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Abstract
This paper discusses about a facile transition metal tungstate thin films preparation method and their remarkable photoelec-
trochemical properties. The films of AWO4 (A2+ = Fe, Co, Ni, Cu) were deposited onto conductive fluorine-doped tin oxide 
(FTO) glass substrate. The results of X-ray diffraction analysis indicated the presence of crystalline films. Field emission 
scanning electron microscopy images revealed nanostructured materials. X-ray photoelectron studies were employed to 
analyze elemental and chemical composition. Optical behavior indicated indirect transitions for all AWO4 films. Photo-
electrochemical studies displayed that AWO4 films were successfully used as photoanodes in a photoelectrochemical cell 
under polychromatic irradiation. From electrochemical measurement, it was possible to estimate the flat band potential and 
so prevising suitable application of photoelectrodes. This work reports for the first time a comparative and comprehensive 
photoelectrochemical study with AWO4 films prepared in a simple way. The results indicate that the films can be used as 
photoanodes in water splitting reactions and other photoelectrocatalytic applications.

 *	 Laecio Santos Cavalcante 
	 laeciosc@gmail.com

1	 Programa de Pós‑Graduação em Química‑PPGQ, 
Universidade Federal do Piauí-UFPI, Teresina, 
PI 64049‑550, Brazil

2	 PPGQ‑GreeTec‑CETEM, Universidade Estadual 
do Piauí-UESPI, Rua: João Cabral, N, 2231, P.O. Box 381, 
Teresina, PI 64002‑150, Brazil

3	 CDMF, Universidade Federal de São Carlos-UFSCar, 
P.O. Box 676, São Carlos, SP 13565‑905, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s10800-023-01851-w&domain=pdf
http://orcid.org/0000-0002-0782-4876


1350	 Journal of Applied Electrochemistry (2023) 53:1349–1367

1 3

Graphical Abstract

Keywords  Wolframite thin films · Photoelectrochemical · 
Visible irradiation · Bands diagram

1  Introduction

In the last years, the growth of the world population and 
expansion of industrial centers have raised serious concerns 
caused by pollution and demands for clean water (H2O) and 
energy [1]. Versatile, low-cost, and environment-friendly 
treatment technologies have been investigated to mitigate 
these issues. Besides that, recent developments in research 
and application of heterogeneous photocatalysis for light 
(ultraviolet, visible, or solar irradiation) conversion have 
been used as the most advanced and greenest method [2]. 
Among various semiconductors applications, photoelectro-
chemical (PEC) cell for H2O splitting based on semicon-
ductor oxides materials is a promising and environmentally 
friendly alternative approach to convert solar energy into 
a fuel source [3]. In addition, persistent organic pollutants 
or carbon dioxide (CO2) can be converted into less inert 
compounds by photo(electro)catalytic processes [4].

In the photoelectrocatalysis process, the semiconductor 
material must be supported on the conductive substrate as 
a film, usually called photoelectrode. The photocatalytic 
process starts when the material absorbs light with energy 
equal to or superior to the semiconductor bandgap energy 
(Ebg) value [5]. This process results in photogenerated 
electrons (e−

(CB)
) in the conduction band (CB) and holes 

(h+
(VB)

) in the valence band (VB). These photogenerated 
charges can reach the semiconductor surface and then react 
with chemical species present in an electrolyte solution. It 
is typically considered that an electron can be transferred 
to an acceptor molecule if its redox potential lies below 
the CB of the photocatalyst, while a hole can be trans-
ferred to a donor molecule if its redox potential lies above 
the VB of the photocatalyst [6, 7].

Several types of metal oxide semiconductors such as 
titanium dioxide (TiO2) [8, 9], tungsten trioxide (WO3) 
[10], hematite (α-Fe2O3) [11], and zinc oxide (ZnO) [12], 
have been investigated in many photocatalytic applica-
tions. However, although these materials exhibit substan-
tial photocatalytic activity, TiO2 and ZnO have limited 
application due to their high Ebg values. On the other hand, 
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WO3, α-Fe2O3 and Ag3PO4 oxides are colored, but have 
some drawbacks, which include reduced chemical stability 
at alkaline condition, acid medium and weak photosta-
bility, respectively [10–14]. In general, colored semicon-
ductor oxides undergo photocorrosion, while white oxides 
like TiO2 and ZnO are photoactive only under ultraviolet 
radiation. In addition, the main disadvantages presented by 
oxides in catalytic applications include a short carrier path 
length and, high charge carrier recombination [15–17]. 
Thus, ideally, it would be important to obtain oxides mate-
rials that present excellent chemical stability and photoac-
tivity under visible irradiation. This way, it is important 
to research semiconductors with small Ebg, facile surface 
reaction kinetic, abundant and stable chemically semi-
conductors for efficient PEC H2O splitting. Recently, our 
research group has investigated the properties of copper 
tungstate (CuWO4) films as photoelectrode for photoca-
talysis applications [18, 19]. CuWO4 is a transition metal 
tungstate, displays great chemical stability, and can har-
vest sunlight owing to its low bandgap energy.

Transition metal tungstates like AWO4 (with A2+ = Fe, 
Co, Ni, and Cu) are ternary oxide semiconductors that 
have attracted considerable attention due to their interest-
ing photoelectrochemical, electrocatalytic, luminescent, 
and photocatalytic properties [20, 21] Wolframite-type 
tungstates are favored by metal cations with radii less 
than 0.077 nm, while metal ions greater than 0.099 nm 
favor scheelite-type tungstates [22]. In tungstates with the 
wolframite-type monoclinic structure the transition metal 
(A) and W atoms are both bonded with six oxygen atoms 
to form [AO6]/[WO6] clusters. In scheelite structures, the 
transition metal is combined with eight oxygen and the 
W atoms are bonded with four oxygen, which forms the 
[AO8]/[WO4] clusters [23–25].

