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Abstract
In this paper, we report the successful synthesis of multiwalled carbon nanotubes supported by gold-cobalt  (AuxCo100 − x/
MWCNT) nanoparticles to develop a novel electrocatalyst for anodic application in direct borohydride fuel cells. X-ray 
diffraction spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmis-
sion electron microscopy are employed to examine the crystalline structure, chemical composition and morphology of the 
prepared electrocatalysts. Cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry tests are 
used for electrocatalytic characterizations of developed electrocatalysts. Using  AuxCo100 − x/MWCNT electrocatalyst, the 
fundamental kinetics parameters of electrocatalytic performance (current density, exchanged electrons number and apparent 
activation energy) for borohydride electrooxidation are investigated. Results reveal that among all bimetallic electrocata-
lysts, the  Au74Co26/MWCNT electrocatalyst exhibits the highest specific activity (24.15 mA.cm− 2) and  Au49Co51/MWCNT 
shows the highest mass activity (1127.03 mA.mg− 1) for BH−

4
 electrooxidation. The lowest apparent activation energy (8.22 

 kJmol− 1) and smallest charge transfer resistance (134.9 Ω) suggest the best electrocatalytic activity of  Au74Co26/MWCNT 
electrocatalyst toward borohydride oxidation. The exchanged electron number for the  Au74Co26/MWCNT electrocatalyst for 
borohydride electrooxidation at 303K is estimated as 4.70.
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1 Introduction

Nowadays, developing alternative energy sources is one of 
the most vital issues. The fuel cell is an alternative energy 
source that converts chemical energy directly to electrical 
energy. Less pollution, higher efficiency, simple structure, 
instant recharging, easy storage and less noise make fuel 
cells as a potential energy source [1–4]. Researchers con-
centrated on direct borohydride fuel cells (DBFC) due to 
some limitations in alcohol fuel cells, such as low electro-
chemical activity,  CO2 generation, voltage loss, significant 
anodic polarization and relatively high corrosion activity [5]. 
Sodium borohydride  (NaBH4) was first confirmed as a fuel 
for fuel cells in 1960 [6]. Since then,  NaBH4 has been con-
sidered to be an efficient hydrogen source for fuel cells due 
to its high hydrogen content (10.6%), a higher theoretical 
open circuit voltage of 1.64 V than other fuels, high energy 
density, high power density, significant chemical stability in 
alkaline medium, non-toxicity and it is trouble-free to store 
and transport [7, 8]. In an alkaline solution, the complete 
electrooxidation of borohydride anion  (BH4

−) generates 
eight electrons [9] at the anode and oxygen reduction at the 
cathode and produces energy, shown as Eq. (1)

In addition, the number of generated electrons in the elec-
trooxidation of Ethanol [10], Methanol [11], Hydrazine [12] 
and Hydrogen [13] is lower than that of  NaBH4. A suitable 
electrocatalyst is a crucial factor for enhancing the energy 
production performance of DBFCs. Many researchers have 
reported different types of monometallic and bimetallic elec-
trocatalysts to enhance the electrocatalytic performances of 
DBFCs. Due to decomposition reactions, the composition of 
electrocatalysts with selectivity and activity has an important 
influence on electrooxidation reactions. Decomposition reac-
tions in DBFC result in energy loss and decrease the efficiency 
of the cell [14]. So, catalytic selectivity should be considered 
to develop the most suitable electrocatalyst. The anodic cata-
lyst is one of the important parameters to optimize its catalytic 
performance in the electrochemical oxidation of  BH−

4. As 
per a previous study, Au shows good catalytic performance in 
borohydride oxidation [15, 16]. However, recent studies have 
claimed that Au cannot promote direct borohydride electrooxi-
dation completely, so Au alone is challenging to use as an 
efficient anode electrocatalyst. Thus, developing bimetallic 
catalysts containing Au can be a good strategy. Many research-
ers revealed that bimetallic electrocatalysts show better elec-
trocatalytic performance than monometallic electrocatalysts 
due to the synergic effects of bimetallic catalytic materials. 
The expansive cost and slow electrooxidation kinetics of 
borohydride ions on monometallic Au anode catalyst limit 
the application of Au in DBFC [17, 18]. Noble metals [Au 

