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Abstract
A novel set of CuO/PPy nanocomposites (NCs) with varying PPy weight ratios was synthesized via microwave irradiation 
and oxidative chemical polymerization. The resulting NCs and CuO micro-flowers were characterized by X-ray diffraction, 
Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis, field-emission scan-
ning electron microscopy, energy-dispersive X-ray spectroscopy line, and dot mapping techniques. The formation mechanism 
of CuO micro-flowers and PPy nanowires were discussed in detail. The electrochemical lithium-ion storage properties of all 
samples, used as anode materials in Li-ion batteries, were measured. Our results indicate that PPy nanowires with various 
weight ratios play a critical role in the lithium storage properties of the hybrid CuO/PPy NCs. An increase in the nanowire 
mass ratio enhances the cyclic durability and charge/discharge capacities of the PPy/CuO NCs. Specifically, NCs containing 
3.5-, 5-, 6.2-, and 8.8-wt% PPy nanowires exhibit reversible capacities of 128, 231, 371, and 200 mAh  g−1, respectively. The 
superior performance of the hybrid CuO/PPy NCs is attributed to the PPy nanowires. The CuO/PPy NCs benefit from the 
nanowire morphology and composite structural features that can accommodate the dramatic volume expansion of CuO during 
discharge/charge steps and enhance electrical conductivity. Our study demonstrates that tuning the PPy nanowire mass ratio 
in hybrid Metal Oxide/Polymer NCs is an effective method to enhance the electrode performance of an energy storage device.
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1 Introduction

In recent decades, the depletion of fossil fuels and envi-
ronmental problems resulting from increasing greenhouse 
gas emissions have emerged as some of the most press-
ing global challenges. Lithium-ion batteries (LIBs) have 
become a promising alternative to carbon-based fuels, gar-
nering significant attention for their high energy storage 
capacity and application as power components in various 
electronic devices, such as electric vehicles, laptops, and 
mobile phones [1–4]. However, to meet the ever-growing 
demand for portable energy storage devices, improvements 
in the electrochemical capacity, cyclic durability, and rate 
ability of LIBs are necessary. The anode electrode is a 
crucial component of LIBs that plays a significant role 
in their electrochemical performance. Among all types of 
anode materials, transition metal oxides (TMOs) are par-
ticularly promising alternatives [5–8]. CuO, in particular, 
is frequently used as an anode material due to its high 
electrochemical capacity, abundance, safety, low costs, 
and environmental friendliness. However, TMOs face sev-
eral challenges, such as low electrical conductivity and 

significant volume change during consecutive charge/dis-
charge processes as active anode materials. These prob-
lems often cause electrode pulverization, electrical dis-
connection, and consequent rapid capacity decay, thereby 
impeding the use of TMOs, including CuO, as anode mate-
rials in LIBs [9–12].

Numerous attempts have been made to optimize the 
size and morphology of CuO particles to overcome the 
aforementioned issues. To date, nanoparticles with various 
structures and morphologies, such as wires, tubes, plates, 
and dots, have been synthesized. Among the synthesized 
structures, CuO micro-flowers have been found to exhibit 
high capacity and stability, owing to their large surface 
area and short lithium-ion diffusion length [13–19]. 
Another approach to address the challenges of TMOs, such 
as pulverization and low conductivity, is to enhance their 
electrochemical properties by introducing organic con-
ducting polymers, such as polyaniline and polypyrrole, as 
matrices or coating layers. These conducting polymers can 
accommodate volume changes during consecutive charge 
and discharge processes, thereby increasing the cycla-
bility of the anode. Furthermore, conducting polymers 
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can improve the conductivity of the active material and 
enhance electrode charge transfer [20–23].

