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Abstract 
Fe3+ and/or carbon black-doped Ti/PbO2 electrodes were successfully synthesized via electrodeposition technology. The 
morphology and crystal structure of the electrodes were characterized by Scanning Electron Microscopy coupled with Energy 
Dispersive X-ray Spectroscopy (SEM/EDS) and X-ray Diffraction (XRD), respectively. Furthermore, Linear Sweep Voltam-
metry, Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy tests were also performed to analyze the 
electrochemical performance of the electrodes. The electrocatalytic activity of electrodes was examined by electrocatalytic 
oxidation of Reactive Yellow 14 (RY14) azo dye's model pollutant. The SEM showed that the morphology and size of  PbO2 
particles are strongly affected by doping with  Fe3+ and carbon black. The EDS confirmed the existence of Fe and C ele-
ments. The XRD patterns show that samples were composed of higher content of β-PbO2. Ti/PbO2-0.1Fe (0.1 M  Fe3+ + 0 g 
C) electrode exhibits the highest oxygen evolution potential (1.64 V/SCE). The CV test indicated that the presence of the 
anodic peak at 1.45 V/SCE means that the oxidation of RY14 dye was easily achieved on the surface of all prepared elec-
trodes. The Nyquist plots show the presence of two semicircles, one in the high-frequency domain describes the electron 
transfer process, while the second in the low-frequency domain explains the adsorption of the intermediate. Ti/PbO2 and Ti/
PbO2-0.1Fe electrodes showed the best performance on degradation of RY14.
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1 Introduction

Worldwide, approximately 70% of the world's dye produc-
tion corresponds to azo compounds, coming mainly from 
industries such as textiles or tanning, which are released 
every day [1, 2]. This kind of dyes has a complex chemical 
structure containing one or more azo groups (−N=N−) as 
a chromophore, connected to aromatic systems with lateral 
groups, including −OH, −SO3

−, and −CH3, among others 
[3]. In many cases, the wastewater generated by this indus-
try is discharged into municipal wastewater treatment plants 
without any pretreatment [4]. The negative effects of azo 
dyes on both humans and aquatic life have led to urgent calls 
for the treatment of effluents containing azo dyes in order to 
remove them or to turn them into safe and useful products 
[5, 6]. To treat these wastewaters effectively, the so-called 
advanced oxidation processes (AOPs) are widely applied. 
The AOP techniques include photocatalysis, Fenton oxida-
tion, electrocatalytic oxidation, and a combination of these 
processes [7, 8].

Electrocatalytic oxidation technology represents an inter-
esting approach for the treatment of hazardous, toxic, and 
highly concentrated organic wastewater due to its high effi-
ciency, ease of control, versatility, low time consumption, 
and environmental sustainability [9–11]. During the elec-
trocatalytic process, the anode material is a key factor in the 
oxidation efficiency of organic pollutants [12, 13]. Several 
types of electrodes have been studied, including platinum 
[14], graphite [15, 16],  MnO2 [17],  PbO2 [18, 19],  RuO2 
[20],  IrO2 [21],  SnO2 [22, 23], and boron-doped diamond 
[24]. Among these electrodes,  PbO2 is one of the best can-
didates widely used in electrocatalysis due to its high oxygen 
evolution potential (OEP), good corrosion resistance, low 
price, and high electrocatalytic activity [10]. However, due 
to its fragility and ease of deactivation [25], many attempts 
have been made to improve the performance of the  PbO2 
electrode. A frequently used method consists in doping the 
 PbO2 layer with some materials, such as cations  (Bi3+ [26], 
 Fe3+ [27],  Cu2+ [28],  Zr4+ [29],  Ce3+ [30], and  Co2+ [31]), 
anions  (F− [32] and [Fe(CN)6]3− [33]), surfactants (cetyltri-
methylammonium bromide [34], sodium dodecyl sulfate [35, 
36], sodium dodecyl benzene sulfonate [37], polyvinylidene 
fluoride [38], polyethylene glycol [39]), ionic liquids [40], 
carbon nanotubes [41], etc. The results show that the modi-
fied  PbO2 electrode exhibits excellent electrocatalytic activ-
ity and stable performance.