(1)BH−

4
+ 8OH−

→ BO−

2
+ 4H2O + 8e−

(gold), Pt (platinum), Pd (Palladium), Os (Osmium), Ag (Sil-
ver)] with the 3d transition metals [Ni (nickel), Co (Cobalt), Zn 
(Zinc), Fe (Iron), Cu (Copper)] and their alloys such as Au-Ni, 
Au-Co, Au-Fe, Au-Zn, Au-Cu, etc. show better electrocatalytic 
activity and lower cost than monometallic Au electrocatalysts 
[19]. Hence, enhancement of electrocatalytic performance of 
Au and Co electrodes is important for advancing the perfor-
mance and lessening the cost of DBFCs. Taek Hyun Oh et al. 
[20] confirmed that the performance of the electrocatalyst 
with multiwalled carbon nanotubes (MWCNTs) is better than 
that of the catalyst with XC-72 owing to the good electrical 
conductivity of MWCNTs. Duan et al. [7] have reported that 
carbon-supported Co-Au bimetallic electrocatalysts exhibit 
higher electrocatalytic activity and stability than monometal-
lic Au/C catalysts for  BH4

− electrooxidation.
In this study,  AuxCo100 − x/MWCNT electrocatalysts are 

synthesized with 20 wt% metal loadings by a simple chemi-
cal reduction method for borohydride oxidation. X-ray dif-
fraction spectroscopy (XRD), energy dispersive X-ray spec-
troscopy (EDX), X-ray photoelectron spectroscopy (XPS), 
field emission scanning electron microscopy (FESEM) and 
transmission electron microscopy (TEM) are employed as 
physicochemical characterization techniques to examine the 
crystalline structure, chemical composition and morphology 
of the prepared electrocatalysts. The electrocatalytic prop-
erties of the prepared catalysts are tested by cyclic voltam-
metry (CV). The charge transfer kinetics is investigated by 
electrochemical impedance spectroscopy (EIS). A chrono-
amperometry (CA) study examines the catalysts’ durability. 
All the electrochemical tests confirm the enhanced electro-
catalytic performance of the bimetallic system.

2  Experimental

2.1  Chemicals and reagents

Chloroauric acid extra pure  [HAuCl4] (MW-339.79 g/mol) 
was purchased from LOBA CHEMIE PVT.LTD. Cobalt(III) 
nitrate hexahydrate purified [CO(NO3)2.6H2O] (MW-291.04 
g/mol), Sodium borohydride  [NaBH4] (MW-37.83 g/mol), 
tri-sodium citrate dihydrate  [C6H5Na3O7.2H2O] (MW-294.1 
g/mol), sodium hydroxide [NaOH] (MW-40.00 g/mol) pel-
lets, nitric acid  [HNO3] and hydrochloric acid [HCl] were 
purchased from MERCK, India. MWCNT was purchased 
from Nanocyl  3100™. Triple-distilled water was used 
throughout the experiment.

2.2  Synthesis of bimetallic  Aux‑Co100−x/MWCNT 
catalysts

At first, we functionalized the MWCNT by acid treatment. 
250 mg MWCNT was dispersed into 40 ml aqua regia using 
the ultrasonic bath for 30 min. After that, the mixture was 
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stirred under continuous magnetic stirring overnight at 
200 rpm and 333K temperature. The acidulated MWCNT 
was washed with deionized water and ethanol several times 
until a neutral pH was obtained. Then the mixture was 
dried at 253K for 12 h and we collected the functionalized 
MWCNT.

First, 46.4 mg of MWCNT was dispersed homogeneously 
into 30 ml of deionized water and sonicated for 30 min. 
After that, the mixture was agitated for half an hour using a 
magnetic stirrer. A continuous magnetic stirring process is 
adopted here. 20 ml aqueous solution of 20 mg of  HAuCl4 
was added with the previous mixture. After 30 min, 10 ml 
aqueous solution of 10 mg sodium citrate was mixed with 
the solution. 15 min later, 10 ml aqueous solution of  NaBH4 
(20 mg) was dropped gently into the solution. Then, the final 
mixture was stirred under continuous magnetic stirring for 
5 h. After that, the mixture was washed with deionized water 
several times until obtained a neutral pH. Finally, the pre-
cipitate was dried for 8 h at 253K and marked as S-1  (Au100/
MWCNT). Next, MWCNT (31 mg) was dispersed homo-
geneously into 30 ml of deionized water and sonicated for 
30 min. After that, the mixture was stirred for 30 min using 
a magnetic stirrer. A continuous magnetic stirring process is 
adopted here. 10 ml aqueous solution of 10 mg of cobalt(II) 
nitrate hexahydrate was added with the previous mixture. 
After 30 min, 10 ml aqueous solution of 10 mg sodium cit-
rate was mixed with the solution. 15 min later, 5 ml aque-
ous solution of  NaBH4 (10 mg) was dropped gently into the 
solution. Subsequently, a 10 ml aqueous solution of 10 mg 
 HAuCl4 was added. After 15 min, 5 ml aqueous solution of 
 NaBH4 (10 mg) was added dropwise. Then, the final mixture 
was stirred under continuous magnetic stirring for 5 h. After 
that, the mixture was washed with deionized water several 
times until obtained a neutral pH. Finally, the precipitate 
was dried for 8 h at 253K and marked as S-2  (Au74Co26/
MWCNT). Other catalysts, S-3  (Au59Co41/MWCNT) and 
S-4  (Au49Co51/MWCNT) were synthesized similarly by 
varying the amount of metal precursors. The metal loading 
in each sample was maintained at 20 wt%. The information 
about the Au and Co weight ratio of the developed electro-
catalysts is given in Table 1.

