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Abstract In recent years, coating of metal orthopedic

implants with bioactive layers to promote fixation with

bones has become increasingly common. Calcium phos-

phate coatings on the Nitinol surface were formed using

two low-temperature methods: sol–gel and electrochemi-

cally assisted deposition. The coatings formed were char-

acterized using: X-ray diffraction analysis, field emission

scanning electron microscopy, energy dispersive X-ray

spectroscopy, and Fourier transform infrared spectroscopy.

Cyclic voltammetry studies were carried out in the depo-

sition solution to determine parameters for electrodeposit-

ion and to understand electrochemistry of deposition. The

barrier properties and corrosion resistance of coatings were

tested in the physiological Hanks’ solution using electro-

chemical impedance spectroscopy. The sol–gel deposited

coating consisted of two phases, hydroxyapatite and tri-

calcium phosphate (TCP). Apatite coatings containing TCP

offered the opportunity to create a grafting material with

high bioactivity and bioresorbility. The electrodeposited

coating consisted of Ca-deficient HAp which resembles to

biological HAp.

Keywords Electrodeposition � Sol–gel method �
Nitinol � Biphasic calcium phosphate � Ca-deficient
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1 Introduction

Due to their bioactivity and biocompatibility with bone tis-

sues, calcium phosphates (CaP) have been in use in medicine

and dentistry for the last 30 years (grafts for bone growth,

bone fillers, coatings on orthopedic and dental implants, in

maxillofacial surgery and otolaryngology) [1–3]. Particu-

larly attractive is hydroxyapatite [Ca10(PO4)6(OH)2, HAp], a

major inorganic component of natural bone [4]. HAp is

recognized as osteoconductive, able to accelerate bone

ingrowth and attachment to the surface of implant during the

early stage after implantation, and to improve the fixation

and lifetime of the implant [1, 3]. Nevertheless, poor

mechanical properties limit its use to no load-bearing con-

ditions [3]. These drawbacks can be overcome by using the

CaP coatings on the high-strength metals/alloys such as

titanium and titanium alloys.

Nitinol, the titanium–nickel alloy, has been widely used in

the field of dentistry and orthopedic surgery owing to its

unique properties, such as shape memory effect, superelas-

ticity, and high damping capacity [5]. Although Nitinol pos-

sesses high corrosion resistance in physiological solutions

caused by the spontaneously formed passive film of TiO2 [5,

6], the major concern regarding its biocompatibility is release

of allergenic and toxic Ni2? ions due to in vivo corrosion. To

prevent nickel dissolution, Nitinol has been modified using

different surface treatments [7, 8]. In fact, as the other metallic

materials, Nitinol and Ti-based alloys are classified as bioinert

materials as they do not induce bone formation on their surface

[9]. Hence, metallic implants with CaP coatings offer the

combined advantages of the excellent mechanical properties

of the metal and remarkable biocompatibility of the CaP

ceramics, enabling the load-bearing implant applications and

encouraging the bone tissue ingrowth, attachment of cells, and

their subsequent multiplication [10].
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Different methods are used for the formation of CaP/

HAp coatings on titanium/titanium alloys: electrocrystal-

lization, biomimetic processes, plasma or thermal spraying,

polymeric route, electrophoretic deposition, sputtering, etc.

[11, 12]; with plasma spraying being the most common and

commercialized method. Albeit, these methods were suc-

cessful in HAp coatings formation, they have severe lim-

itations: complicated preparation procedures, high

temperature treatments which deteriorate the metal sub-

strates, unnecessary phases besides HAp formed in the

coatings, poor adhesion, lack of uniformity of coatings in

terms of both morphology and crystallinity, delamination

leading to premature wear, and loosening of the implants

and sophisticated equipment required [13–15].