The iron tungstate (FeWO4) is a semiconductor with a 
bandgap of approximately varying of 1.8 to 2.0 eV, absolv-
ing a wide range of light responses and playing an important 
role in the magnetic and photocatalytic potential applica-
tion [26–28]. Cobalt tungstate (CoWO4) has a well-defined 
magnetic structure and bandgap of about 2.8 eV, exhibiting 
excellent electrical and magnetic properties [29]. Nickel 
tungstate (NiWO4) demonstrates an indirect bandgap of 
2.0 eV [30] and the remarkable quantum size effect [31], 
which make it a potential photoanode candidate in the H2O 
splitting; and, others applications including photocatalysis 
[32], antimicrobial [33] and electrocatalysis [34]. Copper 
tungstate (CuWO4) has an indirect bandgap energy (Ebg) 
in the range of 2.2 to 2.45 eV [35–37], owing to their suf-
ficient chemical stability, efficient sunlight utilization, and 
nontoxicity has seen applicated highly photoelectrocatalytic 
activity and photoelectrochemical H2O splitting [38–40]. 
In addition, others applications have aroused technological 
and scientific interest such as scintillation detectors [41], 

humidity and gas sensors [42, 43], supercapacitors [44], 
photoanodes [35], supercapacitor [45, 46], photoelectrolysis 
electrodes for lithium-ion batteries [47–49], electrochromic 
devices [44, 50] and photoelectrodes for hydrogen treatment 
[51].

Recently, some synthesis methods were employed for 
obtention of metal tungstate-based photoanode films as 
hydrothermal method [40], template-assisted synthesis 
method [52], co-precipitation [20], spray pyrolysis [53] and 
electrochemical deposition [54]. The polymeric precursor’s 
method (PPM) has been very effective about conventional 
methods principally for wastewater treatment [55]. The 
main advantages of PPM have been seen allowing the con-
trol of the composition, the grain size, and the homogeneity 
of powders [56]. There is a variety of studies using AWO4 
as dispersed photocatalyst particles in the reaction medium 
for organic pollutants degradation. However, there are still 
few reports of preparing films from these materials. In addi-
tion, most film preparation methods are time-consuming and 
require an expensive structure. Thus, simple methodology, 
low cost, and high-performance AWO4 films still need to 
be investigated. To the best of our knowledge, the PPM has 
not been used to obtain transition metal tungstate AWO4 
(A2+ = Fe, Co, Ni, and Cu) thin films. PPM has been studied 
in preparation of AWO4 oxides semicondutores at powder 
form. In addition, this is the first time that a detailed photo-
electrochemical study of these materials has been presented.

Therefore, in this paper, AWO4 (A2+ = Fe, Co, Ni, and Cu) 
thin films were synthesized by the PPM and deposited on the 
transparent conductive substrate (FTO-glass) using a sim-
ple drop-casting method. After thermal treatment, the film’s 
photoelectrochemical behaviors were investigated. These 
studies are important and can provide information about 
the potential use of films in photocatalytic applications, 
such as H2O splitting. Besides, all films were structurally 
characterized using X-ray diffraction (XRD) patterns; the 
composition was analyzed by X-ray photoelectron spectros-
copy (XPS); the morphological features were examined by 
field emission scanning electron microscope (FE-SEM), and 
the optical bandgap energies were estimated using UV–Vis 
spectroscopy.

2 � Experimental section

2.1 � Materials and procedure

The citric acid (C6H8O7; 99% purity), tungstic acid (H2WO4; 
99% purity), ammonium iron (II) sulfate hexahydrate 
[(NH4)2Fe(SO4)2, 99,9% purity], cobalt (II) nitrate hexahy-
drate [Co(NO3)2·6H2O, 99.99% purity], nickel (II) nitrate 
hexahydrate [Ni(NO3)2·6H2O, 99.99% purity] and cop-
per nitrate trihydrate [Cu(NO3)2.3H2O; 99% purity] were 
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purchased from Sigma-Aldrich®. Ammonium hydroxide 
(NH4OH, 35% purity) and ethylene glycol (C2H6O2, 99.5% 
purity) were purchased from Dynamic®.

AWO4 (A2+ = Fe, Co, Ni, Cu) films were obtained from 
the resin by thePPM [57]. This is a modified sol–gel method 
that is based on the complexation of metal alkoxides, and 
the esterification/polymerization reaction [58]. Recently, 
this synthesis method has been successfully used to obtain 
crystalline ceramic powders when calcined at temperatures 
between 500 and 700 °C [55, 59, 60]. For first time here was 
used to obtain metal tungstate thin films.