2.3  Physical characterization of electrocatalysts

The X-ray diffraction (XRD) spectra of four different 
electrocatalysts (S-1, S-2, S-3 & S-4) were recorded by a 
Bruker D8 Advance X-ray diffractometer with  CuKα radia-
tion (λ= 1.54 Å) in 2θ angular regions between 20° and 
80° with step size 0.02°. The average crystallite sizes for 
the synthesized electrocatalysts were calculated accord-
ing to the full-width half maxima (FWHM). The scanning 
electron microscope (ZEISS Gemini SEM) and tunneling 
electron microscopy (JEOL, 2100 F) were used for the 
morphological analysis of the electrocatalysts. The chemi-
cal compositions of the prepared electrocatalysts were 
examined by an energy-dispersive X-ray spectroscopy 
(EDX) system. The bonding, compositions and surface 
chemical state of the synthesized electrocatalysts were 
analyzed by XPS using PHI 5000 Versa Probe (II), FEI 
Inc- ray electron spectrometer.

2.4  Electrochemical characterization 
of electrocatalysts

All the electrochemical investigations of as-prepared 
 AuxCo100 − x/MWCNT electrocatalysts were performed 
by a potentiostat/galvanostat (PGSTAT302N, Autolab, 
Metrohm Electrochemistry Workstation). A 3 mol KCl 
saturated Ag/AgCl electrode was employed as a reference 
electrode and a mesh of platinum wire with dimensions 
of 1 cm × 1 cm (50 meshes) was used as the counter elec-
trode. In this study, we used a glassy carbon electrode 
(GCE) with having 5 mm diameter as a working elec-
trode. Prior to each experiment, the GCE was thoroughly 

Table 1  Information on metal loading of developed electrocatalysts

Samples Au:Co (weight ratio) Metal:MWCNT(weight 
ratio)

S-1 100:0 20:80
S-2 74:26
S-3 59:41
S-4 49:51

Fig. 1  Microstructure of S-1, S-2, S-3, and S-4 anode electrocatalysts
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cleansed with distilled water and ethanol. The catalyst ink 
was made using Nafion (Nafion™ NR 50, Merck) as a 
binder. After complete dissolution of 50 mg Nafion in 50 
ml of ethanol, 8 mg of  AuxCo100−x/MWCNT nanopowder 
was added to the 1 ml of Nafion solution. A homogenous 
catalyst ink was created by sonicating the mixture for 
25 min in an ultrasonic bath. We dropped cast 5 µl of cata-
lyst ink onto the GCE surface and dried it under a 100 W 
incandescent light for 1.5 h. The geometric area of the 
GCE surface was used to compute the current densities. 
A single-compartment borosilicate beaker was utilized as 
the electrolyte cell, and triple distilled water was used to 
prepare the electrolyte solutions (0.5 M NaOH and 0.5 M 
NaOH + 0.01 M  NaBH4). To quantify the electrocatalytic 
removal of  O2 and  CO2 from the electrolyte solutions, pure 
 N2 gas was bubbled in the mixtures for 25 min.

3  Results and discussion

3.1  Physical characterization 
of the MWCNT‑supported electrocatalysts

The XRD diffractograms of different electrocatalysts are 
shown in Fig. 1. In all catalysts, the first broad diffraction 
peak was visible at 2θ = 25.83◦. The peak was connected to 
the hexagonal graphite structures (002) in MWCNT (JCPDS 
No. 75-1621). The remaining five strong diffraction peaks 
which are located at around 2θ = 38.4°, 44.53°, 64.87°, 
77.84°, 82.01° and corresponding face-centered cubic (fcc) 
Au’s (111), (200), (220), (311) and (222) planes respectively 
were well matched with the typical Au peaks (JCPDS No. 
04-0784) [21]. The major peaks of  AuxCo100−x/MWCNT 
were consistent with those of Au/MWCNT, although neither 
Co nor its oxide showed any diffraction peaks. It is most 
likely because only the Au atom crystallises to form a crystal 
in the Au-Co nanoparticles, whereas Co exists in the form of 
amorphous Co atoms adsorbed on the gold crystal [7, 22]. 
The EDS results have verified the existence of Co.

