
Vol.:(0123456789)1 3

Information Technology and Management (2023) 24:247–266 
https://doi.org/10.1007/s10799-022-00372-w

Conflict management in agile distributed development: evidence 
from product development and services engagements

Ashay Saxena1   · Shankar Venkatagiri1 · Rajendra K. Bandi1

Accepted: 21 July 2022 / Published online: 17 August 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Agile approaches being practised by multiple teams operating remotely are widely adopted for large software development 
efforts these days. An agile setting is typically characterized by flexibility, to accommodate changing customer demands for 
continuous delivery of business value. A distributed setting brings about multiple demands for stability, in terms of a push 
for clear specification of requirements and design, and a big picture product definition. Therefore, implementing agile dis-
tributed development (ADD) projects results in an inherent conflict that must be reconciled. This article attempts to provide 
nuanced clarity on the notion of conflict between flexibility and stability and its management across variants of an ADD 
setup. Through multiple case studies, our findings suggest that the specific mode of agile project engagement and distributed 
team configuration drives the response to flexibility and stability respectively. Leveraging ambidexterity as a theoretical 
lens, this study contributes to the literature by providing insights beyond the earlier conceptualization of flexibility-stability 
conflict for the ADD setting. It considers contextual elements to understand the dynamics of conflicting forces. An empirical 
contribution of this research is the managerial framework that should assist practice in future implementations.

Keywords  Agile distributed development · Ambidexterity · Conflict management · Flexibility · Stability

1  Introduction

Over the last two decades, organizations have come to 
embrace agile approaches as a ‘better way of developing 
software’ [1]. Traditionally, teams developed software 
employing a sequential approach, such as the Waterfall 
model. Requirements drawn up front constituted a contract, 
which was expected to be implemented across time, with 
periodic milestones bringing the customers and develop-
ers together. Feedback loops were lengthy, resulting in 
rework, wasted resources, and dissatisfied customers. Agile 
aimed to address the shortcomings of such approaches by 
emphasizing close customer collaboration over contractual 

compliance. Studies have established the criticality of cus-
tomer involvement to the success of an agile project [16, 33].

Agile practices were originally conceptualized and elabo-
rated in the context of a collocated, single team [17]. This 
was primarily due to the richness that face-to-face commu-
nication provided to teams that were expected to collaborate 
closely on project tasks. Over time, video conferencing tools, 
capably supported by Internet bandwidth, began to deliver a 
sense of realism to transactions across geographies, paving 
the way for businesses to execute their software projects in 
a distributed mode. Forces of globalization have now made 
it imperative for organizations to carry out their large-scale 
engagements from geographically dispersed software devel-
opment centres [44]. This move is triggered by environmen-
tal factors such as faster time-to-market, access to technical 
resources across the globe, and prevailing wage differences.

However, for a distributed model to work, projects must 
address a host of configurational issues arising from work 
that is performed by teams dispersed across sites. Parnas 
[58] highlights the benefits of modular design for any soft-
ware. Managerially, teams can function without a constant 
need to communicate. Changes to modules can be made in a 
self-contained manner. Besides, modular designs are better 

 *	 Ashay Saxena 
	 ashay.saxena@iimb.ac.in

	 Shankar Venkatagiri 
	 shankar@iimb.ac.in

	 Rajendra K. Bandi 
	 rbandi@iimb.ac.in

1	 Information Systems, Indian Institute of Management 
Bangalore, Bangalore, India

http://orcid.org/0000-0003-2913-9658
http://crossmark.crossref.org/dialog/?doi=10.1007/s10799-022-00372-w&domain=pdf


248	 Information Technology and Management (2023) 24:247–266

1 3

comprehended by the teams. Baldwin and Clark [5] add that 
modularization helps manage complexity, parallelize work, 
and accommodate future uncertainty. In a distributed setting, 
the software artefact is decoupled into features and modules, 
which may be independently designed, developed, and tested 
at sites across the globe, with periodic integration. Alter-
natively, the functionality can be parceled out into larger 
components, which are then developed at multiple sites, with 
a fair degree of dependency. Over time, agile projects have 
come to employ a mix of these approaches so they can oper-
ate in a distributed mode.