2.2 � Synthesis of AWO4 thin film by polymeric 
precursor method

A tungsten metal citrate (Cit-W, pH = 7) was initially 
prepared using deionized water (DI-H2O) as a solvent, 
0.135  mol citric acid (C6H8O7) as a complexing agent 
and 0.045 mol tungstic acid (H2WO4) as a network modi-
fier forming a transparent solution with concentration of 
0.4256 μmol L−1. After homogenization, bivalent cation 
precursors (A = Fe2+, Co2+, Ni2+, and Cu2+) were added to 
citrate, respectively. The 150 g citrate with each bivalent 
cations was heat-treated and stirred at 90 °C for 2 h and 
obtained a homogeneous brown, wine, green, and blue color 
solution for iron, cobalt, nickel, and copper, respectively. 
Ammonium hydroxide (NH4OH) was used to adjust the 
pH ~ 7. This solution was polymerized with the addition of 
2.467 g ethylene glycol (C2H6O2, polyalcohol); after reac-
tion at a temperature of approximately 90 °C is formed a 
polyester and H2O. The citric acid/metal molar ratio was set 
at 3:1 and 60:40 for citric acid/ethylene glycol to promote 
citrate polymerization. The polymerized solution was heated 
until H2O evaporated and a polymeric resin formed about 
24 h and cooled to 16 °C. Before the film’s preparation, 
the FTO glasses (1.0 × 2.5 cm) were cleaned by a sonica-
tion bath, successively, with H2O and a neutral liquid soap, 
DI–H2O, and finally with isopropyl alcohol for 15 min in 
each step. For films preparation, an adhesive tape was used 
to define the geometrical area of the films (1.0 cm2); then, 80 
μL resin was dripped onto the FTO-glass (Sigma-Aldrich® 
R-7Ω cm−2) by dropping casting method, heated at 100 °C 
for 1 h (10 °C /min) and heat-treated at 500 °C for 2 h (2 °C 
/min) in a muffle furnace. To form a second and third layer, 
the resin was dropped again, heated and one unique thermal 
treatment was realized.

2.3 � Structural, morphological, optical, 
and composition characterization of AWO4 films

AWO4 (A = Fe2+, Co2+, Ni2+, and Cu2+) thin films 
were characterized by the X-ray diffraction (XRD) 

pattern (Rigaku-DMax 2500PC, Japan with Cu Kα radiation 
(λ = 0.15406 nm) in the 2θ range from 10 to 80° with a scan 
speed of 0.02°/min. The diffraction patterns were compared 
to the data from the Inorganic Crystal Structure Database 
(ICSD). Optical analyzes were obtained by UV–Vis trans-
mittance spectra using the UV–Vis spectrophotometer (Shi-
madzu, 2600). The Ebg values of the samples was obtained 
by the transmittance spectrum in the UV–Vis region, using 
FTO-glass as a reference, applying the Wood-Tauc plot 
method [61]. The surface and average grain size were char-
acterized by field emission–scanning electron microscopy 
(FE-SEM, Supra 35-VP Carl Zeiss (Germany)). The images 
were obtained with a working voltage of 15 kV. The com-
position of the heterojunction film surface was analyzed by 
X-ray photoelectron spectroscopy (XPS; Scientia Omicron 
ESCA, Germany) using a monochromatic X-ray Al Kα 
(1486.7 eV).

2.4 � Photoelectrochemical analysis of AWO4 
photoelectrodes

The photoelectrochemical properties were investigated using 
an electrochemical cell fabricated with an optic glass window 
(100% transmittance for λ > 360 nm). Working electrodes were 
the AWO4 (A2+  = Fe, Co, Ni, and Cu) films, a Pt wire as the 
counter electrode, and Ag/AgCl (in 3.0 mol L−1 KCl saturated 
aqueous solution) was the reference electrode (in Luggin cap-
illary). A three-electrode system configuration was used to 
measure; and so, was investigated in an aqueous solution of 
0.1 mol L−1 Na2SO4 (pH 5.6) as the inert support electrolyte.

The measurements were performed using an Autolab Poten-
tiostat/Galvanostat (PGSTAT302N Metrohm) and recorded by 
the NOVA 1.7 software, in the absence of light (dark) and 
under backside polychromatic irradiation. A metallic vapor 
discharge lamp (HQI-TS NDL) with a nominal potency of 
150 W was used to irradiate the system. All our measurements 
were carried out with an irradiance of 100 mW cm−2, with the 
AWO4 films placed 10 cm from the irradiation source, similar 
to previous studies carried out by our group [9, 62]. The irradi-
ance was measured with a Newport Power Meter, model 843-
R. For more details on the behavior of the radiation source, 
see the supplementary material section (Fig. S1). Photoelec-
trochemical analyses consisted initially in the determination 
of layers which were using linear sweep voltammetry (LSV). 
Thus, the determination of the flat band potential (Efb) was car-
ried out with the data recorded in the anodic potential range of 
0.1–1.3 V at a scan rate of 1.0 mV s−1, using a chopped illumi-
nation at 0.1 Hz following the Gärtner–Butler model [63, 64]. 
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The photocurrent-potential was measured using cyclic voltam-
metry (CV) with a scan rate of 20 mV/s in the dark and under 
polychromatic irradiation. Also, the chronoamperometric 
curves were registered under dark or light conditions with the 
electrodes polarized at + 0.7 V (vs Ag/AgCl). For comparison, 
the potential registered using the Ag/AgCl reference electrode 
was adjusted to a reversible hydrogen electrode (RHE), accord-
ing to the Eq. (1) [37, 54, 65]:

Further, the potentials after adjustment with respect to the 
RHE (in volts) were converted to energy levels (eV) relative 
to vacuum level using Eq. (2) [66]:

From the photoresponse, it was possible to calculate the 
recombination lifetime from the time constant (τ) obtained 
from Eq. (3), which describes the kinetics of the transient cur-
rents as follows below:

where the ratio R is R =
Jt−Jst

Jin−Jst
 , Jt is the photocurrent at time 

t, Jst is the steady-state photocurrent, and Jin is the photocur-
rent at the initial time [67, 68].

(1)
E (vs. RHE) = E (vs. Ag∕AgCl) + 0.0591Vx pH + 0.199V.

(2)E(eV) =
[

−4.5eV − eE(RHE)

]

(3)R = exp(−t∕�)

3 � Results and discussion

3.1 � Structural, morphological and optical 
characterization of AWO4 films

The crystal structures of the resulting samples were iden-
tified by the X-ray diffraction (XRD) patterns. The XRD 
patterns are recorded in the range of 10–80º as shown in 
Fig. 1a–d. Diffraction signals suppressed and marked with 
the symbol “•” correspond to the FTO transparent conduc-
tive glass substrate.