Fig. 2  FESEM images of S-1, S-2, S-3 and S-4 bimetallic electrocatalysts
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The Debye-Scherrer equation was used to determine the 
electrocatalyst’s average crystal size.

where D is the average crystallite size (nm), K is known as 
Scherrer’s constant (K = 0.94), λ is the wavelength of X-ray 
(1.54 Å for Cu Kα radiation), β is the full width at half 
maxima (FWHM) in radians and θ is the Bragg angle in radi-
ans. The evaluated crystallite size of S-1, S-2, S-3 and S-4 
samples were 10.44, 4.09, 7.12 and 6.34 nm, respectively.

The synthesized electrocatalysts are depicted in typi-
cal FESEM images in Fig. 2. All electrocatalysts have an 
aggregation of metal particles with varying sizes and a 
generally sphere-like form. On MWCNT, the particles are 
evenly spread. To investigate the chemical composition of 
 AuxCo100−x/MWCNT electrocatalysts, energy-dispersive 
spectroscopy (EDS) was done. Figure 3 shows the EDS 
images of all prepared electrocatalysts. All the EDS spectra 
showed the characteristic peaks for C, O, Au and Co.

Figure 4a–c show TEM, HRTEM and SAED images of 
the S-2 electrocatalyst. The TEM image (Fig. 4a) reflects 
the nearly sphere-like nanoparticles are well distributed 
in MWCNT. The HR-TEM image (Fig. 4b) approves the 

(2)D =

Kλ

βcosθ

presence of monodispersed Au nanoparticles of around 5 nm 
in mean diameter as reflected. From the HR-TEM analysis, 
it is visible that nanoparticles with an interplanar spacing 
of 0.204 and 0.211 nm correspond to the (200) plane of Au 
and 0.235 nm is attributed to the (111) planes of Au. The 
selected area electron diffraction (SAED) analysis (Fig. 4c) 
revealed the crystalline nature of the nanoparticles in the 
form of three bright circular rings with lattice spacing cor-
responding to (111), (200) and (220) planes of the face-cen-
tered cubic lattice of gold nanoparticles.

Figure 5 displays the XPS profile of the S-2 electrocata-
lyst. Through the XPS technology, more studies were con-
ducted on the surface composition and chemical bonding of 
the S-2 composite. The XPS spectra of the Au-Co nanopar-
ticles in the Au 4f and Co 2p regions of the S-2 catalysts are 
displayed in Fig. 5a and b respectively. As seen in Fig. 5a, 
the Au  4f7/2 peaks of the Au-Co nanoparticles in the S-2 
catalysts locate at close to 84.4 eV which can be attributed 
to the Au  4f7/2 of the metallic gold [23]. As seen in Fig. 5b, 
the binding energies (BEs) of  Co2+  2p3/2 and  Co2+  2p1/2 can 
be attributed to the peaks at 782.1 and 798 eV respectively 
in the Co 2p spectrum [24]. There are two apparent shake-
up satellite peaks at 787.2 and 803.7 eV. The XPS spectra 
of the S-2 electrocatalyst in the Au 4f and Co 2p regions are 
fitted using the Gaussian sum function to investigate better 

Fig. 3  EDS images of S-1, S-2, S-3, and S-4 electrocatalysts
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Fig. 4  a TEM image, b HRTEM image, and c SAED pattern of S-2 electrocatalyst

Fig. 5  XPS spectra fitted by Gaussian sum function of the AuCo nanoparticles in the S-2 catalyst in the Au 4f (a) and Co 2p (b) regions
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the surface chemical states of the Au-Co nanoparticles in 
the catalysts. It is observed that the S-2 electrocatalyst com-
prises two peaks in the Au 4f7/2 peak of the Au-Co nanopar-
ticles, which are situated at approximately 85.1 and 84.4 eV, 
respectively. All of them are related to the metallic gold’s Au 
 4f7/2. The multielectron excitation causes two satellite peaks 
in the XPS spectrum of the Au-Co nanoparticles in the S-2 
electrocatalyst, as seen in Fig. 5b.

