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Abstract
Abnormal expression and functioning of microRNAs in the immune system are frequently linked to various cancers. Our 
previous work demonstrated a universal, label-free, and reliable microRNA detection platform based on the nanochannels-
based recognition interface and electrode-based sensing interface. Herein, the strategy of G-quadruplex DNAzyme-catalyzed 
deposition was introduced into the nanochannels to improve the detection sensitivity of the platform. G-quadruplex DNA-
zyme could catalyze the oxidation of 4-chloro-1-naphthol to produce insoluble precipitates into the nanochannels which 
amplified the effect of the hybridization reaction between the capture probe and the target to the mass transport of the redox 
probe through the recognition interface. Then, a porous carbon nanofibers-modified electrode was applied to further amplify 
the monitoring sensitivity of the sensing interface to the concentration change of the redox probe methylene blue. Thereby, 
sensitive electrochemical detection of microRNA-21 was acquired. The biosensing platform exhibited a broad linear range 
of 100 aM to 1 nM for microRNA-21, with a low detection limit of 40 aM. What is more, the selective and reproducible 
platform provided an alternative technique for the PCR-free determination of microRNA in serum and tumor cells.
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1 Introduction

MicroRNAs (MiRs) are a kind of short nonprotein coding 
RNAs that serve as critical regulators of gene expression 
in plants, animals, and virus genomes [1]. As proto-onco-
gene or tumor suppressor, microRNA-21 (miR-21) plays 
an important role in controlling the expression of genes 
and therefore it has become a new biomarker for cancer 
diagnosis and prognosis [2]. MiR-21 is over-expressed in 
most tumor diseases such as breast cancer [3], cervical 
cancer [4], and glioblastoma [5]. However, the concentra-
tion of miR-21 in human serum or tumor cells is still on 
such a low level. So it is a rigorous challenge to estab-
lish a sensitive enough method for miR-21 detection [6]. 
The conventional golden nucleic acid detection method 
such as PCR or northern blotting is not amenable to 
detect short RNAs and distinguish miR’s family members 
with very similar sequences. In terms of sensitivity and 
specificity, surface-enhanced Raman spectroscopy, elec-
trochemiluminescence, and electrochemical biosensing are 
more superior techniques for the highly sensitive determi-
nation of miR-21. Among them, electrochemical biosens-
ing exhibits high sensitivity, good selectivity, easy opera-
tion, and are suitable for in vivo and in vitro applications 
[7–12]. In many cases, ultrasensitive detection of miR-21 
was often connected with complicated probe labeling or/
and time-consuming nucleic acid amplification [13].

Recently, biosensing platforms based on nanochannels 
have attracted great attention due to extensive, simple, 
and label-free detection mode [14–17]. Nanoporous mem-
branes including anodic aluminum oxide (AAO) and poly-
ethylene terephthalate (PET) are frequently applied to the 
development of biosensing platforms due to their ordered 
nanochannels, stable overall structure, and easy surface 
functionalization [18–22]. Usually, the structural trans-
formation or specific capture of biomolecules will cause 
different occupied space in the nanochannels which can be 
reflexed by the mass transport of certain molecules or ions 
[23]. Therefore, electrochemical signal changes of these 
probe molecules or ions can be quantitatively connected 
with the formation of nanostructures or the existence of 
the target [24]. In the early years, Jiang’s fantastic group 
[16] reported a biomimetic  K+ responsive nanochannel 
system. The conformational change of G-quadruplex DNA 
in a nanopore of track-etched PET membrane is positively 
correlated with the  K+ concentration. However, the steric 
hindrance is too limited to miR detection if no any signal 
amplification strategy is applied. The early electrochemi-
cal biosensing platform for DNA detection only gives a 
detection limit of 0.1 nM [24]. Recently, a nanochannel-
ion channel hybrid strategy was established for label-free 
detection of miR-10b using AAO nanochannels coupling 

with electrochemical detection. Using this strategy, a low 
detection limit of 15.4 aM for miR-10b is acquired [18]. 
By employing steric and electrostatic hindrance of the 
miRNA-initiated DNA-nanoflower blooming in the nano-
channels of AAO, a detection limit of 4.53 fM for miR-
21 has been obtained [19]. Therefore, the target-initiated 
increase of the steric hindrance is powerful to amplify 
the signal readout for miR detection to give excellent 
sensitivity.

