reproducibility of the fabricated electrode was carried 

Fig. 5  A CVs of  LaNiO3/GCE 
in 1 mM catechol under various 
pH (6.0, 6.5, 7.0, 7.5, and 8.0) 
in 0.1 M PBS (10 mV  s−1); 
B Current density νs pH curve 
for the electrochemical sensing 
of catechol at  LaNiO3/GCE and 
C The electrochemical oxida-
tion mechanism of catechol on 
 LaNiO3/GCE

Fig. 6  A Cyclic voltammo-
grams of different concentra-
tions of catechol at  LaNiO3/
GCE. Concentration of catechol 
0.05–10 mM. Scan rate = 10 
mV  s−1. B Calibration plot. 
C Cyclic voltammograms of 1 
mM catechol at  LaNiO3/GCE 
with an increment of scanning 
rate starts from 10 to 150 mV 
 s−1 and D Dependence of J νs 
(scan rate)1/2



1643Journal of Applied Electrochemistry (2024) 54:1637–1645 

out using 5 different modified electrodes with an RSD of less 
than 4.5%, which confirms that  LaNiO3 modified GCEs have 

appreciable fabrication reproducibility. Hence,  LaNiO3/GCE 
can be employed for practical applications.

Fig. 7  A Amperometric 
response of  LaNiO3/GCE at 
different concentrations of 
catechol from 5 µM to 8 mM 
and B Corresponding lin-
ear calibration curve for the 
concentration 5 µM to 2 mM. 
Applied potential = 0.3 V. Insert 
of Figure B shows a calibration 
curve of the entire concentration 
range (5 µM to 8 mM)

Table 1  Comparison of 
analytical parameters for 
catechol sensing using different 
modified electrodes

Modified electrodes Method Detection limit 
(LOD) (µM)

Linear range (µM) Sensitivity (µA 
 mM−1  cm−2)

References

EGr-TPy/GCE DPV 0.303 1–100 3.22 [4]
CD-f-CSA-PEDOT: PSS CV 0.0095 0.05–200 NR [26]
H-NiAl/LDHs/GCE i–t 0.02 0.01–400 418.3 [15]
Au/Ni(OH)2/rGO/GCE DPV 0.13 0.4–33.8 NR [13]
Fe/APTMs/GO i–t 1.1 3–112 1184.3 [27]
AuNPs/CS@N,S co-

doped MWCNTS
i–t 0.2 1–5000 0.90 [9]

Po-DG6-MCPE DPV 0.09 20–160 µM NR  [28]
Co3O4/MWCNTs DPV 8.5 10–700 NR  [29]
LaNiO3/GCE i–t 0.6 5–2000 54 This work

Fig. 8  A  Amperometric responses of  LaNiO3/GCE modified elec-
trode to the addition of 100 µL stock solution addition of catechol and 
addition of 50-fold high concentration of resorcinol, hydroquinone, 

ammonia nitrate, sodium nitrite, sodium bromate, potassium chloride, 
calcium carbonate, sodium sulfite, ascorbic acid, glucose, and urea at 
0.3 V. B Corresponding bar diagram of the interference study
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4  Conclusion

In summary, we have explored a highly sensitive catechol 
sensor by employing a  LaNiO3 perovskite nanostructure-
modified electrode. The XPS spectra revealed the various 
oxidation states of the as-prepared materials. The proposed 
sensor exhibited enhanced analytical features towards the 
determination of catechol with higher sensitivity (54 µA 
 cm−2  mM−1), lower detection limit (0.6 µM), eminent 
selectivity, wide linear range (5 to 2000 µM), and stability. 
Moreover, the estimation of catechol in tap water encourages 
the chance for real time application towards the proposed 
 LaNiO3 as a modifier. Hence, it is believed that the  LaNiO3 
nanocomposite-modified electrode can be considered as a 
promising material for sensor application.
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