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Abstract An electrochemical device for the reduction of

CO2 back to liquid fuels is here presented. The key of this

novel electrocatalytic approach is the design and devel-

opment of the gas diffusion membrane (GDM), which is

obtained by assembling (i) a proton selective membrane

(Nafion), (ii) a nanocomposite electrocatalyst based on

metal-doped conjugated microporous polymer (CMP) and

(iii) a C-based support working as the gas diffusion layer.

CMP is a very attractive material able to adsorb CO2 se-

lectively with respect to other gases (such as H2, O2, N2,

etc.), also in mild conditions (r.t. and atmospheric pres-

sure). Particularly, tetrakis-phenylethene conjugated mi-

croporous polymer (TPE-CMP) was synthesized through

Yamamoto homo-coupling reaction. TPE-CMP was mod-

ified by depositing noble (Pt) and non-noble (Fe) metal

nanoparticles to create the active catalytic sites for the

process of CO2 reduction directly on the polymer surface

where CO2 is adsorbed. The metal-doped TPE-CMP elec-

trocatalysts were fully characterized by infrared spec-

troscopy (IR), thermo-gravimetric analysis (TGA) and

transmission electron microscopy (TEM). Then, the as-

assembled GDM was tested in our homemade semi-con-

tinuous three-electrode electrochemical cell working in gas

phase at 60 �C, coupled with a cold trap for the accumu-

lation of the liquid products. Results showed the better

performances of the metal-doped TPE-CMP in terms of

total productivity (C1–C8 oxygenates) with respect to other

kinds of materials that do not show high CO2 adsorption

capacity.

Keywords CO2 reduction � Solar fuels � Conjugated
microporous polymers (CMP) � Pt and Fe nanoparticles

1 Introduction

The continuous increase of the carbon dioxide concentra-

tion, mainly due to the increased use of fossil fuels to meet

the growing energy demand, has raised the attention on

finding a sustainable solution to reduce the carbon emission

[1]. Among the several strategies proposed, carbon capture

and sequestration (CCS) is considered as crucial for

meeting CO2 emission reduction targets, as it is the only

technology that may be implemented in a short term [2].

A CCS unit consists of a post-combustion installation that

captures the carbon directly from the flue gas of a power

plant [3]. Currently, there are three main separation options

for post-combustion, based on the following technologies:

(i) absorption, (ii) membranes and (iii) adsorption [4]. The

latter option seems to be the most attractive in terms of cost

effectiveness and it takes advantage of the gas adsorption

capacity of some solid materials that preferentially adsorb

CO2 with respect to other gases (i.e. H2, N2, O2, etc.).

The main challenge regarding CCS is to reduce the

overall cost by lowering both the energy and the capital

cost requirements. For example, excellent separation per-

formance can be achieved using amines as CO2 absorbent

but the regeneration step is an energy intensive process due

to the strong binding of CO2 to the amines. In general,

adding a CCS system to a power plant reduces its
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efficiency by as much as 30 %, including also the costs

needed for CO2 compression to 150 bar for storage,

transportation and reuse [5]. An extremely promising

strategy to reduce significantly costs and energy require-

ments, is to combine CO2 removal with advanced carbon

energy conversion [6]. In this context, the electrochemical

reduction of CO2 back to liquid fuels is a sustainable route

to diminish the level of CO2 in the environment [7, 8]. The

technology consists of (i) adsorption of CO2 on a con-

ductive substrate and (ii) its catalytic conversion on metal-

based active sites, starting from renewable sources (such as

solar energy and water) [9]. The conversion of carbon

dioxide and water into fuels in a ‘‘solar refinery’’ is a po-

tential solution for reducing greenhouse gas emissions, but

there are many technological advances that must be met in

terms of capturing and sourcing the feedstocks (namely

CO2, H2O and sunlight) and in catalytically converting

CO2 and H2O [10]. The main efforts of researchers, in fact,

have been devoted to develop advanced materials able not

only to adsorb CO2 but also to catalyse its conversion to

liquid fuels, better if high chain hydrocarbons and/or

oxygenates favouring the formation of C–C bonds. How-

ever, it is also important to evaluate the engineering aspects

of the process, by designing properly the configuration of

the electrocatalytic device [11]. The realization of a solar

refinery is contingent upon significant technological im-

provements in all those areas regarding the chemistry of the

materials and the engineering of the electrocatalytic reac-

tors. Particularly, there is the need to: (i) synthesize photo-

active materials able to absorb efficiently sunlight [12, 13],

(ii) develop novel advanced materials able to capture CO2

[14], (iii) introduce the active phase for the catalytic con-

version process [15] and (iv) design and realize (photo-

)electrochemical devices for a delocalized production of

energy [16].