G-quadruplex/hemin DNAzyme is characterized by 
low cost, high stability, and peroxidase mimicking activity 
[25–27]. Using a capture probe containing G-rich sequence, 
our previous work [28] performed the G-quadruplex ampli-
fied biosensing in AAO nanochannels. As is well known, 
G-quadruplex/hemin DNAzyme can catalyze the redox 
reaction of  H2O2 and 4-chloro-1-naphthol (4-CN), result-
ing in insoluble biocatalytic precipitation (IBP) [29]. When 
the formation of the insoluble products was introduced into 
the nanochannels, the steric hindrance of the biocomplexes 
toward the transport of molecules or ions would be greatly 
amplified. This strategy has been utilized to the photoelec-
trochemical bioanalysis of telomerase activity. IBP initi-
ated by the sequence extending of telomerase blocked the 
nanochannels and inhibited the photocurrent signal of the 
photoelectrode, then realized the quantitative detection of 
telomerase [30].

Herein, we constructed a miR-21 electrochemical sens-
ing platform based on G-quadruplex/hemin DNAzyme-
catalyzed IBP in nanochannels. As shown in Scheme 1, the 
nanochannels assumed the task of target recognition and sig-
nal amplification. Two DNA probes containing individually 
the complementary sequence for opposite ends of miR-21 
were applied. After incubating miR-21 with recognition 
probe 2, the hybrids were captured by DNA probe 1 bound 
in the nanochannels. After sequentially introducing hemin 
and the raw materials for IBP into the nanochannels, the 
amount of electroactive methylene blue (MB) transported 
across the nanochannels was greatly reduced. A porous car-
bon nanofibers (PCNFs)-modified electrode was introduced 
into the permeating half-cell to amplify the monitoring sen-
sitivity of the sensing interface. In this way, sensitive and 
label-free detection of miR-21 is achieved.

2  Experimental section

2.1  Materials and apparatus

AAO membranes (0.2 µm, 13 mm) were purchased from 
Whatman (UK). CNFs (D × L 100 nm × 20–200 µm) were 
purchased from Sigma-Aldrich (USA) 0.3-Glycidyloxy-
propyltrimethoxysilane (GPTMS), 4-CN were the prod-
ucts of Aladdin (China). Hemin was provided by Jingbo 
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Biological Technology Co. Ltd. (Xi’an, China). All MiR 
and DNA sequences (Table S1) were prepared by Sangon 
Biotech (Shanghai, China).

All voltammetric experiments were carried out with a 
CHI440C electrochemical workstation (CH Instruments, 
China). The three-electrode electrochemical system con-
sisted of a saturated calomel electrode (SCE) as the refer-
ence electrode, a platinum wire as the counter electrode, 
and a bare or modified glassy carbon electrode (GCE) as 
the working electrode. Other apparatuses applied for the 
characterization of the nanochannels, electrode, and sys-
tem include scanning electron microscope (SEM, JSM-
6390A, Japan), Fourier transform-infrared (FT-IR) spec-
troscopy (Tensor27, Germany), and Ultraviolet–visible 
(UV–Vis) spectrophotometer (N 5000, China).

2.2  Preparation of PCNFs‑modified electrode

The CNFs and KOH were mixed in a 1:1 mass ratio and 
fully ground in a mortar, the mixture was calcined in a 
high-temperature furnace at 800 °C for 1 h. Subsequently, 
the product was washed repeatedly with 0.1 mol/L HCl 
until the pH was neutral, and then dried in an oven at 
75 °C for 4 h to obtain PCNFs [28].

GCE is carefully polished with 0.05 μm  Al2O3 pow-
ders, and then ultrasonicated with ethanol and distilled 
water to wash the electrode surface. With the aid of ultra-
sonic cleaner, 1.0 mg/mL PCNFs dispersion was obtained 
by dissolving 1 mg PCNFs in 1 mL N-methyl-2-pyrro-
lidone (NMP). Finally, 6 μL of porous PCNFs dispersion 
was dropped on the surface of the GCE. After the evapo-
ration of the solvent, PCNFs/GCE was obtained.