For FeWO4, CoWO4, and NiWO4 films displayed 
in Fig. 1a–c, the XRD patterns show diffraction peaks 
which are characteristic and attributed to (010), (100), 
(110), (011), (111), ( 11 1), (020), (002), (021), and (200) 
planes, at 2θ equal to 15.6º, 19º, 24º, 25º, 30.6°, 31°, 36°, 
37°, and 38°, respectively. These XRD patterns are char-
acteristic of wolframite-type monoclinic phase structure 
with space group (P2/c) as determined by ICSD card 
No. 15952, 15851, and 15852 for FeWO4, CoWO4, and 
NiWO4 crystal, respectively [69, 70]. On the other hand, 
the XRD pattern for the CuWO4 sample (Fig. 1)d shows 
typical diffraction peaks for triclinic structure (ICSD No. 
16009) with space group (P1 ) [71]. The XRD diffraction 
were registered at 2θ of 15.29º, 18.19º, 19.02º, 22.94º, 
23.56º, 24.13º, 25.96º, 26.97º, 28.70º, 30.14º, 30.85º, 

Fig. 1   XRD patterns of (a) 
FeWO4, (b) CoWO4, (c) 
NiWO4, and (d) CuWO4 thin 
films synthesized by the PPM 
and heated at 500 °C for 2 h. 
The “•” indicates the FTO-glass 
substrate. The vertical bars 
represent planes and intensity 
of the ICSD card No. 15952, 
15851, 15852, and 16009 for 
the pure monoclinic FeWO4, 
CoWO4, NiWO4 phase, and 
pure triclinic CuWO4 phase, 
respectively
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31.65º, 32.11º, 34.34º, 35.66º, 36.44º and 36.86º, which 
correspond to the planes (010), (001), (100), (110), (0 1 
1), (011), ( 1 10), (101),(11 1), (111), (020), ( 1 11), (1 1 1), 
(120), (021 ), (021), and (002), respectively. The diffrac-
tion peaks without other impurities or deleterious phases, 
which suggests that films can be prepared successfully by 
means of PPM.

FE-SEM images for the morphology, particles size, and 
surface of AWO4 (A2+ = Fe, Co, Ni, and Cu) films are shown 
in Fig. 2a–d, respectively. In Fig. 2a–d, the FE-SEM images 
revealed the morphology and particles size of the FeWO4, 
CoWO4, NiWO4 and CuWO4 films. The deposition of the 
FeWO4, CoWO4, NiWO4, and CuWO4 films on a conductive 
substrate (FTO-glass), followed by annealing at 500 °C, led 
to an immobilized particle density of ca. 1.6 ± 0.2 mg cm−2, 
1.2 ± 0.2 mg cm−2, 0.9 ± 0.2 mg cm−2 and 1.4 ± 0.1 mg cm−2, 
respectively. The FeWO4 film presented in Fig. 2a indicates 
that has a well-sintered nanoplates-like structure with an 
average particles size of 51.3 nm ± 1.343 (See histogram 
in Fig. S2(a)). Yu et al. reported that FeWO4 synthesized 

by hydrothermal method present morphology influenced 
by pH condition, which can change from hexagonal flakes 
to nano-rods [72]. Figure 2b shows the morphological sur-
face for CoWO4 film with irregular spherical nanoparticles 
and an average particles size of ca. 27.7 nm ± 0.9799 (See 
histogram in Fig. S2(b)). Whereas, the NiWO4 film exhib-
its an irregular surface morphology formed by polyhedron 
interconnected particles (Fig. 2c) and an average particles 
size of ca. 74.75 nm ± 0.8185 (See histogram in Fig. S2(c)). 
Figure 2d shows that CuWO4 film is formed by irregular 
nanoparticles with an average size of 24.77 nm ± 2.537 (See 
histogram in Fig. S2(d)). Thus, the presence of several grains 
in the CuWO4 film agglomerated is very similar to that spec-
tated to triclinic structure crystals [37]. In this case, a porous 
structure with a non-uniform pore distribution is formed. 
This porous nanostructure can contribute to superior charge 
mobility and a large specific surface area [73]. In all cases, 
the average crystal size was calculated by equatorial diam-
eter and estimated using the GNU Image Manipulation Pro-
gram (GIMP 2.10.10 version for Windows 7–64 bits) [74].

Fig. 2   FE-SEM images of the surface of the (a) FeWO4, (b) CoWO4, (c) NiWO4, (d) and CuWO4 films synthesized by PPM and heated at 
500 °C for 2 h
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The optical properties of these films were examined 
with UV–Vis spectra registered in transmittance mode and 
estimated the bandgap energy (Ebg) by Wood-Tauc plot 
method as shown in Fig. 3. Figure 3a shows that the AWO4 
(A2+ = Fe, Co, Ni, and Cu) films had a maximum transmit-
tance of ~ 72% in the visible region and interference fringes 

can be registered in FeWO4, and CoWO4 thin films. Con-
sidering an indirect gap transition, the optical Ebg for AWO4 
(A2+ = Fe, Co, Ni, and Cu) films were calculated with the 
following Eq. (4) [61]:

Fig. 3   a UV-Vis transmittance curves of films and bandgap energy estimated by Wood-Tauc plot method for (b) FeWO4, (c) CoWO4, (d) NiWO4 
and (e) CuWO4 film deposited on FTO substrate.
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In this Eq. (4), the hυ is the incident photon energy, C 

is a constant of proportionality of semiconductors, Ebg is 
the optical bandgap energy and α is the optical absorption 
coefficient of the film. According to the equation, (αhν)0.5 
has a linear relation with the hν [75]. The optical Ebg val-
ues of AWO4 (A = Fe, Co, Ni, Cu) films were determined 
by extrapolation of the linear relation to (αhv)0.5 = 0. 
As illustrated in Fig. 3 b–e, the Ebg of FeWO4, CoWO4, 
NiWO4 and CuWO4 films are estimated to be about 1.87, 
2.40, 2.45, and 2.19 eV, respectively. These Ebg values are 
slightly close that on registered in other studies [30, 54, 
76–80]. Slight deviations in the Ebg values can be attrib-
uted to the effects of film morphology and particle sizes. 
These results indicate that the materials are able to harvest 
sunlight. Also, UV–Vis measurements using an integrat-
ing sphere were made. In general, there are no significant 
differences for the curves registered in both modes (See 
Fig. S3 on the Supporting Information).

