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Abstract We report a facile and controllable approach to

design anodic catalysts with different surface morphologies.

The RuO2–TiO2 anodes are directly grown in situ on the

surface of Ti substrate under certain hydrothermal condi-

tions. X-ray diffraction, field-emission scanning electron

microscopy, energy dispersive X-ray spectra, cyclic

voltammetry, and linear scanning voltammetry (LSV) were

used to scrutinize the electrodes and the electrochemical

activity. The experimental results indicate that solvothermal

crystallization in the presence of hydrochloric acid plays a

critical role in regulating the catalyst size and microstructure

during the nucleation and growth process of RuO2–TiO2.

The designed RuO2–TiO2/Ti anode with a nano-flowerlike

structure displays significantly enhanced activity toward

anodic chlorine evolution reaction (CER) compared to the

other two morphology anodes. Such excellent performance

of RuO2–TiO2/Ti is explained in terms of the small charge

transfer resistance and the unique surface structure with

more active sites to be utilized during CER.
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1 Introduction

The chlor-alkali electrolysis is one of the most important

bulk products in modern electrochemistry applications [1,

2]. In this process, the concentrated aqueous NaCl solutions

are electro-catalyzed producing Cl2 at the anode for the

production of polymers, pharmaceuticals, and disinfec-

tants, while hydrogen production at the cathode is a clean,

environmentally friendly resource and considered as one of

the most promising candidates for replacing fossil fuels in

the future [3–5].

Since dimensionally stable anodes (DSA) were applied

to replace graphite anodes in the chlor-alkali electrolysis by

H. B. Beer in 1965 [6], they brought a revolution in the

electrochemical technology. Such innovation in turn
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promotes the development of fundamental research, such

as the design of electrodes and understanding of their

fundamental properties of electrocatalysis by using analy-

sis technologies and density functional theory calculations

[7–17]. Commonly, employed as electrode materials, typ-

ical ruthenium-based oxides are routinely prepared by

oxidative pyrolysis or sol–gel techniques [7–10, 18–20],

which proceed via several coating and calcination steps

until the desired catalyst loading is achieved. Therefore, the

phenomenon of the growth and aggregation of active spe-

cies is always accompanied by the formation of typical

mud-cracks for coatings due to the thermally induced

internal stresses [21, 22].

Despite the lack of consensus regarding the chlorine

evolution reaction (CER) mechanisms [23–25], the oxidation

and adsorption of Cl- occurs on the surface of RuO2 species.

Thus, controlling the surface morphology and dispersion of

the catalyst is considered greatly promising in the exposure

of more RuO2 active sites to the reactive two-phase zone

(solid/liquid interface). With the rapid progress of

nanoscience and technology in the last few years, nanoma-

terials have attracted much attention in the fields of chem-

istry, energy and electronics because they possess high

surface area and some unique properties, which are signifi-

cantly different from those bulk materials. Hydrothermal

synthesis is yet one class of simple and effective strategies to

design nanoscale controllable catalysts. The variation of

hydrothermal conditions such as temperature, pH, solvent,

concentration and molar ratio of reactant imparts tunable

morphologies and nano/micro-structures [26–28]. Such

synthesis of mesocrystalline rutile TiO2 nanorod arrays on Ti

substrate via hydrothermal condition exhibited excellent

quasi-omnidirectional antireflection performance [29].

Through a facile hydrothermal reaction, a special porous

Zn2Ti3O8 nanorods architecture could be also successfully

fabricated, which showed enhanced photocatalytic activity

for overall water splitting, coupled with RuO2 as co-catalysts

[30]. These reports provide us a hint as to how electrodes with

different morphologies might be successfully designed by

hydrothermal synthesis, in which the precursors of metal salt

will hydrolyze with water at the water/substrate interface,

resulting in the formation of a crystal nucleus on the sub-

strate. After the formation of the first nanocrystalline layer,

the deposition films are gradually formed with continuous

hydrolysis and subsequent growth-crystallization. These

films with three-dimensional structure obtained by control-

ling the hydrothermal conditions can increase the dispersion

of the catalyst, promoting the exposure of more RuO2 active

sites to the reactive two-phase zone (solid/liquid interface),

compared to the conventional planar catalyst films.