2.3  Immobilization of probe 1 into nanochannels

Firstly, the blank AAO membrane was washed with dis-
tilled water and ethanol successively, and the membrane 
was immersed in 10 mL acetone solution containing 10% 
GPTMS and placed at 4 °C for 4 h. After the AAO mem-
brane was washed with acetone and distilled water, 100 
μL of DNA probe 1 solution (1 μM, dissolved in pH = 7.4 
Tris–HCl buffer containing 100 mM NaCl) was dropped 
on the surface of the membrane. After waiting overnight at 
4 °C, excessive probe 1 was rinsed with pH = 7.4 Tris–HCl 
buffer.

2.4  Electrochemical determination of miR‑21

The probe 2 solution (2 μM) was mixed with different 
concentrations of miR-21 in equal volumes and the mixed 
solution was incubated at 37 °C for 1 h. Then, 100 μL of 
mixture containing different concentration of miR-21 was 
added to the membrane at 37 °C for 30 min. Next, the AAO 
membrane was incubated with 100 μL of hemin (0.1 mM in 
25 mM KCl solution) at room temperature for 30 min. After 
that, 100 μL of the mixture of 4-CN (1.0 mM) and  H2O2 
(0.15 mM) was dropped on the AAO membrane at room 
temperature for 15 min. After each step, thorough rinsing 
was done with distilled water. Finally, the membrane was 
placed in a self-made double-cell device. Then, the left half-
cell was filled with 2.0 mL of 0.1 M PBS solution, and the 
right half-cell was filled with 2.0 mL of 0.1 M PBS solution 
containing 100 μM MB. The working electrode (PCNFs/
GCE) was inserted in the left half-cell, and the SCE and Pt 
counter electrode were put in the right half-cell. Differential 
pulse voltammogram (DPV) was carried out in the potential 
range of − 0.5 to 0.1 V after 45 min of mass diffusion.

Scheme 1  Illustration of miR 
detection based on catalytic 
deposition of G-quadruplex 
DNAzyme in nanochannels
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3  Results and discussion

3.1  Characterization of PCNFs/GCE, AAO 
nanochannels, and the biosensing platform

Morphology of CNFs was a typical fibrous structure. After 
NaOH treatment, the obtained PCNFs have a loose porous 
or lotus-like structure (Fig. S1). The rough structure not 
only facilitates the dispersion of PCNFs in solvent, but 
also enlarges the surface area of the ultimate modified elec-
trode. To confirm this, CV of the electrode was recorded 
in 0.1 mol∙L−1 KCl containing 5.0 mM  K3[Fe(CN)6]. The 
peak current obtained at PCNFs/GCE is much bigger than 
it obtained at CNFs/GCE (Figure S2), and the effective sur-
face area of PCNFs/GCE was calculated to be 0.092  cm2, 
which is bigger than the geometric area of the bare GCE, 
demonstrating the amplified surface area due to the modi-
fication of the material [31]. The voltammetric behavior of 
MB at the modified electrode was further investigated. Using 
PCNFs/GCE as the working electrode, multiple consecutive 
DPV scans was performed in 0.1 M PBS solution contain-
ing 20 μM MB. As shown in Fig. 1A, as the number of scan 
increased, the peak current increased gradually. It shows that 
MB adsorbs onto the electrode surface [27]. After immers-
ing the electrode in MB solution for 20 min, the peak current 
acquired at PCNFs/GCE nearly doubled compared with it 
obtained at CNFs/GCE (Fig. 1B), indicating the applicability 

of the electrode to the sensitive MB monitoring. Therefore, 
PCNFs/GCE was chosen as the working electrode for sub-
sequent experiments.

FT-IR and SEM were performed to characterize the 
AAO nanochannels. The amino-terminated recognition 
probe 1 was expected to be bound into the nanochannels via 
the epoxy group of silane. From FT-IR spectra, the peaks 
at 1627  cm−1 corresponding to the deformation vibration 
and 1174  cm−1 due to the C–N stretching vibration were 
observed after the incubation of probe 1 (Fig. S3), indicating 
that the DNA probe 1 was successfully immobilized in the 
AAO nanochannels. Representative SEM images of AAO 
membrane exhibited the uniformly distributed nanopores 
from the surface view and the vertically aligned nanochan-
nel array from the side view (Fig. S4). Immobilization of 
probe 1 did not show distinctive variation of SEM image 
(not shown). After incubation with a mixture of G-rich 
sequence probe 2 and miR-21, hemin and mixture of 4-CN 
and  H2O2 were further introduced into the nanochannels, 
then the G-quadruplex DNAzyme-catalyzed deposition of 
IBP was confirmed by SEM images (Fig. 2), demonstrating 
the feasibility of the signal amplification strategy.