In the last years, different materials able to adsorb ef-

ficiently CO2 have been developed: zeolites [17], alumina

[18], metal organic framework (MOF) [19], covalent or-

ganic framework (COF) [20] and porous aromatic frame-

work (PAF) [21, 22]. Yang et al. [23] prepared Mg-MOF-

74 crystals showing high adsorption capacity and high

isosteric heats of adsorption for CO2; their results con-

firmed excellent selectivity to CO2 over N2 at ambient

conditions. Liu et al. [24] prepared a class of metal func-

tional microporous covalent triazine frameworks using a

metalloporphyrin as a single building block; the resulting

polymer framework displayed excellent CO2 uptake ca-

pacity at 273 K and 1 bar, depending on the porosity of the

frameworks and functional activated sites in the skeletons.

Recently, increasing attention has been turned to a new

class of organic porous materials called conjugated mi-

croporous polymers (CMP) for their own characteristics,

such as the intrinsic and unique combination of nanopores

and p- conjugated skeleton [25]. These materials are very

promising because it is possible to modulate easily their

specific properties and characteristics by changing the

synthetic method and/or the building blocks [26, 27]. Due

to their own microporosity coupled with the high surface

area, CMP have largely been investigated for gas adsorp-

tion and storage purposes. The use of these materials in the

reduction of CO2 is a new area of development and there

are only a few references in literature about their use as

electrodes [28, 29]. The proper assembly of a multifunc-

tional electrode (comprising a conductive substrate, an

adsorbent support and the dispersed active sites) is of great

and challenging importance to increase the productivity,

efficiency and selectivity of the electrocatalytic CO2 con-

version process.

Among the different approaches of converting CO2 to

fuels, the most common option is based on a multistep

sequence of (i) producing electricity using renewable en-

ergy sources (solar, wind, hydropower, etc.), (ii) then

evolving H2 by water electrolysis and (iii) using this hy-

drogen to produce chemical and fuels from CO2 [30].

However, in a longer term vision it is necessary to integrate

all these steps in a single photo-electrochemical (PEC)

device able to use directly sunlight and convert the cap-

tured CO2 and H2O to fuels such as methanol, methane

and/or[C1 hydrocarbons and alcohols [31]. The PEC

concept is based on the separation (with a membrane) of

the photoelectrode for water oxidation (forming O2, pro-

tons and electrons) from the electrode for electrocatalytic

reduction of CO2 using the protons/electrons generated at

the photoelectrode [32]. The separation of the two elements

of the solar cell is necessary to avoid quenching phe-

nomena between the reactive species and for safety aspects,

related to the production of O2 and fuels at the same place

[33].

Another important aspect to consider is the recovery of

the products of reaction. Conventional PEC devices operate

in liquid phase, and most of the photo- and electro-che-

mical studies were performed in liquid phase [34]. How-

ever, the recovery of the reaction products is often an

energy intensive operation, which may eventually require

more energy than the amount of renewable energy stored in

the product of reaction. For this reason, it is fundamental

that the solar PEC cell design includes the possibility for an

easy recovery of the reaction products, for example oper-

ating the electrocatalytic reduction of CO2 in a cell de-

signed for gas phase and continuous operations and suitable

for easy industrial scale-up [35]. Recent studies have

demonstrated that, in order to overcome mass transport

limitations and achieve high current densities, the prepa-

ration and optimization of the gas diffusion electrodes

(GDEs) is the key to enhance mechanical stability and

performance of the electrocatalysts in the reduction of CO2
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[36]. The GDEs usually consist of a catalytic layer de-

posited on a gas diffusion layer by using binders, such as

hydrophilic Nafion or hydrophobic polytetrafluoroethylene

(PTFE) [37]. The GDEs for gas phase operation are also

conceptually different from those used in the liquid phase.

We employed GDEs analogous to those used in proton

exchange membrane (PEM) fuel cells, but with a different

electrocatalyst, based upon metal nanoparticles on poly-

mer-based materials, which are able to convert CO2 to[C1

alcohols and hydrocarbons.

In this context, we have analysed the feasibility of the

electrocatalytic conversion of CO2 to liquid fuels under

gas-phase conditions, by using new conjugated mi-

croporous polymers as electrocatalysts. In particular, we

synthesized tetrakis-phenylethene conjugated microporous

polymer (TPE-CMP) and doped its surface with metal

nanoparticles of noble (Pt) and not-noble (Fe) metals. We

have tested their performances by using a homemade

electrocatalytic cell, built in Plexiglas, by supplying con-

trolled electric current and protons to the electrocathode.

The combination of CO2 capture and its transformation to

industrial valuable compounds or fuels, may become one of

the most important routes to reduce the CO2 emission from

power plants. The conversion of CO2 back into fuels, in

fact, may close its cycle of production/consumption, while

the production of value-added products may diminish the

use of fossil fuels needed for their production [38].