Herein, we try to utilize this strategy to fabricate a

uniform Ru-based catalyst toward electrocatalytic chlorine

evolution, albeit no similar reports have thus far appeared

in the literature. In this process, the Ti substrate could be

etched by the HCl aqueous solution to obtain titanium

precursor during the hydrothermal condition. The hydrol-

ysis of titanium and ruthenium precursors is accompanied

by the formation of nucleation, which is influenced by the

presence of the Cl-. Thus, the surface morphology of

RuO2–TiO2/Ti anode could be effectively controlled. After

annealing treatment, the obtained RuO2–TiO2/Ti anode

with nano-flowerlike structure exhibit superior electrocat-

alytic activity and stability for CER than that of the anode

prepared via the conventional thermal decomposition

method.

2 Experimental

2.1 Materials synthesis

In a typical synthesis, a Ti substrate (50.0 mm 9

10.0 mm 9 0.25 mm) was cleaned initially by sonication

in acetone, distilled water, and then etched in 18 wt% HCl

at 358 K for 15 min to remove the oxide layer on the

surface. The Ti substrate was placed against the wall of a

Teflon liner at a certain angle, with the surface of interest

facing down. About 1 cm2 of the Ti substrate was immersed

into 10 mL aqueous solution containing 5 mmol L-1 RuCl3
and HCl with different concentrations (0.5, 1.0, and 3.0

wt%, respectively) in a Teflon-lined stainless-steel auto-

clave (50 mL). The autoclave was sealed and heated at

473 K for 15 h. After the hydrothermal treatment, the

samples were completely washed with distilled water and

dried. Finally, the samples were annealed at 723 K for 1 h

under ambient air. In this section, we did not produce any

protective and conductive intermediate layer between Ti

substrate and the active coating. To ensure the accuracy of

the test data for the every electrode, all of the electrodes are

repeatedly synthesized at least three times on the given

hydrothermal conditions.

As a reference, the traditional RuO2–TiO2/Ti was also

prepared via thermal decomposition of a mixture of RuCl3
and tetrabutyl titanate dissolved in iso-propanol at 3:7

molar ratios. The Ti substrate was brushed with the pre-

cursors at room temperature, followed by drying at 373 K

for 10 min to allow the solvent to vaporize, and then

annealed at 723 K for 10 min. This procedure was repeated

10 times. Finally, the anode was annealed at 723 K for 1 h

under ambient air.

2.2 Characterization and electrochemical

measurements

The surface morphology and the microstructure of the

catalysts were analyzed by X-ray diffraction (XRD-6000,
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Shimadzu), field-emission scanning electron microscopy

(FE-SEM, JSM-7800, Japan), and energy dispersive X-ray

spectra (EDX, OXFORD Link-ISIS-300), respectively.

Electrochemical measurements were conducted in a three-

electrode cell system with an Electrochemical Workstation

(Autolab electrochemical analyzer, PGSTAT302 N,

Metrohm). The electrode area of the working electrode is

1 cm2. A Pt foil in parallel orientation to the working

electrode was used as the counter electrode and a saturated

calomel electrode (SCE) as the reference electrode. Double

layer capacitance of the electrodes was obtained by cyclic

voltammetry (CV) at scan rate from 10 to 120 mV s-1.

And the catalytic performance of the prepared elec-

trodes toward CER was systematically investigated in a

5 mol L-1 NaCl electrolyte (pH 3). The corrections for the

IR-drop to the working electrode were made using elec-

trochemical impedance spectroscopy (EIS) in the fre-

quency range of 0.01 Hz–100 kHz.

3 Results and discussion

3.1 Surface morphology

FE-SEM analysis was performed to investigate the effect of

the microstructure of prepared RuO2–TiO2/Ti anodes. For

RuO2–TiO2/Ti obtained by the conventional thermal

decomposition method, the surface of coating is typical

mud-crack island-gap microstructure (denoted as MC-

RuO2–TiO2/Ti, Fig. 1a). In contrast, three hydrothermal

synthesized RuO2–TiO2/Ti anodes display completely dif-

ferent surface morphologies. Figure 1b shows that the nano-

particles RuO2–TiO2 are uniformly deposited onto the Ti

substrate (denoted as NP-RuO2–TiO2/Ti). When increasing

the concentration of hydrochloric acid from 0.5 to 1.0 wt%,

the Ti substrate is well covered by the unique nano-flow-

erlike RuO2–TiO2 (denoted as NF-RuO2–TiO2/Ti, Fig. 1c).