As shown in the Scheme 1, after incubating miR-21 with 
recognition probe 2, the hybrids were captured by DNA 
probe 1 bound in the nanochannels and sequentially intro-
ducing hemin and the raw materials for IBP into the nano-
channels, the amount of electroactive methylene blue (MB) 
transported across the nanochannels was greatly reduced. 

Fig. 1  A DPV of PCNFs/GCE 
in 0.1 M PBS solution contain-
ing 20 μM MB for multiple 
scans. B DPV of PCNFs/GCE 
and CNFs/GCE in 0.1 M PBS 
solution containing 20 μM MB 
after 20 min of adsorption
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G-quadruplex DNAzyme-catalyzed formation of IBP was 
quantitatively related with the concentration of miR-21 
introduced into the nanochannels. The steric hindrance 
caused by IBP reduced the amount of MB that crosses the 
channels from the left pool into the right pool. Therefore, 
the peak current in DPVs should show a downward trend 
after target incubation. As displayed in Fig. 3A, sequentially 
introducing probe 2 and the necessary reagents for catalyzed 
deposition, the peak current (curve b) decreased by 0.545 μA 
compared with it for the probe 1 functionalized AAO nano-
channels (curve a). The low amplitude decrease was con-
tributed to the steric hindrance of nonspecifically deposited 
IBP. However, replacing probe 2 with the mixture of miR-21 
and probe 2, the peak current reduced further by 1.09 μA 
(curve c), demonstrating the amplified spatial baffle effect of 
G-quadruplex DNAzyme-catalyzed IBP. Figure 3B shows 
the UV–Vis spectrum of MB in the left cell. The absorbance 
variation of the characteristic peak of MB at 666 nm is con-
sistent with the change of peak current in DPV. These results 
proved the feasibility of the biosensing platform.

3.2  Optimization of experimental conditions

To achieve the best sensing performance, the effect of sev-
eral experimental parameters including the pore size of the 
AAO membrane, incubation time for the target, and the con-
centration of the necessary reagents on the change of the 
DPV response (ΔI, ΔI = I0–I1, where I0 and I1 are the peak 
current obtained without and with the target, respectively) 
was investigated.

The pore size of the AAO membrane has an important 
influence on the analytical performance of the sensing plat-
form. As shown in Fig. 4A, AAO nanochannels with average 
channels diameter of 100 nm and 200 nm were assessed. It 
shows that 100 nm is a proper size. For the incubation time 
of target, ΔI increased rapidly until the miR-21 incubation 
reached 45 min (Fig. 4B). As observed in Fig. 4C, the maxi-
mum ΔI were obtained when the concentration of hemin 
was 0.06 mM.

In addition, the concentration of 4-CN and  H2O2 as well 
as the reaction time for the G-quadruplex/hemin DNAzyme-
catalyzed IBP are also important in the analysis system. The 
change of the DPV response increased with the increase in 
concentration of 4-CN and there was almost a plateau trend 
after 0.06 mM (Fig. 4D). Meanwhile, ΔI is the largest when 
the concentration of  H2O2 was 0.1 mM (Fig. 4E). Further-
more, Our results also showed that 15 min was the optimized 
reaction time for DNAzyme-catalyzed IBP (Fig. 4F). Pro-
longing the reaction time decreased the signal sensitivity, 
probably because of increased I0 caused by the nonspecific 
BCP into the channels.

3.3  Analytical performance

Under optimal conditions, the DPV responses of the sens-
ing platform for different concentrations of miR-21 were 
monitored. As shown in Fig. 5A, the peak current gradually 
decreased with the concentration of miR-21 from 100 aM to 
1 nM. The linear-regression equation is I = 2.85 − 0.26 lgC, 
the linear-correlation coefficient is 0.997 (Fig. 5B), and the 
detection limit was calculated to be 40 aM. It can be seen 
from Table 1 that the constructed biosensing platform has a 
wider linear range and lower detection limit compared with 
some other methods.