Our investigation focuses on the modification of the 
ΡbO2 electrode. In this paper, we suggest a new method 
of modification of ΡbO2 electrode in order to increase the 

electrochemical activity and the lifetime of ΡbO2 electrode. 
It is widely known that carbon has a unique structure, 
extraordinary chemical, mechanical, and electronic proper-
ties and has been widely studied in fuel cells, supercapaci-
tors, and biosensors [41, 42]. It is widely known that carbon 
has extraordinary chemical, a unique structure, extraordinary 
chemical, electronic, and mechanical properties [43, 44], and 
has been widely studied in fuel cells, biosensors, and super-
capacitors. At the same time, some investigations have dem-
onstrated that Fe doping in ΡbO2 electrodes can achieve bet-
ter coating quality and higher electrocatalytic performance 
[45]. But until now, there are no reports on the modification 
of ΡbO2 electrode by co-doping carbon and iron.

In this work, lead dioxide electrodes undoped and doped 
with  Fe3+ and/or carbon black were prepared by electrodepo-
sition. The morphology, crystalline structure, and electro-
chemical performances were characterized. Reactive Yellow 
14 (RY14) azo dye  (C20H19ClN4Na2O11S3, CAS number: 
18976-74-4) was chosen as the model pollutant for electro-
catalytic oxidation to evaluate electrochemical activity of 
the electrodes.

2  Experimental

2.1  Materials

Pb(NO3)2, Fe(NO3)3·9H2O, NaOH, and  C2H2O4 were pur-
chased from VWR Prolabo Chemicals.  Na2SO4 was supplied 
by Panreac.  KNO3 was obtained from Janssen Chimica, Pure 
(> 99.9%). Carbon black was purchased from Alfa Aesar. 
Titanium plates with 0.1 mm thickness were purchased from 
Eszkozok Tools (Zhejiang, China) and used as the substrate. 
Doubly deionized water was used for the preparation of all 
solutions and Ti plate washing. All of the experiments were 
performed at 20 °C.

2.2  Electrode preparation

A titanium plate was used as substrate. It was initially pre-
treated by polishing with different types of sandpaper (Grit 
No. 100, 400, 600, 1200) and cleaned with double-distilled 
water to remove sand particles. Afterward, the plate was 
immersed in a 40% sodium hydroxide solution (50 °C) for 
2 h to remove organic residues from the surface, and then 
it was placed in a slightly boiling 10% oxalic acid, etched 
for 2 h and washed with distilled water. Finally, in order to 
avoid the formation of  TiO2, the titanium plate was stored 
in a 1% oxalic acid solution. This treatment should, there-
fore, strengthen the bond strength between the electrode 
surface and the oxide coating, improve the conductivity 
of the titanium plate, and extend the lifetime of the elec-
trode [42, 43].  PbO2 was deposited galvanostatically on 
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the pretreated titanium substrate. The deposition solution 
(30 mL) was composed of 0.2 M Pb(NO3)2 and 0.1 M 
 KNO3 solution. The deposition processes were carried 
out at room temperature between 5 and 10 min, and the 
current density was controlled at 20 mA  cm−2. The elec-
trodes were coated in the absence and presence of different 
concentrations of  Fe3+ (0.05 M, 0.1 M, and 0.2 M) and/
or carbon black 0.05 g. The fabricated electrodes were 
marked as Ti/PbO2, Ti/PbO2-0.05Fe, Ti/PbO2-0.1Fe, Ti/
PbO2-0.2Fe, Ti/PbO2-0.05C, and Ti/PbO2-0.1Fe-0.05C for 
0 M  Fe3+ + 0 g C, 0.05 M  Fe3+ + 0 g C, 0.1 M  Fe3+ + 0 g 
C, 0.2 M  Fe3+ + 0 g C, 0 M  Fe3+ + 0.05 g C, and 0.1 M 
 Fe3+ + 0.05 g C, respectively (Table 1), dependent on 
the electrode fabricated in different concentrations of 
Fe(NO3)3∙9H2O and 0.05 g carbon black.

