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Abstract A mathematical model of multicomponent ion

transport through a cation-exchange membrane is devel-

oped based on the Nernst–Planck equation. A correlation

for the non-linear potential gradient is derived from current

density relation with fluxes. The boundary conditions are

determined with the Donnan equilibrium at the membrane–

solution interface, taking into account the convective flow.

Effective diffusivities are used in the model based on the

correlation of tortuosity and ionic diffusivities in free

water. The model predicts the effect of an increase in

current density on the ion concentrations inside the mem-

brane. The model is fitted to the previously published

experimental data. The effect of current density on the

observed increase in voltage drop and the decrease in

permselectivity has been analyzed using the available

qualitative membrane swelling theories. The observed non-

linear behavior of the membrane voltage drop versus cur-

rent density can be explained by an increase in membrane

pore diameter and an increase in the number of active

pores. We show how the membrane pore diameter

increases and dead-end pores open up when the current

density is increased.
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List of symbols

Latin symbols

a Activity coefficient

A Membrane cross-sectional area (m2)

C Concentration (mol m-3)

dh Hydrodynamic permeability (kg.s.m-3)

dp Pore diameter (m)

D Diffusion coefficient (m2 s-1)

Dij Effective diffusion coefficient (m2 s-1)

f Fraction in cluster (–)

F Faraday constant (C mol-1)

hf Hydration factor (–)

I Current density (A m-2)

J Flux (mol m-2 s-1)

K Donnan equilibrium constant (–)

Kanolyte Mass transfer coefficient in anolyte (m s-1)

N Number of pore channels (–)

P Pressure (Pa)

r Radius (m)

R Gas constant (J mol-1 K-1)

t Time (s)

ti Ion transport number (–)

T Temperature (K)

W Weight percentage (wt%)

x Length (m)

x0 Dimensionless length (–)

V Volume (m3)
�V Partial molar volume (m3 mol-1)

zi Valence (–)

z Dimensionless length (–)

Greek symbols

d Membrane thickness (m)

u Electrical potential (V)

D Difference (–)

r Gradient (–)

j Conductivity (ohm-1 m-1)

q Density (g cm-3)

l Chemical potential (J mol-1)

g Dynamic viscosity (Pa s)

m Convective volume flux (m3 m-2 s-1)

e Porosity (–)

s Tortuosity (–)

k Actual pore length (m)
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Superscript and subscript

act Active

A Anode

Am Anolyte-membrane

c Centigrade

Cm Catholyte-membrane

Don Donnan

e Electrolyte

i Species

int Interface

L Left

m Membrane

p Pore

R Right

s Solution phase

tot Total

w Water

1 Introduction

Ion-exchange membranes have several industrial applica-

tions, including fuel cells, the Chlor–Alkali process, and

water electrolysis. In order to explain the mass transfer in

the membrane at high current densities, a suitable mathe-

matical model is required. There are different approaches

to describe the transport of ions inside the membrane.

Rohman and Aziz have reviewed mathematical models of

ion transport in electrodialysis. They have proposed three

types of phenomenological equations in their irreversible

thermodynamic approach: (1) the Maxwell–Stefan (MS)

equation which takes the interaction between each pair of

components into account; (2) the Kedem–Katchalsky (KK)

equation that considers the membrane as a geometric

transition region between two homogenous compartments;

and (3) the Nernst–Planck (NP) equation which describes

diffusion and electro-migration in the ionic transport

without taking into account the interaction between ions.

The latter is widely used because of its simplicity [1].

Psaltis et al. have compared the Nernst–Planck and Max-

well–Stefan approaches to transport predictions of ternary

electrolytes. They have concluded that using binary diffu-

sivities (neglecting interaction between different solute

species) and the full Maxwell–Stefan model does not affect

the final steady-state concentrations profiles in the elec-

trolyte solution of a multicomponent system. This shows

that using the effective diffusivities in the Nernst–Planck

equation should give reasonable accuracy in the results [2].

Additionally, Graham et al. have shown that the Nernst–

Planck equation is valid in modeling diffusion of ions in

ion-exchange resins of high concentrations (3–4 M) if

taking into account the effective diffusivities [3].