As the amount of hydrochloric acid further increased to

3.0 wt%, the surface morphology of the catalyst unexpect-

edly evolves into nano-rods (denoted as NR-RuO2–TiO2/Ti,

Fig. 1d). Furthermore, the thickness of the three coating

increases gradually with the increase of hydrochloric acid

concentration (Fig. 2; Table 1), although it is hard to clearly

distinguish the boundary between the coating and the sub-

strate because they are directly grown onto the surface of the

Ti substrate, rather than the formation under the thermal

decomposition condition. The contents of titanium increase

gradually with the increase of hydrochloric acid concen-

tration, whereas the content of ruthenium shows an opposite

trend through the EDX analysis. The traditional electrode

obtained by thermal decomposition method still shows

similar molar ratio of Ru/Ti to the initial stoichiometry.

These obvious differences suggest that hydrochloric acid

plays a critical role in regulating the catalyst size and mor-

phology during the nucleation and growth process of RuO2–

TiO2. We proposed the role of hydrochloric acid may be

two-fold: one is to etch the Ti substrate to form titanium

ions, which are easy to hydrolyze with water at the

water/substrate interface, resulting in the slow oxidation

process consuming dissolved oxygen to form a crystal

nucleus on the substrate. After the formation of the first

nanocrystalline layer, the deposition film is gradually

formed with continuous hydrolysis and subsequent growth-

crystallization. That is,

ðRu=TiÞ3þ þH2O ! ðRu/Ti)OH2þ þHþ;

ðRu=TiÞOH2þ þ O2 ! ðRu=TiÞðIVÞoxo species þ species O�
2

! RuO2=TiO2

The acid condition could slow down the hydrolysis

reaction of titanium ions by providing free H?, which is

necessary for the growth of depositions [29]. On the other

hand, since the rutile (110) surface possesses the lowest

energy [31] and has abundant five-fold coordinated tita-

nium atoms, two-fold coordinated oxygen atoms and oxy-

gen vacancies, it may be the favorite source of the selective

adsorption of Cl- on (110) plane and retard the growth rate

of (110) surface [32, 33]. On the contrary, the other higher

surface energy crystal surface can absorb more the Ti(IV)

oxo species to decrease the surface energy. Thus, the

crystal grows anisotropically along the (110) surface. With

the extension of the hydrothermal reaction time, the crystal

growth rate starts to decrease, and part of the crystals may

begin to dissolve to form the Ti(IV) oxo species again.

These species would diffuse to the solution and provide

conditions for the random regrowth on the surface of the

formed crystals. Accordingly, Cl- adsorption plays a crit-

ical role in affecting the preferred crystal planes.

3.2 Microstructure

As the precursor materials prepared by the hydrothermal

method do not show obvious diffraction peaks except the

diffraction peaks of the Ti substrate, only the crystal

structures of the RuO2–TiO2/Ti anodes after annealing

treatment at 723 K for 1 h under ambient air were analyzed

by XRD as shown in Fig. 3a. It can be seen that no peaks

for pure rutile RuO2 (PDF card No. 040-1290) and pure

rutile TiO2 (PDF card No. 021-1276) are observed in XRD

patterns. The diffraction peaks at about 28� and 35.5� lie

between the standard peaks of the pure RuO2 and TiO2

rutile phases. EDS analysis from Fig. 3b has also verified

the presence of Ru, Ti and O in the representative NF-

RuO2–TiO2/Ti. These results are almost consistent with

that of previous literatures, namely, metal oxides are

mainly present in the solid solution after annealing
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Fig. 1 FE-SEM images of a1,

a2 MC-RuO2–TiO2/Ti; b1, b2

NP-RuO2–TiO2/Ti; c1, c2 NF-

RuO2–TiO2/Ti; and d1, d2 NR-

RuO2–TiO2/Ti anodes
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treatment at 723 K for 1 h under ambient air because they

possess the same valence and similar ionic radius, satis-

fying the Hume-Rothery conditions for the formation of a

solid solution [8, 34, 35]. Such formed solid solution cat-

alyst shows a long-term stability because of the advantages

of good electrical conductivity, excellent chemical stability

and corrosion resistance in electrolysis [36, 37].

Moreover, we observed the difference from Fig. 3a that

the intensity of diffraction peak of anatase TiO2 at 25.58�
(PDF card No. 021-1272) in RuO2–TiO2/Ti anodes grad-

ually increases with increasing the concentration of

hydrochloric acid during the hydrothermal process. When

the concentration of hydrochloric acid reaches to 3.0 wt%,

the intensity of anatase TiO2 at 25.58� in NR-RuO2–TiO2/

Ti obviously increases, whereas the intensities of rutile

phase at 28.72� and 35.11� significantly decrease. This

indicates that anatase TiO2 has been the main component in

NR-RuO2–TiO2/Ti anode, which is not desired in terms of

the catalyst properties. Based on the EDX analysis over the

high amount of Ti in NR-RuO2–TiO2/Ti from Table 1, the

main reason is attributed to the surface of the Ti substrate

seriously etched in 3.0 wt% hydrochloric acid under the

hydrothermal conditions [38]. The formed titanium ions

hydrolyze with water, turning to excess TiO2 after

annealing treatment at 723 K for 1 h under ambient air.

