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Abstract
The Electroseparation of zinc(II) from a solution of uranium(III) generated by the reduction of uranium(IV) triflate (U(OTf)4) 
with zinc amalgam (Zn(Hg)) was studied to establish a convenient route to the precursors of organic uranium(III) compounds. 
Specifically, the electrode reactions of U(OTf)4 in N,N-dimethylformamide on mercury (Hg) and Zn(Hg) electrodes were 
probed by voltammetry and bulk electrolysis measurements. The voltammograms recorded on the former electrode showed 
three cathodic waves assigned to the reduction of a uranium(IV) solvate complex (− 1.48 V), the reduction of [U(OTf)]3+ 
(− 1.81 V), and uranium amalgamation (− 2.65 V). On the latter electrode, the first cathodic wave was masked, as it was 
located at the potential of zinc amalgamation. Bulk electrolysis experiments revealed that for both Hg and Zn(Hg), the work-
ing electrode potential featured a plateau around − 2.3 V, which was not observed in the corresponding voltammograms 
and was related to the degradation of uranium(III) based on spectroscopic observations. The Electroseparation of zinc(II) 
from the uranium(III) solution on Zn(Hg) was successfully (highest coulombic efficiency = 0.81, final zinc(II) separation 
ratio = 93.4%) carried out after the reduction of U(OTf)4 by Zn(Hg).
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1 Introduction

The past two decades have witnessed a revival of interest in 
low-valent uranium chemistry, such as the unusual reactions 
mediated by uranium(III) [1–8]. As further development 
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in this field relies on the availability of uranium(III) com-
pounds, the establishment of their convenient syntheses has 
drawn much attention [9–12].

Uranium(III) species (e.g.,  UI3 and U(OTf)3) and their 
solvent adducts are typically prepared from uranium metal 
[9, 11, 13–15], while other routes such as the reduction of 
uranium(IV) by metals [16, 17] or other agents [18–26] are 
less common. These alternative routes are appropriate for 
the synthesis of compounds such as  UL4(Ph4B)3 (L = amide 
derivative) [18],  LiU2Cl7(THF)4.5 (THF = tetrahydrofuran) 
[21], and U(L′)3 (L′ = N,N-dimethylaminodiboranate) [25] 
but are not practical in other cases because of the difficulty 
of separating the spent reducing agent from uranium(III) 
products. The most convenient and common reductant 
for this purpose is zinc amalgam (Zn(Hg)) [26], which 
has been used for the preparation of uranium(III) species 
from uranium(IV) and uranyl(VI) in aqueous [27, 28] and 
organic solutions [29, 30] and for the study of their elec-
trochemical and spectroscopic properties. Previously, we 
evaluated the stability of uranium(III) prepared by the 
reduction of U(OTf)4 with Zn(Hg) in THF and found that 
the uranium(III) oxidation state could be maintained for 
more than a week when the solution was kept in contact 
with Zn(Hg), whereas gradual oxidation was observed in the 
absence of Zn(Hg) [31]. Therefore, uranium(III) compounds 
with various counter ions can be conveniently prepared if 
zinc(II) eluted from Zn(Hg) can be rapidly removed from 
uranium(III) solutions in organic solvents.

Selective reduction relies on the differences in sol-
ute redox potentials and has been used in numerous bulk 
electrolysis-based electroseparations, as exemplified by the 
removal of > 96 wt% of aluminum impurities from LiCl–KCl 
melts [32] and that of ~ 95% of  CaCl2 from  CaCl2–LiCl–KCl 
melts [33] prior to lithium(I) reduction as well as by the 
separation of uranium from lanthanides in LiCl–KCl melts 
on a liquid gallium electrode [34]. The above technique was 
also used for the removal of non-metallic impurities such 
as oxygen, sulfur, and selenium from molten copper [35] 
and the removal of bromate using boron-doped diamond 
electrodes [36]. Although the bulk electrolysis of uranium 
solutions has been widely studied for various purposes, 
e.g., direct recovery for spent nuclear fuel reprocessing [34, 
37–42], the solution-phase Electroseparation of zinc(II) 
from uranium(III) remains underexplored.

