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Abstract The assumption of electrochemical equilibrium

at membrane–electrolyte interfaces is frequently accepted

in a mathematical simulation of multiple ion transport

(MIT) across a single-layer perfluorinated sulfonated

cation-selective membrane (CM). This assumption is

obviously inaccurate at high electric current loads typical

of industrial applications, e.g. brine electrolysis. An

assessment of this problem is one of the main objectives of

this contribution. For this purpose, a one-dimensional sta-

tionary Poisson–Nernst–Planck (PNP) model was

employed to describe MIT across a CM. The model input

parameters used correspond closely to industrial chlor-al-

kali electrolysis. The model results are compared with

those of an equivalent model published earlier that con-

sidered the classical Nernst–Planck equation and Donnan

equilibrium at the CM–electrolyte interfaces (denoted as

the DNP model). Both the DNP and the PNP models

provide identical results at low current loads. However, a

comparison at high current loads close to ‘industrial scale’

was impossible due to convergence problems of the DNP

model. The ion transport numbers and membrane perms-

electivity were estimated by means of the PNP model. This

model predicts conditions at the membrane interfaces close

to thermodynamic equilibrium even in a current density

range up to 10,000 A m-2. Additionally, the PNP model

takes into account the kinetics of water autoprotolysis. It

was shown that a high flux of OH- ions across a CM

effectively alkalizes the catholyte diffusion layer, ensuring

a precipitation of alkaline earth cations outside the CM and

thus minimizing internal CM blockage.
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List of symbols

General symbols

c Molar concentration (mol m-3)

D Diffusion coefficient (m2 s-1)

F Faraday’s constant (F = 96484.56 C mol-1)

J Molar flux density (mol m-2 s-1)

j Local current density (A m-2)

k Hydraulic membrane permeability (m2)

kb, kf Kinetic rate constant of backward and forward

reaction (m3 mol-1 s-1)

Kw Water autoprotolysis equilibrium constant

(Kw = 1 9 10-8 mol2 m-6)

N Number of ions included in the system

p Hydrostatic pressure (Pa)

q Space charge density (C m-3)

R Universal gas constant (R = 8.314 J K-1 mol-1)

S Source term (mol m-3 s-1)

t Transport number

T Absolute temperature (K)

U Voltage (V)

v Convective velocity (m s-1)

w Width (m)

x Coordinate (m)

z Valence number

Greek symbols

er Relative permittivity of free water (er = 78.5)

e0 Permittivity of vacuum (e0 = 8.8542 9 10-10 F m-1)

g Dynamic viscosity (kg m-1 s-1)

/ Electric potential (V)

r Conductivity (S m-1)

Subscripts

ADL Anodic diffusion layer

CDL Cathodic diffusion layer

CM Cation-selective membrane

DER Donnan exclusion region

fix Fixed charge

i Ion

p Phase

Superscripts

ba Bulk anolyte

bc Bulk catholyte

p Phase

Abbreviations

1D One-dimensional

ADL Anodic diffusion layer

CDL Cathodic diffusion layer

CM Cation-selective membrane

DER Donnan exclusion region

DNP Donnan–Nernst–Planck model

DNP1, DNP2 Donnan equilibrium Nernst–Planck model

1 and 2
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ISM Ion-selective membrane

MIT Multiple ion transport

PDE Partial differential equation

PNP Poisson–Nernst–Planck model

WSR Water splitting/recombination reaction

1 Introduction

Ion-selective membranes (ISMs) belong to the group of

materials known as polymer electrolytes. They are utilized

in many state-of-the-art electrochemical technologies as

an ion-selective barrier or as a solid–polymer electrolyte.

The reason is that ISMs allow the operation of conven-

tional processes in a thin-gap cell set-up at higher selec-

tivity and efficiency. A broad range of ISM types is

frequently utilized in technical practice where perfluori-

nated sulfonated membranes (e.g. Nafion�) exhibit

extraordinary chemical stability and mechanical strength

[1]. Important aspects and applications of polymer elec-

trolytes, in particular ISMs, have recently been reviewed in

[2, 3]. Currently, the development of ISMs is proceeding in

three main fields of applied electrochemistry: (a) elec-

tromembrane separations (electrodialysis [4–7], elec-

trodeionization [8]), (b) membrane electrolysis (brine

electrolysis [9]) and (c) electromembrane processes for

conversion of energy (fuel cells [6, 10], water electrolysis

[11, 12], redox-flow batteries [13] and reverse electro-

dialysis [14]). The importance of these technologies is

dramatically increasing in parallel with rising demands for

conventional processes to be replaced by highly efficient,

pollution-free ones. The need for a more fundamental

understanding of ISM behaviour is a logical consequence

of this trend. A theoretical study of this system can be

effectively performed by means of mathematical mod-

elling. Compared to an experimental investigation, math-

ematical modelling represents a more powerful approach

with respect to a description of local phenomena and the

ability to perform broad multi-parametric studies.

A macrohomogeneous modelling approach is frequently

employed for the study of mass and charge transport in

systems comprising ISM. This approach represents a rea-

sonable compromise with respect to accuracy and the

demands on computational hardware performance, com-

pared, for example, to models based on a detailed

description of membrane microstructure. The application

of a macrohomogeneous approach in this field was verified,

for instance, by Verbrugge et al. [15], comprehensively

discussed in a review by Buck [16] and successfully

employed by several authors [17–22].

The published models of ion transport in ISM signifi-

cantly differ according to the complexity of the model

physics. For example, a one-dimensional (1D)

mathematical model of a multiple ion transport (MIT) in

the chlor-alkali electrolysis process was developed by van

der Stegen et al. [17] and Hogendoorn et al. [18]. They

employed the Maxwell–Stefan theory to describe the

transport phenomena. The composition at the membrane

interface was calculated by a modified Pitzer equilibrium

model, by which the activities of ions were predicted using

the Pitzer method [23]. The theoretical background of these

models was based on fundamental principles of interionic

interactions and, as such, promises high accuracy and

prediction ability in a broad range of operating conditions.