An X-ray photoelectron spectroscopy (XPS) analyses 
were utilized to investigate the elemental and chemical 
composition of samples, as shown in Figs. S4, and 4. A full 
survey spectrum shown in Fig. S4 indicate the presence of 
Fe 2p [81], Co 2p [82], Ni 2p [83], and Cu 2p states [51] 
signals due to presence these elements in FeWO4, CoWO4, 
NiWO4, and CuWO4 films samples. All XPS spectra are 
attributed to the constituent element core levels or Auger 
lines. Also, in all survey analyses, it was possible to observe 
the presence of corresponding peaks O 1 s and W 4f. The C 
1 s peak can be attributed to carbon adsorbed on the surface 
of the AWO4 films, probably due to polymeric precursors 
method not completely eliminated during the thermal treat-
ment. Table S1 displays the values of XPS primary peak for 
all A divalent ions transitions metal (A2+  = Fe, Co, Ni, and 
Cu), W 4f, and O 1 s core-level binding energies.

Metal ions (A2+  = Fe, Co, Ni, and Cu) 2p state in XPS 
spectra of each AWO4 film are presented in Fig. 4a–d. The 
deconvoluted Fe 2p XPS (Fig. 4)a consists of two peaks 
which corresponds the binding energy of Fe 2p3/2 (710.70 
and 712.48 eV), which higher binding energy of 712.48 eV 
can be attributed to + 3 oxidation state [84], and Fe 2p1/2 
(724.88 eV) due to Fe2+ in the lattice sites of FeWO4 film 
[85]. In addition, there are two shake-up satellite peaks at 
Fe 2p3/2 (715.71 and 719.81 eV) and one satellite peak at Fe 
2p1/2 (732.07 eV), which are typical Fe2+ oxidation states 
[86]. By using a Gaussian fitting method, the high-resolution 
Co 2p spectra is deconvoluted into two spin–orbit doublets 
and two shake-up satellites peaks (802.08 and 785.28 eV) 
[87]. The XPS Co 2p core-level spectra of CoWO4 film is 
presented in Fig. 4b. The deconvolution of Co 2p peak is 
divided in Co 2p3/2 (779.94 and 781.31 eV) and Co 2p1/2 

(4)(�h�)0.5 = C(h� − Ebg).
(796.57 eV) understanding Co2+ oxidation state. In same 
way that Fe for peaks of Co 2p (higher binding energy of 
781.31 eV) attributed to +3 oxidation state [88].

Similarly, an XPS Ni 2p spectrum of NiWO4 film is 
seen in Fig. 4c. The binding energy of the Ni 2p3/2 (855.08 
and 856.59 eV) and Ni 2p1/2 (872.66 and 874.28 eV) are 
resulted of spin–orbit doublets deconvolution which char-
acteristic of Ni2+ and two shake-up satellite peaks (856.59 
and 874.28 eV) and good agreement with the literature data 
[34]. Two deconvolution of Ni 2p (higher binding energy of 
874.28 eV and 856.59 eV) can be attributed to + 3 oxidation 
state [89]. The satellites peaks are typical shake-up satel-
lites which were due to the multielectron transitions and the 
decrease of the kinetic energy of emitted photoelectrons [90, 
91]. Also, Fig. 4d shows XPS core-level spectrum of Cu 2p, 
which displays two sets of Gaussian doublets (Cu 2p3/2 and 
Cu 2p1/2) located at 931.33/933.61 eV, and 951.42/953.54 eV 
and shake-up satellite peaks located at 940.52, 942.80 and 
961.40 eV assigned to a typical feature for Cu2+ oxida-
tion state [92]. On the other hand, Tang and co-works have 
shown in previous works that signals which occur at lower 
binding energy values (951.42 and 931.33 eV) can be attrib-
uted to Cu1+ oxidation state [51]. The appearance of doublet 
peaks in bivalent cations can indicate presence of mono-
valent or trivalent cations (A+ or A3+) [91, 93]. Figure 4e 
displays the W 4f core-level spectra of AWO4 (A2+ = Fe, 
Co, Ni, and Cu) films. The deconvolution of W 4f spectra 
into one pair of spin–orbit doublet peaks dominated by W 
4f5/2 and W 4f7/2 states corresponding to the W6+ valence 
state in tungstate-based crystal structure [7, 94]. The binding 
energy values of W 4f show doublet of W 4f7/2 and W 4f5/2, 
besides W 5p3/2 at 33.64/34.28, 35.95/37.22 and 39.83 eV 
for FeWO4, 34.26/34.96, 36.45/36.65 and 40.36 eV for 
CoWO4, 34.14/34.72, 36.57/36.71 and 40.37 eV for NiWO4 
and 34.42/35.07, 36.73/37.91 and 40.19 eV for CuWO4 [95]. 
The appearance of doublet peaks of W 4f and W5p in XPS 
spectra indicates the presence of W5+ in the film [96]. As the 
presence of W5+ (or A+) in AWO4 films can induce oxygen 
vacancies that are regarded as shallow donors [52], a higher 
concentration of W5+ will result in a larger electron density 
in metal tungstate-based films [51]. Figure 4f shows the XPS 
O 1s core-level spectra of AWO4 films annealed at 500 °C 
for 2 h. The O1s spectra was decomposed into three peaks 
located at 529.89, 530.88 and 531.60 eV, and were assigned 
to the O–W–O bonds, lattice oxygen of Fe–O–Fe, metal-
lic oxide of Fe–O bonds in FeWO4, respectively [2, 26]. 
Similarly, the XPS O 1s spectra of CoWO4 was analyzed and 
then, was observed three peaks located at 529.32, 530.23 and 
531.40 eV. For NiWO4, the O 1s core-level spectra decon-
voluted into three peaks are located at 529.46, 530.27, and 
531.57 eV. Similar to others films, the O 1s core-level spec-
tra of CuWO4 was also deconvoluted in three peaks located 
at 529.76, 530.56 and 531.65 eV corresponding to same 
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Fig. 4   High—resolution XPS spectra for (a) Fe 2p, (b) Co 2p, (c) Ni 2p, (d) Cu 2p, (e) W 4f, and (f) O 1  s core-level spectra of FeWO4, 
CoWO4, NiWO4, and CuWO4 film, respectively
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description as previously presented. The XPS spectra con-
firm the formation of possible defect states on the surface 
and suggest the presence of oxygen vacancies created during 
production and incorporated in the crystal analyzed [15]. 
Here, the XPS data suggest that oxygen vacancies cause 
lower oxidation states in metals, in order to maintain the 
electroneutrality of the material. Thus, these defects may be 
responsible for the n-type conductivity of semiconductors, 
as well as the non-stoichiometry at surface FeWO4, CoWO4, 