The electrochemistry of zinc and low-valent uranium has 
been studied using the mercury (Hg) electrode in aqueous 
and organic solutions. The behavior of zinc(II) on this elec-
trode can be simply explained by amalgamation and dissolu-
tion irrespective of the solution composition [43–45], while 
the electrode reactions of low-valent uranium are strongly 
influenced by both the solvent and the electrolyte. In polar-
ographic studies of  UCl4, two cathodic waves assigned to 
the reversible reduction of uranium(IV) to uranium(III) and 

irreversible uranium amalgamation were observed at − 1.13 
and − 1.93 V vs. the standard calomel electrode (− 1.52 and 
− 2.32 V vs. Ag/Ag+) in dimethylformamide (DMF), respec-
tively; whereas both of these reactions were irreversible in 
dimethyl sulfoxide (DMSO) [46]. Two irreversible cathodic 
waves were also observed on a hanging mercury electrode 
(HME) when a solution of U(ClO4)4 in DMSO was probed 
by cyclic voltammetry (CV) [47]. In the bulk electrolysis 
of uranium(IV) in DMF, the electrode reactions are also 
strongly dependent on the electrode material and counter 
ion, e.g., in the case of the Hg pool electrode and perchlorate 
as the counter ion, the electrode potential stays at − 1.4 V vs. 
Fc/Fc+ (− 1.4 V vs. Ag/Ag+), whereas a plateau at − 2.2 V 
vs. Fc/Fc+ (− 2.2 V vs. Ag/Ag+) is observed for triflate as the 
counter ion. In both cases, the intensity of the uranium(IV) 
absorption band decreases with time at the plateau, whereas 
that of the uranium(III) band initially increases and then 
saturates or decreases at the same plateau [48].

To shed light on the electrochemical behavior of low-
valent uranium triflate, we probed the electrode reactions of 
U(OTf)4 by voltammetry, using the standard HME and that 
where Hg was substituted by Zn(Hg). This study used DMF 
with its large negative potential window [49] as a solvent and 
tetrabutylammonium triflate (TBAOTf) as a supporting elec-
trolyte. For comparison, we also probed the bulk electrolysis 
of U(OTf)4 in the presence of zinc(II) in DMF containing 
TBAOTf on both the pool Hg and the Zn(Hg) electrodes. 
The Electroseparation of zinc(II) from the uranium(III) 
solution prepared by the reduction of U(OTf)4 on Zn(Hg) 
in DMF was studied for the first time to evaluate the pos-
sibility of the convenient preparation of spent reductant-free 
uranium(III) starting materials.

2  Experimental

2.1  Materials

DMF was purchased from Fujifilm Wako Pure Chemical 
Corporation and distilled under reduced pressure before use. 
TBAOTf was purchased from Tokyo Kasei Kogyo Co., Ltd. 
(Tokyo, Japan) and used without further purification. Other 
chemicals, except for  UO3, were used as received (Fujifilm 
Wako Pure Chemical Corporation). Deionized water (18 MΩ 
cm, Academic A10 model, Milli-Q, USA) was used in all 
experiments. Zn(Hg) was prepared as described elsewhere 
[28]. Briefly, zinc tips (3 g) were reacted with Hg (100 g) 
in 0.5 M aqueous  H2SO4 for 1 h at 343 K, and the resulting 
product was washed with dry DMF (5 × 20 mL) to remove 
residual water.

U(OTf)4 was prepared as follows.  UO3 (5.72 g) was dis-
solved in aqueous triflic acid (12.3 mL  CF3SO3H + 10 mL 
 H2O) at 353 K and the solution was electroreduced on a Hg 
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cathode at a constant voltage to afford uranium(IV). The 
product obtained after the evaporation of the obtained solu-
tion was dried in vacuo for 12 h at 453 K and for a further 3 h 
in a flow of dry  N2 gas. The resulting green dendritic crys-
tals were examined by elemental analysis (Flash EA1112 
CHN analyzer, Thermo Quest Italia) and inductively coupled 
plasma-atomic emission spectrometry (ICP-AES; ICP-7500, 
Shimadzu Corp., Japan), and their composition was deter-
mined as U(OTf)4 (calcd.: U, 28.53 wt%; C, 5.76 wt%; H, 
0.00 wt%; found: U, 28.36 wt%; C, 6.14 wt%; H, 0.00 wt%).

The uranium(III) solution used for electrochemical 
zinc(II) removal was prepared by the reduction of U(OTf)4 
over Zn(Hg) in DMF and the obtained solution was promptly 
used to determine the molar extinction coefficients of the 
uranium(III) absorption bands (Fig. S1).