Consequently, it is very important to choose appropriate

concentration of hydrochloric acid for synthesizing RuO2–

TiO2/Ti anode.

3.3 Electrocatalytic performance of CER

for the anodes

To assess the catalytic activities of these three different

morphology catalysts, the polarization curves for NP-

RuO2–TiO2/Ti, NF-RuO2–TiO2/Ti and NR-RuO2–TiO2/Ti

were performed in a 5 M NaCl electrolyte (pH 3). For

Fig. 2 The measurement of the

coating thickness from FE-SEM

images: a MC-RuO2–TiO2/Ti;

b NP-RuO2–TiO2/Ti; c NF-

RuO2–TiO2/Ti; and d NR-

RuO2–TiO2/Ti anodes

Table 1 Chemical composition

and thickness of the four

coatings

Anodes Atom (%) Thickness (lm)

Ru Ti O Totals

MC-RuO2–TiO2/Ti 11.37 25.91 62.72 100 2–3

NP-RuO2–TiO2/Ti 8.84 24.77 66.39 100 1–2

NF-RuO2–TiO2/Ti 8.10 26.22 65.68 100 1–2

NR-RuO2–TiO2/Ti 5.66 31.76 62.58 100 1–2
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comparison, the MC-RuO2–TiO2/Ti is also investigated

under the same conditions. As depicted from Fig. 4a, the

polarization curves of these catalysts show the typical

shape of the CER, in which the current density obviously

goes up with increasing sweep potentials. NF-RuO2–TiO2/

Ti shows lower onset potential and more active than the

other anodes under the identical conditions (Table 2) after

the reaction is stable, indicating that it can catalyze CER at

a significantly reduced electrode potential. The reason for

NF-RuO2–TiO2/Ti with the highest catalytic activity

toward CER is probably due to the unique surface structure

that is beneficial for the interface reaction and diffusion of

Fig. 3 a XRD patterns of (1) NP-RuO2–TiO2/Ti; (2) NF-RuO2–TiO2/Ti; and (3) NR-RuO2–TiO2/Ti anodes. b EDX analysis of representative

NF-RuTiO2/Ti anode

Fig. 4 a The polarization curves of the anodes with a sweep rate of 5 mV s-1 at room temperature; Electrolyte: 5 M NaCl, pH 3; The IR-drop

was corrected; and b the corresponding Nyquist plots measured under galvanostatic mode, 20 mA cm-2

Table 2 Electrochemical analysis of the anodes based polarization curves, CV in the double layer region and EIS curves

Anodes E
½a�
conset (V) Tafel slopes Cdl (lF cm-2) Relative surface area Rct at 20 mA cm-2

(X cm-2)

NP-RuO2–TiO2/Ti 1.06 43 5620 281 1.02

NF-RuO2–TiO2/Ti 1.04 41 7480 374 0.87

NR-RuO2–TiO2/Ti 1.10 46 8360 418 1.61

[a]: The onset potential is defined as the potential at which the current density is 2 mA cm-2
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electrolyte and gas products. To estimate the electro-

chemical surface area of the prepared anodes, we measured

CV responses and scan rate dependence of current densities

for the anodes in the region of 0.6–0.8 V versus SCE

(Fig. 5), which can be used as a classic method to deter-

mine the capacitance (Cdl) of the double layer at the solid/

liquid interface of the electrode [39–42]. In this potential

range, the main reaction is reversibly oxidized and reduced

reaction between Ru (III) and Ru (IV). The current densi-

ties in the voltammograms increased with increasing the

sweep rate. It appears from Table 2 that NF-RuO2–TiO2/Ti

has a much larger Cdl than NP-RuO2–TiO2/Ti. Since Cdl is

proportional to the electrochemical surface area, the results

strongly suggest that the nano-flowerlike structure catalyst

directly grown on the Ti substrate are more effective in

enlarging the catalytically active surface area as compared

to conventional planar catalyst films coated on electrodes.

