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Abstract The surface of graphite fiber fabric (GFF) was

mounted with an electron transfer assisting material, such

as Ni, Fe, or ammonia, along with multiwall carbon nan-

otube (MWCNT) to enhance the growth of electrochemi-

cally active bacteria (EAB) using an electrophoretic

deposition method. The decorated surface of GFF was

changed to rough and porous, and the electric conductivity

was improved from 7.52 to less than 0.2 X cm-1. The

bioelectrochemical methane productions for the decorated

cathodes were compared in a batch bioelectrochemical

anaerobic reactor. During the enrichment of EAB on the

cathode, it was observed that the decorated cathode

requires a longer initial lag phase (9–23 days), but the

maximum methane production rate from the control cath-

ode is considerably improved after the enrichment of EAB.

The decoration materials reduce the charge transfer resis-

tance on the cathode for the bioelectrochemical reduction

of carbon dioxide, and improve the production of methane.

The effectiveness of the electron transfer assisting materi-

als for the bioelectrochemical methane production was in

the order of Ni, Fe, and ammonia. The maximum methane

production rate for the cathode decorated with MWCNT

and Ni was 44.8 mL CH4 L
-1 d-1, which was 57.2 %

higher than the control GFF cathode, and the methane yield

was as much as 326.3 mL CH4 g
-COD�1

r compared to the

252.8 mL CH4 g-COD�1
r for the control cathode, or

162.1 mL CH4 g
-COD�1

r of the anaerobic control.

Graphical abstract Schematic diagram of electron trans-

fer assisting material on the cathode for enhancing bio-

electrochemical methane production.

Keywords Bioelectrochemical � Graphite fiber fabric �
Cathode, nickel � Methane � Electron transfer � Catalyst

1 Introduction

Anaerobic digestion has been recognized as a popular

green technology to stabilize organic waste while recov-

ering renewable energy as biogas. However, anaerobic

digestion is being investigated as a viable method in the

hope of improving some of its limitations, such as a low

organic matter degradation rate, long retention time, poor

effluent quality, low purity of biogas, as well as, the trou-

bles that arise in the operation of the process [1, 2]. These

limitations are mainly caused by the slow hydrolysis rate of

particulate organic matter, slow growth rate of methano-

gens, and susceptibility of methanogens to environmental
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changes [1, 3]. Recently, an innovative approach has been

developed, in which the anaerobic digestion system was

coupled with Bioelectrochemical technology to mitigate

the limitations in the anaerobic digestion. [2, 4–11]. In the

coupled anaerobic digestion, methane is produced from

electrochemically active bacteria (EAB) on the electrode

surface, as well as planktonic anaerobic bacteria (PAB) in

liquid phase. In the case of methane production from

EAB, organic matter is oxidized by some of EAB attached

on the anode surface and produces protons, carbon diox-

ide, and electrons [2, 4, 12]. The protons and carbon

dioxide are released into the solution, while the electrons

are transferred to the anode, and then moved to the cath-

ode through an external electrical circuit. At the surface of

cathode, methane is bioelectrochemically formed by the

reduction of carbon dioxide combined with electrons and

protons [2, 4, 6, 11]. For the bioelectrochemical methane

production, the electric potential of the cathode is poised

to overcome the thermodynamic barrier [2, 11]. Then, the

bioelectrochemical reaction on the cathode is catalyzed by

methanogenic species of EAB growing on the cathode.