In prior studies, researchers had developed Core–shell 
CuO@PPy composites using various techniques and inves-
tigated their electrochemical performance as Lithium-
ion anode material. For instance, Yin et al. synthesized 
core–shell CuO nanobelts@PPy and examined their electro-
chemical properties as anode materials, exploring the influ-
ence of PPy shell thickness on the anode’s cyclability [24, 
25]. In another study, Feng et al. synthesized CuO nanocrys-
tals coated with a PPy shell, utilizing KCl as a dopant to 
address metal oxide capacity degradation in Lithium-ion 
anode materials [26]. While previous investigations have 
employed PPy as a coating layer on CuO particles, we have 
fabricated novel CuO micro-flower/PPy nanowire nanocom-
posites (NCs) by synthesizing PPy nanowires. Our study 
focuses on exploring the influence of PPy nanowires on the 
electrochemical performance of CuO particles.

2  Experimental section

2.1  Materials

Copper(II) sulfate pentahydrate  (CuSO4.5H2O), ammonia 
solution 25%  (NH4OH), pyrrole  (C4H5N, Py), cetyltrimeth-
ylammonium bromide  (C19H42BrN, CTAB), hydrochloric 
acid (HCl) solution, and anhydrous ethanol were purchased 
from Merck, and ammonium persulfate ((NH4)2S2O8) were 
purchased from Tetra-Chem.

2.2  Preparation of samples

2.2.1  Synthesis of CuO micro‑flowers

For synthesizing flower-shaped CuO micro-particles, a 
1.6 ×  10–5 mM solution of Copper(II) sulfate pentahydrate in 
DI water was prepared by a magnetic stirrer. Then, a proper 
amount of ammonia 25% was added dropwise to the solu-
tion and stirred until reaching a pH of 11.5. Then, the solu-
tion was put in a microwave oven and irritated for 30 min 
at 900W. CuO micro-flower particles were synthesized and 
precipitated as a black powder (Fig. 1).

2.2.2  Synthesis of PPy nanowire

Polypyrrole nanowire particles were synthesized by the 
in situ chemical oxidative polymerization method in the 
presence of cetyltrimethylammonium bromide (CTAB) as 
template and ammonium persulfate (APS) as oxidant agent. 
In a typical process, 1.4 gr CTAB (0.1M) was first dissolved 
in 40-ml HCl (1M) and stirred for 1 h. Afterward, the solu-
tion was cooled to 0 °C, then 0.3-ml pre-distilled pyrrole 
monomer (was distilled and kept against exposure to light 
to eliminate residual polymerization) was added dropwise 
and stirred vigorously (1200 rpm). In this step, the viscosity 
of the solution increased dramatically. Second, the oxidant 
solution was prepared by dissolution of 0.27 gr APS in 40-ml 
HCl (1M) and cooled to 0 °C, and then added to the previ-
ous solution. The mixture was stirred for 24 h constantly in 
an ice bath. The achieved black precipitate was filtered and 

Fig. 1  A schematic of CuO 
micro-flowers and PPy  
nanowires synthesis procedure
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washed with a copious amount of DI water and ethanol till 
reaching pH 7 in the resulting suspension (Fig. 1).

To prepare CuO/PPy composites with different PPy 
weight ratios, a calculated amount of polypyrrole suspen-
sion and synthesized CuO micro-flowers were stirred for 2 
h. The product was filtered and dried in the oven at 80 °C for 
12 h. CuO@PPy nanocomposite with 3.5-, 5-, 6.2-, and 8.8-
wt% PPy was prepared and used as anodic active material.

3  Results and discussion

3.1  TGA 

Thermogravimetric analysis (TGA) was performed on both 
bare CuO micro-flowers and CuO/PPy NCs with varying 
PPy weight ratios in the  N2 atmosphere to quantify the 
amount of PPy in the nanocomposites. The samples were 
heated from 25 to 600 °C at a rate of 10 °C  min−1. The 
TGA results are presented in Fig. 2a. The slight weight 
loss observed in both bare CuO and CuO/PPy NCs samples 
below 200 °C is likely attributed to the removal of surface 
hydroxyls or absorbed solvents. The weight loss between 
200 and 600 °C in the NCs samples is predominantly due to 
the decomposition of PPy in the  N2 atmosphere [27, 28]. In 
contrast, the bare CuO sample shows no significant weight 
loss in the tested temperature range. Based on the weight 
loss in the TGA curves, the mass fraction of PPy in the NCs 
samples was determined to be 3.5%, 5%, 6.2%, and 8.8%.