However, these models [17, 18] yielded some quantita-

tively and qualitatively unrealistic results. Nevertheless,

important qualitative conclusions were also obtained. For

example, strong alkalization (pH[ 12) of the anodic dif-

fusion layer (ADL) at the membrane surface in a wide

range of initial anolyte pH from 1 to 6 and a negligible

effect of the ionic strength of the anolyte on the membrane

performance were predicted.

A simplified MIT mathematical model also aimed at

chlor-alkali electrolysis process was employed by Fila and

Bouzek [19, 20]. The modelling system was 1D comprising

one cation-selective membrane (CM, Nafion� 117) and

two external diffusion layers, anodic (ADL) and cathodic

(CDL), adjacent to the membrane surface. MIT was

approximated by the Nernst–Planck equation together with

the assumption of electroneutrality in the entire model

system. The convective motion of the electrolyte induced

by electroosmosis inside the CM [19] and also, in the next

step, in the diffusion layers [20] was taken into account.

The interface between the CM and the diffusion layers was

approximated by Donnan equilibrium. In further discussion

in this paper, this model is denoted as the Donnan equi-

librium Nernst–Planck model (DNP).

Strong concentration gradients of ions resulting from

mass transport limitation in the diffusion layers were

observed in former work [19]. The consideration of the

convective mass transport mechanism also in the diffusion

layers [20] resulted in flattening of the concentration profiles

inside the membrane at higher current loads. However, the

convection in the diffusion layers had an adverse impact on

the membrane permselectivity. Despite initial ambitions of

these two studies to demonstrate characteristics of MIT

across a CM in the industrial chlor-alkali process, the cal-

culations were completed only for current loads less than

2500 A m-2. This is below the typical operational range of

2000–5000 A m-2 [17]. One of the suggested reasons was

the problem of numerical stability of the DNP model pri-

marily due to the enormous gradients (stiff behaviour) of the

integrated variables and discontinuity of the concentrations

and potential at the CM–electrolyte interfaces.

Moreover, it appeared that the Donnan equilibrium

assumption adopted in the DNP model is inaccurate or far
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from reality in the case of the high current loads applied in

industrial chlor-alkali processes. The reason is that the

Donnan theory assumes instant thermodynamic equilib-

rium at the membrane interface [24, Chap. 4]. For example,

Cwirko et al. [25] have stated that (a) Donnan equilibrium

can underestimate more than 10 times the real partitioning

of counter-ions in ISMs and (b) the discrepancy of the

theoretical description and reality increases with decreas-

ing ionic strength of the external electrolytes.

The validity of Donnan equilibrium at current load

conditions has not yet been thoroughly studied. The work

of Manzanares et al. [21] who used a one-dimensional

dynamic model to describe the transport of a symmetric

binary electrolyte and space charge distribution in an

ADL–CM–CDL system is an exception. The migration–

diffusion species transport was described by the Nernst–

Planck equation, while, contrary to the DNP model, the

electric field was approximated by Poisson’s equation.

Models accounting for both Nernst–Planck and Poisson’s

equations are frequently denoted as Poisson–Nernst–

Planck (PNP) models. The application of Poisson’s equa-

tion allowed a description of the electric potential distri-

bution at the membrane–electrolyte interface on the basis

of fundamental principles of electrostatic interactions

between charged species. In contrast to Donnan theory,

therefore, it enabled both the dynamics of establishing of

interfacial equilibrium and the impact of charge flow at

current load conditions on this equilibrium to be addressed.

In their study, the authors demonstrated a discrepancy of up

to 50 % between the DNP and PNP models.

A general PNP model considering transport of up to 6

ionic components in both monopolar and bipolar ISMs and

adjacent diffusion layers was proposed by Volgin and

Davydov [22]. Compared to the Manzanares’s study [21],

they implemented a water splitting/recombination reaction

(WSR) enabling an evaluation of local pH development.

The results obtained agreed with current theoretical

knowledge on the behaviour of these two types of ISM.

The present contribution forms part of a systematic

study performed by our research group and dedicated to the

mathematical modelling of MIT across CM. It commenced

with the two papers of this series discussed above [19, 20].

This work is motivated by the need to extend the theoret-

ical description of the mass transport behaviour of ISM,

especially under high current load conditions, which pre-

viously published DNP models have failed to deliver. Our

study aims to provide realistic data on membrane selec-

tivity towards the desired ion production at high current

loads. This information is highly interesting with respect to

the optimization and intensification of membrane tech-

nologies. For this purpose, the PNP model has been

adopted. Furthermore, in this case the most widespread

industrial application of ISMs, i.e. chlor-alkali electrolysis,

has been selected as the studied system. Additionally, the

previous model [20] has been extended to include the WSR

as the next step of the model development. The inclusion of

the WSR enables the pH distribution in the CM and dif-

fusion layers to be predicted. This information is of par-

ticular interest for the prediction of local conditions inside/

outside the membrane and identification of regions of

potential precipitation of the alkaline earth metals.

2 Mathematical model description

The 1D macrohomogeneous PNP model approach was

utilized to describe stationary MIT across CM for the same

system and input parameters as in the previous papers [19,

20]. For the purpose of this paper, the DNP model pre-

sented in the first paper in the series [19] is denoted as

DNP1 which presented in the second paper [20] as DNP2.

The model geometry is shown in Fig. 1. An acidic NaCl

solution (pH 2, 5 mol dm-3) and a highly concentrated

solution of NaOH (13 mol dm-3) represent the anolyte and

the catholyte, respectively. The model considers the

transport of OH-, H?, Na? and Cl- across the CM.