The morphological structure of an ion-exchange mem-

brane is also important in modeling the transport process in

the pore volume of the membrane. This is because any

change in the morphology, i.e., the number and size of

liquid pores, can alter the effective diffusivities inside the

pores and as a result the transport process. There have been

several studies on the morphological structure of ion-ex-

change membranes, particularly the Nafion membrane, i.e.,

core–shell model proposed by Fujimura et al. [4], a sand-

wich-like model proposed by Haubold et al. [5], and a rod-

like model proposed by Rubatat et al. [5]. The cluster-

network model presented by Mauritz et al. [6] is one of the

earliest models widely used for understanding the proper-

ties of Nafion membranes. This model is based on small-

angle X-ray scattering (SAXS) measurements and esti-

mates the cluster network of Nafion to consist clusters with

a diameter of *4 nm with 1-nm channels connecting the

pore clusters. Also, among the early models, Yeager et al.

proposed a three-phase model without any strict geometry

of the clusters with an interphase between the hydrophobic

and hydrophilic regions [6]. Schmidt et al. simulated par-

allel water channel models for the structure of the Nafion

membrane with water channel diameters of 1.8 and 3.5 nm

with an average of 2.4 nm at 20 vol% water [7]. Gebel

et al. have studied the structural evolution of perfluoro-

sulfonated ionomer membranes from dry to a highly

swollen state with small-angle X-ray scattering (SAXS)

measurement [8]. They characterized the structural evolu-

tion of Nafion 115 and 117 of 1100 EW. They concluded

that as the membrane gets hydrated and swells, the cluster

sizes increase. As a result of opening up of the pores, the

pore clusters connect. At even higher hydration level, the

authors observed that the swelling process for water con-

tent larger than 50 % causes an inversion of the structure

from a reverse micellar structure to a connected network of

polymer rod-like particles [8]. Based on their assumption

for water swollen state, the cluster radii is 2 nm and it

increases to 2.09, 2.18, and 2.35 nm for the case of N-

methylformamide, ethanol, and formamide, respectively

[8].

The transport of ions in the membrane with the Nernst–

Planck approach has been studied by other authors as well.

Verbrugge et al. [9] have developed ion and solvent

transport within a sulfuric acid/perfluorosulfonic acid

membrane. Bouzek et al. [10, 11] also modeled the ion

transport inside the membrane with and without consider-

ing the convection in the diffusion layer. They predict the

ion transport in the membrane up to 2.5 kA m-2.

The purpose of this work is to develop a Nernst–Planck

model that can describe the transport of ions in the mem-

brane at high current densities. It is of great interest to

understand the membrane performance in terms of voltage

drop and permselectivity at high current densities, because
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the membrane has the biggest contribution to the cell

voltage. Thus, it is vital to include the membrane perfor-

mance in the assessment of the electrochemical cell per-

formance and the process economics. In this study, the

transport of species inside the pore volume of the mem-

brane is described taking into account the effective diffu-

sivities. Also, the morphological structure of the membrane

in this study is based on the model from Schmidt et al. and

Gebel because they give an indication of the size of

channel diameters in dry and hydrated states. One differ-

ence to the approach in this study and the work of Ver-

brugge et al. [9] is that they use an empirical correlation for

the partition coefficient at the solution–membrane inter-

face. Here, a general Donnan equilibrium phenomenon is

used to describe the boundary condition. In the work of

Bouzek et al. [10, 11], the model is already assumed to be

at steady-state and therefore requires accurate initial

guesses to avoid convergence errors. In this study, the

model is time-dependent and not sensitive to initialization.

Also, Bouzek et al. use self-diffusion coefficients estimated

by others, whereas here the free solution diffusivities are

used to estimate diffusivities in the membrane. This is done

by evaluating the channel size and porosity of the mem-

brane. Additionally, the focus of this work is on the

membrane performance at high current densities.

The Nernst–Planck model is fitted to experiments which

are elaborated elsewhere [12]. The potential drop over the

membrane and the membrane selectivity are determined

from the ionic fluxes in the membrane for current densities up

to 20 kA m-2 and in a 15 wt% sodium hydroxide solution.