3.2  XRD

X-ray Diffraction (XRD) analysis was performed to inves-
tigate the crystalline structure of the synthesized samples. 
Figure 2b illustrates the XRD patterns of bare CuO, pure 
PPy nanowires, and CuO/PPy NCs with varying PPy mass 
ratios. All the characteristic diffraction peaks of bare CuO 
and NCs align well with the monoclinic phase of CuO 
(JCPDS No.05-0661), which exhibits diffraction peaks at 
32.5°, 35.6°, 38.8°, 48.8°, 53.4°, 58.2°, 61.6°, 66.3°, and 
68.1°, attributed to the (110), (1 ̅11), (111), (2 ̅02), (020), 
(202), (1 ̅13), (3 ̅11), and (220) planes of the monoclinic 
structure of CuO [29, 30]. The absence of any impurity dif-
fraction peaks, such as Cu(OH)2 and  Cu2O, confirms the 
high purity of the synthesized CuO micro-flowers and CuO 
NCs. Additionally, the pure PPy XRD curve displays a broad 
peak at 2θ ~ 23°, indicating the amorphous structure of PPy. 
However, this peak is scarcely noticeable in CuO/PPy sam-
ples due to its weak intensity in comparison to the CuO 
diffraction peak [24].

3.3  FT‑IR

The chemical structure and composition of the synthesized 
samples were determined using Fourier transform infrared 
(FT-IR) spectra. As shown in Fig. 2c, two absorption bands 
at 497  cm−1 and 611  cm−1 were observed in all samples, 
which can be attributed to the Cu–O stretching vibration, 
indicating the successful formation of monoclinic CuO in 
the samples. Absorption peaks at 1620  cm−1 were identi-
fied as existing water molecules in the products. The peak 
at approximately 1462  cm−1 is assigned to the stretching 
vibration of the C–N bond in the PPy ring, while peaks near 
1065  cm−1 and 789  cm−1 are ascribed to the C–H in-plane 
and out-of-plane vibrations in the PPy ring, respectively [31, 
32].

3.4  BET

The Brunauer–Emmett–Teller (BET) gas-sorptometry 
technique was employed to determine pore volume, pore 
diameter, and specific surface area of the as-prepared 
CuO micro-flowers, as shown in Fig. 3. The  N2 adsorp-
tion/desorption isotherms of the synthesized CuO micro-
flowers exhibited the typical type IV behavior, which is 
indicative of mesoporous materials and is characterized by 
the presence of a hysteresis loop [33]. The BET specific 
surface area of the synthesized CuO micro-flowers was 
determined to be 14.504  m2  g−1, while the single point 
adsorption total pore volume was found to be 0.047757 
 cm3  g−1. Additionally, analysis of the corresponding Bar-
rett–Joyner–Halenda (BJH) pore diameter distribution 
curve revealed an average pore size of 13.171 nm.

3.5  Morphology

The present study employed field-emission scanning 
electron microscopy (FESEM), EDS, and EDX to ana-
lyze the morphology, size, and chemical composition of 
bare CuO particles, PPy nanowires, and CuO/PPy NCs. 
As demonstrated in Fig. 4, CuO particles exhibit uni-
form micro-flowers consisting of intermingled ultrathin 
nanosheets, forming hierarchical nanostructures with a rel-
atively large surface area. This unique structure has been 
shown to reduce the diffusion length of lithium ions and 
improve lithium storage. To synthesize CuO micro-flow-
ers, Copper(II) sulfate was employed as a Cu precursor in 
alkaline aqueous media with the addition of ammonia to 
increase the solution’s pH. The reaction between  Cu2+ and 
 NH4OH led to the formation of Cu(OH)2 precipitates as 
initial nuclei. Upon microwave irradiation of the solution 
for 30 min at 900 W, CuO nanoflakes were produced, as 
indicated by reaction 2.
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It is noteworthy that the presence of excess  NH3 and  NH4 
in the solution may dissolve Cu(OH)2 precipitates, resulting 
in the formation of CuO particles via the complex reaction 
shown below:

Therefore, it is essential to optimize the ammonia con-
centration to synthesize CuO nanoflakes successfully. A 
high ammonia concentration may lead to the dissolution 
of Cu(OH)2 precipitates, preventing the formation of CuO 
particles [15].