2.3  Electrode characterization

The surface morphology of the Ti/PbO2 electrodes was 
observed by a scanning electron microscopy (SEM, JEOL 
JSM-IT 100) at an accelerating voltage of 20 kV.

The composition and crystalline structure of the coat-
ings were characterized by Energy Dispersive X-ray 
Spectroscopy (EDS) and X-ray diffraction (XRD, 
LABXXRD-6100 SHIMADZU) using Kα radiation 
(λ = 1.5406 Å) in the 2θ range of 10°–70°. The X-ray tube 
was operated at 40 kV with a Cu target.

For electrochemical characterization of the prepared 
films, three-electrode cell configuration is connected to 
the PGZ 301 electrochemical workstation driven by Vol-
taMastrer 4 software. Ti/PbO2, Ti/PbO2-0.05Fe, Ti/PbO2-
0.1Fe, Ti/PbO2-0.2Fe, Ti/PbO2-0.05C, and Ti/PbO2-0.1Fe-
0.05C were used as working electrode with an active surface 
of 1  cm2, a Ti plate was served as the auxiliary electrode 
and saturated calomel electrode (SCE) as the reference 
electrode. The measure of linear sweep voltammetry (LSV) 
was performed in 0.1 M  Na2SO4 solution at the scan rate 
of 10 mV  s−1 from 0 to 3 V. Cyclic voltammetry (CV) was 
used to study the electrochemical behavior of the prepared 
electrodes using a  10–2 M RY14 in 0.1 M  Na2SO4 solution 
as the supporting electrolyte and scan rate of 100 mV  s−1 

and potential range from 0 to 1700 mV. Electrochemical 
impedance spectroscopy (EIS) measurements were carried 
out in a range of 100 kHz–0.1 Hz at a potential of 0 V/SCE 
with a sine wave of 5 mV amplitude.

2.4  Electrocatalytic oxidation performance 
of the electrodes

The electrocatalytic oxidation activity of the prepared elec-
trodes was evaluated by electrolysis of RY14. The experi-
ments were carried out by the PGZ 301 electrochemical 
workstation in a 250 mL undivided electrochemical reactor. 
Each prepared electrode was used to electrolyze a solution 
containing 0.1 mM of RY14 dye in 0.1 M  Na2SO4. The solu-
tion was kept under agitation using a magnetic stirrer. The 
experiments were carried out at room temperature (20 °C) 
for 120 min. During the experiments, samples were taken 
from the electrolytic cell every 20 min for UV–VIS analysis 
(Analytik Jena, Specord 210 plus). The maximum adsorp-
tion wavelength of RY14 dye is 410 nm. The color removal 
efficiency of RY14 in electrochemical oxidation can be cal-
culated as follows [44]:

where A0 and At are the absorbance value at an initial time 
and time t, respectively.

3  Results and discussion

3.1  Surface morphology of Ti/PbO2 electrodes

Figure 1 shows SEMs of  PbO2 prepared from solutions con-
taining 0.2 M Pb(NO3)2 and 0.1 M  KNO3 at 20 mA  cm−2 on 
the surface of Ti electrode in the absence and presence of 
 Fe3+ and/or C. Figure 1a shows the morphology of prepared 
Ti/PbO2 in the absence of  Fe3+ and C. As is obvious, the 
morphology of the surface layer of the Ti/PbO2 electrode is 
rough with typical pyramidal shapes, as well as some dam-
age and cracks have been observed on the surface, which was 
similar to the earlier reports [33, 38, 45]. Figure 1b–d pre-
sents the morphology of lead dioxide deposited on the sur-
face of Ti electrode from the deposition solution containing 
different concentrations of  Fe3+ ions. As can be seen, at low 
 Fe3+ concentration (0.05 M), the electrode lost its pyramidal 
shape and a uniform structure with well-distributed globular 
particles arranged in rice shape is deposited on the electrode 
surface (Fig. 1b). After adding (0.1 M)  Fe3+ to the deposition 
solution, the modified Ti/PbO2-0.1Fe has a higher adherence 
to the electrode surface than that of sample prepared in the 
absence of  Fe3+ ions and still had the pyramidal structure, 