2 Model approach

The Nernst–Planck equation for modeling the transport of

ions in an ion-exchange membrane for an ideal solution can

be written as Eq. (1) [13, 14]:

Ji ¼ �DirCi � ziDiCi

F

RT
ruþ Civ: ð1Þ

It consists of three transport terms: diffusion, electro-

potential, and convection. The convection term is affected

by the osmotic pressure and electro-osmotic effects, and it

can be defined as Eq. (2) with the Schlögl equation [9, 15].

Electroneutrality is assumed everywhere in the membrane

and at the interface of the membrane and solution (Eq. 3).

m ¼ dhðzmCmFru�rPÞ; ð2Þ
X

i

Cizi ¼0: ð3Þ

Schlögl has defined the hydrodynamic permeability of

the membrane based on Hagen–Poiseuille presented in

Eq. (4) [16]:

dh ¼
d2
pem

32g
: ð4Þ

The Schlögl equation seems to be able to describe the

convective velocity as a constant value in the membrane.

Additionally, the mass continuity correlation (Eq. 6) is

required to complete the system of transport equations.

This means that the convective velocity needs to be defined

at every position in the membrane. This is because the

density changes with the variation of concentration inside

the membrane. The convective velocity is calculated based

in Eq. (2) at the left side of the membrane with an initial

guess of the membrane voltage drop. Then, using the

sodium hydroxide density correlation (Eq. 5) [17], the

convective velocity is determined at every position inside

the membrane. The relation between the current density

and the flux of charged species is shown in Eq. (7).

Equation (8) is derived by combining Eqs. (1) and (7) as an

expression for the potential gradient. The voltage drop

from Eq. (8) is then iterated using an initial guess until the

solution is converged.

Equation (9) describes the water flux. The concentration

of water inside the membrane is calculated based on the

concentration of sodium and hydroxide ions at every

position using the density correlation (Eq. (5)). It has been

shown by several authors [12, 18–21] that water is not only

transported in the hydrated shell of the positive ions, but

also due to convection and the electromotive force.

q� 10�3 ¼ 1:006 þ 0:0011WNaOH � 0:172 � 10�4W2
NaOH

� 0:358 � 10�3Tc � 0:214 � 10�5T2
c ; ð5Þ

�rðqvÞ ¼ 0; ð6Þ

I ¼ F
Xn

i¼1

ziJi; ð7Þ

ru ¼
I
F
þ
Pn

i¼1 ziDirCi � v
Pn

i¼1 ziCi

� F
RT

Pn
i¼1 z

2
i DiCi

; ð8Þ

qv ¼
Xn

i¼1
n6¼water

MiNi þMwaterNwater: ð9Þ

In literature, the electrical conductivity of a membrane

has been defined based on Ohm’s law, I ¼ j du
dx

,using the

Nernst–Planck flux equation, and also by neglecting the

concentration gradient and convection [13, 14, 17]. This is

debatable to be valid since our experimental results [12]

show that the membrane conductivity depends not only on

concentration and temperature but also on the current

density. Additionally, we show here in Appendix A that the

potential gradient is not constant, and its non-linear

behavior is required to have equal fluxes at the left and

right sides of the membrane at the steady-state condition.
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Equations (1) to (8) make the system of transport equations

inside the membrane complete without taking into account

the water dissociation effect. Water dissociation, proton,

and hydroxyl ion production due to self-ionization of water

is more important in anion-exchange membranes than in

cation-exchange membranes [22–32]. Tanaka has studied

the mechanism of concentration polarization and water

dissociation in the boundary layer of ion-exchange mem-

branes. He has shown that the water dissociation in the

strong acid cation-exchange membrane is more suppressed

than in the strong base anion-exchange membrane because

the forward reaction rate constant in the cation-exchange

membrane is lower. In fact, due to stronger repulsive forces

between the fixed ionic groups of the cation-exchange

membrane and the co-ions, the water dissociation reaction

is suppressed [32]. Also, this study is at a high concen-

tration of the electrolyte solution which is not known to

cause water dissociation.