The mechanism of CO2 reduction is very complex and

involves multiple reaction pathways, which can lead to a

large variety of products ranging from CO to various

oxygenates such as alcohols, aldehydes and carboxylic

acids. Between the different schemes proposed in lit-

erature [39], a common aspect refers to the presence of

two main steps: (i) the reduction of CO2 to give chemi-

sorbed CO (through the formation of a carbon dioxide

anion radical CO2�-) and (ii) the production of the format

anion or the further reaction of CO to give adsorbed :CH2

species. Finally, coupling these :CH2 species leads to the

formation of C–C bonds and the production of longer

chain hydrocarbons and this is favoured by operating in

gas phase conditions, as discussed in the introduction

section. The chain growing mechanism is similar to that

occurring in Fisher-Tropsch process, even though both

operating conditions and product distribution are very

different with respect to our electrochemical system (we

operate at relatively low temperature and in presence of

electrical current). The C–C bond formation is one of the

most critical factors to be taken into account in designing

an electrocatalyst for the production of solar fuels.

However, it is not still clear the rate determining step of

the CO2 reduction process. Increasing the number of CO2

adsorption sites may be a favourable route to enhance

productivity, especially if these sites are selective for CO2

with respect to other gases. It is well known that water

electrolysis is the main side reaction of such kinds of

electrochemical devices. Applying a bias between two

electrodes (even if these were made of inert materials

such as Pt, carbon, etc.) in presence of water, it

unavoidably gives H2 gas evolution and, even though our

cathode operates in gas phase, water is present in the

cathode side because it penetrates through the Nafion

membrane from the anode (phenomenon assisted by the

continuous CO2 flow). The as-formed H2 molecules that

remain adsorbed on the electrocatalyst may reduce the

production of high-chain hydrocarbons and oxygenates

because they occupy the catalytic sites needed for CO2

reduction. Thus, there is the need of advanced substrate

materials which can:

– Adsorb high quantities of CO2, also in mild operating

conditions (low temperature and pressure);

– Be selective to CO2 adsorption than other gases (i.e.

H2);

– Allow a good dispersion of active metal nanoparticles

on their surface;

– Have a co-catalytic role in CO2 reduction.

In this context, we prepared conjugated microporous

polymers, which seem good candidates as substrates for the

electrocatalytic reduction of CO2 to produce liquid fuels.

The key aspect to improve the overall efficiency is not only

the preparation of the electrocatalyst (doped with suitable

metals) but also the capability to assemble the electrode

materials to form a multilayered composite to guarantee

good proton mobility and electron conductivity.

2 Experimental

2.1 Preparation of the electrode

TPE-CMP was synthesized using the Yamamoto coupling

following the procedure reported by Xu et al. [26]. In

particular, 1,5-cyclooctadiene (COD, 1.05 mL, 8.32 mmol)

was added to a solution of bis(1,5-cyclooctadiene)nickel(0)

[Ni(cod)2, 2.25 g, 8.18 mmol] and 2,20-bipyridyl (1.28 g,

8.18 mmol) in anhydrous DMF (120 mL) and the mixture

was heated under Ar at 353 K for 1 h. 1,1,2,2-Tetrakis(4-

bromophenyl)ethene (TBPE) (1 g, 1.54 mmol) was added

to the resulting purple solution and the mixture was stirred

at 353 K overnight to obtain a deep purple suspension.

After cooling to room temperature, concentrated HCl was

added to the mixture. After filtration, the residue was

washed with H2O (5 9 30 mL), THF (5 9 30 mL) and

CHCl3 (5 9 30 mL) and dried in vacuum to give a yellow

powder (90 % yield). Figure 1 shows a schematic repre-

sentation of TPE-CMP formation.
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Then, 10 wt% Pt (or Fe) were deposited on TPE-CMP

by sol immobilization technique [40] using K2PtCl4�2H2O

(or FeNO3�2.5H2O) as precursor, NaBH4 as reducing

compound and PVA as protective agent. The solution (after

acidification at pH = 2) was added to the support under

vigorous stirring. The powder was filtered, washed until

neutral pH and finally dried at 80 �C for 4 h. As reference

materials, commercial multiwalled carbon nanotubes pur-

chased from Applied Science (CNTs, Pyrograph�-III,

PR24) were also tested. Pt (or Fe) was deposited on CNTs

by incipient wetness impregnation starting from an ethanol

solution containing the same metal precursors used to dope

TPE-CMP. After drying at 60 �C for 24 h, the samples

were annealed for 2 h at 350 �C and reduced in H2 at

400 �C for 2 h. The final meal loading was 10 wt%.