Moreover, Ca2? is taken into account as the main impurity

in the process solution. The concentrations of the individ-

ual ions in the anolyte and catholyte are summarized in

Table 1 and discussed in Sect. 2.3. Supplementary to the

previous models [19, 20], the concentration of H? and

OH- ions is coupled with the WSR expressed by

Reaction (1).

H2O

kf
�

kb

Hþ þ OH�: ð1Þ

2.1 Model equations

The material balance of ion i is represented by Eq. (2),

where Ji denotes the molar flux density oriented along the

x-coordinate.

0 ¼ dJi

dx
� Si ð2Þ

Fig. 1 Schematic sketch of the 1-dimensional computational model

geometry oriented along the x-coordinate; CM cation-selective

membrane, ADL anodic diffusion layer, CDL cathodic diffusion

layer, widths of the layers [19, 20]: wCM = x2 - x1 = 0.120 mm,

wADL = x1 - x0 = 0.474 mm, wCDL = x3 - x2 = 0.146 mm, x0

located in origin
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Ji is predicted by the Nernst–Planck equation in the

form of Eq. (3):

Ji ¼ �D
p
i

dci

dx
þ zici

d/
dx

F

RT

� �
þ vpci: ð3Þ

D
p
i denotes the effective diffusion coefficient of the i-th

ion in the phase p & ADL, CM, CDL. Furthermore, ci

represents the molar concentration, zi the charge number

and F, R and T are Faraday’s constant, universal gas

constant and absolute temperature, respectively. / denotes

the electric potential. Finally, vp is the effective solution

flow velocity in phase p. A description of the solution flow

across CM will be given in more detail later.

The source term, Si, in Eq. (2) is zero for i & Na?, Cl-

and Ca2? because these ions do not participate in any

chemical reaction. The source terms of H? and OH- are

non-zero due to the WSR. SHþ and SOH� are given by

Eqs. (4) and (5), where kf and kb denote the rate constants

of the forward and backward reactions, respectively. Kw is

the water autoprotolysis constant of Reaction (1).

SHþ ¼ SOH� ¼ kf cH2O � kbcOH�cHþ ¼ kbðKw � cHþcOH�Þ
ð4Þ

Kw ¼ cOH�cHþ ¼ kf

kb
cH2O ð5Þ

The approach adopted to describe the WSR is used in

many studies mainly because of its simplicity [8, 22–30].

However, in the system including ISM and under an

applied electric field the exact description of the WSR

process can be more complex. The main features of this

reaction were summarized, for example, in the work of

Jialin et al. [31]. Firstly, according to the second Wien’s

effect, the dissociation of water molecules is accelerated by

a strong electric field, while the rate of the recombination

reaction is not [32–34]. Consequently, the value of auto-

protolysis constant, Kw, shifts towards the dissociation. For

example, about 5 9 107 times faster water splitting was

observed in a bipolar membrane at the interface between

the anion- and cation-selective layers compared to free

water [35]. It is precisely this interface that is characterized

by enormous electric field intensity. Neglecting the second

Wien’s effect may thus lead to underestimation of the

water splitting mainly at the membrane–electrolyte inter-

face and characterized by higher electric field gradients as

well. This problem has recently been studied by Danielsson

et al. [30] who proposed a Butler–Volmer type kinetic

description of the WSR, applied it in a 1D model of a

bipolar membrane and obtained satisfactory agreement

with experimental observations.

Furthermore, it was observed that water splitting is more

intensive at the surface of an AM compared to a CM. In the

former case, the quaternary ammonium groups degrade

over time to tertiary amines [30]. These amines can then

act as a weak base catalysing water molecule splitting [36].

The role of the functional groups within the WSR has not

yet been adequately explained. It is, therefore, clear that the

problem of the kinetics of the WSR has not yet been fully

resolved. Since the primary aim of this study is not to fully

describe the phenomenon of the kinetics of water splitting

in the presence of polymer electrolyte, a simplified con-

ventional approach, represented by Eqs. (4) and (5), is

employed.

The electric charge flux, j, defined by Eq. (6), obeys

conservation principles expressed by Eq. (7).

j ¼ F
XN
i¼1

ziJi ð6Þ

0 ¼ dj

dx
ð7Þ

Table 1 Input parameters

Parameter Value Source

pHx0 2 [19]

cx0

Ca2þ 0.2 mol m-3 [19]

cx3

Ca2þ 0 mol m-3 [19]

cx0

Naþ
5000 mol m-3 [19]

cx3

OH� . 13000 mol m-3 [19]

cx3

Cl� 0 mol m-3 [19]

T 298 K

kb 1.3 9 108 m3 mol-1 s-1 [41]

gcm 1.48 9 10-2 Pa s-1 [19]

kcm 1.58 9 10-19 m2 [19]

cfix 1200 mol m-3 [19]

Dadl
OH� 5.26 9 10-9 m2 s-1 [19]

Dcm
OH� 5.20 9 10-11 m2 s-1 [19]

Dcdl
OH� 2.72 9 10-10 m2 s-1 [19]

Dadl
Hþ 9.31 9 10-9 m2 s-1 [19]

Dcm
Hþ 3.7 9 10-10 m2 s-1 [19]

Dcdl
Hþ 1.47 9 10-10 m2 s-1 [19]

Dadl
Cl�

2.03 9 10-9 m2 s-1 [19]

Dcm
Cl� 1.29 9 10-11 m2 s-1 [19]

Dcdl
Cl�

1.08 9 10-10 m2 s-1 [19]

Dadl
Ca2þ 7.92 9 10-10 m2 s-1 [19]

Dcm
Ca2þ 7.09 9 10-11 m2 s-1 [19]

Dcdl
Ca2þ 4.10 9 10-11 m2 s-1 [19]

Dadl
Naþ

1.33 9 10-9 m2 s-1 [19]

Dcm
Naþ 3.52 9 10-11 m2 s-1 [19]

Dcdl
Naþ

6.88 9 10-11 m2 s-1 [19]
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The electric field induced in the system consists of two

contributions: (a) electric field imposed from the external

DC source and (b) electric field caused by electric charge

of the fixed functional groups in CM, qfix, introduced by

Eq. (8), where cfix and zfix are the molar concentration and

charge number, respectively.

qfix ¼ cfixzfixF ð8Þ

The electric field can be approximated by Poisson’s

equation in the form of Eq. (9), where q is the charge

density of the solution given by Eq. (10) and e0er stands for

the permittivity of the environment.

d2/
dx2

¼ � qþ qfix

e0er
ð9Þ

q ¼
XN
i¼1

zici ð10Þ

The exclusion of co-ions from the internal membrane

phase due to electrostatic repulsion is included in Eq. (9).