2.1 Boundary conditions [13, 33, 34]

For the boundary condition, the flux of species at the

steady-state should be equal at the membrane and solution

interface which is shown in Eq. (10) for anode interface.

This is similar for the cathode interface. The mass transfer

at the membrane surface is assumed very high because of

the very high mixing of the electrolyte at the membrane

surface which is elaborated in our earlier paper [12]. Thus,

the boundary layer thickness is calculated from the mea-

sured mass transfer in a rotor–stator spinning disc reactor

which is proved to have a very high mass transfer coeffi-

cient [35]. The concentration jump of ionic species at the

solution and the membrane interface for both anolyte and

catholyte sides are depicted in Fig. 1.

Ds
i

ddiff

ðCA;s
i � C

A;int
i Þ þ vC

A;int
i e

¼ �Di

dC
Am;int
i

dx0
� ziDiC

Am;int
i

F

RT

du
dx0

þ mCAm;int
i d

 !
1

d
e:

ð10Þ

The concentrations at the interface are defined based on

the Donnan equilibrium phenomenon which is an electro-

chemical equilibrium between the membrane and solution

phases (Eq. 11). At steady-state in equilibrium, the elec-

trochemical potential of all ions in the membrane and the

solution are equal [13]:

lmi þ ziFu
m ¼ lsi þ ziFu

s: ð11Þ

The Donnan potential can be expressed with Eq. (12):

um � us ¼ 1

ziF
RT ln

asi
ami

þ ViðPs � PmÞ
� �

¼ uDon: ð12Þ

Here, the assumption of Higa et al. [34] that the surface

of the membrane is always in the state of Donnan equi-

librium with the same partition coefficient for all of the

ions is used. This way the Donnan equilibrium gives a

general correlation for all ions between the membrane and

the external solution. This is shown in Eq. (13) in which

the osmotic pressure is neglected:

Cm
i

Cs
i

¼ e
�FziDuDon

RT ¼ Kzi : ð13Þ

We have used the electroneutrality condition in the

solution to derive a correlation (Eq. 14) that relates the

solution interface concentration and the membrane inter-

face concentration (See Appendix 3).

C
A;int
i;pos ¼ C

m;0
i;pos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNions

i C
m;0
i;negPNions

i C
m;0
i;pos

vuut ;

C
A;int
i;neg ¼ C

m;0
i;neg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNions

i C
m;0
i;posPNions

i C
m;0
i;neg

vuut :

ð14Þ

It is also possible to define the membrane interface

concentration based on the solution interface concentra-

tion using the electroneutrality condition in the mem-

brane. However, it might require solving a quartic,

quantic, etc. equations depending on the valence and the

number of ions. This makes it more complicated to be

solved.

2.2 Solver

The pdepe solver of MATLAB is used. It iterates the

system of equations over time and uses one-dimensional

space to obtain the solution at the steady state. The com-

plete set of dimensionless equations is presented in detail in

Appendix 2. The grid points are set in a logarithmic scale

near the boundaries due to a larger gradient of concentra-

tion and linear in the center part.

Fig. 1 Schematic drawing of the concentration of ionic species in the

bulk solution, at the solution, and at the membrane interface for both

anolyte and catholyte sides
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2.3 Model assumptions

Constant pressure and temperature are assumed. The

pressure contribution in the transport equations and Don-

nan equilibrium approach is neglected especially because

the same concentration of sodium hydroxide as anolyte and

catholyte is being used. Solutions are assumed to be ideal.

Properties of the Nafion single-layer membrane, N-1110

[36], are used.

2.4 Constitutive equations

The initial water concentration inside the membrane is

calculated based on the water uptake for perfluorinated

membrane of 1100 EW as a function of sodium hydroxide

concentration. The water uptake is presented in weight

percentage of dry polymer in Eq. (15) [17].