The sol–gel method and electrochemically assisted

deposition, two of the most promising processes, have gained

more attention due to their advantages in comparison to other

conventional methods [13, 16–18]. Much interest in elec-

trodeposition has evolved due to the low temperatures

involved, which enable formation of highly crystalline

deposits with low solubility in body fluids and low residual

stresses [19], the ability to coat porous, geometrically com-

plex surfaces, the ability to control the thickness, composi-

tion, and microstructure of the deposit, the possible

improvement of the substrate/coating bond strength, and low

cost of equipment [18, 20, 21]. The most attractive charac-

teristics of sol–gel method are: higher homogeneity at

molecular level (easily achieved by mixing the two solu-

tions), easy control of chemical composition (better purity;

ratio of mixed solutions is maintained in the final product),

relatively low-temperature synthesis [12, 22]. The calcina-

tion process was used to densify the layer (residual organics

decompose, decrease the porosity) and improve its adhesion

towards the substrate [13, 23]. Low calcining temperatures

can lead to weakly bonded low density coatings, but high

calcining temperatures result in degradation of metal sub-

strate catalyzing the decomposition of HAp [24]. It was

shown previously that a temperature between 375 and

450 �C was required to develop CaP phase for the coating on

metal substrates [25, 26]. At temperatures higher than

1,200 �C, HAp decomposes into tricalcium phosphate (TCP)

and tetracalcium phosphate [27]. On the other hand, at

temperature above 750 �C predominant TiO2 rutile phase

reacts with CaP layer forming CaTiO3 intermediate [27]. In

this paper, the moderate temperature (450 �C) was chosen

for calcination process to obtain CaP coating on the Nitinol

surface produced by sol–gel dip-coating deposition method.

In the present work, the Nitinol surface was modified with

CaP ceramic coatings using two low-temperature methods:

sol–gel method and electrochemical deposition. Both of

these protection methods combine good mechanical prop-

erties of the metallic substrate with good biocompatibility of

CaP. The microstructure of CaP coatings was characterized

by field emission scanning electron microscopy (SEM). The

chemical composition was examined using energy disper-

sive X-ray spectroscopy (EDS), X-ray diffraction analysis

(XRD), and Fourier transform infrared spectroscopy (FTIR).

The barrier properties of coatings were tested in the physi-

ological Hanks’ solution using electrochemical impedance

spectroscopy (EIS).

2 Experimental

The Nitinol foil (with the wt% content of: 55.82 Ni, B0.05

C, B0.05 O, B0.20 other metal impurities, and balance Ti)

was cut into 0.38-mm-thick disks with 13 mm diameter.

Circular-shaped Nitinol electrodes were polished with SiC

papers of 240–1,200 grit, and ultrasonically cleaned with

acetone and redistilled water.

2.1 Coating methods

2.1.1 Sol–gel deposition method

Sol–gel synthesis/preparation: 10 g of calcium 2-ethyl-

hexanoate (Ca(EHA)2; 98 wt%, Aldrich) was dissolved in

28.6 mL of ethylhexanoic acid (EHA; 99 wt%, Aldrich).

To produce the sol of CaP with Ca/P molar ratio of 1.67,

the above solution was mixed with 4.76 mL of 2-ethyl-

hexyl-phosphate (EHP; 95 wt%, Merck, mixture of 45 %

mono- and 55 % di-ester of phosphoric acid). After adding

ethanol to reduce the overall CaP concentration to 5 wt%,

the sol was stirred at 21 ± 2 �C for 4 h before being used

for coating. The sol was dried at 130 �C for 4 h and the

resulting yellow sticky gel was calcined at 450 and 600 �C

for further characterization. The freshly prepared Nitinol

samples were kept at 90 �C for 30 min in a regular air-

convection oven. The coating was performed by dipping

the samples into the CaP sol at 21 ± 2 �C, pulling them

out at a speed of approximately 6 cm min-1, drying in air

at 130 �C for 4 h, and calcining in a preheated furnace at

600 �C for 10 min. The multilayered coatings on Nitinol

were prepared by cycling the above procedure.

2.1.2 Electrochemically assisted deposition method

Nitinol samples, prepared as described previously, were

treated in 1 M NaOH for 1 h at 80 �C prior to coating. The

electrodeposition was performed in aqueous solution con-

sisting of mixture of 0.1 mol dm-3 Ca(NO3)2 and

0.06 mol dm-3 NH4H2PO4. The electrodeposition was

carried out potentiostatically at -1.15 V for 2 h. To

maintain the Ca2? and H2PO4
2- concentration uniform

during the electrodeposition, the solution was mixed using

magnetic mixer. After coating, the Nitinol samples were
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post-treated in the 1 M NaOH solution for 1 h at 80 �C and

subsequently rinsed in redistilled water.