The methanogenic species and their biomass on the

cathode surface during the enrichment of EAB are affected

by the physical and electrochemical properties of the

electrode, such as roughness, surface area, electric con-

ductivity, and electric potential [13–18]. In particular, the

electrochemical properties of the cathode materials are an

important factor that influences the catalytic activity of

EAB on the cathode. However, available information on

the cathode materials is still not adequate. It is well known

that several carbon-based materials, such as carbon cloth,

carbon felt, and carbon fiber, are biocompatible, durable in

chemical solution, and reasonable in price. Among them,

some porous carbon materials in the form of felt and

fabric have wide surface area available for bacterial

growth, and recommended as good raw materials for

cathode [19–22]. The porous carbon materials, however,

are generally insufficient in the electric conductivity and

catalytic activity for the electrochemical reduction on

cathode. The surface of porous carbon materials could be

physico-chemically and electrochemically modified with

catalytic materials assisting electron transfer for a better

performed cathode [17, 23, 24]. Multiwall carbon nan-

otube (MWCNT) is a material with highly conductive and

wide surface area, and it is frequently adopted as a sup-

porter for catalytic materials [25, 26]. Up to date, several

substances, including cobalt tetramethylphenylporphyrin

(CoTMPP), iron phthalocyanine (FePC), manganese oxide

(MnOx), ammonia (NH3), nickel (Ni), and platinum (Pt),

have been examined as catalytic materials in bioelectro-

chemical systems [21, 22, 27–29]. Although Pt was always

the best as the catalyst for the reductions on cathode, it

was too expensive to use in the field scale [26, 30]. In

recent, the reduction of carbon dioxide into methane on

the cathode was successfully improved by some non-pre-

cious metals, such as nickel, copper, and iron, as well as

the nitrogen doping material using ammonia treatment

[31–35]. These imply that the porous carbon materials

could be modified to a good cathode for bioelectrochem-

ical methane production by surface decoration using the

above materials.

In this study, three different cathodes were prepared by

decorating with three catalytic materials (Ni, Fe, and

ammonia) together with MWCNT on the surface of Gra-

phite fiber fabric (GFF), and the bioelectrochemical

methane production from the cathodes was examined in

batch anaerobic reactor.

2 Materials and methods

2.1 Electrode preparation

GFF (Samjung C&G Co., Korea) and multiwall carbon

nanotube (MWCNT, Carbon Nano-material Technology

Co., Ltd., Korea) were submerged in concentrated nitric

acid for 24 h to remove impurities, and then washed with

running tap water. Different electrolyte solutions were

prepared by mixing 1.0 g MWCNT, 0.5 g polyethylen-

imine, and one of the electron transfer assisting materials

including 0.25 g of NiCl2, FePC, and NH3Cl with 1 L of

distilled water. The MWCNT and assisting materials were

simultaneously loaded on each surface of the GFF by

electrophoretic deposition (EPD) method at 30 V for

30 min, and three different cathodes, hereafter referred to

as Ni–C, Fe–C, and Am–C, were obtained. The GFF

without any treatment, referred to as GFF-C, was prepared

as a control cathode. For the anode, the MWCNT and the

Ni were loaded on the GFF surface by EPD method using

the same procedure for the Ni–C preparation. A paste of

EG (exfoliated graphite) and MWCNT was screen-printed

to form a scaffold layer on the GFF surface, and then hot

pressed for 15 min at 200 �C to complete the anode. For

the EG, an acidified graphite powder soaked with diluted

sulfuric acid and chromic acid (Hyundai Coma Industry,

Inc., Korea) was exfoliated using microwave radiation for

10 s, and then reduced using Hydrazine solution as in a

previous study [17]. The paste of EG and MWCNT was

obtained by mixing 1 g of MWCNT, 1 g of EG, 100 mL of

ethanol, and 10 mL of binder. The binder was prepared by

dissolving 2 g of coal tar pitch into 10 mL of toluene. The

anode and cathode were submerged into a sodium dodecyl

sulfate (SDS) solution (1 %) to improve the hydrophilicity

before use according to a previous study [18].
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2.2 Batch bioelectrochemical reactor for methane

production

A single chamber glass bottle with 0.75 L of effective

volume was used for batch bioelectrochemical anaerobic

reactor (Fig. 1). A separator and electrode assembly (SEA)

was prepared by stacking, in the following order: the anode,

separator, and cathode, and then rolled into a cylindrical

shape (6.2 cm dia., 8 cm height). A commercial non-woven

polypropylene sheet was used as the separator. The SEA

was installed in the bottle reactor, and each electrode was

connected to an external circuit with titanium wires. Seed

sludge (0.23 L) and substrate medium (0.52 L) were added

to the reactor. The seed sludge was taken from an anaerobic

digester for sewage sludge (S sewage treatment plant,

Busan, Korea). The substrate medium consisting of 3 g L-1

glucose, 2.45 g L-1 NaH2PO4, 4.58 g L-1 Na2HPO4,

0.31 g L-1 NH4Cl, 0.31 g L-1 KCl, 10 mL L-1 vitamins,

and 5 mL L-1 trace minerals was prepared according to a

previous study [18, 36]. The top of the bottle reactor was

covered with a plastic cap for air sealing. On the plastic cap,

two ports for biogas outlet and biogas sampling were

installed, respectively. The biogas outlet port was con-

nected to a floating gas collector with a rubber tube, and the

gas collector was filled with an acidic solution that was

saturated with sodium chloride to prevent biogas resolution.