2.2  Methods

All experiments were carried out inside an Ar-filled glove 
box (< 1 ppm  O2 and  H2O) at room temperature. CV and 
normal pulse voltammetry (NPV) measurements were 
performed using a three-electrode system (HZ-3000 and 
HZ-7000, Hokuto Denkou Corp., Japan). The working elec-
trode (WE) was either the HME (Yanako Co. Ltd., Japan) 
or a Zn(Hg) electrode obtained by substituting Hg in the 
HME for Zn(Hg) (electrolyte contact area ≈ 1.4  mm2). The 
counter electrode (CE) was a 10 mm × 10 mm Pt plate. The 
Ag/Ag+ reference electrode (RE) comprised a silver wire 
and a solution of  AgNO3 (0.01 M) and TBAOTf (0.1 M) 
in freshly prepared DMF. Bulk electrolysis and the Elec-
troseparation of zinc(II) were carried out using the setup 
illustrated in Fig. 1. The pool WE (diameter = 43 mm), CE, 
and RE (described above) were used. In addition to the elec-
trodes, the system comprised a beaker-type cell (30 mL) and 
an anion-exchange membrane (Selemion APS, Asahi Glass 
Engineering Co., Ltd., Japan). The anolyte was circulated 
in a flow-type optical cell (path length = 2 mm) installed 

outside the glove box for in situ visible–near-IR spectro-
scopic measurements (UV-3100PC, Shimadzu). Constant 
current electrolysis was performed at − 5 or − 10 mA, and 
WE potentials were recorded. Each solution (50 µL) was 
sampled at regular intervals and analyzed using ICP-AES to 
quantify total uranium and zinc(II) concentrations.

3  Results and discussion

3.1  Voltammetric investigation of U(OTf)4 reduction 
on Hg and Zn(Hg) electrodes

Figure  2 presents the cyclic voltammograms of 5 mM 
Zn(OTf)2 and 5 mM U(OTf)4 in DMF containing 0.1 M 
TBAOTf and that of DMF containing 0.1 M TBAOTf (for 
the potential window survey) recorded on the HME. The 
potential was scanned at 0.2 V  s−1 in the cathodic direc-
tion starting from the open-circuit potential. The voltammo-
gram of the supporting electrolyte showed that its potential 
window was sufficient to evaluate the electrode reactions 
of low-valent uranium triflate and zinc amalgamation. The 
voltammogram of Zn(OTf)2 showed a single redox wave 
(c1′/a1′;  Zn2+ + 2e− ⇄ Zn(Hg)) around − 1.4 V vs. Ag/Ag+ Fig. 1  Schematic setup used for bulk electrolysis

Fig. 2  Cyclic voltammograms of a  5 mM Zn(OTf)2 in DMF con-
taining 0.1 M TBAOTf, b 5 mM U(OTf)4 in DMF containing 0.1 M 
TBAOTf (solid line) + the results of three consecutive scans (inset) 
and DMF containing 0.1  M TBAOTf (dotted line) recorded on the 
HME at 0.2 V  s−1. The sweeps were started at the open-circuit poten-
tial and proceeded in the cathodic direction
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(hereinafter, all potentials are referenced to Ag/Ag+ if not 
stated otherwise; Fig. 2a). In contrast, the voltammogram of 
U(OTf)4 exhibited three cathodic waves (c1, c2, and c3 at 
− 1.48, − 1.81, and − 2.65 V, respectively) and one anodic 
wave (a1 at − 1.4 V) that disappeared when the potential 
range was extended beyond − 2.1 V in the negative direction 
(Fig. 2b). The a1 peak current recorded at the reversal poten-
tial of − 1.7 V (1.25 µA) increased when the potential was 
set to − 2.1 V (1.72 µA). These results suggest that waves 
c1 and c2 can be attributed to the reduction of two different 
uranium(IV) species. Moreover, the subsequent reaction of 
wave c2 was assigned to the degradation of the uranium(III) 
species generated in wave c2, which increased the content of 
uranium(III) species oxidized in wave a1. The reduction of 
U(OTf)4 in DMF probably involved the following reactions 
(coordinated DMF molecules are omitted for clarity).