Cyclic voltammetry (CV) measurements (in the potential

range from -1.5 to 1.5 V, scan rate of 10 mV s-1) were

performed in the deposition electrolyte to investigate the

electrodeposition of CaP on Nitinol and determine condi-

tions of electrodeposition. The kinetic parameters of this

process were identified based on the CV criteria from cyclic

voltammograms recorded on Nitinol in the deposition elec-

trolyte at different scan rates, m = 10–120 mV s-1.

2.2 Methods for coatings characterization

Phase analysis of CaP gel obtained was accomplished by

XRD. The XRD patterns were recorded at 20 ± 2 �C using

APD 2,000 X-ray powder diffractometer (Cu Ka radiation, 2h
step of 0.02�/10 s, graphite monochromator, NaI-Tl detector)

manufactured by ItalStructures, Riva Del Garda, Italy.

The microstructure and morphology of the coatings on the

Nitinol substrates were determined by field emission SEM

using Jeol Ltd. FE SEM, model JSM-7000F. An elemental

analysis was performed by EDS using Oxford Instruments

Ltd. EDS/INCA 350 in addition to SEM.

The FTIR spectra were recorded in the 4,000–650 cm-1

region using horizontal attenuated total reflectance

(HATR) method on a Perkin-Elmer Spectrum One FTIR

spectrometer.

For the impedance spectroscopy measurements (EIS) a

three-electrode cell (PAR, Corrosion cell system, model K47)

was used. The counter electrode consisted of two graphite

rods and the reference electrode, to which all potentials in the

paper are referred, was an Ag | AgCl, 3.0 mol dm-3 KCl

(E = 0.208 V vs. standard hydrogen electrode). The surface

area of working electrodes exposed to the electrolyte

was 1 cm2. The corrosion behavior of coated and uncoated

Nitinol was studied in the Hanks’ solution at 37 �C performed

at EOCP in the frequency range from 105 to 10-3 Hz with an

ac voltage amplitude of ±5 mV using a Solartron frequency

response analyzer SI 1,255 and Solartron electrochemical

interface 1,287. Impedance measurements were performed

after 1 h of stabilization at EOCP. The experimental data were

fitted using the complex non-linear least squares (CNLS) fit

analysis [28] software ZView�, and values of the elements of

the proposed equivalent circuit were derived with v2 values

less than 2 9 10-3 and relative error values below 5 %.

3 Results and discussion

3.1 Sol–gel synthesized CaP coatings on Nitinol

The phases formed in the synthesized and calcined sol were

investigated using XRD analysis, powerful tool to

determine the phase composition and crystallinity of the

structure. Figure 1 presents the XRD pattern for the pow-

der calcined at 600 �C.

Identification of the phases was performed by compar-

ing the experimental XRD patterns to standards compiled

by the Joint Committee on Powder Diffraction Standards

(JCPDS) [29] using the cards no. 09-0432 for HAp,

29-0359 for TCP, and 85-1108 for calcite. By comparison

with reference data, the XRD measurements indicate that

the sol–gel powder shows the crystalline structure of HAp,

TCP, and calcite mixture. A broad reflection peak in the

range of 31.8–32.5� of 2h values corresponds to the apatite

phase. The carbonate content, incorporated into crystal

structure as calcite, is result of organic matter burn-off

(precursors’ pyrolysis) during gel calcination [30].

The XRD analysis of CaP coatings deposited on Nitinol

was also performed (inset in Fig. 1). Although the weak

XRD patterns were observed, still distinguishable signals

appear, representing the presence of same phases in coat-

ings as in the powder sample. The sol–gel method proposed

resulted in formation of HAp, TCP, and calcite mixture,

i.e., successful formation of CaP coatings on the Nitinol

surface.

The microstructure and morphological characteristics of

the CaP coatings on Nitinol were characterized by SEM

and the composition was examined using EDS. Figure 2

presents SEM images of Nitinol substrate coated by 10 CaP

layers.