The biogas sampling port was covered with an n-butyl

rubber stopper. The potential difference between the anode

and the cathode was controlled to be 0.3 V using an external

DC power supply [2, 12, 37], and then stirred with a mag-

netic bar at 300 rpm. The bioelectrochemical reactor was

incubated in a constant temperature room controlled at

35 ± 1 �C. As a control, an anaerobic batch reactor

without electrodes was also incubated at same conditions

as the bioelectrochemical reactors. During incubation,

biogas production was monitored using the gas collector,

and the substrate medium was replaced with a fresh one

when it was depleted. The first cycle of the batch opera-

tion was done for the enrichment of EAB, and then four

more cycles of the batch operation were continued to

estimate the bioelectrochemical methane production from

different cathodes.

2.3 Analysis and calculations

The precise surface features of the cathodes were obtained

using a scanning electron microscope (SEM, MIRA-3,

Tescan, Czech), and the elemental compositions of the

cathode surfaces were analyzed by energy dispersive X-ray

spectroscopy (EDS) based on the SEM. The resistance of

the cathodes was measured by a Hall Effect measurement

system (HMS-3000, Ecopia Co., Korea). In order to con-

firm the substrate consumption, chemical oxygen demand

(COD) was measured at the beginning and end of the batch

cycle operation according to Standard Methods (2005).

Biogas production was also monitored from the floating

type gas collector, and the composition of biogas was

analyzed by a gas chromatograph (Series 580, GOW-MAC

Instrument Co., USA) equipped with a packed column

(Porpak Q 6ft 9 1/8 in SS, Restek Co., USA) and a ther-

mal conductivity detector (TCD). Methane production

(VCH4;i) at each monitoring time interval was calculated

from the measurements of the biogas volume and their

methane contents in the headspace of the bottle reactor and

the gas collector using the following mass balance

equation:

VCH4;i ¼ CCH4;i VG;i þ VR

� �
� VRCCH4;i�1: ð1Þ

Here VG,i is the total biogas volume (mL) measured in

the gas collector at the current time interval (i), and VR is

the headspace volume of the bottle reactor. CCH4;i and

CCH4;i�1 are the methane fractions in the head space of the

reactor measured using gas chromatography in the current

and previous time intervals, respectively. Next, the

methane production (VCH4;i) was expressed as a standard

temperature pressure (STP) state using the following

equation:

VCH4
at STPð Þ ¼ VCH4;i at Tð Þ � 273

273þ T
� 760�W

760
; ð2Þ

where T is the incubation temperature (35 �C) of the

reactor, and W is the water vapor pressure at 35 �C
(mmHg). The cumulative methane production for the

enrichment stage of EAB was fit to the modified Gompertz

equation [38]:
Fig. 1 Schematic diagram of a batch bioelectrochemical anaerobic

reactor
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P ¼ Puexp � exp
lm � expð1Þ

P
k� tð Þ þ 1

� �� �
: ð3Þ

Here, lm represents the maximum methane production

rate (mL g-COD-1 d-1); k is the lag phase time (days);

and Pu is the ultimate methane production (mL g-COD-1).