Agile Distributed Development (ADD) is a model in 
which software projects are implemented by geographi-
cally distributed teams, following an agile methodology 
[65]. ADD implementations are more challenged compared 
to collocated agile efforts, or distributed efforts with a fixed 
plan; the distributed setting presents an inherent conflict [45, 
64, 65]. Software teams prefer working towards a plan that 
has been decided upfront. However, agility obliges them 
to handle new and volatile requirements on an ongoing 
basis. Moreover, distributed projects must weather chal-
lenges from spatial, temporal, as well as configurational dis-
persion across teams [56]. Whereas agile teams require the 
flexibility to continuously update the software artefact and 
deliver relevant functionality, distributed teams seek stabil-
ity to meet their project objectives in a predictable manner. 
This conflict is not peculiar to ADD project engagements. 
Researchers have examined multiple domains with similar 
conflicting demands between alignment and adaptability 
[28].

ADD projects operate in different engagement modes, 
depending on whether the teams are working towards deliv-
ering (1) off-the-shelf software for the wide market or (2) 
customized software for a specific client. ADD engagements 
are unique in that the flexibility-stability conflict presents 
itself across the duration of the project; the “infinite mal-
leability” of software artefacts [11], distinguishes it from 
settings such as manufacturing or semiconductors, where the 
prospect of modification decreases over time. This makes it 
worthwhile to explore the nuances of the conflict, and study 
management approaches that are followed in varied ADD 
contexts, ranging from software products to services. The 
context-driven insights that emerge will help software teams 
better manoeuvre their way through an ADD implementa-
tion. This leads us to our first research question:

RQ1:  What is the nature of the flexibility-stability conflicts 
that arise in different forms of ADD engagement?

Research suggests using the lens of organizational 
ambidexterity to explicate and manage the flexibility-sta-
bility conflict within ADD settings (cf. [65]. Ambidexter-
ity refers to the specific ways adopted by an organization 

and/or a business unit to reconcile the tensions that arise 
while dealing with conflicting choices. This could involve 
the creation of separate units or structures to handle the 
duality [24, 75], alternatively, an appropriate context may 
be created for a business unit [28]. A closer examination 
(cf. [69] reveals that the choice of the specific form of 
ambidexterity to guide the research relies upon: (1) where 
it needs to be pursued and (2) how it needs to be pur-
sued. The ADD setup demands simultaneous pursuit of the 
conflicting demands between flexibility and stability in a 
single project. Hence, a contextual form is appropriate to 
manage trade-offs, based on a ‘project context’ in which 
the teams carry out their work. ADD teams can synthesize 
their responses to problems that arise by combining formal 
and informal elements of this context. For instance, a team 
can have precise role specifications for each individual 
but provide the freedom to span cross-site boundaries for 
project related matters. These contextual characteristics 
have direct implications on the way ADD projects are exe-
cuted. However, the literature on ADD has seldom focused 
on such details to derive insights for practice (cf. [38]. 
Keeping in mind the dichotomy between product develop-
ment and services projects, our study addresses a second 
research question:

RQ2:  How do software teams manage the conflict between 
flexibility and stability, across different forms of ADD 
engagement?

This paper reports the results from field research using 
an exploratory multiple case study approach [81]. The 
research includes two cases each of product development 
and services engagements to examine the flexibility-sta-
bility conflict. We also examine variations in team con-
figuration across sites across these projects. Our research 
contributes to the theory of ambidexterity by extending the 
notion of ‘project context’ for a given ADD setting. Prior 
literature has established that the contingencies experi-
enced by ADD teams due to prevalent contextual elements 
remain to be examined (cf. [65]. Based on the interplay 
between these elements, we present a framework that can 
guide ADD teams in handling the dual demands of flex-
ibility and stability.

The rest of the paper is organized as follows. The next 
section presents a review of the key literature and theoreti-
cal foundations that serve as the basis for our study. This is 
followed by a section that highlights our research design. 
Subsequently, we present the findings from the case stud-
ies, which address the research questions. The penultimate 
section discusses the relevance of these findings in relation 
to earlier works. The article concludes by summarizing the 
contributions of this research.



249Information Technology and Management (2023) 24:247–266	

1 3

2 � Literature review

2.1 � Agile distributed development

Literature on ADD can be grouped into the following 
themes: (1) Studies that highlight the interplay between 
agile principles and the dimensions of distributedness, 
(2) Studies that present agile practices that are tailored 
to suit the project context, and (3) Studies that showcase 
the control, communication and coordination mechanisms 
followed in these settings.