Figure 2 shows that the multi-layered CaP coatings con-

sisted of island like structures/flat surfaces with pores/cracks

in between. In the pores/cracks the CaP bone-like nanometer

structure was observed. In contrast, the single-layer coatings

showed the presence of Ti and Ni signals in the pores/cracks

[31]; indicating that the Nitinol substrate was in the direct

Fig. 1 The XRD pattern for the gel and the coating (inset) obtained

by sol–gel process
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contact with aggressive body fluids. The cracked upper-layer

CaP structure was indicative of coatings high shrinkage [32].

The formation of cracks in the upper CaP layers occurs due

to densification and thermal stresses originated from the

mismatch between thermal expansions coefficients of

metallic substrate (aTi = 8.7 9 10-6/K) and CaP coating

(aHAp = 13.6 9 10-6/K) [33]. Since the thermal expansion

coefficient of the coating is higher than for the substrate, it

results in residual tensile stresses in the coating [32]. The

presence of TiO2 on NiTi substrate, with relatively lower

thermal expansion coefficient (aTiO2 = 7.249 9 10-6/K)

leads to a thermal expansion mismatch reduction between

HAp and Ti alloy [9].

Multi-layered CaP coating strategy was successful in

overcoming of the crack structure formation during den-

sification. Added upper CaP coatings filled in the pores/

cracks of cracked lower CaP coatings resulting in crack-

healing of lower layers and formation of indented bone-like

structure that also serves as a good base for bonding upper

layers (Fig. 2b) [32]. The presence of porosity in this CaP

coating is advantageous as it presumably enhances the

osseointegration [34]. It should be taken into account that

the OH- and PO4
3- ions on coating surfaces can combine

with the Ca2? ions in the body fluids to induce the for-

mation of the bone-like apatite [35]. Therefore, good bio-

activity can be imparted to Nitinol via CaP coatings.

The EDS analysis confirmed the formation coating with

Ca/P molar ratio of 1.57, the mixture of HAp and TCP that

corroborated the XRD results. The EDS analysis performed

on multi-layered CaP coatings does not show any trace of

Ti or Ni signals on the overall surface confirming the

complete coverage of the substrate.

In addition, the sol-gel synthesized biphasic CaP cera-

mic coatings show an optimum balance of the most

stable phase of HAp and more soluble TCP phase. Low

content of TCP in bioceramic material ts helpful for the

enhanced osseointegration; i.e., rapid bonding the artificial

bones/implants to natural ones via rapid CaP dissolution

[15, 36, 37]. It should be also noted, that the presence of

CaP in the coating mimics the bone composition and gives

an added advantage because it leads to enhanced osseoin-

tegration [9]. Thus, the sol-gel method offers the oppor-

tunity to create grafting material with excellent bioactivity,

resorbability, and biocompatibility.

Electrochemical (corrosion) behavior as well as dielec-

tric and electric properties of the NiTi | CaP interfaces in a

simulated physiological solution at 37 �C were investi-

gated using EIS. Measurements were performed at EOCP

over the wide frequency range. Impedance spectra of

Nitinol samples coated with multilayered CaP in the form

of Nyquist plot show response almost parallel to the axis of

the impedance imaginary part and in the form of Bode plot

exhibit capacitance behavior inside a broad frequency

region in which the slope of the log |Z| against log f straight

lines is close to -1 and high phase angle values (Fig. 3a).

These characteristics point to the behavior typical for

blocked (insulated) electrodes.

The corresponding electric equivalent circuit (EEC) for the

blocking electrode consists of a constant phase element, CPE

in series with an ohmic resistance, RX. Because the measured

capacitive response is not generally ideal due to certain het-

erogeneity of the electrode surface [38], a CPE has been

introduced for fitting the spectra, instead of an ideal capaci-

tance element, C. Its impedance can be defined by

Z(CPE) = [Q(jx)n]-1, where Q is a constant, x is the angular

frequency, and n is the CPE power [39]. The factor n is an

adjustable parameter, which has values between -1 and 1.

For the value of n C ca. 0.9, the capacitance values were

calculated using the expression given by Brug et al. [40]:

C ¼ ðQR1�n
X Þ

1
n ð1Þ

The EIS parameter values are listed in Table 1. The

numerical values of interfacial capacitance, C were calcu-

lated using the Brug0s expression, Eq. (1).