The average cumulative methane production was calcu-

lated from final three batch cycles after the enrichment

stage, and then fit to Eq. (3). During the operation of the

reactor, the potentials for the anode and the cathode were

frequently monitored with a portable digital multimeter

(Fluke 87-V, Fluke Co., USA) and Ag/AgCl reference

electrode (AlsCo., Ltd., Japan). Electrochemical impe-

dance spectra (EIS) for the cathode were obtained in the

frequency band ranging from 100 kHz to 10 MHz with an

AC signal amplitude of 25 mV using an electrochemical

instrument (CompactStat, Ivium Technologies, The

Netherlands). At open circuit condition, the cathode as

working electrode and the anode as count electrode were

connected to the terminals of electrochemical instrument,

and an Ag/AgCl electrode was submerged in the reactor

content as a reference electrode. The EIS data were fit to a

mixed kinetic and diffusion control model using IviumStat

analysis software. The model includes a solution resistance

in series with a double-layer capacitor, which is in parallel

with the faradic reaction impedance consisting of a charge

transfer resistance and Warburg element in series. A linear

voltage sweep for the cathode was also conducted in the

potential range between -200 and 650 mV (vs. Ag/AgCl

reference electrode) with a 10mV s-1 scan rate. The

polarization data for the cathodes were fit to Eq. (4), and

the Tafel slope (b) and exchange current (io) were obtained

from the extrapolation of the linear region (r[ 0.999) by

E ¼ aþ b log i=i0 ð4Þ

where E is the potential (E0 ? g); a and i are the intercept

of the Tafel curve and the anodic current density, respec-

tively; and gand E0 are the overpotential and the equilib-

rium potential.

3 Results and discussion

3.1 Morphology of the cathode surfaces

Figure 2 displays SEM images for the cathode surfaces

decorated with different materials assisting the electron

transfer of EAB. The crystalline aggregations of the

materials deposited on the graphite fiber strands appeared

on the decorated cathode surfaces, which were porous and

rough. The GFF-C without any decoration consisted of

clean and smooth strands of carbon fibers. In bioelectro-

chemical methane production, the reduction of carbon

dioxide into methane is catalyzed by the EAB, which is

growing on the cathode surface [4, 7, 16]. It is likely that

the materials decorated on the cathode surface support the

growth of EAB by assisting electron transfer on the cath-

ode, as well as, altering the cathode surface to a more

biocompatible and porous structure, which are favorable

conditions for bacterial growth [2, 19, 21].

The elemental composition of the cathode surfaces was

further examined by EDS (Table 1). The major elemental

components of the decorated cathodes were carbon

(74.7–87.6 At. %) and oxygen (7.3–20.9 At. %), while a

small portion of the assisting materials were also appeared

on the cathodes. This indicates that the crystalline aggre-

gations on the cathode surface, the assisting materials, were

properly decorated on the cathode surfaces by the EPD

method. The percentage of the assisting materials appearing

were in the range of 0.5–2.3 At. %, which was varied in the

types of the materials. The GFF-C as the control cathode

consisted of carbon (89.5 At. %) and oxygen (10.5 At. %).

The electric resistance for the GFF-C was observed as

high as 7.52 X cm-1 (Table 1). The high resistance of the

GFF-C was likely due to the contact resistance between the

loose bundles of the carbon fiber strands. The electric

resistances for the cathodes decorated with the assisting

materials were considerably reduced, and in particular, the

electric resistance for the Ni–C was 0.07 X cm-1, which

was slightly lower than the others. The resistance for the

Am–C decorated with non-conductive ammonia compound

was also low, namely 0.15 X cm-1. This indicates that the

improved electric conductivities for the decorated cathodes

were mainly attributed to the MWCNT, which was loaded

on the surface of the carbon fiber strands, and was bridged

between the carbon fiber strands. The MWCNT is often

used as a conducting bridge for the improvement of electric

conductivity for various composites [39, 40].

3.2 Enrichment stage of EAB on the decorated

cathodes

The bioelectrochemical methane production during the

enrichment stage of EAB on the cathode surface was

considerably affected by the decoration materials (Ni, Fe,

or ammonia) (Fig. 3). Methane production for the deco-

rated cathodes started to increase slowly after initial lag

phases of 9.4–22.5 days, but the lag phases for the GFF-C

without any decoration and the anaerobic digestion control

were only 13.0 and 6.9 days, respectively (Table 2). The

long lag phase in the bioelectrochemical system is due to

the time for the initial selection of EAB and adaptation to

the new environment before beginning exponential growth

[41, 42].The lag phase depends on the seed sludge, the

roughness, and biocompatibility of the electrode surface, as

well as, electrochemical properties [18, 42]. It seems that
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the initial attachment of bacteria on the electrode surface is