(1)Cu
2+ + 2NH

4
OH → Cu(OH)2 ↓ + 2NH

4+

(2)Cu(OH)2(s)
Δ

⟶CuO (s) + H
2
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Fig. 2  TGA (a), XRD (b), and FT-IR (c) curves of bare CuO micro-flowers and CuO/PPy NCs with different PPy weight ratios. CuO/PPy NCs 
synthesized with different polymerization times
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The microwave-assisted hydrothermal method, which is 
used, has emerged as a promising approach for synthesiz-
ing metal oxide nanostructures, offering a range of benefits. 
One of the key advantages is the ability to produce nano-
structures with fine crystals and controllable morphology. 
By combining the hydrothermal method with microwave 
heating, this technique allows for the precise control over 
the size and shape of metal oxide nanostructures. The result 
is a high degree of purity and a narrow distribution of grain 
sizes, which is crucial for many applications. In addition 
to the refined crystal properties, the microwave hydrother-
mal method offers rapid synthesis and improved energy 
efficiency compared to traditional hydrothermal methods. 
The application of microwave heating reduces the reaction 
time significantly, enabling the production of metal oxide 
nanostructures in a shorter duration. Moreover, it reduces 
energy consumption, making the process more environmen-
tally friendly [34–36].

The morphology and chemical composition of syn-
thesized PPy particles were also studied by FESEM and 
EDX as depicted in Fig. 5. PPy particles exhibit nonwo-
ven structures composed of nanowires with an average 
diameter of 30 nm, which were formed using cetyltri-
methylammonium bromide (CTAB) as a soft template. 
CTAB is a cationic surfactant with both hydrophilic and 
hydrophobic moieties, which can form micelles of vari-
ous sizes and shapes in aqueous media. The morphology 
of these micelles and, consequently, the morphology of 
the synthesized PPy can be controlled by varying the 

solution’s CTAB concentration, temperature, and pH. At 
specific CTAB concentrations, cylindrical micelles can 
be formed. By adding pyrrole monomers and ammonium 
persulfate (APS) to the media, bulk polymerization occurs 
in the interior of these threadlike micellar aggregates [37, 
38]. Figure 6 illustrates the morphology, structure, and 
chemical composition of CuO/PPy NCs with varying PPy 
contents (3.5-, 5-, 6.2-, and 8.8-wt% PPy). These high-
magnification images indicate that CuO micro-flowers and 
PPy nanowires are attached in many areas, forming well-
distributed composites.

3.6  Electrochemical properties of samples

The composite structure of CuO/PPy NCs renders them 
an auspicious candidate for energy storage applications. 
Consequently, the electrochemical performance of these 
composites was scrutinized as an active anode material 
for Li-ion batteries. For electrochemical analysis, the syn-
thesized samples were deployed as the working electrode 
in a 2025 coin-type cell. A lithium sheet was used as the 
counter and reference electrode, while celgard 2300 was 
utilized as a separator. The cell electrolyte is composed of 
LiPF6 (1.0 mol  L−1) in a 1:1 (w:w) mixture of ethylene 
carbonate (EC) and dimethyl carbonate (DMC). The entire 
cell assembly was conducted in an argon-filled glove box, 
followed by carrying out cyclic discharge/charge measure-
ments on the prepared coin cells.