Ww ¼ �0:0052 � ð0:001CNaOHÞ3 þ 0:165

� ð0:001CNaOHÞ2 � 2:708 � ð0:001CNaOHÞ þ 36:68:

ð15Þ

In a polymeric matrix, the path length of diffusion is not

a straight line. Thus, diffusion coefficients of ionic species

in free water are used and converted into effective diffu-

sivities. This is shown in Eq. (16) where the diffusivities in

the polymer matrix and in the free water are related via

tortuosity [37].

Dij ¼ Dsij=s: ð16Þ

The dependency of tortuosity to the polymer porosity

has been shown in many models in the literature [38–41].

Here, the model predicted by Marshal which was used by

Wesselingh is used to define the tortuosity as presented in

Eq. (17) [37].

s ¼ e�1:5: ð17Þ

Equation (18) defines the porosity of the membrane as

the volume of pores with ion clusters divided by the total

volume.

e ¼ Vefe

Vtot

¼
We

qe

1
qm

þ We

qe

fe: ð18Þ

We and qe which are the weight fraction and the density

of the adsorbed electrolyte are estimated based on the water

uptake of the membrane (Wo in Eq. 15) and the density of

the water. fe is the fraction of electrolyte in the pores with

ion cluster; it is estimated based on the work of Yeo et al.

[42] to be 0.76. This gives an estimation of the membrane

porosity as a constant parameter in the model. Also, the

membrane is assumed to have stationary fixed charges and

to consist of homogenous cylindrical channels. The con-

centration of the stationary fixed charges in the membrane

is calculated from Eq. (19). It takes into account the den-

sity and weight fraction of the adsorbed electrolyte,

equivalent weight (EW), which is defined as the weight of

polymer in gram per mole of sulfonic acid groups, fraction

of ionic groups, and electrolyte in the ion cluster [17, 42].

Cm ¼ 1000 � qe

EW �We

fm

fe

� �
: ð19Þ

It has been discussed in literature that a Nafion mem-

brane swells when hydrated [4–6, 8, 43]. After the model

simulation with constant porosity and channel diameter, the

ion transport through the membrane at high current den-

sities is assumed to follow a similar trend as when the

hydration level increases in the membrane. Apparently,

increasing the current density results in opening up of the

pore clusters and opening of the dead-end pores [6].

According to Takahashi et al. [44], the channel size should

be dependent on the relationship between the inner stress

due to the pressure inside the channel and the elasticity of

the polymer matrix. Thus, due to higher mass flux under

high current density, the inner stress increases and results

in opening up of the pore channels [44]. The change in the

pore size and opening of the dead-end pores are depicted in

Fig. 2.

Here, the assumption of the membrane swelling based

on the work of Tiss et al. is used when performing the

sensitivity analysis of the model. They assumed that the

channels are oriented in the same direction in the mem-

brane and are perpendicular to the membrane–liquid

interface. The membrane porosity, which is the occupied

volume fraction of the membrane by liquid, is assumed to

have N number of cylindrical channels (Ntot) per cross-

Fig. 2 Simplified sketch of the membrane cross-sectional area

consisting of homogenous cylindrical channels with open (active)

pores and closed (inactive) pores of a a non-swollen membrane and

b swollen membrane at high current densities

56 J Appl Electrochem (2017) 47:51–62
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sectional area. By taking into account the tortuosity effect,

the total porosity can be calculated with Eq. (20):

etot ¼ N totpr2
ps: ð20Þ

Combining Eqs. (17) and (20), the total and active

porosities of the membrane are defined as a function of the

total number of pores (Ntot) and the pore radius (rp) in

Eqs. (21) and (22).

etot ¼ ðN totpr2
pÞ

2
5; ð21Þ

eact ¼ ðNactpr2
pÞ

2
5: ð22Þ

The transport number presented in Eq. (23) is the frac-

tion of current carried by a certain ion. It is an indication of

the membrane permselectivity.

ti ¼
Ji � F

I
: ð23Þ

2.5 Model input parameters

Table 1 presents the input parameters used in the model

based on the experimental condition and also the model

assumptions. The outputs of the model are the concentra-

tion of ions in the membrane, fluxes, the membrane voltage

drop, and the sodium transport number.

3 Results and discussion

Figure 3 shows the profiles of concentration change for

sodium, hydroxide, and water in the membrane over a

dimensionless length of the membrane at the steady-state.