3.2  Electrochemical performance of  Aux‑Co100 − x/
MWCNT

Initially, CV was carried out using 0.5 M NaOH solution 
on our synthesized samples. Figure 6a, b shows the CV 
curve at a 100 mV  s− 1 scan rate in 0.5 M NaOH solution 
at room temperature. The redox peaks were clearly visible 
for all electrocatalysts. The curves show distinct peaks at 
0.25 V, 0.25 V, 0.22 and 0.23 V in the anodic scan for S-1, 
S-2, S-3 and S-4 electrodes. An identical anodic peak was 

Fig. 6  a, b  CV of all synthesized electrocatalysts at a scan rate of 
100 mV  s− 1 at 303 K in a 0.5 M NaOH solution (Inset shows the CV 
curve of Co/MWCNT in identical condition), and c, d CV of all syn-

thesized electrocatalysts at a scan rate of 100 mV  s− 1 at 303 K in a 
solution of 0.5 M NaOH and 0.01 M  NaBH4.

Table 2  The forward peak 
current in terms of specific 
activity and mass activity and 
corresponding peak potential 
values of all electrocatalyst 
from Fig. 6c, d

Electrocatalyst Onset potential 
(V)

Specific activity (mA.
cm− 2)

Mass activity(mA.
mg− 1)

Forward peak 
potential (V)

S-1 − 0.68 9.26 264.57 − 0.38
S-2 − 0.66 24.15 799.31 − 0.51
S-3 − 0.71 18.66 776.15 − 0.51
S-4 − 0.72 22.53 1127.03 − 0.46
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observed for Co/MWCNT in the same solution (inset of 
Fig. 6a). These anodic peaks are accredited to the Co sur-
face oxidation process in the sequence CoO →  Co3O4 → 
 Co2O3 [25]. At about − 0.85 V, the S-3 and S-4 modified 

electrode surfaces displayed additional little anodic humps. 
These anodic characteristics are attributed to electrochemi-
cal gold oxide layer development on electrode surfaces and 
OH− adsorption [26]. The cathodic peaks on the S-2 modi-
fied electrode were located at 0.046 V and − 0.47 V. At 
0.043 V and − 0.47 V, similar cathodic characteristics were 
seen on the surface of the S-4 electrode. Two cathodic peaks 
with center values of 0.05 V and − 0.42 V could be seen on 
the S-3 modified electrode. The S-1 catalyst showed one 
cathodic peak centered at 0.07 V. Reduction of hydroxides 
and oxides (produced in anodic scan) into elemental Au and 
Co is responsible for these cathodic peaks [26, 27]. Accord-
ing to the results, the  Aux-Co100 − x/MWCNT modified 

Fig. 7  a–d CV of all four electrocatalysts at different scan rates (100 mV  s− 1, 80 mV  s− 1, 60 mV  s− 1, 40 mV  s− 1 and 20 mV  s− 1) in 0.5 M 
NaOH + 0.01 M  NaBH4 solution. (Inset Shows square root of scan rates vs. current density)

Fig. 8  EIS spectra of all four electrocatalysts for borohydride elec-
trooxidation at potential − 0.6  V in 0.5  M NaOH + 0.01  M  NaBH4 
solution. (Inset shows corresponding equivalent circuit)

Table 3  The values of the components in the equivalent circuit fitting 
in Fig. 8’s Nyquist plots

Electrocatalyst Rs (ohm) Rct (ohm)

S-1 16.98 763.4
S-2 8.01 134.9
S-3 14.36 417
S-4 11.94 157.6
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electrode exhibits greater electrocatalytic activity than Au/
MWCNT. As a result, the conduction of electrons in the 
MWCNT-supported bimetallic system is increased due to 
the presence of Co. Duan’s group gives a similar explanation 
in their reported Cu@Ag core-shell electrocatalyst towards 
borohydride oxidation. In their work, the presence of Cu 
increases the electron conduction activity of the bimetallic 
system [28]. Additionally, a comparison of the CVs for the 
Au/MWCNT and  Aux-Co100 − x/MWCNT electrodes reveals 
a further negative sweep of potentials in the reduction peaks 
for the bifunctional material, indicating a stronger  Oad inter-
action with Au surface sites in the presence of Co, which 
may help break the oxygen-oxygen bond [29]. This investi-
gation confirms the electrocatalytic activities of our prepared 
electrocatalysts in an alkaline medium.