The justification for the application of a blocking circuit

in representing the EIS data for multilayered CaP coatings

Fig. 2 SEM images of Nitinol substrates coated by 10 CaP layers
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was tested on the basis of the dependence of real, Cr and

imaginary, Cj parts of the complex capacitance on a log-

arithmic scale as a function of frequency (see Fig. 3b) [41].

The complex-capacitance representation of EIS data is

often used for solid-state and dielectric systems for which

the complex capacitance is defined as [41]:

CðxÞ ¼ Cr þ jCj ¼
C

1þ ðxRXCÞ2
� j

RXxðCÞ2

1þ ðxRXCÞ2
ð2Þ

The characteristic frequency, fc evident as a peak for the

imaginary part of the complex capacitance (Fig. 3b) has a

value corresponding to:

fc ¼ ð2pRXCÞ�1 ð3Þ

and provides a direct determination of the interfacial

capacitance, C whose values are listed in Table 1. As can

be seen from Table 1 capacitance values determined from

EEC modeling and from characteristic frequencies are

almost the same and confirm the presentation of multilay-

ered CaP coatings as the blocking system. The resistance of

the CaP surface layer R ? ?, and dc corrosion cur-

rent ? 0, which means, the prevention of a flow of

charged/solvated ions towards the NiTi surface and/or

dissolution of Ti and Ni ions in the solution.

From Table 1 and Fig. 3 it is clearly visible that by

increasing the number of CaP coatings, capacitance values

decrease. The structure of the multilayered CaP coating is

compact and homogeneous and acts as the blocking con-

tact, which prevents charge-transfer reactions of the NiTi

surface in a physiological solution. Excluding other bio-

compatibility-governing factors, these surfaces would be,

from the corrosion stability point of view, good candidates

for biocompatible surfaces.

3.2 ‘‘Electrochemically’’ deposited CaP coatings

on Nitinol

Besides the sol–gel method, the CaP coatings were

deposited on Nitinol using the electrochemically assisted

method. Formation of HAp coatings was obtained by the

two step procedure: electrochemical and chemical. Cycic

voltammetry investigations were carried out in the depo-

sition solution to determine parameters for electrodeposit-

ion and to understande chemistry of CaP coating deposition

on metallic substrates (implants). Figure 4 presents cyclic

voltammogram recorded in the potential range from

potential of hydrogen evolution to potential of oxygen

evolution.

Anodic part of the voltammogram shows current density

values independent on potential, up to beginning of the

oxygen evolution process, pointing to formation of surface

film during linear polarization. In backward part of vol-

tammogram the characteristic nucleation loop [42] at

-0.57 V (see the inset in Fig. 4) as well as the character-

istic sharp reduction current peak at -1.15 V are connected

with the formation of a new solid phase on the Nitinol

surface.

The cathodic reaction is electrochemical deprotonation

of hydrogen from H2PO4
- ions

2H2PO�4 þ 2e� ! 2HPO2�
4 þ H2 ð4Þ

Fig. 3 Nyquist and Bode (inset) plots (a) and real and imaginary

parts of the complex capacitance on a logarithmic scale as a function

of frequency (b) for the impedance data of CaP coated (5 and 10

layers) Nitinol electrodes recorded in Hanks’ solution (37 �C) at EOCP

Table 1 Impedance parameters of Nitinol samples coated with multilayered CaP coatings, obtained in Hanks’ solution (37 �C) at EOCP

Samples 106 9 Q1/X-1 cm-2 sn n1 CBrugg/lF cm-2 fc/kHz C/lF cm-2

NiTijCaP5 layers 2.62 0.93 1.26 5.01 1.27

NiTijCaP10 layers 0.92 0.93 0.40 12.59 0.40

RX = 21 ± 5 X cm2
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It is expected that HPO2�
4 ions produced completely or

partially react with Ca2? ions and form insoluble coating

on the electrode surface (brushite, CaHPO4 9 2H2O)

according to following reaction:

Ca2þ þ HPO2�
4 þ 2H2O! CaHPO4 � 2H2O ð5Þ

The observed current density values of the cathodic peak are

around 1 mA cm-2, see Fig. 4. It was shown that electro-

deposition at current densities around 1 mA cm-2, resulted

in formation of brushite on metallic implant materials at the

interfacial pH lower than 6.7, because concentration of

OH- ions is insufficient to convert all HPO4
2- into PO4

3-

according to the acid–base reaction: HPO4
2- ? OH- ?