NiWO4, and CuWO4 films [97]. Hence, the XPS spectra 
confirm the formation of good-quality tungstate-based films.

3.2 � Photoelectrochemical behavior of AWO4films

Figures 5a–d show the photoelectrochemical behavior of 
AWO4 (A2+ = Fe, Co, Ni, and Cu) films with different depos-
ited layers on FTO-glass was examined by linear sweep 
voltammetry (LSV) curves registered at 1mVs−1 under 
chopped 0.10 Hz polychromatic irradiation. All AWO4 films 

Fig. 5   LSV curves plots of (a) FeWO4, (b) CoWO4, (c) NiWO4, and (d) CuWO4 photoanodes in inert 0.1 mol L−1 Na2SO4 solution (pH ~ 5.6) 
irradiated with chopped polychromatic light (0.1 Hz), respectively



1359Journal of Applied Electrochemistry (2023) 53:1349–1367	

1 3

displayed a more negative photo-potential after irradiation 
condition, which means, in the dark the open-circuit-poten-
tial (OCP) value is more positive than OCP registered under 
irradiation condition (Elight-on< Elight-off vs. Ag/AgCl). This 
negative photo-potential is characteristic of n-type semicon-
ductor oxides [98]. Thus, LSV curves were registered toward 
anodic direction and positive photocurrents were observed 
as applied bias until oxygen evolution reaction (OER) sig-
nals under dark condition. To investigate the influence of 
AWO4 film layers on photocurrent response, samples were 
prepared with one, two, and three layers.

For FeWO4 and CoWO4 materials, films with two lay-
ers showed the best photoresponse values, which can be 
with associated adequate quantity and thickness of semi-
conductors, as shown in Fig. 5a,b. Moreover, the FeWO4 
and CoWO4 films with three layers showed lower values of 
photocurrents, suggesting that these films present greater 
resistance in the flow of electrons. From Fig. 5c,d, it is pos-
sible to observe that this reduction in photocurrents values 
was not registered for NiWO4, and CuWO4 films. In NiWO4 
film with three layers, higher photocurrents were observed, 
while in CuWO4 films this photoresponse value was main-
tained. For comparison effect, all other photoelectrochemical 
measures registered hereinafter were developed with two 
layers for FeWO4, CoWO4, NiWO4, and CuWO4 films.

From Fig. 5a, it is possible to observe that an enhance-
ment in photocurrent density of FeWO4 photoelectrode 
started from 0.95 V vs. Ag/AgCl (1.48 V vs. RHE). For 
CoWO4, NiWO4, and CuWO4 the photocurrent values evolve 
in potentials closer to OCP, suggesting that in these films 
the electrons can reach the conductive substrate more eas-
ily. In all photoelectrodes, some positive spikes of current 
were observed immediately after the light was turned on, 
followed by an exponential drop in current values, which 
can be related to transient effects in the semiconductor mate-
rial [65]. These spikes can be caused by the rapid injec-
tion of electrons into the CB (peak anode current), while 
the exponential drop is related to the electron/hole charges 
recombination process, even under polarization conditions. 
When the light is turned off, rapid recombination in VB 
happened and cathodic spikes can be registered, as dis-
played in Fig. 5b [99]. Current spike behavior also depends 
on the degree of crystallinity. Current spike diminishes by 
increasing the annealing temperature, but the conductivity 
of FTO substrate deteriorates at temperature above 500 °C. 
The NiWO4 shows a beautiful LSV curve (Fig. 5c) due to a 
good crystallinity as shown in FE-SEM (Fig. 2c) and large 
particle size (Fig. S2c). Also, this transient cathodic peak 
can be associated to back electron transfer from the exter-
nal circuit to the photoanode, which resulted in a surface 
recombination process [100]. According to Le Chatelier’s 
principle, a system at equilibrium that is subjected to an 
alteration in concentration will readjust itself to counteract 

the alteration and establish a new equilibrium caused by an 
excess of electrons. This would explain the transient current 
spikes in the AWO4 photoanodes.