At a scan rate of 100 mV  s− 1, throughout a potential range 
of − 1.2 to 0.8 V vs. Ag/AgCl, the borohydride oxidation 
reaction (BOR) kinetics of  Aux-Co100 − x/MWCNT and Au/
MWCNT catalysts were studied. The CV curves of all the as-
prepared electrocatalysts in the presence of  NaBH4 (0.01 M) in 
the same alkaline solution are shown in Fig. 6c, d. The cyclic 
voltammograms of borohydride oxidation on the  Aux-Co100 − x/

MWCNT electrode and borohydride oxidation on the Au/
MWCNT electrode resembled each other, demonstrating that 
the electrooxidation mechanism of B H−

4
 on the surfaces of 

these electrocatalysts was the same. Two prominent oxidation 
peaks were found in the CV profile which matched those of 
earlier investigations using Au electrodes in alkaline liquids 
[30]. The direct oxidation of  BH4

− ions produced the first oxi-
dation peak  (A1) which ranged from − 0.5 V to 0 V [31]. The 
second anodic peak, designated  A2, was created at 0.29 V as 
a result of the oxidation of the reaction intermediate on the 
partially oxidized Au surface [9]. Peak  A3 on the CV curve 
of electrocatalyst electrodes which appears in the presence of 
Co, can be attributed to the catalytic oxidation of  H2 caused 
by the hydrolysis of  BH4

− ion (Eqs. (3) and (4)) [32]. A sharp 
peak at roughly 0.35 V was visible on the reverse scan. The 
oxidation of absorbed species, such as  BH3OH that are gener-
ated as intermediates during the oxidation of  BH4

− ions in the 
forward reaction can be credited with the formation of this 
peak (Eq. (5)) [31].

(3)BH−

4
+ H2O → BH3OH

−

+ H2

Fig. 9  a–d CV curve of all four electrocatalysts at different temperatures (308 K, 313 K, 318 K, 323 K, and 328 K) in 0.5 M NaOH + 0.01 M 
 NaBH4 solution. (Inset shows the corresponding logj versus  T− 1  (K− 1))
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Then the direct oxidation of B H−

4
 obtained the  A1 peak 

current density. S-2 displayed the highest forward peak cur-
rent density (specific activity) of 24.146 mA.cm− 2 among 
all the electrocatalysts at a potential of − 383 mV (vs. Ag/
AgCl). Table 2 provides information on forward peak cur-
rent values in terms of specific activity and mass activity and 
corresponding potentials at 100 mV  s− 1 scan rates.

We performed CV at different scan rates in the mentioned 
electrolyte solution for all prepared catalysts to understand 
the impact of scan rate on borohydride electrooxidation per-
formance and the results are shown in Fig. 7. The electro-
chemical performance is improved with the application of 
greater scan rates. With increased scan rates, the cathodic 
peak potential moves in a more cathodic direction whereas 
the anodic peak potential moves in a more anodic direc-
tion. The highest forward peak potentials displayed a shift 
in a more anodic direction with the rise in current as the 
cyclic voltammetry scan rates increased. The borohydride 
oxidation peak current density  (jp) increases linearly with the 
square root of scan rate (inset of Fig. 7). The positive shift of 
the forward peak potentials and increase of  jp with scan rates 
is a characteristic of irreversible systems [33].

To effectively execute the reaction process, it is essen-
tial to investigate the kinetics of the electrode and inter-
facial reactions in electrochemical systems. EIS is a 
powerful tool for exploring charge transfer kinetics in elec-
trochemical reactions. Inspired by this, we conducted EIS 
experiments for S-1, S-2, S-3 and S-4 modified electrodes 

(4)
1

2
H2 + OH−

→ H2O + e−

(5)BH3OH
−

+ 3OH−

→ BO−

2
+

3

2
H2 + 2H2O + 3e−

in 0.5 M NaOH + 0.01 M  NaBH4 electrolyte solution at 
a potential of − 0.6 V (close to the anodic peak potential 
of borohydride oxidation) between  105 and 0.1 Hz. Fig-
ure 8 depicts the achieved Nyquist plots from the recorded 
EIS data. The graphs, primarily in the high-frequency 
region, displayed an arc-like structure. Concerning the 
electrochemical activity of catalysts, the diameter of the 
impedance arc is related to the resistance for charge trans-
fer (Rct) in the electrolyte-electrode interface [34]. The 
smaller diameter of the impedance arc suggests the lower 
value of  Rct which is essential for an electrocatalyst’s supe-
rior electron transfer kinetics and electrical conductivity. 
Cui et al. [35] reported the interpretations of the imped-
ance map’s linear and semicircular portions. In the EIS 