All these reactions except for reaction (4) were suf-
ficiently fast to maintain reproducibility between voltam-
mograms across several scans (Fig. 2, inset). Moreover, the 
electrode reaction of the uranium(IV) solvate complex (reac-
tion (2)) was quasi-reversible (Figs. S2 and S3, Table S1), 
and this complex accounted for only 24% of all uranium(IV) 
species in solution (Fig. S4). However, this reaction may 
have substantially overlapped with zinc amalgamation/
dissolution.

To compare the electrode reactions of pure and zinc-
amalgamated Hg, CV measurements were also conducted 
on Zn(Hg) for 5 mM U(OTf)4 in DMF containing 0.1 M 
TBAOTf and for DMF containing 0.1 M TBAOTf (Fig. 3). 
The potential scans were carried out as in the case of the 
HME, namely in the cathodic direction from the open-
circuit potential at a sweep rate of 0.2 V  s−1, and showed 
that the positive side of the potential window was restricted 
by the onset of zinc(II) dissolution from Zn(Hg) at − 1.55 
V. The voltammogram of the U(OTf)4 solution exhibited 
three cathodic waves (c1′, c2, and c3 at − 1.52, − 1.80, and 
− 2.60 V, respectively) with peak potentials consistent with 
those observed for the HME (Fig. 2). However, the c1′ peak 
current of the second and third cycles exceeded that of the 
first cycle (Fig. 3, inset), in contrast to wave c1 on HME 
(Fig. 2 inset). Moreover, a similar peak was observed during 
the potential window measurement. Based on these results, 
wave c1′ was assigned to zinc amalgamation. It is important 

(1)U4+ + OTf ⇄ [U(OTf)]3+,

(2)U4+ + e− ⇄ U3+(forward ∶ a1, backward ∶ c1),

(3)[U(OTf)]3+ + e−(c2) → [U(OTf)]2+ → U3+ + OTf−,

(4)U3+ + 3e−(c3) → U(Hg).

to note that the competing reduction of the uranium(IV) 
solvate complex (wave c1) was expected to occur at the same 
potential.

3.2  Bulk electrolysis of U(OTf)4 in DMF on Hg 
and Zn(Hg) electrodes

To investigate the electrode reduction of low-valent uranium 
triflate and zinc(II) on the large-area WE, we performed the 
bulk electrolysis of U(OTf)4 on Hg and Zn(Hg) in DMF 
and compared the results with those of Voltammetric 
experiments.

Figure  4 shows the solution-phase behavior of 
uranium(III) and zinc(II) (i.e., the evolution of  [U3+]/[U]total 
and  [Zn2+]) and that of WE potential during the bulk elec-
trolysis of 6.4 mM U(OTf)4 (hereinafter abbreviated as 
“without Zn(OTf)2”) and a mixture of 6.7 mM U(OTf)4 + 
4.6 mM Zn(OTf)2 (“with Zn(OTf)2”) in DMF containing 
0.1 M TBAOTf at − 10 mA.  [U3+] was calculated from the 
intensity of uranium(III) absorption at 11,062  cm− 1 meas-
ured during electrolysis (Fig. S5) and the corresponding 
molar extinction coefficient (estimated as 436  M− 1  cm− 1; 
Fig. S1).

In the case of “without Zn(OTf)2,” the  [U3+]/[U]total ratio 
saturated at < 0.2 about 20 min after the onset of electroly-
sis. Similar results were obtained using other uranium(III) 
absorption bands (at 8130, 9242, 9469, 10,121, 13,440, 
16,025, and 18,587  cm− 1), whereas the uranium(IV) bands 
(at 7000, 9500, and 12,500  cm− 1) monotonically lost inten-
sity (Fig. S5). The WE potential curve showed one precipi-
tous shoulder (− 1.8 V) and one plateau (− 2.3 V). There 

Fig. 3  Cyclic voltammograms of 5 mM U(OTf)4 in DMF containing 
0.1 M TBAOTf + the results of three consecutive scans (inset) and of 
DMF containing 0.1 M TBAOTf (dotted line) recorded at 0.2 V  s−1 
on Zn(Hg). The sweeps were started at the open-circuit potential and 
proceeded in the cathodic direction
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was no signal around − 1.4 V related to uranium(IV) solvate 
reduction (reaction (2)). The shoulder, assigned to the reduc-
tion of [U(OTf)]3+ (reaction (3)), was too narrow for this 
reduction to be complete, as assumed from previous Vol-
tammetric investigations. Moreover, the plateau potential 
of − 2.3 V, corresponding to the continuous reduction of 
uranium(IV) and the preservation of uranium(III) species on 
the plateau following their first generation, has never been 
observed in CV and NPV experiments. These results indi-
cate that the reduction behavior of U(OTf)4 on the large-area 
WE (diameter = 43 mm) used in bulk electrolysis is signifi-
cantly different from that on the small-area WE (area ≈ 1.4 
 mm2) used in Voltammetric experiments.