Fig. 4  Low-magnification and high-magnification FESEM, EDS elemental mapping images, and EDX of the synthesized CuO micro-flowers
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3.6.1  Discharge/charge profile

Figure 7 presents the galvanostatic discharge/charge pro-
files of the anodes composed of bare CuO micro-flowers 
and CuO/PPy NCs with various concentrations of PPy 
nanowires (3.5, 5, 6.2, and 8.8 wt%). It can be observed 
that the discharge–charge profiles of CuO/PPy NCs are 
analogous to that of bare CuO, indicating that the incor-
poration of organic polypyrrole does not alter the lithium 
storage behavior of CuO anodes. Specifically, the initial 
discharge and charge capacities of bare CuO anode are 
1010 and 723 mAh  g−1, respectively, at a rate of 0.2C. 
However, due to the formation of irreversible phases dur-
ing the first charge process, the second discharge capac-
ity decreased to 769 mAh  g−1 and gradually dropped to 
710 and 630 mAh   g−1 after the fifth and tenth cycles, 
respectively.

In the case of CuO/3.5-wt% PPy, as depicted in Fig. 7, 
the initial discharge and charge capacities are 931 and 670 
mAh  g−1, respectively, at 0.2 C and decrease to 673, 610, 
and 526 mAh  g−1 for the second, fifth, and tenth cycles, 
respectively. For CuO/5-wt% PPy, the first and second 
discharge and charge capacities are 944, 676, 667, and 
626 mAh   g−1, respectively, demonstrating a marginal 
improvement compared to the CuO/3.5-wt% PPy sample. 
For CuO/6.2-wt% PPy, the first and second discharge and 
charge capacities are 943, 652, 627, and 588 mAh  g−1, 
respectively. Lastly, for CuO/8.8-wt% PPy, the initial and 
second discharge and charge capacities are 915, 718, 688, 
and 571 mAh  g−1, respectively.

3.6.2  Differential capacity versus voltage

To elucidate the redox behavior of the samples, Fig. 8 dis-
plays the differential capacity versus voltage (dQ/dV) plots 
of the first, second, fifth, and tenth cycles for both bare CuO 
micro-flowers and CuO/PPy NCs with varying PPy weight 
ratios. The peaks observed in the dQ/dV plots represent the 
plateaus present in the discharge–charge curves, which cor-
respond to the lithiation and delithiation reactions of the 
samples. As depicted in Fig. 8, three reduction peaks can be 
observed in the first discharge curves of all samples. These 
peaks, located at around 2.1, 1.2, and 0.97 V, respectively, 
are attributed to the insertion of lithium-ion and the for-
mation of  [CuII

1−xCuI
x]O1−x/2 (0 ≤ x ≤ 0.4) solid solution, 

the formation of  Cu2O, and the decomposition of  Cu2O 
into  Li2O and Cu. Furthermore, two oxidation peaks are 
observed in the first charge curves of all samples, appearing 
at approximately 2.3 and 2.7 V, respectively, which corre-
spond to the delithiation process 2Cu +  Li2O →  Cu2O + 2Li 
and the partial oxidation of  Cu2O into CuO [18, 39, 40].

3.6.3  Cyclic stability of samples

To investigate the impact of PPy nanowires on the cyclic sta-
bility and performance of the samples, cyclic discharge and 
charge were performed for 100 cycles. Figure 9 displays the 
cyclic performance of CuO/PPy NCs with varying PPy con-
tents, in comparison to pure CuO micro-flowers. It is evident 
that the cyclic stability of CuO/PPy NCs has been significantly 
enhanced by increasing the PPy content from 3.5 to 6.2 wt%. 

Fig. 5  Low-magnification and high-magnification FESEM and EDX of the synthesized PPy nanowires
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Hybrid CuO/PPy NCs exhibit superior cyclic stability as com-
pared to bare CuO micro-flowers. The discharge capacity of 
CuO micro-flowers was 776 mAh  g−1 in the second cycle, 
which decreased to 89 mAh  g−1 after 100 cycles. Thus, the 
capacity retention of bare CuO was only 11% (compared to the 
second cycle). In contrast, CuO/3.5-wt% PPy delivered a sec-
ond discharge capacity of 678 mAh  g−1, which was reduced to 
128 mAh  g−1 after the 100th cycle, with a capacity retention of 
18%. Similarly, CuO/5-wt% PPy exhibited second and 100th 