PO4
3- ? H2O [43, 44].

At higher cathodic potentials (E\-1.5 V), reduction of

water becomes a dominant cathodic reaction (Fig. 4).

2H2O þ 2e� ! 2OH� þ H2 ð6Þ

This cathodic reaction causes an increase in pH of a

solution and enables neutralization of H2PO�4 :

To characterize the electrochemical process taking place

on Nitinol in the deposition electrolyte in more detail, the

influence of the scan rate on the cyclic voltammograms was

investigated. The cyclic voltammograms were recorded on

Nitinol in the potential range of brushite deposition at scan

rates ranging from 10 to 120 mV s-1 (Fig. 5a).

The mechanism and kinetics of electrodeposition of

brushite (CaHPO4 9 2H2O) on Nitinol were analyzed on the

basis of CV results (Fig. 5a) according to the diagnostic

criteria of CV [45]. Figure 5b, including a corresponding

insert, shows linear dependence of current density peak, jp on

the root-square of scan rate, m1/2 and the linear dependence of

log jp on log m pointing that electrodeposition (electrocrys-

tallization) process occurs under diffusion control.

From a linear dependence of jp on m1/2, using the relation

below, it is possible to determine values of diffusion

coefficient, D [46]:

jp ¼ �ð2:99� 105 Cmol�1V�1=2Þ z ðaCzaÞ1=2
c1O D1=2m1=2

ð7Þ

where c1O is the concentration of potential determining ions

in the bulk of solution, aC is the coefficient of transfer for

cathodic process, za corresponds to the number of electrons

transferred up to, and including, the rate determining step.

The coefficient aCza is determined according to relation

[45]:

Ep � Ep=2

�
�

�
� ¼ 48

aCza
mV ð8Þ

where Ep is the potential of current peak, and Ep/2 is the

potential at the half of the current density value peak, jp.

Numerical values of aCza and D are given in Table 2. The

values obtained are in agreement to those reported in the

literature [21].

Mean value of D = 3.2 9 10-6 cm2 s-1 and the value

of the thickness of the diffusion layer, d = 0.01 cm [21]

enable to determine the current density of brushite depo-

sition on Nitinol under diffusion control according to the

relation of Fick’s first law:

Fig. 4 Cyclic voltammogram of Nitinol recorded in the deposition

electrolyte at scan rate, m = 10 mV s-1

Fig. 5 a Cyclic voltammograms of Nitinol recorded in the deposition

electrolyte in the potential range from 0 to -1.5 V at the scan rates

noted. b Diagnostic criteria of cyclic voltammetry for the results

presented in (a)
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jL ¼ zFDc=d ð9Þ

The determined current density of 1 mA cm-2 agrees

with the experimentally examined value of the cathodic

current peak, see CV in Fig. 4. The brushite coating, formed

by the electrochemical step and deposition reactions (4–5),

was subsequently alkali treated to obtain HAp [47, 48]:

10CaHPO4 � 2H2O þ 12OH�

! Ca10 PO4ð Þ6 OHð Þ2þ4PO3�
4 þ 30H2O ð10Þ

Morphological characterization and chemical

composition of CaP films on Nitinol were obtained by

SEM/EDS. The analysis was performed on samples

immediately after cathodic electrodeposition (Fig. 6a) and

after the alkali treatment (Fig. 6b).

SEM images show formations of compact coatings with

laminated structure. After alkali treatment, thicker lami-

nated structure with surface particles can be observed. It

should be also stressed out that no cracks/pores were

present, visible for the sol–gel dip-coated Nitinol substrates

(Fig. 2).

Chemical composition of CaP films formed by two steps

procedure on Nitinol substrates were obtained by EDS.

Results show formation of CaP coating with the Ca/P ratio

of 1.01 [2, 49]; i.e., formation of calcium hydrogen phos-

phate dihydrate (brushite). The EDS results after the

subsequent alkali treatment show the formation of CaP

coating with the Ca/P ratio of 1.63, pointing to formation of

Ca-deficient HAp [50, 51]. Brushite formed by electrode-

position serves as precursor for HAp.