The identical concentrations in the anolyte and catholyte

bulk solution are shown as straight lines followed by the

gradient in the boundary layer thickness. The concentration

inside the membrane stands between the two vertical lines.

Increasing the current density results in a lower concen-

tration of ions in the membrane on the anode side and a

higher concentration on the cathode side.

Figure 4 shows that the voltage drop and sodium transport

numbers calculated for the model with constant porosity and

active number of pores do not fit with the measured values in

the experiment. The experiments were carried out on the

mono layer Nafion N-1110 in an identical solution of 15 wt%

sodium hydroxide at 40 �C [12]. The model shows a linear

increase of the membrane voltage drop with current density

and no dependence of sodium transport number on the cur-

rent density. Since the model is unable to predict the mem-

brane performance as a function of current density, the

membrane swelling assumption as described in Sect. 2 is

used to describe the membrane behavior at high current

densities. As there are no measured data available for a

change of membrane structure due to swelling, a range of

pore diameters and number of active cylindrical pores are

chosen based on the rough estimation of the found pore

diameters in the literature [7, 8].

Figures 5a, b presents the sensitivity analysis of the model

over a range of membrane pore diameters, and active num-

bers of cylindrical pores at 10 and 20 kA m-2, respectively,

for 2 9 1016 total number of the pores. The total number of

pores is calculated from the properties presented in Table 1.

It shows that for a certain total number of pores, there is a

unique set of channel diameter and active number of pores

that fit to the experimental values of the membrane voltage

drop and sodium transport number.

Table 1 Input parameters of

the model
Parameter Value Reference

Temperature (�C) 40

Sodium diffusivity in free water (m2 s-1) 1.33 9 10-9 [45]

Hydroxide diffusivity in free water (m2 s-1) 5.27 9 10-9 [45]

Water diffusivity in membrane (m2 s-1) 2.8 9 10-10 [46]

Mass transfer coefficient in solutiona (m s-1) 1 9 10-4

Sodium hydroxide viscosity (kg m-1 s-1) 1.44 9 10-3 [17]

Dry membrane thickness (m) 2.54 9 10-4 [36]

Wet membrane thicknessb (m) 2.7 9 10-4

Dry membrane density (kg m-3) 2 9 103 [47]

EW (–) 1100 [36]

Membrane porosity (mvoid
3 /mm

3 ) 0.27 [48, 49]

Sodium hydroxide concentration in both anolyte and catholyte (wt%) 15

Membrane water content (wt% dry polymer) Correlation [17]

1 [42]

a Measured in a rotor–stator spinning disc reactor [50]
b Measured with a digital caliper
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The sensitivity analysis was performed at other current

densities to fit the model to the experimentally measured

values of the membrane voltage drop and sodium transport

number. The fitted pore diameter and number of active

pores used in the model that matched the experimental

values of the voltage drop are presented in Fig. 6. The

transport number is only fitted at the two available values

of 10 and 20 kA m-2. Figure 6a shows how the pore

diameter increases with increasing current density. Fig-

ure 6b shows the opening of the dead-end pores and acti-

vation of more cluster channels in transporting the ions

though the membrane as a function of current density. This

shows that increasing the current density results in swelling

of the membrane due to an increase in channel diameter.

Also, it predicts that with an increase in the current density,

the number of active pores that participate in the ion

transport increases, and possibly some of the dead-end

pores open at high current densities. This way the model is

able to give a better prediction of ion transport inside the

membrane. At this stage, no better reasoning could be

found to explain the observed trend of change in the

membrane voltage drop and transport number with

Fig. 3 Concentration profiles

of a sodium ions, b hydroxide

ions, and c water inside the

N-1110 membrane at the

steady-state for current density

range of 0–20 kA m-2 in

15 wt% sodium hydroxide

solution as both anolyte and

catholyte

Fig. 4 Membrane a voltage

drop and b sodium transport

number at the steady-state and

current density range of

0.3–20 kA m-2 measured

experimentally [12] and

calculated for the base model
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increasing current density. The proposed values of the

channel diameter for a swollen membrane by others [7, 8]

are an average of 20 nm for solutions other than sodium

hydroxide which could be the reason of the different

obtained optimized channel diameters here. It is worth

mentioning that using the optimized channel diameters and

the number of active pores at different current densities did

not change the concentration profiles of the ions and water

in the membrane.