affected by the types of seed sludge and the electrode

physical properties, such as its roughness and biocompat-

ibility, and the selection and adaption of EAB on the

electrode surface depend on the electrochemical properties

of the surface. The long lag phases for bioelectrochemical

methane production compared to the control are most

likely due to the seed sludge taken from an anaerobic

digester for sewage sludge. The dominant species in the

anaerobic sludge from a conventional anaerobic digester

for sewage sludge are not EAB. This indicates that the

materials (Ni, Fe, and ammonia) decorated on the cathode

surface do not directly catalyze the electrochemical con-

version of carbon dioxide into methane within conditions

for mesophilic anaerobic digestion. The lag phase for the

Am-C was shorter (9.38 days) than the GFF-C. This sug-

gests that the biocompatibility on the cathode surface is

improved by the ammonia treatment. In previous study, the

ammonia treatment for the electrode improved bacterial

Fig. 2 SEM images for the different cathode surfaces decorated with the materials assisting with the electron transfer: a Ni–C, b Fe–C, c Am–C,

and d GFF-C

Fig. 3 Cumulative methane productions from the bioelectrochemical

reactors with the cathodes decorated with different materials during

the enrichment stage of EAB

Table 1 Elemental compositions and electrical conductivities for

different cathode surfaces

Element (At. %) Ni–C Fe–C Am–C GFF-C

C (%) 87.6 77.2 74.7 89.5

O (%) 7.3 20.9 14.2 10.5

Cl (%) 2.9 1.4 9.3

Ni (%) 2.3 – – –

Fe (%) – 0.5 – –

N (%) – – 1.8 –

Resistance (X cm-1) 0.07 0.19 0.15 7.52
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attachment on the surface, and then the initial acclimation

time of EAB was reduced in MFCs [35]. However, the lag

phases for Ni–C and Fe–C were over 20 days, which were

considerably longer than 13 days of the lag phase for the

GFF-C (Table 2). This suggests that the selection and

adaptation of EAB is stricter on the surface that is more

electrochemically active, which caused a longer time for

enrichment stage but not the inhibitory effects of decorated

materials. In previous studies, it took a long enrichment

time (10–30 days) of EAB on the surface of electrochem-

ically active electrode after the inoculation of anaerobic

sludge for sewage sludge [2, 18, 41, 43].

The maximum methane production rate provides insight

into the growth of EAB on the cathode surface. The

maximum methane production rate was 6.2 mL CH4

g-COD-1 d-1 for the Ni–C, and 5.4 mL CH4 g-COD-1 -

d-1 for the Fe–C. The maximum methane production rate

of the Am–C was 3.6 mL CH4 g-COD
-1 d-1, and similarly

for the GFF-C (3.7 mL CH4 g-COD
-1 d-1). The methane

in the bioelectrochemical anaerobic reactor is a main pro-

duct from the metabolic process of electrochemically

active methanogens. This implies that the growth rate of

the methanogens could be inferred from the maximum

methane production rate during log growth phase in batch

reactor. It seems that the growth rate of EAB is the highest

on the Ni–C, followed by the Fe–C, GFF-C, and Am–C,

respectively, indicating that the bioelectrochemical meta-

bolic process for methane production depends on the

electrochemical properties of the cathode surface.

3.3 Bioelectrochemical methane productions

from different cathodes

After the enrichment of EAB on the cathode surface, the

influence of the decoration materials on bioelectrochemical

methane production was distinct (Fig. 4). The cumulative

methane production was quickly increased after a short lag

phase when the substrate medium was replaced with a fresh

one (Table 2). The maximum methane production rate is

an indicator of the methanogenic potential of EAB on the

cathode, which was obtained from the greatest slope of the

cumulative methane production. The maximum methane

production rate was 28.5 mL CH4 g-COD
-1 d-1 for GFF-

C, which was higher than the value of 17.8 mL CH4

g-COD-1 d-1 for the anaerobic control (Table 2). This

shows that the bioelectrochemical activity for methane

production is higher than conventional anaerobic digestion.