(1)Colorremovalef f iciency(%) =
A0 − At

A0

× 100%,

Table 1  Name and composition of the prepared electrodes

Electrode Composition

Ti/PbO2 0 M  Fe3+ + 0 g C
Ti/PbO2-0.05Fe 0.05 M  Fe3+ + 0 g C
Ti/PbO2-0.1Fe 0.1 M  Fe3+ + 0 g C
Ti/PbO2-0.2Fe 0.2 M  Fe3+ + 0 g C
Ti/PbO2-0.05C 0 M  Fe3+ + 0.05 g C
Ti/PbO2-0.1Fe-0.05C 0.1 M  Fe3+ + 0.05 g C
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but with smaller size, ordered, uniform, and smoother than 
the unmodified electrode (Fig. 1c). Further increase in  Fe3+ 
concentration up to 0.2 M resulted in smaller, globular-
shaped  PbO2 particle structures with obvious boundaries 
(Fig. 1d). Figure 1e shows the influence of adding 0.05 g of 
carbon black on the morphology of  PbO2 electrodeposited 
on the surface of the Ti electrode. A rice shape structure 
like that found in Fig. 1b but with smaller size is observed. 
Figure 1f shows the influence of the addition of a mixture of 
0.1 M  Fe3+ and 0.05 g of carbon black on the morphology of 
the  PbO2 electrodeposited on the surface of the Ti electrode. 
A uniform structure is observed consisting of a pileup-pellet 
pattern with an undefined boundary and the smallest globu-
lar particles [28, 39, 46].

The EDS analysis results for the entire electrodes are 
shown in Fig. 2. From the EDS spectrums, it could be seen 
that the elements Pb, O, Fe, and C were detected by EDS. 
Moreover, with the increase of  Fe3+ doping amount, the 

content of Fe element was gradually increased from 0.41 to 
1.89% (atom %). Also, the addition of 0.1 M  Fe3+ increases 
the amount of C doping from 12.87 to 33.28% (atom %). 
From the above results, it was proved that Fe and C elements 
were successfully and uniformly doped into the  PbO2 elec-
trodes. Moreover, no other elements were detected, indicat-
ing that the surface of the electrodes was completely covered 
by the  PbO2 layer.

3.2  Structure of Ti/PbO2 electrodes

Figure 3 shows XRD patterns of the different modified Ti/
PbO2 electrodes. The crystal structure of the Ti/PbO2 elec-
trode prepared in the absence of  Fe3+ consisted of a mix-
ture of two common crystallographic structures, namely 
the forms α- (orthorhombic) and β-(tetragonal) with a 
higher content of β-PbO2, which can be identified by its 
intense peaks, namely, (101 at 31.74°), (211 at 49.03°), 

Fig. 1  SEM images of a Ti/
PbO2, b Ti/PbO2-0.05Fe, c Ti/
PbO2-0.1Fe, d Ti/PbO2-0.2Fe, 
e Ti/PbO2-0.05C, f Ti/PbO2-
0.1Fe-0.05C electrodes
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Fig. 2  EDS analyses of the prepared electrodes
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(200 at 36.2°), and (110 at 25.4°). However, only a single 
peak α-PbO2 (111 at 28.32°) is observed. After the intro-
duction of  Fe3+ in the electrochemical deposition solution, 
peaks such as β(110) and α(111) disappeared and no new 
peaks corresponding to Fe were detected. The predominant 

phases were always β-PbO2 (β(101) and β(211)). The addi-
tion of carbon black alone or with  Fe3+ (0.1 M) to the 
electrodeposition solution shows no new peak. It can be 
said that the doping of  PbO2 with Fe/C has not led to the 
appearance of a new phase. This means that iron and car-
bon could exist as an amorphous phase. This result was 
also obtained by Yang et al. who were able to confirm the 
presence of β-phase only in the XRD analysis of Bi-PbO2 
modified with different concentrations of polyethylene 
glycol (PEG) [39].