In the case of “with Zn(OTf)2,”  [Zn2+] rapidly decreased 
over the first 50 min, subsequently more slowly decreas-
ing to 0.1 mM. The  [U3+]/[U]total ratio started to increase 
after 40 min and saturated at 0.25 after 70 min. On the other 
hand, the WE potential curve showed one shoulder (− 1.8 V) 
and two plateaus (− 1.5 and − 2.3 V), respectively. The first 
plateau potential well matched that of zinc amalgamation 
observed in CV experiments and the period agreed with the 
abovementioned decrease of  [Zn2+]. Moreover, the reactions 
of the other plateau and shoulder were essentially identical 
to those observed “without Zn(OTf)2,” whereas the time of 
[U(OTf)]3+ reduction was obviously longer in the latter case.

Figure 5 presents the changes in  [U3+]/[U]total,  [Zn2+], 
and WE potential during the bulk electrolysis of 5.2 mM 
U(OTf)4 in DMF containing 0.1 M TBAOTf with Zn(Hg) as 

the WE at − 5 mA. The behavior of  [Zn2+] indicated that the 
slight occurrence of zinc amalgamation was followed by zinc 
dissolution from Zn(Hg) in the first 20–25 min. Simultane-
ously, uranium(III) was generated up to  [U3+]/[U]total = 0.44 
by the reduction of uranium(IV) (Fig. S6) and the  [U3+]/
[U]total ratio saturated at 0.66 after 45 min. The WE poten-
tial curve exhibited a gradual slope from − 1.5 to − 1.8 V 
and one plateau at − 2.3 V. These results indicated that the 
potential slope observed for the first 25 min corresponded to 
the competing reactions of zinc amalgamation and the elec-
trolytic reduction of uranium(IV) to uranium(III). However, 
when zinc amalgamation was almost complete, the electro-
lytic generation of uranium(III) became difficult and finally 
stopped, whereas the reduction of uranium(IV) monotoni-
cally continued (Fig. S6) in the plateau region at − 2.3 V.

The results of bulk electrolysis experiments demonstrated 
that the WE potential of zinc amalgamation was consistent 
with the results of Voltammetric experiments, in contrast to 
that of the electrochemical reactions of low-valent uranium 
triflate. Notably, the former potential was more positive than 
the latter, especially for the plateau potential at − 2.3 V, 
which was related to uranium(III) degradation.

3.3  Electroseparation of zinc(II) from uranium(III) 
solution on Zn(Hg)

After the reduction of 4.5 mM U(OTf)4 in DMF by Zn(Hg), 
we attempted the Electroseparation of zinc(II) from the 
uranium(III) solution by bulk electrolysis on Zn(Hg).

Fig. 4  Changes in (a)  [Zn2+] and  [U3+]/[U]total and (b) the electrode 
potential of Hg during constant current (− 10 mA) electrolytic reduc-
tion of 6.4 mM U(OTf)4 (red) or a mixture of 6.7 mM U(OTf)4 + 
4.6 mM Zn(OTf)2 (black) in DMF containing 0.1 M TBAOTf. (Color 
figure online)