The FTIR spectrum of Nitinol substrate coated by

cathodically electrodeposited CaP film that was subse-

quently alkali treated is presented in Fig. 7. The prominent

bands observed in the range of 900–1,200 cm-1 are char-

acteristic for phosphate groups present in the apatite struc-

ture [52]. The m1 P–O symmetric stretching vibrations and m3

asymmetric stretching vibrations were detected at around

1,020, 1,130, and 1,198 cm-1, respectively [23, 53, 54].

Absorption bands present around 3,500 and 2,850 cm-1 are

assigned to O–H stretch bands in HAp [53]. The latter band

may be also due to the stretching vibration of P–O–H in

distinct structural positions [55]. The band at 1,650 cm-1 is

associated to vibration modes of adsorbed water [23, 53].

Bands at 712, 874, 1,440, and 1,734 cm-1, characteristic

of CO3
2- species, are attributable to m4, m2, and m3 vibra-

tional carbonate mode, respectively [52–54]. The observed

bands resulted from the carbonate groups incorporated in

the apatite structure and suggest B-type incorporation; i.e.,

CO3
2- for PO4

3- substitutions [56]. The carbonate comes

from the atmosphere carbon dioxide which combined into

the crystal structure during the coating preparation [57].

The carbonate content makes coating more similar to the

natural bone mineral [58].

The corrosion behavior of HAp-uncoated (covered by

spontaneously formed oxide film) and HAp-coated Nitinol

samples (NiTi|HAp interface) prepared by electrochemi-

cally assisted deposition was examined in a simulated

physiological solution (Hanks’ solution, 37 �C) by using a

nondestructive method, EIS. Impedance spectra of uncoa-

ted and HAp coated Nitinol electrode, in the form of Ny-

quist and Bode plots, are presented in Fig. 8.

The impedance data were fitted using EEC model

composed of an R-CPE parallel combination in series with

an ohmic resistance Rel, where R is the polarization

Table 2 Values of coefficients aCza and diffusion coefficients

determined according to the cyclic voltammetry criteria

m/mV s-1 aCza D 9 106/cm2 s-1

120 0.318 3.916

100 0.348 3.579

70 0.384 3.243

50 0.397 3.137

30 0.400 3.113

20 0.421 2.958

10 0.471 2.644

Fig. 6 SEM images of Nitinol coated with (a) brushite coating and (b) HAp coating
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resistance Rp and CPE is used instead of ideal capacitance,

C due to the frequency dispersion (mostly attributed to the

‘‘capacitance dispersion’’) [38]. The interfacial capaci-

tance, C was calculated using Eq. (1). Table 3 shows

numerical values for the circuit parameters.

The protecting efficiency of the electrochemically

deposited HAp film was calculated using the relation:

g ¼ ðRp;ðNiTijHApÞ � Rp;ðNiTiÞÞ=Rp;ðNiTijHApÞ ð11Þ

where Rp,(NiTi|HAp) and Rp,(NiTi) are the values of Rp in

Table 3. The protecting efficiency of 83 % indicates good

corrosion resistance of Nitinol coated with electrochemi-

cally deposited HAp film.

4 Conclusions

CaP coatings on the Nitinol surface were formed using two

low-temperature methods: sol–gel and electrochemically

assisted deposition. The sol–gel method offer the oppor-

tunity to form biphasic CaP coatings on metallic implants

and to create a grafting material with high bioactivity and

bioresorbility for medical applications. Electrochemically

assisted method offer opportunity to form bioactive Ca-

def. HAp deposits on the geometrically complex surfaces

of metallic implants with low residual stresses and to

conrol cotings morphology and chemical composition. The

barrier properties and corrosion resistance of CaP coated

Nitinol electrodes were tested in the Hanks’ solution

using EIS measurments. In the sol–gel procedure, thermal

treatments caused the formation of the surface film of

duplex structure (CaP coating beneath thermally formed

TiO2) that provide higher polarization resistance values

(blocking interface) in comparison to the surface film

formed by the electrochemically assisted procedure. In the

later case, the protecting efficiency of 83 % indicate good

corrosion resistance of HAp coated Nitinol substrates.
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