The photocurrent density measurements by LSV curves 
were utilized to estimate the flat band potential (Efb) of these 
semiconductors, following the Butler-Gärtner model [63, 
64], as displayed in Fig. 6(a–d). Gärtner–Butler analysis is 
an alternative method of determining the Efb is based on the 
measurement of the square of the photocurrent density as a 
function of electrode potential. The Efb is predicted to be at 
the intercept of the square of the photocurrent density with 
the potential axis [101]. This model assumes that the pho-
tocurrent (Iph) is observed only when the electrode potential 
is more positive than the semiconductor flat band potential 
(i.e., when E > Efb and Iph > 0). Thus, the Butler-Gärtner 
model can be represented by Eq. (5) below:

where α is the absorption coefficient, W0 is the depletion 
layer width, φ0 is the radiation intensity, q is the electron 
charge, and Efb is the flat band energy. This methodology 
already was employed to determine Efb values for other pho-
toelectrodes by our research group [11, 37, 102]. Therefore, 
Efb values obtained by extrapolation of photocurrent initial 
potential were estimated at 0.23, 0.25, 0.28, and 0.38 V (vs. 
Ag/AgCl) for FeWO4, CoWO4, NiWO4, and CuWO4 elec-
trodes, respectively. The Efb value is strongly dependent on 
the medium conditions such as pH and electrolyte composi-
tion, as well as film thickness, crystal structure, and mor-
phology of the semiconductor [103]. It is very important to 
determine the Efb value of semiconductor materials before 
its application in any photoelectrochemical proposition [97, 
104–106], since this electrode potential can be related to 
the Fermi energy level and the CB band edge position in 
n-type semiconductors [107]. The flat band potential and 
CB must be related to electron donor and acceptor states 
using Eq. (6):

where k is the Boltzmann constant, T is the absolute tem-
perature, e is the electron charge, NC is the effective density 
of states in the CB, and ND is the effective charge density 
[108]. Considering that the values of ND and NC are similar, 
the second term in Eq. (6) should be relatively small and 
then conduction band potential (ECB) can be approximated 
to Efb [109]. Thus, the relative positions of VB and CB edge 
potentials of the semiconductors were estimated from Ebg 
and Efb values and using the Eqs. (5, 6), as shown in Fig. 6e. 
All electrodes show sufficient CB potential values to oxi-
dize H2O/O2 (see dashed line in Fig. 6e. The photocatalytic 

(5)Iph = �W0q�0

√

E − Efb

(6)ECB = Efb −
kT

e
ln
NC

ND
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Fig. 6   Variation in the square of the photocurrent density with 
applied potential, for (a) FeWO4, (b) CoWO4, (c) NiWO4, and (d) 
CuWO4 electrode in 0.1  mol L−1 Na2SO4 aqueous solution, under 

polychromatic irradiation obeying Butler-Gärtner model and (e) the 
experimentally determined band diagrams
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activity of each material is dependent on the relative posi-
tions of the conduction and valence bands. Previous studies 
reveal that it is important to determine the oxidation poten-
tial of species present in solution, relating this potential to 
the positions of CB and VB to predict the photocatalytic 
capacity of the semiconductor material [11, 102]. Similarly, 
Efb values were estimated by Mott-Schottky plot through 
Electrochemical Impedance Spectroscopy. Fig S5(a) shows 
the Mott-Schottky curves and relative positions of the CB 
and VB obtained for all samples. As observed at Fig S5(b), 
there are no significant differences for the relative positions 
of the bands for curves obtained by Mott-Schottky or by 
Butler-Gärtner model.

Figures S6(a–d) display the cyclic voltammetry (CV) 
curves of AWO4 (A2+ = Fe, Co, Ni, and Cu) films regis-
tered at 20 mV s−1 in the dark and under polychromatic 
irradiation. In the dark, the electrodes presented an almost 
zero capacitive current. As mentioned before, the poten-
tial value associated with OER serves to limit the potential 
window toward anodic reactions. The OCP shifted toward 
more negative values under irradiation conditions, result-
ing in a photopotential of − 20, − 60, − 80, and − 50 mV 
for FeWO4, CoWO4, NiWO4, and CuWO4 photoelectrodes, 
respectively. These differences recorded in the OPC before 
and after illumination may be attributed to electron accumu-
lation in the conduction band (CB), due to the electron–hole 
charge separation [110]. According to theory, after adequate 
illumination of a n-type semiconductor oxide, the electrons 
accumulated in the CB are collected by circuit until the 
Pt counter-electrode, while the photogenerated holes are 
moved to the electrode/electrolyte interface, thus generat-
ing the anodic photocurrent [111]. The photocurrent density 
of electrodes was respectively 15 μA cm−2, 30 μA cm−2, 20 
μA cm−2, and 48 μA cm−2 at 1.0 V vs. Ag/AgCl (1.53 V vs. 
RHE) for FeWO4, CoWO4, NiWO4, and CuWO4 electrodes, 
as displayed in Figs. S6(a–d). The photoelectrochemical per-
formance of photocatalyst electrodes fabricated in different 
synthesis methods reported in recent years were compared 
with this work, as shown in Table S2. Table S2 relating syn-
thesis methods, photocurrent values, type of irradiation and 
electrolyte was presented [18, 19, 112–125]. Photocurrent 
values in photoelectrochemical measurements are dependent 
on several factors, including the material’s bandgap energy 
value, material defects, and the ability of electron charges to 
reach the conductive substrate. Even with a higher Ebg value, 
CuWO4 film presented higher photocurrent value, indicating 
that the photogenerated charges reach the conductive sub-
strate more easily than the other AWO4 investigated.