4 Conclusion

The transport of ions and water through a cation-exchange

membrane has been mathematically modeled using the

Nernst–Planck equation. For a single-layer Nafion N-1110

membrane, the model has been fitted to the measured

values of the membrane voltage drop and sodium transport

number at high current densities up to 20 kA m-2 using the

membrane swelling assumption. Also, it is shown that the

model is very sensitive to the pore diameter and the number

of active pores. This could be because these parameters are

a function of current density. Currently, we cannot find

another reason to explain the observed behavior. With

increasing current density, more charged ions rush into the

membrane. Therefore, the membrane conductivity increa-

ses with current density. The change in pore diameter and

number of active pores cannot be measured under transport

conditions. The qualitative swelling model can explain the

behavior of the membrane pore clusters at high current

density.

We conclude that at high current densities the diameter

of the pore channels is likely to increase due to the mem-

brane swelling. This results in a higher number of active

pores participating in transport of the ions through the

membrane. It is believed that the membrane structure, i.e.,

channel size and porosity, has a high impact on the per-

formance of this membrane in sodium hydroxide solution.

Furthermore, it shows that there is a unique set of pore

diameters and number of active pores that satisfy the

experimental sodium transport number at a certain mem-

brane voltage drop. This suggests that having a more in-

Fig. 5 Sensitivity analysis of

membrane voltage drop and

sodium transport number over a

range of pore diameters (solid

line dp, nm) and numbers of

active pores (dashed line

Nact 9 10-15) for a given

2 9 1016 total number of pores.

The experimental membrane

voltage drop and sodium

transport number (dot) at

a 10 kA m-2 and b 20 kA m-2

[12]

Fig. 6 The effect of current

density on the membrane

swelling and opening up of a the

pore clusters and b the dead-end

pores
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depth knowledge of the membranes structure in a molec-

ular level helps better understanding the ion transport in

extreme operating conditions such as high current density.
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Appendix 1: Non-linear potential gradient

The electroneutrality condition (24) should hold in the

membrane. Moreover, electroneutrality should be valid on

either side of the membrane as well, Eq. (25). Furthermore,

because the fixed group concentration is constant in the

membrane, the summation of diffusional flux of positive

charges equals the summation of diffusional flux of nega-

tive charges (26). This means that the total summation of

diffusional fluxes is zero (27).

Xn

i¼1

ziCi þ zmCm ¼ 0; ð24Þ

Xn

i¼1

ziCi

 !L

¼
Xn

i¼1

ziCi

 !R

; ð25Þ

Xn

i¼1

ziDiCi

 !L

¼
Xn

i¼1

ziDiCi

 !R

; ð26Þ

Xn

i¼1

ziDirCi ¼ 0: ð27Þ

Also, the flux on right and left sides of the membrane

should be equal at steady-state (28). Eq. (29) is derived by

writing the flux equations for the left and right sides and

using Eq. (7). The convective term is neglected in the flux

equations.

JLi ¼ JRi ; ð28Þ

I

F
¼ �

Xn

i¼1

ziDirCi þ
Xn

i¼1

z2
i DirCi

F

RT
ru

 !L

¼ �
Xn

i¼1

ziDirCi þ
Xn

i¼1

z2
i DirCi

F

RT
ru

 !R

: ð29Þ

By omitting the diffusional term [based in Eq. (26)],

Eq. (30) is derived after a few rearrangements, and

assuming that the potential gradient is constant, Eq. (30)

contradicts from electroneutrality condition (25).