Table 2 provides information on the grain size evolu-
tion calculated from the X-ray line broadening of the (101) 
reflections using the Debye–Scherrer equation (Eq. 2) [47]:

where D is the crystallite size, λ is the X-ray wavelength, β 
is the full width at half maximum of the peak, and θ is the 
diffraction angle.

It can be seen that doping  PbO2 with different concen-
trations of iron and carbon decreases the size of the elec-
trodeposited particles.

3.3  Linear sweep voltammetry (LSV)

A high oxygen evolution potential (OEP) is highly recom-
mended in the development of electrode material for waste-
water treatment [48]. The OEP of the electrodes was deter-
mined using LSV. Figure 4 shows the LSV of different Ti/
PbO2 electrodes in 0.1 M  Na2SO4 solution with a scan rate 
of 10 mV  s−1 between 0 and 3 V/SCE at room temperature 
(20 °C). Based on the polarization curves, the unmodified 
Ti/PbO2 electrode had an OEP value of 1.61 V/SCE, which 
was close to other studies [49, 50]. The OEPs of the modi-
fied lead dioxide electrode are 1.60 V/SCE, 1.64 V/SCE, 
1.60 V/SCE, 1.61 V/SCE, and 1.57 V/SCE, respectively, 
for Ti/PbO2-0.05Fe, Ti/PbO2-0.1Fe, Ti/PbO2-0.2Fe, Ti/
PbO2-0.05C, and Ti/PbO2-0.1Fe-0.05C, indicating that the 
addition of 0.1 M  Fe3+ has slightly increased the OEP of the 
electrode. Higher OEP contributed to reducing the occur-
rence of oxygen evolution and enhanced the formation of 
hydroxyl radicals [38, 46], resulting in increased oxidation 
efficiency and decreased energy consumption.

3.4  Cyclic voltammetry

Cyclic voltammetry was used to test the electrocatalytic 
activity of Ti/PbO2 electrodes for RY14 oxidation. With the 
cyclic voltammetry technique, the oxidation of the pollut-
ants is attributed to the direct transfer of electrons from the 
pollutants onto the electrodes. The cyclic voltammograms 
of 0.1 M  Na2SO4 media with and without  10–2 M RY14 on 

(2)D =
K�

�cosθ
,

Fig. 3  XRD patterns of the Ti/PbO2 electrodes

Table 2  Particle size calculated from XRD data

Sample Particle size (nm)

Ti/PbO2 22.83
Ti/PbO2-0.05Fe 15.71
Ti/PbO2-0.1Fe 18.01
Ti/PbO2-0.2Fe 16.43
Ti/PbO2-0.05C 14.79
Ti/PbO2-0.1Fe-0.05C 14.72

Fig. 4  LSV curves of different Ti/PbO2 electrodes in 0.1 M  Na2SO4 
solution, scan rate: 10 mV  s−1
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the different prepared electrodes at a scan rate of 100 mV  s−1 
within a potential range of 0 to 1.7 V/SCE are presented 
in Fig. 5. As we can see, in the blank electrolyte (Fig. 5a), 
there is no anodic peak except the one formed by the water 
discharge for all electrodes. After RY14 dye was added to 
the blank solution (Fig. 5b), a broad anodic peak at about 
1.45 V/SCE appeared. In comparison to the cyclic voltam-
mograms in the blank solution, it was clear that the anodic 
peak at 1.45 V/SCE depended on the oxidation of RY14 dye. 
The oxidation potential of RY14 was lower than the oxygen 
evolution potential, indicating that the oxidation process was 
due to direct electron transfer.