Fig. 10  a CA curve of S-2 electrocatalyst in 0.5 M NaOH + 0.01  MNaBH4 solution at different temperatures. b A plot of current density versus 
 t− 1/2 from CA data of S-2 electrocatalyst in 0.5 M NaOH + 0.01 M NaBH4 solution

Fig. 11  CV curve of S-2 electrocatalyst in 0.5  M NaOH + x M 
 NaBH4 (x = 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06) at 100 mV  s− 1 scan 
rate
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profile, the high-frequency section shows a semicircular 
impedance arc. Its diameter is equivalent to the electron 
transfer resistance at the interface between electrode and 
electrolyte solution during borohydride oxidation. In the 
low-frequency range, diffusion control of Warburg imped-
ance is indicated. In Fig. 8, no linear impedance was found 
at low frequencies. It was clear from this finding that it 
was a key factor in charge transfer at the electrode/elec-
trolyte interface. The semicircular impedance arc validates 
the charge-transfer-limited process [7]. As shown in Fig. 8, 
the impedance spectrum of all four electrodes was fitted 
using resistors  (Rs,  Rct) and a constant phase component 
(CPE). Where  Rs represents solution resistance,  Rct rep-
resents charge transfer resistance and CPE represents the 
constant phase element of double-layer capacitance [7, 
36]. The calculated values of  Rs and  Rct of all electrocata-
lysts are listed in Table 3. The smallest  Rct value of the S-2 
electrocatalyst suggests the lowest resistance for electron 
transfer and faster borohydride oxidation rate.

The CV was examined for all electrocatalysts in a 0.5 M 
NaOH + 0.01 M  NaBH4 solution over the temperature range 
of 308 to 328 K (Fig. 9). It has been observed that current 
density increases with an increase in temperature which 

indicates that the kinetics of electrochemical reactions 
accelerate with temperature. However, CV at 333 K tem-
perature showed a slight decrease that the experiment’s 
constant fuel use might have brought. Again, at a high tem-
perature, the rate of  NaBH4 hydrolysis increases produc-
ing more  H2 gas [37, 38]. The  H2 gas disperses away from 
the electrode surface, which could affect the electrolyte’s 
stability and may burden the electron transfer. The Arrhe-
nius equation (Eq. (6)) was used to determine the apparent 
activation energy  (Eapp) of all prepared catalysts in 0.5 M 
NaOH + 0.01 M  NaBH4 solutions.

where j, T and R are the current density (mA.cm− 2), tem-
perature (Kelvin) and molar gas constant (8.314 J/mol.K) 
respectively. The inset of all CV curves represents the Arrhe-
nius plot (log j vs. 1/T). The  Eapp of all electrocatalysts in 
a 0.5 M NaOH + 0.01 M  NaBH4 electrolyte solution was 
evaluated using this slope value of Arrhenius plot and found 
to be 21.97  kJmol− 1, 8.22  kJmol− 1, 8.47  kJmol− 1 and 8.32 
 kJmol− 1. The values of  Eapp are lower than the reported 
values of different electrocatalysts such as Ag-Co/C and 
Co-Bi/CNT (31.86 and 36.774  kJmol− 1) [5, 35]. From our 
investigation, it is clear that  AuxCo100 − x/MWCNT electro-
catalysts have lower  Eapp value than Au/MWCNT indicat-
ing the improved electrocatalytic performance of the Au-Co 
bimetallic system.

The chronoamperometry measurement offers further 
details regarding the electroactivity and stability of the 
electrocatalysts for B H−

4
 oxidation. The chronoamperomet-

ric response was examined for the S-2-modified electrode 
at 0.2 V in 0.5 M NaOH + 0.01 M  NaBH4 solution within 
a temperature range of 303 to 328 K (Fig. 10a). The Cot-
trell equation (Eq. (7)) can be used to analyze the CA data 
to determine the exchange electron number (n), which is 
a crucial parameter in an electrochemical reaction [39].