Any other chemical and steric interactions affecting the

membrane selectivity are, to a certain degree, encompassed

in the effective diffusion coefficient of the ions, D
p
i .

Regarding the convective motion of the electrolyte in

the system, this is induced by electroosmotic phenomena in

the membrane [24]. The macroscopic convective velocity

in the membrane, vCM , is estimated by means of Schlögl’s

equation [Eq. (11)] [16, 19, 20, 24, 37–39].

vCM ¼ kCM

gCM

qfix

d/
dx

� dp

dx

� �
ð11Þ

kCM and gCM are the hydraulic permeability of the

membrane and the effective dynamic viscosity of the

membrane pore fluid, respectively. The driving force of the

electroosmotic flow is the electric force acting upon the

charged solution present in the membrane pores. The

energy dissipation of the flow results in the non-zero gra-

dient of the hydrostatic pressure, p, inside the membrane.

The solution inside the membrane is incompressible, thus

mass conservation takes the form of Eq. (12):

0 ¼ dvCM

dx
: ð12Þ

To fulfil conservation of the mass at the membrane–

electrolyte interface, the convective motion in the diffusion

layers in the direction normal to the membrane is taken into

account as well. This issue is discussed in [20]. In this

contribution, the convective velocity in the diffusion layers

is simply equal to the electroosmotic velocity in the

membrane. This is expressed by Eq. (13):

v ¼ vCM ¼ vADL ¼ vCDL: ð13Þ

An alternative approach to Schlögl’s equation [Eq. (11)]

for a description of electroosmotic flow is, for example, a

Helmholtz–Smoluchowski approximation [40]. However,

Schlögl’s equation is theoretically more straightforward.

Due to this fact and for the sake of coherence with the

previous papers in this series [19, 20], Schlögl’s equation is

also used in this study.

In the case of a high difference in ionic strength across

the membrane, the electroosmotic velocity defined by

Eq. (11) can be affected by osmosis of the solvent. This

phenomenon was not included in the model.

2.2 Boundary conditions

The model geometry consists of 2 external (x0,x3) and 2

internal (x1,x2) boundaries, see Fig. 1. The applied

boundary conditions are summarized in Table 2. The

internal boundaries are characterized by continuity of the

dependent variables and fluxes. Because the mass balance

given by Eq. (12) is only calculated in the CM phase,

constant pressures at reference zero level are used as the

boundary conditions at x1 and x2.

The model assumes perfect stirring of the anolyte and

catholyte bulk. This implies a constant solution composi-

tion at the outer boundaries x0 and x3 of ADL and CDL,

Table 2 Boundary conditions
No. x0 x1 x2 x3

1
cCl� ¼ � 1

zCl�

PN
i;i6¼Cl�

zici

 !
Continuity cCl� ¼ 0 mol m�3

2 cNaþ ¼ cx0

Naþ
cNaþ ¼ � 1

zNaþ

PN
i;i 6¼Naþ

zici

 !

3 cCa2þ ¼ cx0

Ca2þ cCa2þ ¼ 0 mol m�3

4 cHþ ¼ 103�pHx0
cHþ ¼ Kw

c
x3
OH�

5 cOH� ¼ Kw

cHþ
cOH� ¼ cx3

OH�

6 / = U / = 0 V

7 – p = 0 Pa p = 0 Pa -
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respectively. On both sides, the electroneutrality condition

and autoprotolysis equilibrium between H? and OH- is

considered. The boundary x0 is then determined by a fixed

concentration of Na? cx0

Naþ

� �
, Ca2? cx0

Ca2þ

� �
and pH value

(pHx0 ). On the other hand, for boundary x3 a fixed con-

centration of OH- ðcx3

OH�Þ and zero content of Cl- and

Ca2? are taken into account. At x3; a zero reference value

of electric potential was chosen, while the value of electric

potential at x0 is equal to total applied voltage, U.

2.3 Input parameters

The input parameters were adopted from the previous work

[19] in order to enable a direct comparison and are sum-

marized in Table 1. Extra input data associated with the

modification of DNP2 to the PNP model proposed in this

paper are discussed in this section.

Firstly, kb known for free water unaffected by external

electric field, adopted from [41], was used in the present

study. The second Wien’s effect and catalytic influence of

functional groups in the membrane on the rate constant, kb,

were neglected, see discussion in Sect. 2.1.

The relative permittivity of the environment may change

with temperature and solution composition. This effect is

neglected and the value of relative permittivity of pure water at

ambient temperature was used instead. The situation is more

complicated in the ISM and its interfaces. The reason is that the

dielectric constant notably depends on the electric field inten-

sity, mainly due to alignment of the dipole of water molecules

and consequent change in the hydration of ions [25, 42–44].

For example, by means of Booth’s equation [45] Cwirko et al.

[42] have calculated the electric field distribution and permit-

tivity in a single straight cylindrical pore of an ISM. An electric

field stronger than 5 9 107 V m-1 in the radial direction and

dielectric constants below 6 near the pore wall were predicted.