3.5  Electrochemical impedance spectroscopy (EIS)

Figure 6 shows the Nyquist plots of freshly prepared Ti/
PbO2 electrodes electrodes in 0.1 M  Na2SO4 solution over a 
range of 100 kHz–0.1 Hz with a sine wave of 5 mV ampli-
tude. The Nyquist plots show the presence of two semicir-
cles, one in the high-frequency domain describes the elec-
tron transfer process, while the second in the low-frequency 
domain explains the adsorption of the intermediate. As 
shown in Fig. 6, the impedance of the Ti/PbO2 anode is 
lower than that of the modified Ti/PbO2 electrode, implying 
that the element-doped electrode disadvantages the electro-
chemical reaction process. The impedance parameters were 
extracted using the equivalent circuit (EC) inserted in Fig. 6. 
Rs is the solution resistance, Cdl represents the double-layer 
capacitance, Rct describes the charge transfer resistance, Cads 
and Rads are the capacitance and resistance generated by the 
adsorption of the intermediate on the electrode surface.

In addition, the parameters of EIS data are adjusted and 
rearranged in Table 3. In this study, the polarization resist-
ance (Rp) was used to explore the effect of doped elements on 
the electrochemical reaction process of Ti/PbO2 electrode. 
This parameter includes all the effects that occur during an 
electrochemical process. From Table 3, it can be observed 
that the anodes doped with 0.05 g carbon and 0.05 M  Fe3+ 
had high Rp, with the values of 637.90 Ω  cm2 and 456.90 
Ω  cm2, respectively. In contrast, the other prepared anodes 
have an Rp close to the  PbO2 electrode, especially for the 
one doped with 0.1 M  Fe3+. Moreover, we notice that the 
polarization resistance decreases significantly by adding 
0.1 M  Fe3+ to the prepared carbon-doped anode, which 
demonstrates the positive effect of Iron in promoting the 
electrochemical reaction process in the presence of carbon.

Fig. 5  Cyclic voltammograms of different Ti/PbO2 electrodes measured in a 0.1 M  Na2SO4 and b 0.1 M  Na2SO4 containing  10–2 M RY14 dye, 
scan rate: 100 mV  s−1

Fig. 6  Nyquist plots of Ti/PbO2 electrodes and equivalent circuit 
model (the inset) in 0.1 M  Na2SO4 solution
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3.6  Electrocatalytic oxidation of RY14 dye

The electrocatalytic activity of the Ti/PbO2 electrodes 
was evaluated via electrocatalytic elimination of RY14 
under galvanostatic condition at a current density of 
200 mA  cm−2 for 120 min in 0.1 M  Na2SO4 solution. 
Figure 7a shows the percentage of RY14 decolorization 
as a function of time. It can be seen that the decoloriza-
tion rate reaches more than 90% using Ti/PbO2 and Ti/
PbO2-0.1Fe electrodes after 120 min of electrolysis, while 
it was more than 70% using Ti/PbO2-0.2Fe and Ti/PbO2-
0.1Fe-0.05C electrodes. According to these results, it can 
be said that the Ti/PbO2 and Ti/PbO2-0.1Fe electrodes 
showed the highest activity for color removal. However, 
the Ti/PbO2 electrode does not hold well on the electrode, 
it deteriorates with time. Τhe oxidation of the complex 
azo dye molecule results in intermediates with low molec-
ular weight like aliphatic and aromatic compounds. Τhey 
are formed by displacement of the chromophore func-
tional group and subsequent oxidation of the organic com-
pounds to carbon dioxide and organic acids (carboxylic 

acids) [51]. Hu et al. (2015) reported the electrolysis of 
acid red Β azo dye (1 g  L−1) using Ce-PbO2/C electrode. 
They found 60.75% decolorization when the applied volt-
age is 2 V [52]. However, Andrade et al. (2007) found 
90% of decolorization of Blue Reactive 19 (25 mg  L−1) 
dye using Fe-doped  PbO2 (5  cm2) electrode when apply-
ing current density of 50 mA  cm2 [53].