However, the maximum methane production rate for the

Ni–C was considerably higher, namely 44.8 mL CH4

g-COD-1 d-1. This result suggests that the bioelectro-

chemical methanogenic activity was significantly improved

by the decoration of Ni and MWCNT on the cathode sur-

face. The maximum methane production rates for the Fe–C

and the Am–C were similar to one another, but were less

than the Ni–C. It is believed that the bioelectrochemical

methanogenic activity is a function of EAB species and

their biomass on the cathode surface. The species and

Fig. 4 Cumulative methane productions from the bioelectrochemical

reactors with the cathodes decorated with different materials after the

enrichment of EAB

Table 2 Summary of estimated bioelectrochemical methane production from different cathodes

Parameter Stage Ni–C Fe–C Am–C GFF-C Control

Pu (mL CH4 g-COD
-1) E 215.9 163.0 166.0 158.4 114.2

M 237.3 ± 8.4 176.2 ± 1.9 178.9 ± 6.7 156.8 ± 10.0 89.2 ± 16.6

lm (mL CH4 g-COD
-1 d-1) E 6.2 5.4 3.6 3.7 2.4

M 44.8 ± 2.4 35.4 ± 1.6 34.0 ± 1.9 28.5 ± 2.3 17.8 ± 3.8

k(d) E 22.51 20.49 9.38 13.01 6.90

M 0.35 ± 0.15 0.65 ± 0.12 0.89 ± 0.20 1.38 ± 0.34 1.53 ± 0.28

r2 E 0.975 0.990 0.979 0.985 0.965

M 0.981 ± 0.002 0.987 ± 0.006 0.991 ± 0.001 0.991 ± 0.005 0.985 ± 0.004

Yield (mL CH4 g-COD
�1
r ) M 326.3 ± 13.9 235.9 ± 17.9 272.2 ± 20.4 252.8 ± 12.5 162.1 ± 18.9

E EAB enrichment stage, M matured stage after the EAB enrichment

1216 J Appl Electrochem (2016) 46:1211–1219
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biomass of EAB are possibly affected by the decoration

materials assisting the electron transfer of EAB on the

cathode surface [44].

The bioelectrochemical methane yield was 326.3 mL

CH4 g-COD
�1
r for the Ni–C, which was 29.1 % higher than

252.8 mL CH4 g-COD�1
r for the GFF-C (Table 2). How-

ever, the methane yields were 235 mL CH4 g-COD
�1
r and

272 mL CH4 g-COD
�1
r for both of the Fe–C and the Am–

C, respectively, which are also higher than 162.1 mL CH4

g-COD�1
r for the anaerobic control. The overpotential for

bioelectrochemical methane production leads to energy

loss in the electrode reaction. The ultimate methane pro-

duction of the Ni–C is higher than the others, indicating

that the energy loss of the Ni–C for the bioelectrochemical

conversion of carbon dioxide into methane is less than the

others. The applied voltage is distributed to electrodes

(anode and cathode) depending on the electrochemical

properties of the electrodes during the enrichment stage of

EAB. However, the electrode potentials could be consid-

erably changed by the enrichment of EAB on the elec-

trodes. It seems that the electron balance on the anode and

cathode determines the distribution of applied voltage to

the electrodes [2, 12, 18].

3.4 Electrochemical properties of the decorated

cathodes

The results of the EIS experiments for the decorated cath-

odes are fit well by a Randles equivalent circuit model in the

Nyquist representation (Fig. 5a). This suggests that the

reduction of carbon dioxide into methane was mainly con-

trolled by charge transfer, and partly by diffusion on the

cathode surface. However, the semi-circles were a little flat,

and the centers were below the real axis. The incomplete flat

semi-circle is commonly observed as the current is not

uniform on the cathode due to the inhomogeneous electrode

surface [45, 46]. The estimated values of charge transfer

resistance (Rct), capacitance (C), Warburg (W) for the

cathodes decorated with the electron transfer assisting

materials are presented in Table 3. The solution ohmic

resistances (RS) for the cathodes were in the range of

1.24–1.33 X, which was similar to the GFF-C (1.27 X). The
semi-circle diameter of the Nyquist plots is the charge