To investigate the selectivity of the sensing platform, 
DPV response of the platform for the same concentration of 
mismatched MiRNAs, miR-122 as well as mixture of 100 
fM miR-21 and interfering substances was recorded. The 
results showed that the peak current for the mismatched 
sequences is similar with it for the blank control, and the 
peak current for the mixture of 100 fM miR-21 and interfer-
ing substances is only 1.1% higher than it for 100 fM miR-21 
(Fig. S5A). These results proved the excellent selectivity 
of the sensing platform. The reproducibility of the sensing 
platform was further studied. The platforms were recon-
structed by repeatedly modifying the electrode with PCNFs 
and immobilizing probe 1 into the new nanochannels. The 
relative standard deviation of five responses obtained on the 
reconstructed platform for 100 fM miR-21 was 2.7% (Fig. 

Fig. 3  DPV response (A) and 
UV–Vis spectrum (B) of MB 
transmitted across channels 
(curves a, b, and c correspond 
to the AAO empty nanochan-
nels, DNA recognition probe 
1 functionalized nanochannels 
with hemin & 4-CN &  H2O2, 
and DNA recognition probe 
2 + 1 ×  10−13 M miR-21 immo-
bilized DNA recognition probe 
1 nanochannels with hemin & 
4-CN &  H2O2, respectively)
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S5B). The stability of the platform was also evaluated by 
storing the bio-functionalized nanochannels and the PCNFs/
GCE at 4℃ for one week. The electrochemical response only 
decreased 7.6% compared with it obtained from the freshly 
prepared platform.

3.4  Sample analysis

In order to further determine the feasibility of the devel-
oped biosensing platform, recovery tests were performed 
in human serum of healthy volunteers. The peak current for 
the serum sample diluted with PBS buffer solution (1:100) 
is very close to it for the blank control (Fig. S6), hinting that 
content of miR-21 in the tested serum sample is below the 
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Table 1  Performance comparison of different methods for miR-21 
analysis

Method Detection limit Linear range References

Surface-enhanced 
Raman spectros-
copy

10 fM 100 fM ~ 100 nM [32]

Fluorescence 3 fM 10 fM ~ 500 fM [33]
Electrochemilumi-

nescence
0.17 fM 0.5 fM ~ 10 pM [34]

Colorimetry 10 nM 50 nM ~ 1 μM [35]
Electrochemistry 45 aM 1 fM ~ 100 fM [36]
Electrochemistry 0.34 fM 1 fM ~ 1 nM [37]
Electrochemistry 0.12 fM 2.5 fM ~ 25 nM [38]
Electrochemistry 40 aM 100 aM ~ 1 nM This work
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detection limit. The recoveries of miR-21 in spiked serum 
ranged from 82.7% to 107.3% (Table S2), indicating the 
application probability of the method [39, 40].

To demonstrate the applicability of the proposed biosens-
ing platform for miR-21 detection in cancer cells, human 
breast cancer cells (MCF-7) and cervical cancer cells (Hela) 
were analyzed. The total RNA extraction from MCF-7 and 
HeLa was performed according to the instructions of the M5 
Universal RNA Mini Kit. As shown in Fig. 6, the response 
for both HeLa and MCF-7 increased with the increase of 
the number of cancer cells, and the response for the same 
number of MCF-7 is larger than that for HeLa. It shows that 
MCF-7 contains more miR-21, which is consistent with the 
results of the previous literature studies [41].

4  Conclusion

A dual-interface biosensing platform with AAO nanochan-
nels as the recognition interface and PCNFs/GCE as the 
detection interface was constructed. The application of the 
porous carbon nanofibers-modified electrode enhanced the 
monitoring sensitivity of the electrode to methylene blue. 
The introduction of insoluble precipitate catalytically pro-
duced by the G-quadruplex DNAzyme into the nanochannels 
amplified the steric hindrance of the interaction occurred 
into the nanochannels. Based on this, highly sensitive elec-
trochemical detection of miR-21 was achieved with a lin-
ear range of 100 aM to 1 nM and a detection limit of 40 
aM. What is more, this platform avoided the electrochemi-
cal labeling of recognition probe and the use of expensive 
nuclease, and thus provided a promise platform for the early 
diagnosis of related diseases.
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