The curves of Ln (C0/C) versus time for different pre-
pared anodes are shown in Fig. 7b. From the good linear 

Fig. 7  a Performance of Ti/PbO2 electrodes for RY14 degradation, b pesudo-first-order kinetics for RY14 oxidation [Conditions: current density: 
200 mA  cm−2; V = 250 mL; (RY14) = 0.1 mM; electrolyte: 0.1 M  Na2SO4]

Table 4  The kinetics for the electrochemical degradation of RY14 
(electrolysis time: 2 h)

Electrode Kapp  (min−1) R2

Ti/PbO2 0.027 0.99
Ti/PbO2-0.05Fe 0.006 0.98
Ti/PbO2-0.1Fe 0.020 0.99
Ti/PbO2-0.2Fe 0.011 0.99
Ti/PbO2-0.05C 0.005 0.96
Ti/PbO2-0.1Fe-0.05C 0.010 0.97

Table 3  Impedance parameters 
of Ti/PbO2 electrodes

Rct
(Ω  cm2)

Cdl
(µF  cm−2)

Rads (Ω  cm2) Cads (mF  cm−2) Rp
(Ω  cm2)

Ti/PbO2 12.09 1.66 351.40 0.32 363.49
Ti/PbO2-0.1Fe 20.02 5.02 352.40 0.05 372.42
Ti/PbO2-0.05Fe 118.90 1.20 338.00 0.26 456.90
Ti/PbO2-0.2Fe 166.60 19.10 233.10 1.71 399.70
Ti/PbO2-0.05C 174.20 14.40 463.70 0.77 637.90
Ti/PbO2-0.1Fe-0.05C 110.00 1.03 325.80 1.22 435.80
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correlation for all electrodes, the degradation of RY14 
followed the pseudo-first-order kinetics according to 
Eq. 3.

where kapp is the apparent kinetics coefficient.
The pseudo-first-order apparent rate constants (kapp) 

of 0.027  min−1 and 0.020  min−1 were found for Ti/PbO2 
and Ti/PbO2-0.1Fe, respectively (Table 4). This indicates 
that the oxidation power of these two electrodes is higher 
compared to the others. The better performance for the 
degradation of RY14 on Ti/PbO2 and Ti/PbO2-0.1Fe can 
be ascribed to the high oxygen evolution potential, high 
specific surface area, and good electrical conductivity. 
These properties allowed the generation of more  HO∙-free 
radicals which lead to an improvement in the decoloriza-
tion ability of these anodes [54].

4  Conclusion

Fe and/or C-doped Lead dioxide electrodes were prepared 
onto the pretreated Ti plate by anodic oxidation of solu-
tions containing  Fe3+ and/or C to  Pb2+ in the electrodepo-
sition bath. SEM/EDS and XRD tests show that Fe and/
or C doping in lead dioxide films can decrease the crystal 
size of the anodes and increase their specific surface area. 
The highest OEP is found for the Ti/PbO2-0.1Fe elec-
trode. In the CV test, the presence of the anodic peak for 
all the prepared electrodes suggests that the oxidation of 
the RY14 dye was easily achieved on the surface of those 
anodes studied. Furthermore, the resistance to polarization 
is found to decrease significantly by adding 0.1 M  Fe3+ to 
the prepared carbon-doped anode, indicating the positive 
effect of iron in promoting the electrochemical reaction 
process in the presence of carbon. The use of pure and 
 Fe3+ (0.1 M)-doped  PbO2 electrodes in the decoloriza-
tion of the RY14 dye proved to be good candidates for 
the mineralization of the RY14 dye, since more than 90% 
mineralization was achieved after 2 h of electrolysis.
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