transfer resistance. The charge transfer resistances were

3.1 X for the Ni–C, which was lower than those for the Fe–C

or the Am–C. The charge transfer resistance for the GFF-C

was 8.6 X. The activation energy is described by a function

of the charge transfer resistance on the cathode surface using

the Arrhenius equation [47, 48]. The small charge transfer

resistance suggests that the cathode has a kinetic advantage

for bioelectrochemical methane production, indicating that

Ni is a better decoration material assisting the electron

transfer of EAB on the cathode for the bioelectrochemical

conversion of carbon dioxide into methane [18]. The Tafel

plot for the cathodes decorated with different materials

provides more information regarding the methane produc-

tion from the reduction of carbon dioxide (Fig. 5b). Com-

monly, a smaller activation energy for an electrochemical

reaction is obtained from an electrode with a smaller Tafel

slope and higher exchange current [18, 49]. The Tafel slope

for the Ni-C cathode was the smallest at-322.6 mV dec-1,

Fig. 5 a Nyquist plot of EIS data, b Tafel plot for the cathodes

decorated with different materials

Table 3 The parameters of the EIS analysis result for different

cathodes

Parameter Ni–C Fe–C Am–C GFF-C

Rs (X) 1.33 1.24 1.24 1.27

Rct (X) 3.10 5.60 5.56 8.60

C (mF) 59.4 32.5 29.2 18.1

W (1 X-1 Hz-1) 0.223 0.356 0.406 0.482

bc (mV dec-1) -322.6 -362.6 -409.1 -474.2

i0 (mA) 35.10 31.44 29.03 23.06
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followed by Fe–C (-362.6mV dec-1), and Am–C (-409.1

mV dec-1) (Table 3).The Tafel slope of GFF-C was the

greatest as-474.2 mV dec-1, which was higher than those of

the cathodes decorated with electron transfer assisting mate-

rials. For the exchange current, the Ni–C also obtained the

greatest value of 35.10 mA, which indicates Ni is a better

decoration material for bioelectrochemical methane produc-

tion by assisting the electron transfer of EAB. The exchange

current of Fe–C is 31.44 mA, which is similar to the

29.03 mA of Am–C, and the smallest of GFF-C is 23.06 mA.

This indicates that the bioelectrochemical conversion of car-

bon dioxide intomethane is catalyzed byNi, Fe, and ammonia

and the GFF decorated with Ni and MWCNT is the best

cathode for the bioelectrochemical production of methane.

4 Conclusions

The GFF surface is well decorated with an electron transfer

assisting material (Ni, Fe, or ammonia) together with

MWCNT by the EPD method. The MWCNT loaded on the

graphite fiber acts as an electrical bridge between graphite

fibers. The decorations of MWCNT together with Ni, Fe,

and ammonia considerably improve electrochemical

properties of the GFF cathode. However, the decorated

cathode with improved electrochemical properties requires

a longer lag time for enrichment of EAB on the surface. Ni

loaded on the GFF cathode considerably reduces the charge

transfer resistance for the bioelectrochemical reduction of

carbon dioxide on the cathode, followed by the Fe-loaded

GFF cathode, and finally, the ammonia. The decoration of

MWCNT together with Ni on the cathode significantly

improves the bioelectrochemical production of methane, as

well as, the methane yield. The benefits of this material

were then followed by the decoration of Fe and ammonia.
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41. Parot S, Délia M-L, Bergel A (2008) Forming electrochemically

active biofilms from garden compost under chronoamperometry.

Bioresour Technol 99:4809–4816. doi:10.1016/j.biortech.2007.

09.047

42. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron

AD et al (2012) Lag phase is a distinct growth phase that prepares

bacteria for exponential growth and involves transient metal

accumulation. J Bacteriol 194:686–701. doi:10.1128/JB.06112-

11

43. Yoon SM, Choi CH, Kim M, Hyun MS, Shin SH, Yi DH, Kim HJ

(2007) Enrichment of electrochemically active bacteria using a

three-electrode electrochemical cell. J Microbiol Biotechnol

17:110–115

44. Cercado B, Cházaro-Ruiz LF, Ruiz V, López-Prieto LDJ, Buitrón
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