The problem of estimating the effective dielectric constant in

the membrane is complex primarily due to the difficult and still

not fully clear interactions of the electrolyte and the membrane

with the electric field. This phenomenon was, therefore,

excluded at this stage and the permittivity of pure water was

also considered for the ISM phase.

2.4 Model summary

The proposed PNP model consists of 7 dependent vari-

ables: molar concentrations of individual ions, ci, hydraulic

pressure, p, and electric potential, /. The set of model

equations is formed by 6 material balances [Eq. (2)] and

one elliptic Poisson’s equation [Eq. (9)]. The set of the

model partial differential equations (PDEs) was solved by

the finite element method implemented in the COMSOL

MultiphysicsTM environment.

3 Results and discussion

The calculations of the proposed PNP are performed even

for current density values slightly above the typical range

for chlor-alkali electrolysis of up to 10,000 A m-2. By

studying the membrane function outside the typical oper-

ating range, it is possible to rationalize the phenomena

taking place under normal operating conditions. Such

information is interesting not only from the point of view

of a deeper understanding of the processes taking place, but

it also contributes towards optimizing and intensifying the

industrial process. The results of PNP are confronted with

the calculation of DNP2 [20].

3.1 Distribution of local electric potential and molar

concentrations

The distribution of the electric potential in the studied

system calculated by the proposed PNP model is shown in

Fig. 2. According to expectations, the most pronounced

potential drop, i.e. main electric energy loss, is identified in

the membrane. For current density[200 A m-2, the

potential gradients are solely negative, but below this level

positive. This is due to the liquid junction potential across

the membrane dominating at current density\200 A m-2.

For current density[3000 A m-2, the potential profiles

are almost ideally linear in all model domains solely

indicating the ohmic behaviour.

In the membrane interfacial regions (x1, x2), the electric

potential varies due to Donnan exclusion. The electric

potential across these interfaces changes continuously, see

Fig. 2 Electric potential distribution in the membrane and adjacent

diffusion layers in dependence on current density; initial anolyte and

catholyte composition—Table 1; fields at the bottom of the figure:

black membrane region, grey cathodic diffusion layer, white anodic

diffusion layer; electric current flows in the positive direction of

coordinate x

J Appl Electrochem (2016) 46:679–694 685

123



Fig. 3, where figure sets (A) and (B) correspond to CM–

ADL and CM–CDL, respectively. The related change in

the potential has a value of units to tens of millivolts across

the relatively narrow region of approximately 20 nm. This

region is referred to as the Donnan exclusion region (DER)

in this paper. In accordance with the theory, the electric

potential decreases in the direction from external solutions

into the membrane. The agreement of the prediction of the

electric potential step at the membrane interface by means

of Poisson’s equation and Donnan theory is discussed in

Sect. 3.5 in greater detail.

The calculated concentration fields of the major ions

(Na?, Cl- and OH-) are presented in Figs. 4, 5 and 6, and

those of the minor ions (H? and Ca2?) in Figs. 7 and 8,

respectively. The concentration fields calculated by PNP

model, except for H?, agree with the results of DNP2

model [20] for current density\1500 A m-2. One of the

common characteristics of these concentration fields is the

continuous decrease in the concentration of all ions in the

membrane with increasing current density above a current

load of 1500 A m-2. This occurs rapidly in the range of

1500–5000 A m-2, but only moderately at current densi-

ties[5000 A m-2. Moreover, the concentration gradients

decrease almost to zero in the bulk of each domain, but

significantly increase in the vicinity of the membrane

interfaces, x1, and x2, and at the boundary x3. This

Fig. 3 Distribution of electric potential and molar concentration of

OH- across the membrane interfaces for selected current densities;

figure sets A and B—electric potential distribution at the CM–ADL

and CM–CDL, respectively; figure sets C and D—distribution of

concentration of OH- at the CM–ADL and CM–CDL, respectively;

figure sets 1, 2 and 3 correspond to applied current density of 481,

3004 and 9930 A m-2, respectively; points p—borders of DER,

where subscripts m and s denote the membrane and external solution

phase, respectively, and subscripts a and c correspond to anodic and

cathodic side; initial composition of external solutions—Table 1;

grey field membrane region
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behaviour indicates that the mass transport is dominated by

the convective solution flow in the system in a high current

density range. The solution convection is induced by

electroosmosis in the membrane. By definition, see

Eqs. (11), (12) and (13), the electroosmotic velocity

increases proportionally to the electric potential gradient in

the membrane, as will be discussed in Sect. 3.2. The

enhanced concentration gradients observed near the mem-

brane interfaces and the CDL boundary x3 indicate

enhanced diffusion fluxes compensating the convective

fluxes oriented in the opposite direction.

The steepest concentration gradients are, however, loca-

ted in the DER caused by Donnan exclusion of co-ions and

inclusion of counter-ions. The concentration distribution

calculated by the PNP model is in accordance with the ori-

entation of the electric field across the membrane interfaces.

For example, the concentration of OH-, as the main co-ion,

decreases in the direction from the diffusion layer to the

membrane phase, see Fig. 3 in figure sets (C) and (D) for the

CM–ADL and CM–CDL interfaces, respectively.