2.2 Characterization

The electrocatalytic materials were fully characterized us-

ing different techniques. The Infrared (IR) spectra of the

materials in KBr pellets were collected using a Bruker

Equinox 55 Spectrometer equipped with a pyroelectric

detector (DTGS type) with a resolution of 4 cm-1. The

same instrument was used for collecting Diffuse Re-

flectance Infrared spectra (DRFTIR); in this case, the in-

strument was equipped with a commercial DRFTIR

Thermo Electron Corporation cell CollectorTM equipped

with Si windows, the spectra were recorded with 4 cm-1

resolution and the materials were used without any pel-

letisation pretreatment. The cell was permanently attached

to a vacuum line (residual pressure 1 9 10-3 mbar), al-

lowing all outgassing pretreatments and CO2 adsorption–

desorption experiments to be carried out in situ.

Spectra of CO2 adsorbed on materials have been col-

lected at beam temperature (ca. 35 �C) on samples, pre-

viously dehydrated under vacuum at beam temperature for

1 h, using a maximum pressure of CO2 of 80 mbar.

The Thermogravimetric analysis (TGA) was performed

on a Setaram SETSYS Evolution instrument under argon

(gas flow 20 mL/min), heating the samples up to 1373 K

with a rate of 2 K min-1. Transmission Electron Mi-

croscopy (TEM) images were acquired by using a Philips

CM12 microscope (resolution 0.2 nm) with an accelerating

voltage of 120 kV. Nitrogen physisorption measurements

were carried out at 77 K in the relative pressure range from

1 9 10-7 to 1 P/P0 by using an Autosorb iQ/ASiQwin

instrument (Quantachrome instrument). Prior to the ana-

lysis, the samples were outgassed at 150 �C for 16 h

(residual pressure lower than 10-6 Torr). Specific surface

areas were determined using the Brunauer–Emmett–Teller

(BET) equation, in the relative pressure range from 0.05 to

0.15 P/P0. Pore size distributions were obtained by apply-

ing the NLDFT (non-local density functional theory)

method and using a silica model with cylindrical pore.

2.3 Assembly

An ethanol suspension of metal-doped TPE-CMP was

impregnated on a commercial carbon-based nonwoven gas

diffusion layer (GDL, SIGRACET 24BC, supplied by SGL

Group). The main properties of the GDL are reported as

follows: 235 lm thickness, 100 g/m2 areal weight, 76 %

porosity, 0.6 cm3/(cm2 s) air permeability, \12 mX cm2

electrical resistance (through plane). In some experiments,

the TPE-CMP was initially mixed with a little amount of

CNTs, to increase the conductivity of the final electrode. In

these cases, the active phase (namely Pt or Fe nanoparti-

cles) was alternatively deposited on the surface of either

TPE-CMP or CNTs, to understand the influence of metal

localization (with respect to the actual sites of CO2 ad-

sorption) on the process performances.

The working electrode was formed by assembling the

metal-doped TPE-CMP(CNTs)/GDL with a Nafion�

membrane (Nafion� 115, by Sigma Aldrich) by hot-

Fig. 1 Schematic

representation of TPE-CMP

formation
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pressing at 80 atm and 130 �C for 90 s, finally having the

active composite material (metal -doped TPE-CMP and/or

CNTs) between the two layers (GDL and Nafion), to form a

gas diffusion membrane (GDM). The active area of the

electrode was 1 cm2, with a final metal loading of about

0.5 mg cm-2.

2.4 Experimental apparatus

Tests of CO2 reduction were performed in gas phase by

using a homemade semi-continuous electrochemical cell,

built in Plexiglas and located inside an oven to operate at

60 �C. The cell has a three-electrode configuration, with a

Pt wire (as counter-electrode) and a saturated Ag/AgCl

electrode (as reference electrode) immersed in the anode

part. The photo-generated current was simulated by ap-

plying a constant small bias through the cell to provide the

electrons necessary for the CO2 reduction process. The

photo-anode was replaced by a compartment filled with a

liquid electrolyte solution to act also as a source of protons

(KHCO3 0.5 M). Figure 2 reports a schematic drawing of

the experimental apparatus and assembly of the layers

forming the GDM.

The anode, which operates in liquid phase, is only in

contact with one side of the Nafion membrane, being the

other side assembled with the GDL. The cathode, directly in

contact with the free side of GDL, operates in gas phase

under a constant flow of CO2 (10 mL min-1). CO2 can:

(i) permeate through the GDL, (ii) reach the metal-doped

TPE-CMP, (iii) adsorb on the polymer surface and (iv) react

on the metal nanoparticles (Pt or Fe) to produce liquid fuels.