To investigate the photocurrent stability and e−
CB
∕h+

VB
 

recombination lifetime of electrodes in an aqueous medium, 
a photoelectrochemical study was carried out by measuring 
the photocurrent density over time at a constant potential 
of ca. 0.7 V vs. Ag/AgCl (1.23 V vs. RHE). This study is 

based on transient photocurrent behavior, in which the cur-
rent response of a system is monitored while a light source 
is modulated periodically (usually light-on and light-off). 
Based on this measure, it is possible to study charge carrier 
dynamics and their traps in a semiconductor material as pho-
toelectrode. The curves registered for AWO4 films are dis-
played in Fig. 7. In the dark, all films displayed the current 
was almost null, while under irradiation, the photocurrent 
increased abruptly because of charge separation and elec-
trons accumulating in the conduction band, a typical char-
acteristic of n-type semiconductor oxides, as seen in Fig. 7a. 
In addition, the films demonstrated excellent photo-stability 
for 2100s, except the FeWO4 film, whose, its photocurrent 
density has decreased continuously over time. The photo-
current density values followed the same results exposed 
previously by LSV and cyclic voltammetry measurements, 
see Fig. 5 and S6.

To obtain the electron–hole recombination lifetimes 
for the photoelectrodes, photocurrent-time curves, follow-
ing the schematic representation in Fig. 7b, were analyzed 
according to Eq. (3). This equation shows that the kinetics 
of the transient photocurrent can be obtained from slope of 
the ln R vs. time (t) plot, as shown in Fig. 7c for FeWO4, 
CoWO4, NiWO4, and CuWO4 photoelectrodes, biased at 
0.70 V. The reciprocal 1/τ is related to the electron–hole 
lifetime. In previous studies, we demonstrated that the mass 
transport mechanism (i.e. migration or diffusion) in the sys-
tem does not alter the recombination exponential profile 
of transient photocurrent utilized to determine the lifetime 
[102]. As observed in Fig. 7a and schematically represented 
in Fig. 7b, an initial anodic photocurrent spike Jin indicates 
the injection of electrons in the CB owing to the electron/
hole charge separation process. At the same time, electrons 
are transported to the conductor substrate to be collected by 
the external circuit; the holes are moved towards the semi-
conductor surface where they are reduced by the species in 
the electrolyte. Simultaneously, the photocurrent decreases 
exponentially with time until it reaches a steady-state photo-
current density (Jst) because of charge recombination.

The slope of the plot provides photocurrent transient (τ), 
which is related to the charge recombination lifetime in each 
electrode. The recombination lifetime results are displayed 
in Table S3. The τ values were calculated at about 83 ± 7, 
32 ± 3, 25 ± 4, and 40 ± 1 s for the FeWO4, CoWO4, NiWO4 
and CuWO4 films, respectively. These τ values for the 
CoWO4 and NiWO4 films are smaller than the FeWO4 and 
CuWO4 films. However, these charge recombination time 
values are not in agreement with the photocurrent values 
shown in Fig. 5. Thus, Nyquist plots were used to assess the 
effective parallel resistance of charge transfer in the samples. 
Fig S7 shows the Nyquist plots. Even not displaying a well-
defined arc as a semicircle, the maximum values observed 
for the Z' axis were used to verify the greater or lesser 
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tendency in charge transfers. The reduction of the effec-
tive parallel resistance indicates a better charge transfer for 
CuWO4, CoWO4, NiWO4, and FeWO4 samples, respectively. 
This sequence agrees with the photocurrent values. Thus, 
probably, the electrons promoted to the conduction band do 
not return to VB. However, we have suppressed defects in 
the crystal lattice and we believed the holes are captured by 

traps present in the grain boundaries of the material. There-
fore, the photoelectrochemical properties were observed 
in different wolframite films with anodic photocurrent and 
capable of harvesting visible light allowing several photo-
electrochemical applications.

Fig. 7   a Photocurrent density-time (J-t) curves of the annealed films 
measured under polychromatic illumination with chopped 300 s light 
on/off at 0.7 V vs. Ag/AgCl, b schematic representation of photocur-

rent transient curve and c normalized plot of current–time depend-
ence for AWO4 (A2+  = Fe,Co, Ni, and Cu)
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4 � Conclusion

In summary, FeWO4, CoWO4, NiWO4, and CuWO4 thin 
films onto FTO-glass were synthesized with success by the 
PPM method via drop-casting after heat treatment at 500 °C 
for 2 h. XRD patterns analyses confirmed the presence of 
wolframite-type monoclinic structure for FeWO4, CoWO4, 
and NiWO4 films, while the CuWO4 film exhibits a tri-
clinic structure. The AWO4 (A2+ = Fe, Co, Ni, and Cu) films 
showed an ability to absorb in the visible light region, which 
suggests being excellent harvesters of sunlight for energy 
conversion applications, such as H2O oxidation. Morpholog-
ical features showed by means of FE-SEM images revealed 
the presence of nanostructured oxides with irregular shapes 
and the diverse average size of particles. The PEC testing 
under illumination revealed anodic photocurrent and nega-
tive photopotential characteristics of n-type semiconductors 
oxides. In inert electrolyte, the CuWO4 electrode showed the 
highest photocurrent density value of 48 μA cm−2 at 1.0 V 
vs. Ag/AgCl (1.53 V vs. RHE). In addition, all electrodes 
demonstrated excellent chemical stability for photoelec-
trochemical oxygen evolution reaction with constant bias 
potential at 0.7 V vs. Ag/AgCl (1.23 V vs. RHE). From Ebg 
and Efb values were possible to assemble a diagram of (CB 
and VB) positions, which leads to deducting the greatest 
applicability of electrodes in PEC, exploring these AWO4 
(A2+ = Fe, Co, Ni, and Cu) films as electrodes with a high 
potential to H2O-splitting photocatalysts.
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