Xn

i¼1

z2
i
DiCi

 !L

¼
Xn

i¼1

z2
i
DiCi

 !R

: ð30Þ

Appendix 2: Transport equations

The material balance is needed (31) to describe the trans-

port of ions due to diffusion, electro-migration, and con-

vection inside the membrane. As explained, these three

transport terms are described with the Nernst–Planck

equation. Eq. (31) can be made dimensionless by substi-

tuting Eq. (32) in Eq. (31).

dCi

dt
¼ r Jið Þ; ð31Þ

x

d
¼ z; ð32Þ

d
dCi

dt
¼ d

dðzÞ
1

d
�Di

dCi

dz
� ziDiCi

F

RT

du
dz

þ mCid

� �� �
;

ð33Þ

v ¼ dh

d
zmCmFru�rPð Þ; ð34Þ

du
dz

¼
Id
F
þ
Pn

i¼1 ziDirCi � v
Pn

i¼1 ziCi

� F
RT

Pn
i¼1 z

2
i DiCi

: ð35Þ

Appendix 3: Donnan equilibrium at the interface

Derivation of the solution interface concentration

as a function of the membrane interface

concentration

Recalling the Donnan equilibrium in which the osmotic

contribution is neglected, Eq. (13), one can obtain (36) and

(37) for the positive and negative species, respectively.

C
A;int
i;pos ¼ CM

i;pos �
1

K
; ð36Þ

C
A;int
i;neg ¼ CM

i;neg � K ð37Þ

By combining the electroneutrality in the solution with

(36) and (37), (38) is obtained. After rearrangement of

Eq. (38), an expression for Donnan constant K is presented

in (39).

XNions

i

CM
i;pos �

1

K
¼
XNions

i

CM
i;neg � K; ð38Þ

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNions

i CM
i;posPNions

i CM
i;neg

vuut : ð39Þ
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Substitution of (39) in (36) and (37) results in (40) and

(41), respectively. For a system of only sodium and

hydroxide, (40) and (41) reduce to (42).

C
A;int
i;pos ¼ CM

i;pos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNions

i CM
i;negPNions

i CM
i;pos

vuut ; ð40Þ

C
A;int
i;neg ¼ CM

i;neg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNions

i CM
i;posPNions

i CM
i;neg

vuut ; ð41Þ

C
A;int

Naþ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CM

Naþ
� CM

OH�

q
: ð42Þ

Derivation of the membrane interface molality

as a function of the solution interface molality

From Eq. (13), (43) and (44) are obtained for the positive

and negative species, respectively.

CM
i;pos ¼ C

A;int
i;pos � K; ð43Þ

CM
i;neg ¼ C

A;int
i;neg �

1

K
: ð44Þ

By combining the electroneutrality in the membrane

with (43) and (44), (45) is derived. After rearrangement of

(45), a quadratic expression for K is obtained, see (46).

This quadratic expression can be solved resulting in (47).

XNion

i

C
A;int
i;pos �K � Cm ¼

XNion

i

C
A;int
i;neg �

1

K
; ð45Þ

XNion

i

C
A;int
i;pos :K

2 � CmK �
XNion

i

C
A;int
i;neg ¼ 0; ð46Þ

K ¼
Cm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
m þ 4

PNion

i C
A;int
i;pos

PNion

i C
A;int
i;neg

q

2
PNion

i C
A;int
i;pos

: ð47Þ

Substitution of (47) in (43) and (44) results in (48) and

(49), respectively. For a system of only sodium and

hydroxide, (47) reduces to (50).

CM
i;pos ¼ C

A;int
i;pos

Cm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
m þ 4

PNion

i C
A;int
i;pos

PNion

i C
A;int
i;neg

q

2
PNion

i C
A;int
i;pos

;

ð48Þ

CM
i;neg ¼ C

A;int
i;neg

2
PNion

i C
A;int
i;pos

Cm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
m þ 4

PN
ion

i C
A;int
i;pos

PN
ion

i C
A;int
i;neg

q ;

ð49Þ

CM
Na ¼

Cm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
m þ 4 C

A;int

Naþ

� �2
r

2
: ð50Þ

Prove that (42) and (50) are equal

Substitution of the electroneutrality condition in the

membrane in (50), (42) is obtained with (51) as an inter-

mediate result.

C
A;int

Naþ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CM

Naþ

	 
2�CM
Naþ

Cm

q
: ð51Þ
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