A potentiostat/galvanostat (Amel mod. 2049A) was used

to supply a constant current (10 mA) between the

electrodes. Experiments were conducted in galvanostatic

mode, inverting after 1 h the current polarity to improve

desorption of the products from the working electrode. The

voltage increases as a function of time-on stream during the

first hour stabilizing to a value of about -1.5 V. Tests were

also performed applying a constant potential (-1.5 V) and

reading the generated current (potentiostatic mode), but the

results were not significantly different. The analysis of the

products of the reaction, collected in a cold trap, was

performed by a gas-chromatograph equipped with a mass

detector (Thermo Scientific GC Trace 1310—ISQ MS).

3 Results and discussion

3.1 Characterization of the electrocatalyst

The electrode materials were fully characterized by dif-

ferent techniques to understand their structural and mor-

phological properties in relation with their capability of

adsorbing CO2 and reacting in the process of CO2

reduction.

The IR spectrum of the as-synthesized polymer confirms

the successful synthesis of the polymer. Figure 3 shows a

comparison between the spectra of the TPE-CMP polymer

(curve b) and the starting monomer TBPE (curve a).

Analysing the TBPE spectrum, bands with different

intensities corresponding to the absorption characteristic of

aromatic rings are present in the low frequency region. The

bands at 1491 and 1444 cm-1 involve ‘‘semicircle

stretching pair’’ modes of the aromatic rings. The intense

and sharp band at 1004 cm-1 is assigned to the C–C

bending of the aromatic rings coupled with C–H bending.

LIQUID PHASE GAS PHASE

CO2
Pt counter-electrode

Ag/AgCl
reference
electrode

Poten�ostat/Galvanostat

Cold trap

Working electrode (GDM)

Carbon-based GDL

Nafion

Anode Electro-cathode

C2H5OH + 3H2O

12H+ + 3O2

6H2O

12H++ 12e- +2CO2

Pt (or Fe)-doped TPE-CMP (and/or CNTs)

e-

H+

GDM assembling

Nafion GDL - Sigracet

Deposi�on of  metal-doped TPE-CMP/CNTs

(a) (b)

Fig. 2 Schematic drawing of the a electrochemical device for the gas-phase CO2 reduction and b Gas diffusion membrane (GDM) assembly
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The absorption bands at 824 and 800 cm-1 are assigned to

the ring and C–H out of plane bending. All these modes are

maintained in the TPE-CMP polymer. The disappearance

of the bands of the C–Br vibrations at 1070 and 505 cm-1

in the TPE-CMP spectrum indicates the cleavage of C–Br

bonds and the successful formation of the phenyl–phenyl

coupling. The electrocatalyst material (Pt-doped TPE-

CMP) spectrum is also reported in Fig. 3 (curve c). As it

can be seen, the structural vibrational modes of the starting

material (curve b) have not undergone any modification,

even after the sol immobilization treatment and the sub-

sequent annealing.

Another important characterization is the FTIR CO2

adsorption made in situ at room temperature, because it

gives information about the type of interactions involved

between the CO2 molecule and the electrocatalytic

material.

The interactions of CO2 with TPE-CMP (Fig. 4a) and

Pt-doped TPE-CMP (Fig. 4b) were investigated using the

diffuse reflectance infrared spectroscopy. In Fig. 4a, curve

a refers to the spectra of CO2 in gas phase.

The gaseous CO2 is a linear molecule with two infrared

active absorption bands at 2349 cm-1 (m3 antisymmetric

stretching mode) and 667 cm-1 (m2 bending mode) [41].

In order to clarify the data, the curves are shown in

subtraction mode, as the curve of the material before in-

teraction with CO2 has been subtracted from the original

curves recorded after dosage of different pressures of CO2.

Upon exposure of TPE-CMP to CO2, a positive ab-

sorption band at 2334 cm-1 appeared in the difference

spectrum (Fig. 4a, curve b) with a shoulder at 2322 cm-1.

After progressive outgassing, all the component peaks in

the spectrum disappeared. If compared with the spectra of

CO2 gas phase, all the curves show the presence of the gas

phase in the spectra.

Upon interaction with the surface, the molecules can

attach to the surfaces in physisorption or chemisorption

ways. The first way is a van der Waals interaction between

the adsorbate and the substrate. In the second, the adhesion

occurs with the formation of a chemical bond. Infrared

spectroscopy can be used to distinguish between these two

mechanisms because only a slight shift in the absorption

band frequency accompanies physisorption, whereas

chemisorption is accompanied by a much larger shift to

lower energy.