Fig. 5  Changes in (a)  [Zn2+] and  [U3+]/[U]total and (b) the electrode 
potential of Zn(Hg) during constant current (− 5 mA) electrolytic 
reduction of 5.2 mM U(OTf)4 in DMF containing 0.1 M TBAOTf
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Figure 6 shows the concentrations of uranium(III) and 
zinc(II)  ([U3+]/[U]total and  [Zn2+]) and the WE potential 
as functions of time, revealing that  [Zn2+] monotonically 
decreased and reached 0.13 mM at 50 min. In contrast, the 
 [U3+]/[U]total ratio was stable at 0.99 for 35 min and was 
comparable to that obtained just after reduction by Zn(Hg) 
 ([U3+]/[U]total = 1.00 at 40 min), subsequently experienc-
ing a slight decrease. Similar results were obtained from 
other uranium(III) absorption bands (Fig. S7). The WE 
potential curve showed that zinc amalgamation occurring 
at the first plateau of − 1.52 V, as assigned by CV experi-
ments, exclusively proceeded up to 35 min. At times of 
35–40 min, the potential shifted in the negative direc-
tion from the first plateau to the second plateau located 
at approximately − 2.3 V. In this range, spectroscopic 
observations indicated the occurrence of competitive zinc 
amalgamation and uranium(IV) (presumably U(OTf)3+) 
reduction. The second plateau (t > 40 min) reflected the 
degradation of uranium(III) without uranium amalgama-
tion corresponding to the potential of − 2.6 V (reaction 
(4)).

The coulombic efficiency (ηC) of zinc(II) Electrosepara-
tion (i.e., zinc amalgamation) is estimated as:

where Ci and Ci−1 are the concentrations of  [Zn2+] in sam-
ples i and i–1 (i = 1, 2, …), V is the solution volume (L), qi 
and qi−1 are the integral quantities of electricity consumed 

(5)�C =

(

Ci−1 − Ci

)

V

(qi − qi−1)∕nF
,

during electrolysis (C), F is the Faraday constant, and n is 
the stoichiometric number of electrons involved in the elec-
trode reaction (n = 2 for the reduction of zinc(II)). Simulta-
neously, the zinc(II) separation ratio is estimated as:

 where C0 is  [Zn2+] at the beginning of electrolysis. Table 1 
lists the thus obtained values, revealing that the highest ηC 
equaled 0.93, while the final zinc(II) separation ratio equaled 
93.4%. These results demonstrate that almost quantitative 
zinc(II) removal from the uranium(III) solution occurred 
under the chosen conditions.

4  Conclusion

The reduction of U(OTf)4 in DMF containing TBAOTf 
was studied on the pristine HME and on the HME where 
Hg was replaced with Zn(Hg). The three cathodic waves 
observed in the former case were assigned to the reduction 
of a uranium(IV) solvate complex and [U(OTf)]3+ (− 1.48 
and − 1.81 V, respectively) and uranium amalgamation 
(− 2.65 V). The redox wave of the uranium(IV) solvate 
complex overlapped with those of zinc(II) dissolution from 
Zn(Hg) and zinc amalgamation. The electrode reactions 
of low-valent uranium triflate on the large-area WE (used 
for bulk electrolysis) were critically different from those 
observed on the small-area WE (used for Voltammetric 
experiments), in contrast to the electrode reaction of zinc(II). 
Notably, a new plateau potential related to uranium(III) deg-
radation was obtained around − 2.3 V instead of a lack of 
uranium(IV) solvate complex reduction under all conditions. 
These results demonstrated that zinc amalgamation pro-
ceeded prior to uranium(III) degradation. The Electrosepa-
ration of zinc(II) from the uranium(III) solution prepared 
by the reduction of U(OTf)4 using Zn(Hg) in DMF was 
conducted in a quantitative manner, with the final zinc(II) 
separation ratio equaling 93.4%. The results show that Elec-
troseparation has sufficient potential for the preparation of 
spent reductant-free uranium(III) starting materials. We are 
currently attempting to demonstrate this method using THF, 

(6)Separation ratio =
(

1 − Ci∕C0

)

× 100%,

Fig. 6  Changes in (a)  [Zn2+] and  [U3+]/[U]total and (b) the electrode 
potential of Zn(Hg) during the Electroseparation of zinc(II) from 
DMF containing 4.5 mM uranium triflate after reduction by Zn(Hg)

Table 1  Coulombic efficiency (ηC) and zinc(II) separation ratios 
achieved at different times

Sample number (i) Sampling time 
(min)

ηC Separation 
ratio (%)

1 20 0.86 45.2
2 30 0.93 69.5
3 40 0.54 83.8
4 50 0.37 93.4



1107Journal of Applied Electrochemistry (2022) 52:1101–1108 

1 3

which is typical synthetic solvent, and subsequent synthesis 
of uranium(III) complexes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10800- 022- 01698-7.
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