Another interesting feature is observed in the OH-

concentration field presented in Fig. 6. As the current

Fig. 4 Concentration profiles of Na? in CM, ADL and CDL in

dependence on current density; U = -0.018 to 1.511 V; initial

anolyte and catholyte composition—Table 1; fields at the bottom of

the figure: black CM region, grey CDL region, white ADL region;

electric current flows in the direction of coordinate x

Fig. 5 Concentration profiles of the Cl- in CM, ADL and CDL in

dependence on current density; U = -0.018 to 1.511 V; initial

anolyte and catholyte composition—Table 1; fields at the bottom of

the figure: black CM region, grey CDL region, white ADL region;

electric current flows in the direction of coordinate x

Fig. 6 Concentration profiles of the OH- in CM, ADL and CDL in

dependence on current density; U = -0.018 to 1.511 V; initial

anolyte and catholyte composition—Table 1; fields at the bottom of

the figure: black CM region, grey CDL region, white ADL region;

electric current flows in the direction of coordinate x

Fig. 7 Concentration profiles of the H? in CM, ADL and CDL in

dependence on current density; U = -0.018 to 1.511 V; initial

anolyte and catholyte composition—Table 1; fields at the bottom of

the figure: black CM region, grey CDL region, white ADL region;

electric current flows in the direction of coordinate x
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density increases, the average concentration of OH- in the

membrane decreases significantly below its concentration

in the CDL, but it does not drop below its concentration in

the ADL. It is due to the electroosmotic flux from the ADL

to the CDL being partly compensated by intensive migra-

tion and diffusion flux of OH- in the opposite direction.

Figure 9 shows the distribution of local pH in the sys-

tem. This enables an assessment of the potential risk of

membrane blockage by insoluble compounds of the alka-

line earth metals. The ions of alkaline earth metals are

impurities contained in the brine. It is crucial to minimize

this risk from the point of view of long-term reliability and

high selectivity of the membrane. The presented model

predicts that, despite the decreasing content of OH- with

increasing current density, see Fig. 6, the pH remains at a

sufficiently high value[13 almost throughout the entire

system. This is in agreement with the observations of van

der Stegen et al. [17] and Hogendoorn et al. [18]. A rapid

drop in pH to 2 can be observed in the ADL at a sufficiently

far distance from the membrane. Moreover, the position of

the alkaline pH front does not notably change with

increasing current density. Moderate pH changes, caused

primarily by Donnan exclusion, occur in the interfacial

region of the membrane. The main reason for the high pH

in the system is the significantly higher concentration of

OH- in the catholyte than the H? content in the anolyte,

and consequently significantly higher OH- flux across the

membrane. Under these conditions, the precipitation of

alkaline earth metals would already take place in the ADL

sufficiently far from the membrane surface. For this reason,

a minimal risk of membrane blockage and deactivation is

Fig. 8 Concentration profiles of the Ca2? in CM, ADL and CDL in

dependence on current density; U = -0.018 V to 1.511 V; initial

anolyte and catholyte composition—Table 1; fields at the bottom of

the figure: black CM region, grey CDL region, white ADL region;

electric current flows in the direction of coordinate x

Fig. 9 Distribution of local pH in CM, ADL and CDL in dependence

on current density; U = -0.018 to 1.511 V; initial anolyte and

catholyte composition—Table 1; fields at the bottom of the figure:

black CM region, grey CDL region, white ADL region; electric

current flows in the direction of coordinate x

Fig. 10 Dependence of molar fluxes of a major ions (Na?, OH- and

Cl-) and b minor ions (H? and Ca2?) in dependence on current

density; solid line results of PNP, solid line with open circles results

of DNP2 adopted from [20]; initial anolyte and catholyte composi-

tion—Table 1
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predicted. However, in the industrial chlor-alkali process

the situation will be different from that demonstrated in this

paper. That is because of the dual-layer CM used in

practice compared to the single-layer CM (Nafion� 117)

considered in this work. The carboxylic layer gives the

dual-layer membrane higher selectivity for cations and

significantly suppresses OH- flux. This phenomenon thus

requires further study.

With respect to H? and Ca2?, a very low content of these

ions is present and thus they do not affect the calculated

transport rate of the major ions. Figure 7 shows the con-

centration field of H?, which is significantly lower compared

to that calculated by DNP2 model. It is due the WSR (ignored

in the DNP2 model [20]) causing H? recombination with

OH- present in the system in a high concentration. The H?

concentration rapidly increases only in near vicinity of the

boundary x0 due to the acidic anolyte solution.

With regard to Ca2?, it should first be noted that its

precipitation was not included in the model at this stage.

The development of Ca2? concentration with increasing

current density up to 1500 A m-2 agrees with that

observed in [20]. The development of the shape of the

concentration dependence on the coordinate indicates the

increasing influence of the migration and electroosmotic

mass transfer. A positive consequence of this mass trans-

port regime is that the concentration of Ca2? in the

membrane is reduced significantly below its level in the

anolyte due to the intensification of the mass transport by

applying a stronger electric field.

3.2 Molar fluxes of ions and of electric charge

The molar fluxes of ions dominating in the system (Na?,

Cl- and OH-) and of minor ions (H?, Ca2?) in dependence

on the current density calculated by PNP are plotted in

Fig. 10. The results of DNP2 are displayed in the same

figure for comparison. Except for the case of H? flux, both

models provide identical results at current density lower

than 1500 A m-2, for which DNP2 results are available.

For a deeper analysis of the observed trends in this current

density range, we refer to the discussion provided in [20].

At the current density below approximately 500 A m-2,

the MIT is dominated by diffusion mechanism. With a

further increase in current load, the migration and con-

vection mass transport mechanisms become more signifi-

cant, whereas diffusion is inherently independent of this

parameter.

Next, Fig. 10 shows that, in the current density range

from 3000 to 5000 A m-2, the dependence of all fluxes on

the current density is practically linear. This trend was

verified for current density of up to 10,000 A m-2 by

Fig. 11 Dependence of convective velocity in dependence on current

density; solid line results of PNP, solid line with open circles results

of DNP2 adopted from [20]; initial anolyte and catholyte composi-

tion—Table 1

Fig. 12 a Dependence of the electric potential drop (voltage)

throughout the studied system on current density; solid line results

of PNP model, solid line with open circles results of DNP2 adopted

from [20]. b Dependence of the conductivity of ADL, CM and CDL

for various current densities calculated by PNP model: rCM = 0.97 -

S m-1 at 10,000 A m-2; initial anolyte and catholyte composition—

Table 1
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simulations of the PNP model (intentionally omitted in

Fig. 10). The linear dependencies support the conclusion

formulated in the previous section that migration and

convection represent the dominating mass transport

mechanism in a high current density range. Furthermore, it

is interesting to note that OH- flux is not fully hindered by

the gradually increasing convective velocity. With respect

to the flux of H?, the PNP model provides results evidently

closer to reality because of the consideration of the WSR.