Physisorbed CO2 on carbon-containing surfaces such as

C60, graphite, diamond and carbon [42, 43] has been re-

ported to display absorption bands between 2340 and

2323 cm-1 for the m3 antisymmetric stretching mode. The

presence of a distinct narrow band at 2334 cm-1 suggests

that there is one type of sorption site for the CO2 in the

TPM-CMP material. The shoulder absorption band at

2322 cm-1 has been reported for CO2 interacting with

polymers [44], carbon nanotubes [45], and should be a

combination mode or a different adsorption site in the

materials; the intensity ratio between the band at 2334 and

2322 cm-1 was maintained for all the pressures (Fig. 4,

curve b–q) and this fact suggests that the band at

2322 cm-1 could be related to a combination mode.

Figure 4b shows the analysis of Pt-doped TPE-CMP

material after interaction of 80 mbar of CO2. In this case,

the component at 2349 cm-1 related to the adsorption of

CO2 gas phase has a similar intensity in comparison of the

analogous spectrum of TPE-CMP material. On the other

hand, a reduction of the intensity of the bands at 2334 and

2322 cm-1 should be associated at a lower specific surface

area of the materials after the thermal treatment during the

addiction of platinum phase or a partial closure of the pores

caused by the presence of nanoparticles of Pt.

In order to understand the nature of the interaction be-

tween the Pt-doped TPE-CMP and CO2 molecules, it is

possible observing the region at lower energy in which a

band at about 669 cm-1 (m2 bending mode) of CO2 gas

phase is present, and new absorption bands at 659 and

650 cm-1 appeared as broad bands shifted to lower fre-

quency from the gaseous CO2 (Fig. 4b, inset). The shift

frequency of 10 and 19 cm-1 respectively are comparable

with the shift induced by interaction with of phenyl ring

[44] and this suggests that, also in the case of Pt-doped

TPE-CMP material, the principal interaction is a ph-

ysisorption and CO2 has a good interaction with phenyl

rings of the material structure.

Thermogravimetric Analysis (TGA) reported in the

Fig. 5 shows the comparison between TPE-CMP material

and Pt-doped TPE-CMP electrocatalytic material.

Fig. 3 IR spectra in the region 3200–400 cm-1 of TBPE monomer

(curve a), TPE-CMP polymer (curve b) and Pt-doped TPE-CMP

(curve c) in KBr pellets
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TGA confirmed the good thermal stability of the starting

support TPE-CMP (curve a). The decomposition of the

polymer begins at approximately 350 �C. This high ther-

mal stability allows the maintenance of the properties of

the polymer during the preparation of the electrocatalytic

material (curve b) which shows a similar thermal stability.

The material porosity was analysed by adsorbing gases

at low temperature: N2 adsorption/desorption isotherms

were collected at 77 K (Fig. 6a). The isotherm of TPE-

CMP polymer can be classified as type I, with gradual

filling of mesopores also indicated by formation of hys-

teresis loop in the desorption branch. Whereas, after the

formation of electrocatalyst phase, the isotherm is charac-

terized by a Langmuir profile, without mesoporosity. The

apparent BET surface areas were calculated over a relative

pressure range P/P0 = 0.05–0.15.

The BET surface area for TPE-CMP is 850 m2/g, which

decrease to 360 m2/g for Pt-doped TPE-CMP.

Figure 6b shows the pore size distribution for the TPE-

CMP material compared with Pt-doped TPE-CMP calcu-

lated using nonlocal density functional theory (NLDFT) on

silica surface with cylindrical geometry applied in the

desorption branch.

The starting polymer mainly exhibits a meso and mac-

roporous distribution centred at 55 Å. Instead, the polymer

Pt-doped TPE-CMP is characterized by microporous pores

at 10 Å and small mesoporosity with respect to the starting

polymer.

The surface area of the starting polymer decreases, as

expected, after treatment which led to the formation of the

electrocatalyst material. The reduction of the starting me-

soporosity is due to the presence of Pt which grows inside

of the pores and reduces the dimension of mesopore ob-

taining a predominant microporosity in the Pt-TPE-CMP

material. This is in good agreement with IR spectroscopy

that indicates a reduction of the total specific surface area,

but at the same time a strong affinity between CO2 and

material surface.

The reduction of the meso- and macroporosity between

50 and 200 Å does not affect the performance of the sys-

tem, because in this type of pore the CO2 interaction with

the material surface is very weakly. On the other hand, the

new microporosity will bring a better interaction and

storage of CO2 and consequently will increase catalytic

activity of the electrocatalytic material.

Transmission electron microscopy (TEM) was used to

determine the metal particle size distribution and charac-

teristics of the electrocatalysts. Figure 7 shows the results

for Pt-doped TPE-CMP. Platinum nanoparticles are well

visible in high contrast with respect to the polymer surface
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and show a relatively narrow size distribution (in the

2.5–4.7 nm range), with an average particle diameter of

3.5 nm. Moreover, they are well dispersed over the TPE-

CMP surface and no abnormally large particles or aggre-

gates were observed. The inset on the same figure shows

some Pt nanoparticles in high resolution, presenting a

slightly elongated shape.