Accordingly, better exposure and enhanced utilization of

electroactive sites (e.g. Ru species) on the large active

surface of NF-RuO2–TiO2/Ti greatly contribute to its CER

activity. However, the surface area is not the only factor

that contributes to the activity. For example, the relative

surface area of NF-RuO2–TiO2/Ti is smaller than that of

NR-RuO2–TiO2/Ti. That is to say, the trend of the relative

surface area for both NF-RuTiO2/Ti and NR-RuTiO2/Ti is

inconsistent with their activity. Considering the slight dif-

ferences over the Tafel slope of the CER for the catalysts, it

suggests that the reaction mechanism is not changed. In

this case, we guess the polarization resistance of the elec-

trode might be the main factor for influencing the catalytic

activity of the electrode. The electrochemical impedance

spectroscopy (EIS) analysis is thus employed to further

investigate the activity of the electrodes. The charge

transfer resistance (Rct) is an indicator highly related to the

electrocatalytic behavior: the lower Rct value, the better

activity for the catalysis of CER [43, 44]. The Nyquist plots

of the electrodes as shown in Fig. 4b reveals that the Rct of

NF-RuO2–TiO2/Ti is lower than those of NP-RuO2–TiO2/

Ti and NR-RuO2–TiO2/Ti. The NR-RuO2–TiO2/Ti elec-

trode possesses the highest Rct value because of high

amount of TiO2 in catalyst based on the results of the EDX

and XRD analysis, which is consistent with its poor activity

for CER. Therefore, NF-RuO2–TiO2/Ti is the best one for

catalysis of the CER in the studied electrodes.

As aforementioned in the activity test, NF-RuO2–TiO2/

Ti with a nano-flowerlike structure displays superior

activity for CER compared to the other two morphology

anodes. NF-RuO2–TiO2/Ti is therefore selected as a typical

object to determine its activity and stability. For purpose of

comparison, the catalytic activity and stability of the tra-

ditional MC-RuO2–TiO2/Ti prepared via thermal decom-

position method is also investigated at the same condition.

It can be seen from the results in Fig. 6a, NF-RuO2–TiO2/

Ti has better activity for CER than MC-RuO2–TiO2/Ti.

After 1200 min electrolysis, the polarization curve of NF-

RuO2–TiO2/Ti shows negligible difference compared with

the initial one. Moreover, it shows almost constant poten-

tial during the electrolysis (Fig. 6b). In sharp contrast, the

catalytic activity of traditional MC-RuO2–TiO2/Ti seems to

degrade significantly compared to the initial one. And the

voltage is also further increased as a function of electrol-

ysis time. These results suggest that NF-RuO2–TiO2/Ti

possesses superior stability in the electrochemical process.

There are two main factors that are thought to be respon-

sible for the superior stability of NF-RuO2–TiO2/Ti. First,

the integration of RuO2–TiO2 coating on the Ti substrate

without obvious crack by hydrothermal technology might

display good mechanical adhesion between the coating and

Fig. 5 a CV of the representative NF-RuO2–TiO2/Ti at different scan rate in the double layer region; and b the current density at 0.7 V vs. SCE

plotted against scan rate fitted to a linear regression allows for the estimation of Cdl
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the substrate. Second, the nano-flowerlike RuO2–TiO2 with

outstretched structure is beneficial for increasing the sur-

face area, the diffusion of electrolyte and the disengage-

ment of gas bubbles. Lu and co-workers have shown that

MoS2 arrays possess a smaller bubble adhesion force

underwater than a flat electrode, and that the gas bubble

naturally left the surface with ease at the end [45].

Accordingly, the stable architecture ensures that the NF-

RuO2–TiO2/Ti works for a long-term during the whole

electrolysis process.

4 Conclusions

In summary, the nanostructured RuO2–TiO2 anodes with

different surface morphologies have been grown in situ

onto the surface of Ti substrate by hydrothermal treatment

for the first time. In this process, hydrochloric acid plays an

important role in the formation of different surface mor-

phologies. The etched Ti3? and Ru3? are easy to hydrolyze

with water at the water/substrate interface, resulting in the

slow oxidation process consuming dissolved oxygen to

form a crystal nucleus on the substrate. After the formation

of the first nanocrystalline layer, the deposition film is

gradually formed with continuous hydrolysis and subse-

quent growth-crystallization. The resultant NF-RuO2–

TiO2/Ti after annealing treatment exhibited good catalytic

performance for CER because of the low Rct and high

surface area. This work may open up a new route toward

designing coating electrode with controllable structure for

electrolytic applications.
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