Due to the WSR and the high concentration of OH-, the H?

flux remains on a negligible level.

The dependencies of electroosmotic flow velocity on

current load calculated by both the PNP and DNP2 models

are in congruence in the available current density range,

see Fig. 11. In a current density range up to 2500 A m-2,

the flow velocity shows a non-linear trend because in this

range the system is affected by the changes in the com-

position of the solution in the membrane phase. Once the

solution composition in the membrane becomes less

dependent on the current load at current den-

sity[2500 A m-2, the dependence of velocity on current

load becomes linear.

The dependence of applied voltage on the model system

on the current load is shown for both DNP2 and PNP

models in Fig. 12a. This figure shows a non-linear region

for current load\2500 A m-2 and linear region above this

level due to similar reasons as velocity dependence on the

current load. The voltage changes are connected with the

local variation in the concentration of ions, i.e. of ionic

conductivity. The dependence of the mean conductivity of

the individual system layers, ADL, CM and CDL, on the

current load is presented in Fig. 12b. The conductivity

values were calculated by means of Eq. (14), where

p � ADL, CM or CDL and wp denotes the width of p-th

layers. Up represents the ohmic drop in the p-th layer.

rp ¼
jwp

Up

ð14Þ

As expected, the membrane is the least conductive region

in the entire model system, while the most conductive is the

anolyte. The conductivity of the CDL and CM continuously

decreases with current density, rapidly at a low current

density range and moderately at a high one, and levels off at

around 10,000 A m-2. This behaviour is associated with

the continuous decrease in the concentration of ions in these

regions, as discussed above, and the increasing influence of

migration and convective transport mechanisms with

increasing current load. The calculated conductivity of the

CM is around 43 S m-1 at 200 A m-2, i.e. comparable to

currentless conditions where the membrane is equilibrated

with external solutions, and it approaches a minimum value

of 0.97 S m-1 at 10,000 A m-2. The calculated values are

similar to those determined experimentally [46, 47]. By

contrast, the dependence of conductivity of the ADL on

current load exhibits a minimum at around 4000 A m-2.

This behaviour is produced by two counteracting effects.

The rapid decrease in conductivity is caused by the fast drop

in Na? and Cl- concentration with increasing current

density which levels off due to the increasing importance of

convection, see Figs. 4 and 5. However, the concentration

of OH- in the ADL moderately increases with increasing

current load in the entire current load range studied, see

Fig. 6. It is probably more important than the former effect

approximately at current loads[4000 A m-2.

3.3 Transport numbers of ions and membrane

permselectivity

The selectivity of the membrane for i-th ion can be quan-

tified by transport number according to Eq. (15) or by

means of permselectivity defined by Eq. (16).

Fig. 13 Calculated value of a transport numbers and b permselec-

tivity of major ions (Na?, OH- and Cl-) in dependence on current

density and anolyte pH; solid line pHx0 ¼ 1, open circles pHx0 ¼ 4;

U = -0.018 to 1.511 V; initial anolyte composition recalculated

according to pHx0 , initial catholyte composition see Table 1, negative

values of tCl� indicate flux of Cl- in the direction of electric current

flux
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ti ¼
ziFJi

j
ð15Þ

Pi ¼
jJijPN
j¼1 jJjj

ð16Þ

The dependences of the transport number and the

permselectivity for Na?, Cl- and OH- on the current

density are presented in Fig. 13. The displayed values are

calculated for the anolyte solution pH 1 and 4 (pH at

boundary x0 was set to 1 or 4, respectively). Aspects

associated with anolyte pH variation are discussed in

Sect. 3.4. In accordance with the dependence of the molar

fluxes on the current density shown in Fig. 10a, the

transport number and permselectivity of Na? rapidly

increase in the current load range of 0–3000 A m-2. By

contrast, the transport characteristics of OH- and Cl- rapidly

decrease in this current density range. The negative values

of tCl� are due to Cl- carrying a negative charge in the

positive direction of the x-coordinate, i.e. from the ADL to

the CDL. At current density[5000 A m-2, the transport

number and membrane permselectivity of all three ions

level off. Under conditions of high current density, almost

the entire electric charge is transported by Na?. The

electric charge transported via movement of OH- is com-

pensated by Cl- transferred in the opposite direction.

3.4 Effect of the anolyte pH

In the present work, the effect of initial anolyte pH on the

transport of mass and charge, membrane efficiency and

selectivity is analysed. This is practically important with

regard to pH distribution in the membrane and diffusion

layers associated with a membrane blockage by the pre-

cipitates of alkaline earth metals. For this purpose, the

value of anolyte pH (pHx0 ) was changed from 1 to 4. The

results are shown in Fig. 13. It is evident that the effect of

this parameter on the MIT is minimal in the range studied.

This is due to the dominant effect of the catholyte com-

position characterized by a several orders of magnitude

higher concentration of OH-.

The calculated pH profiles in the model domain are

plotted in Fig. 14 for constant voltage U = 0.70 V. A shift

of the pH front in the ADL towards the membrane surface

with decreasing anolyte pH, i.e. extending the acidified

region of the ADL, was observed. This is evidently caused

by increased H? flux from the anolyte to the membrane as

the anolyte pH decreases. A change of anolyte pH from 1.5

to 1 already causes a moderate decrease in pH at the

membrane surface. However, the pH inside the membrane

and the CDL remains unaffected in the entire anolyte pH

range studied.