(6)�

�T
(logj) = −

Eapp

RT2
,

(7)j =
nFC

√

D
√

(�t)

Table 4  The forward 
peak current density and 
corresponding peak potential 
values of S-2 electrocatalyst for 
different  NaBH4 concentrations 
at 100 mV  s− 1 scan rate from 
Fig. 11

Electrolyte solution NaBH4 concentrations 
(x M)

Forward peak current 
(mA.cm− 2)

Forward peak 
potential (V)

0.5 M NaOH + x M  NaBH4 0.01 21.01 − 0.37
0.02 26.7 − 0.39
0.03 27.5 − 0.36
0.04 28.3 − 0.32
0.05 29.8 − 0.25
0.06 31.1 − 0.16

Fig. 12  Stability of S-2 electrocatalyst in 300 scans
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where F, C and D are the Faraday’s constant (96,485 C 
 mol− 1), B H−

4
 concentration, and diffusion coefficient. The 

values of D for various NaOH concentrations and temper-
atures, taking into account that D is independent of B H−

4
 

concentration, was reported by Wang et al. [40]. For the 
S-2-tailored electrode in 0.5 M NaOH + 0.01 M  NaBH4 solu-
tion at room temperature, the slope value of the j versus  t− 1/2 
plot (Fig. 10b) was determined to be 11.0261. The n value 
for the S-2 electrocatalyst in 0.5 M NaOH + 0.01 M  NaBH4 
solution at 303 K was estimated as 4.7 using this slope value 
and the Cottrell equation (Eq. (7)). The other reported val-
ues of n for BOR at  Co1-Au1/C,  Co2-Au1/C,  Co4-Au1/C, and 
 Co6-Au1/C electrodes are 0.6, 0.8, 4.1, and 3 respectively 
[7]. When n is less than 8, B H−

4
 has only undergone modest 

anodic oxidation, with the loss of available electrons mainly 
caused by B H−

4
 hydrolysis.

CV was examined at the S-2 electrode at a variety of 
 NaBH4 concentrations (0.01 M to 0.08 M) to investigate 
the impact of  NaBH4 concentration on the catalytic perfor-
mance of the S-2 electrocatalyst for borohydride oxidation. 
Figure 11 illustrates the CV profile (100 mV  s− 1 scan rate) 
of the S-2 electrocatalyst at various  NaBH4 concentrations. 
The CV profile demonstrated that increasing the concentra-
tion of  NaBH4 led to a substantial increase in forwarding 
current densities, demonstrating the electrocatalytic strength 
of the S-2 electrocatalyst for borohydride electrooxidation. 
Table 4 summarizes the forward current densities and cor-
responding peak positions of the S-2 electrocatalyst. We 
noticed a significant increase in current up to an increment 
of 0.06 M of  NaBH4 concentration. However, it was noted 
that the current started to decrease when  NaBH4 concentra-
tion became higher (0.07 M). This is due to a relatively high 
concentration of  NaBH4 that continues to be consumed on 
the electrode surface beyond 0.06 M. Because of this, the 
examined electrode’s electrochemical kinetics may be dis-
turbed. Additionally, with greater  NaBH4 concentrations, we 
observed a positive shift in peak potentials.

To check the stability of the S-2 electrocatalyst, CV up to 
300 cycles was performed at 100 mV  s− 1 scan rate at room 
temperature in 0.5 M NaOH + 0.01 M  NaBH4 solution. In 
Fig. 12, the S-2 electrocatalyst shows the stability profile. 
From the 80th cycle, we observed almost uniform current 
densities up to 260 cycles indicating excellent stability of 
our synthesized electrocatalyst. After that, we observed a 
slight current decay due to the continuous fuel consumption 
on the electrode surface.

4  Conclusion

In the present research work, a reduction technique in an 
aqueous solution was used to synthesize multiwalled car-
bon nanotubes supported by gold-cobalt (Au-Co/MWCNT) 

nanoparticles with four distinct Au/Co ratios. The synthe-
sized electrocatalysts exhibited effective electrocatalytic 
activity for borohydride oxidation. The findings of the exper-
iments exhibited that the Au-Co/MWCNT catalyst had better 
 NaBH4 oxidation kinetic parameters and transfer resistance 
than the Au/C catalyst, suggesting that the addition of cobalt 
to Au/MWCNT can effectively enhance the catalytic activ-
ity of bimetallic catalysts. In terms of current density and 
charge transfer resistance, the S-2 electrocatalysts performed 
electrocatalytically better than S-1, S-3 and S-4 as an anode 
in DBFC. In addition, in S-2 as-prepared electrocatalyst, 
the average size of particles was 4.1 nm. In this investiga-
tion, the maximum current density at room temperature, 
charge transfer resistance, number of exchange electrons 
and apparent activation energy of the S-2-tailored electrode 
were calculated as 24.146 mA.cm− 2, 134.9 Ω, 4.7 and 8.22 
 kJmol− 1 respectively. Thus, this Au-Co/MWCNT bimetal-
lic electrocatalyst can be potentially used as a new type of 
anode electrocatalyst for borohydride electrooxidation.
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