Figure 8, instead, shows the TEM results for Fe-doped

TPE-CMP. Iron particles are much larger then platinum

particles. The metal particle size distribution, not reported

here, is very broad with diameter from 10 to 30 nm.

Though they are well dispersed over the TPE-CMP surface,

aggregates of 10–15 nm particles are also present.

3.2 CO2 reduction testing

The as-prepared assembled electrodes were tested in the

process of CO2 reduction by using our lab-scale electro-

chemical device, described in the experimental part.

Nonetheless, it is worth it to remember that we operated in

gas phase, exposing the electrocatalyst to a continuous CO2

gaseous stream. The reaction mechanism is probably quite

Fig. 6 N2 physisorption isotherms (a) and pore size distribution (b) of the TPE-CMP (stars) and Pt-doped TPE-CMP (spheres)
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different comparing gas and liquid phase conditions. Most

of the electrocatalytic cells reported in literature work in

liquid phase, showing several issues mainly related to CO2

solubility. To increase the CO2 supply direct to the surface

of the electrocatalyst, some researchers investigated liquid

CO2 reduction at high pressure (at about 60 bar) [46].

Comparing to those results, the kinds of products that we

obtained (C[ 1 alcohols and oxygenates) are very similar.

This suggests that there is a parallelism between the op-

erating conditions that we adopted (solvent-free at 1 atm)

and high pressure operation in liquid electrolyte, which is

conditioned from the low solubility of CO2. Figure 9 shows

the experimental results in terms of total productivity for

Pt/TPE-CMP electrocatalysts. For total productivity we

mean the sum of the liquid products (C1–C8 oxygenates,

mainly alcohols ranging from methanol to octanol) pro-

duced in 1 h of testing experiment.

Pt-doped CNTs were also tested in the CO2 reduction

process and considered as a reference material, as we al-

ready know their electrocatalytic behaviour [8, 11].

Moreover, in the same graph we reported testing results

obtained by mixing TPE-CMP with CNTs. To deposit the

electrocatalytic material on the GDL, before assembling

with the Nafion membrane to form the GDM, a homoge-

neous ink of TPE-CMP in ethanol was used for the im-

pregnation. Due to the own characteristics of TPE-CMP,

the preparation of the ink was critical and then we mixed

the polymer with 30 wt% of CNTs improving the quality of

the ink and obtaining a workmanlike deposition. Results

show the increasing performances in terms of productivity

of the Pt-doped TPE-CMP mixed with CNTs. The presence

of microporous conjugated polymers enhanced the process

performances due to their intrinsic porosity and high CO2

adsorption capability that increase the local concentration

of CO2 close to the catalytic sites (Pt nanoparticles). A

proper assembly of the electrocatalytic layers is very im-

portant to guarantee a good proton mobility and a high

electron conductivity. Among the other polymers able to

adsorb selectively CO2 (zeolites, alumina, MOF, COF,

etc.), conjugated microporous polymers (CMP) show

properties of electric conductivity, resulting as potential

substrate materials for electrocatalytic applications. Mixing

TPE-CMP with CNTs further increases the electronic

conductivity of the electrode improving the transport of

electrons (coming from the photo-anode, or provided from

the potentiostat in the actual testing experiments) to the

metal nanoparticles deposited on the substrate. Probably,

doping of the TPE-CMP with active metals is not sufficient

to increase the productivity compared to Pt on CNTs due to

a loss of conductivity. However, it was sufficient to add a

small amount (30 wt%) of CNTs to increase considerably

the productivity. Thus, the positive effect in mixing the

polymer with CNTs is doubled: (i) improved quality of the

ink for a better dispersion on the GDL and (ii) enhanced

conductivity of the electrode.

Another aspect that we analysed was the effect of lo-

calization of the Pt nanoparticles over the substrate. Par-

ticularly, we tried to mix Pt-doped CNTs with 30 wt% of

pure polymers (TPE-CMP). In this case, it can be observed

that there is a worsening in the total productivity with re-

spect to the reference sample, probably due to a dilution

effect of the active phase with respect to the reference (Pt-

doped CNTs 100 %). We may conclude that is of great

importance the localization of the active phase (Pt), which

should be deposited on the polymer surface where CO2
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Fig. 8 Representative TEM images of Fe-doped TPE-CMP
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adsorption occurs. This may help in the definition of the

tentative reaction mechanism: as there is accordance that

nanocarbons (such as CNTs) may also play co-catalytic

roles in different catalytic applications [47], this hypothesis

suggests that the rate determining step could be the for-

mation of the carbon dioxide anion radical CO2
�-, as the

CNTs are probably involved in the second step influencing

the kinds of liquid products for their confinement effect.