3.5 Examination of the validity of Donnan

equilibrium

The objective of this section is to examine the validity of

the Donnan equilibrium approximation at the membrane

interfaces at high current densities. According to this the-

ory, the electric potential difference, D//
Don, and the dif-

ference in the chemical potentials of the i-th ion, D/ci
Don,

across DER should be equal. Therefore, the validity of the

Donnan approximation can be verified by a comparison of

D//
Don and D/ci

Don calculated by the presented PNP model

from the local distribution of the ion concentration and

electric potential across the DER shown in Fig. 3.

The only problem was to determine the exact borders of

the DER to evaluate electric and chemical potential dif-

ferences associated solely with the Donnan exclusion.

Especially from figures (A3), (B3), (C1), (C2), (C3) and

(D3) in Fig. 3, it is apparent that the local distributions in

the DER are notably affected by the mass and charge

transport processes occurring on both sides of the mem-

brane interface. To overcome this problem, we considered

an identical position of the DER borders for the entire

range of the current density studied located at a distance of

10 nm to both sides of the membrane interface, see black

points p in Fig. 3. D//
Don is then calculated by means of

Eqs. (17) and (18), and D/ci
Don according to Eqs. (19) and

(20), both for the CM–ADL and CM–CDL interface,

respectively.

D//
Don

���
CM�ADL

¼ / pmað Þ � /ðpsaÞ ð17Þ

Fig. 14 Local pH distribution in the system for various anolyte pH: a

pHx0 ¼ 1, b pHx0 ¼ 1:5, c pHx0 ¼ 2 and d pHx0 ¼ 4; parameters:

j = 5135 A m-2 and U = 0.70 V, initial anolyte composition recal-

culated according to pHx0 , initial catholyte composition see Table 1;

grey field membrane region
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D//
Don

���
CM�CDL

¼ / pmcð Þ � /ðpscÞ ð18Þ

D/ci
Don

��
CM�ADL

¼ RT

ziF
ln

ciðpsaÞ
ciðpmaÞ

� �
ð19Þ

D/ci

Don

��
CM�CDL

¼ RT

ziF
ln

ciðpscÞ
ciðpmcÞ

� �
ð20Þ

The resulting values are plotted in Fig. 15. The values of

D//
Don andD/ci

Don are negative according to the function of the

CM. Moreover, these values are rather low (units of millivolts)

and lower at CM-CDL than at CM-ADL. This is due to the

high ionic strength of the external solutions, which is even

higher in the CDL than in the ADL. Additionally, D//
Don and

D/ci

Don increase with increasing current density. The Donnan

exclusion effect thus becomes more pronounced at high cur-

rent density. This can be rationalized by the decreasing con-

centration of ions in the external solutions adjacent to the

membrane interfaces, as discussed in Sect. 3.1.

The relative discrepancy between D/ci

Don, D/cNaþ
Don and

D/cOH�
Don is minor and is similar on both sides of the mem-

brane, but it gradually increases with increasing current

load. The observed discrepancy can be explained by

increasing gradients of OH- concentration and the electric

potential formed in the CM in the vicinity of the DER with

rising current load, see figures (A3), (B3), (C1 to C3) and

(D3) in Fig. 3. Higher absolute values of D//
Don over

D/cOH�
Don and D/cNaþ

Don at the CM–ADL interface suggest more

pronounced space charge separation across the DER.

In summary, the PNP model predicts that the CM–CDL

and CM–ADL interfaces remain almost completely in

equilibrium state in the entire range of current densities

that are of practical importance for the chlor-alkali

electrolysis. Qualitatively similar observations have also

been made by Manzanares et al. [21], who observed that

significant shift from equilibrium was only observed when

the current density exceeded 10,000 A m-2. Actually, such

a conclusion could be expected intuitively for two reasons.

Firstly, both the definition of Donnan potential and Pois-

son’s equation are based on the identical physical definition

of electric potential as a useful work associated with a

transfer of a unit charge from a reference point. Secondly,

both the DNP and PNP models assume ideal solution

behaviour, which represents the main model limitation with

respect to an accurate description of reality. The solution of

this problem will be the subject of future work.

4 Conclusions

A one-dimensional stationary PNP model was successfully

applied to describe the multi-ion transport across a cation-

selective membrane (CM) under conditions simulating the

chlor-alkali electrolysis process operated on a single-layer

perfluorinated sulfonated membrane. The presented model

represents an extension of the previously published version of

the model considering Donnan equilibrium at the membrane

interface [20]. At low current loads, both models provided

similar results. Therefore, the PNP model was employed for

an analysis of multiple ion transfer at industrially relevant

current loads (between 2000 and 5000 A m-2) and extremely

high current loads up to 10,000 A m-2.

The analysis of the membrane behaviour at extreme

current loads, for example, mimics a scenario when a

controlling system fails, resulting in local or global mem-

brane overloading. Marked mass transport limitation

behaviour was predicted with a dominant role of convec-

tion and migration transport mechanism at current

load[3000 A m-2. Moreover, the extended PNP model

considered the water splitting/recombination reaction. A

corresponding analysis of the pH distribution revealed

strong alkalization of the solution in the anodic diffusion

layer. It is, therefore, concluded that the risk of internal

membrane blockage due to precipitation of alkaline earth

metals is minor in the case of the system under study. Last,

but not least, an analysis of the membrane interface by

means of the PNP model predicted only minor shift from

Donnan equilibrium in the entire current load range stud-

ied. The observed discrepancy arises due to the high

electric potential and concentration gradients formed in the

vicinity of the membrane interface associated with inten-

sive mass and charge transfer at higher current loads.
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Fig. 15 Dependence of electric potential difference, D//
Don, and

chemical potential difference of OH- and Na? ions across the phase

interface, D/cNaþ
Don and D/cOH�

Don , in dependence on current density at

both CM–ADL and CM–CDL; U = -0.018 to 1.511 V; initial

anolyte and catholyte composition—Table 1
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