discharge capacities of 668 mAh  g−1 and 231 mAh  g−1, respec-
tively, with a retention capacity of 34%, demonstrating slight 
improvement over bare CuO and CuO/3.5-wt% PPy. CuO/6.2-
wt% PPy displayed second and 100th discharge capacities of 
627 mAh  g−1 and 371 mAh  g−1, respectively, with an optimum 
retention capacity of 60%, which is five times higher than that 
of the bare CuO sample, thus demonstrating the best cyclic 
performance among all synthesized NCs in this work. Further-
more, for CuO/8.8-wt% PPy, the retention capacity reached 

Fig. 6  FESEM images and EDX of the synthesized CuO/3.5-wt% PPy (a), CuO/5-wt% PPy (b), CuO/6.2-wt% PPy (c), and CuO/8.8-wt% PPy 
(d)
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Fig. 7  Discharge/charge curves at different cycles of bare CuO micro-flowers, CuO/3.5-wt% PPy, CuO/5-wt% PPy, CuO/6.2-wt% PPy, and 
CuO/8.8-wt% PPy

Fig. 8  Differential capacity versus voltage plots of bare CuO micro-flowers, CuO/3.5-wt% PPy, CuO/5-wt% PPy, CuO/6.2-wt% PPy, and 
CuO/8.8-wt% PPy
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29% with the second and 100th discharge capacities of 688 
mAh  g−1 and 200 mAh  g−1, respectively.

The improved performance observed in CuO/PPy NCs 
anodes, in comparison with bare CuO anode, is primarily 
attributed to the presence of PPy nanowires, which enable 
accommodation of volume changes during consecutive dis-
charge–charge processes and prevent the active anode mate-
rial from pulverization and aggregation, thereby increasing 
its mechanical integrity[24, 25, 41]. As seen in Fig. 9, the 
capacity of CuO/8.8-wt% PPy increased gradually after the 
50th cycle. This phenomenon is commonly observed for 
metal oxide active anode materials, and it is likely related 
to the formation of a Solid Electrolyte Interface (SEI) and 
activation of the anode material. During consecutive dis-
charge–charge processes, the electrolyte decomposes on 
the surface of the anode, resulting in the formation of a 
polymeric gel-like layer on the surface of the anode, known 
as SEI. This layer contains electroactive compounds, such 
as lithium carbonate and methoxide, which deliver excess 
capacity at low potential through pseudo-capacitance-type 
behavior. At this stage, the decomposition quantity of SEI 
is greater than its formation during the discharge–charge 
process, resulting in the thickening of the SEI membrane and 
generating extra capacity. Moreover, successive discharge 
and charge cycles cause volume variation in the anode active 
material and increase available surface and  Li+ diffusion 
[42, 43].

4  Conclusion

In this study, we have successfully synthesized CuO micro-
flowers, PPy nanowires, and CuO/PPy NCs with varying 
PPy weight ratios. Our results demonstrate that the PPy 

content plays a critical role in both the structural character-
istics and lithium storage properties of the hybrid CuO/PPy 
NCs. The presence of PPy nanowires serves to accommodate 
the significant volume changes experienced by CuO struc-
tures during the charge and discharge processes. It prevents 
anode pulverization due to the elastic nature of the polypyr-
role. As a result of the formation of organic/inorganic nano-
composites of CuO/PPy NCs, we observe higher lithium 
storage capacity, better cyclic stability, and higher capacity 
retention. Specifically, we find that an increase in the weight 
percentage of polypyrrole leads to a significant improve-
ment in discharge/charge capacities and cycling performance 
compared to bare CuO micro-flowers. Notably, we identify 
the optimized CuO/PPy NCs with 6.2-wt% PPy as having 
a high initial capacity of 943 mAh  g−1 and retaining a high 
reversible value of 371 mAh  g−1 after 100 cycles. These 
improved performance characteristics can be attributed to 
the beneficial structural features provided by PPy nanowires.
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