Figure 10 shows the product distribution for the same

series of Pt-doped TPE-CMP/CNT electrocatalysts in the

gas CO2 reduction process. Tests with Pt-CNTs were re-

peated three times to check the reproducibility in the

quantitative determination of the liquid compounds, ob-

taining errors lower than 3 %.

The products that we have identified, are mainly alco-

hols. The distribution profiles are very similar but with a

slight increase of higher chain products for the Pt-doped

TPE-CMP with CNTs in ratio 70–30 (wt%). However,

testing the sample obtained by mixing Pt-doped CNTs

(70 wt%) with TPE-CMP (30 wt%), isopropanol was one

of the main products, confirming that the confinement ef-

fect due to the presence of the active phase (Pt nanoparti-

cles) inside the CNTs, allowed the formation of the most

stable tertiary carbon.

It is to notice that also higher chain hydrocarbons (until

C8) were detected in all the testing experiments, but here

we have limited our discussion to the more abundant liquid

fractions of C1–C8 oxygenates (methanol, isopropanol,

ethanol, acetic acid, acetaldehyde etc.) which we collected

by using a cold trap. In the outlet gas flow we also detected

hydrogen, carbon monoxide and methane. The faradic ef-

ficiency was also very high for all the tests ([95 %) even if

the major part refers to the side reaction of water splitting.

The issue of the H2 production in gas phase electrocatalytic

reduction of CO2 was discussed elsewhere [30].

3.3 Pt versus Fe

Avoiding the use of noble metals is an important further

target to produce cheaper and environmental friendly

electrode materials. In this view, we tested Fe-doped TPE-

CMP electrocatalysts as well as Fe-doped CNTs as ref-

erence materials. The total productivities obtained for the

Fe-doped samples are reported in Table 1. The produc-

tivities of the tests with Pt-doped CNTs and Pt-doped

TPE-CMP mixed with CNTs are also reported as a

comparison.

Unfortunately, at a first view results are not encouraging

for Fe/TPE-CMP. As already discussed in Sect. 3.1, the

deposition of metal nanoparticles (by sol-immobilization

technique) on TPE-CMP led to particles with higher di-

ameter for Fe with respect to Pt. Metal size and dispersion

over the substrate surface play a fundamental role in the

electrocatalytic performances in the process of CO2 re-

duction. The higher value of productivity obtained by

testing Fe-doped CNTs with respect to Pt-doped CNTs,

instead, depends on the confinement effect of Fe

nanoparticles that well fit inside the CNTs (see Fig. 11),

while for Pt-doped CNTs this effect is lower due to the

different size and dispersion of the Pt nanoparticles inside

the nanotubes [48]. The stability of the electrocatalysts in

consecutive reaction cycles was also analysed. Results

showed a higher deactivation rate for Fe-doped CNTs with

respect to Pt-doped/CNTs. Further investigation is needed

to improve the performances in the CO2 reduction process

by using Fe-doped TPE-CMP as electrocatalytic material.
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4 Conclusions

We reported here on the behaviour of conjugated mi-

croporous polymers (TPE-CMP) doped with Pt (or Fe)

nanoparticles as electrocatalysts in the process of CO2 re-

duction back to liquid fuels. The samples were prepared

through Yamamoto homo-coupling reaction of a tetrahe-

dral monomer, tetrakis (4-bromophenyl) ethene (TBPE),

and then depositing on their surface Pt (or Fe) nanoparti-

cles by sol immobilization technique.

The electrocatalytic materials were fully characterized

and tested within our homemade electrochemical cell,

working in gas phase, by applying a small bias between the

working and counter electrodes. We described in detail the

configuration and working of the electrocatalytic device

and presented its advantages with respect to the more

studied liquid phase electrochemical system (no problems

of CO2 solubility, no need to recover the liquid products,

higher productivity and improved selectivity to high-chain

hydrocarbons and oxygenates).

Results showed a relatively higher productivity by using

the Pt-doped polymer as electrocatalyst, but it should be

mixed to a small amount of CNTs to increase both the

electronic conductivity and the quality of the ink before the

impregnation on the C-based support. In the view of re-

placing noble metals, we also prepared and tested Fe-doped

TPE-CMP electrocatalysts. Due to the different mor-

phology and higher diameter of Fe nanoparticles with re-

spect to Pt, Fe-doped electrocatalysts gave higher

productivity only with CNTs as support, probably for the

confinement effect occurring when Fe nanoparticles well fit

inside the CNT. Further investigation is needed to improve

their performances in the CO2 reduction process, also ex-

ploiting different kinds of CMP synthesized from different

monomers. However, these results are very promising and

open new possibilities in the electrocatalytic conversion of

CO2 to liquid fuels by exploiting solar energy and closing

the CO2 cycle of its production/consumption.
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