The first theme highlights the role played by agile prin-
ciples in tackling challenges that arise due to the distrib-
uted nature of software teams. Dullemond et al. [23] sug-
gest that agile principles can alleviate risks due to spatial, 
temporal, and socio-cultural dispersion; each principle has 
a concomitant effect on team behaviour. For example, if 
the teams rely on close collaboration, then this indirectly 
enhances informal communication and eases initiating 
contact between teams spread across geographies.

Holmström et al. [35] highlight the positive influence of 
practices that are enshrined in eXtreme Programming (XP) 
and Scrum. For instance, pair programming demands devel-
opers to spend time together on the codebase, thus reducing 
the severity of temporal distance. For teams that are spread 
across geographies, pairing encourages them to increase the 
time overlap, and leverage the expertise with a specific code 
module across multiple locations [4, 10, 41]. The findings 
reveal that ceremonies like Scrum planning enhance the 
“teamness” among distributed teams. The developer-centric 
qualities of agile practices are shown to promote commu-
nication and collaboration, and reduce the effects of socio-
cultural distance. These results pertain to a specific scenario 
involving dispersion among the members of a single team.

Lee et al. [45] recommend that agile methods must be 
adjusted to embrace more discipline and rigor in distrib-
uted environments. They argue that though agile does not 
mandate extensive documentation, capturing and sharing 
tacit knowledge becomes critical in global project con-
texts. With the geographical separation, formal commu-
nication modes such as email and wikis take priority over 
informal modes such as phone calls and messages.

Ramesh et al. [64, 65] interpret such demands as com-
peting ideologies between the “relaxed” expectations of 
agile and the realities of a distributed setup, resulting in 
tensions faced by ADD teams. They suggest a mix of bal-
anced practices that could assist teams in their endeavour 
to execute ADD efforts in a smooth manner. For instance, 
developer tools could enable a mix of minimally docu-
mented requirements (such as short use cases), these are 
supplemented with informal communication channels (like 
a video chat) to coordinate the work.

Building upon these insights, the second theme focuses 
on the adaptations of agile practices to suit a distributed pro-
ject context [70]. Individual ADD teams practising Scrum 
can embrace a formal meeting practice called ‘Scrum of 
Scrums’, where representatives of each constituent team 
come together and discuss their progress [39, 57, 72]. This 
group will work towards identifying and eliminating inter-
team blockers and dependencies.

The agile approach promotes the idea of self-organizing, 
cross-functional teams. With the added dimension of dis-
tributedness, newer mechanisms for control, communication 
and coordination are in order. The third theme elaborates on 
these “3Cs”. In an ADD context, control refers to scrutiniz-
ing the actions taken by the developers to fulfil the expec-
tations of the customer and effectively respond to chang-
ing user requirements, [49]. Persson et al. [60] suggest that 
formal control practices which involve measurement and 
evaluation of outcomes are predominantly carried out in 
conjunction with an informal clan-like control in the setting.

The importance of formal as well as informal communi-
cation for agile software development is widely recognized 
[37, 43, 50]. Formal modes include “official meetings dur-
ing inception, weekly meetings and daily stand-ups, and 
specification documents from clients” [21]. Other forms 
of interaction such as casual communication, online chat 
and short messenger service (SMS) constitute the informal 
mode. Agile methods rely heavily on informal face-to-face 
communication, but distributedness mounts challenges rang-
ing from team size and distribution to technology issues [2]. 
ADD teams usually embrace strategies that involve direct 
communication between developers and a well-defined cus-
tomer [42].

Task dependencies and team configuration play a central 
role in the division of work on software projects. At the level 
of an individual program, Podgurski and Clarke [61] classify 
dependencies between statements as syntactic and semantic. 
Cataldo [15] generalizes these concepts to large-scale soft-
ware systems; a function call from one module to another 
links the two syntactically, whereas they are semantically 
linked if one module can affect the execution behaviour of 
the other. These linkages have implications on task paral-
lelization and team formation. Scaling and distributing the 
effort across geographies further complicates this picture. 
Successful project engagements competently manage inter-
dependencies among team members; coordination refers to 
the act of managing these dependencies [48]. Agile develop-
ment relies on informal mechanisms (coordination by mutual 
adjustment) with the key emphasis on people and creativ-
ity. In contrast, distributed software development relies on 
formal mechanisms (coordination by standardization) to 
exploit detailed documentation, and address impediments 
to communication due to the geographical separation [64]. 



250	 Information Technology and Management (2023) 24:247–266

1 3

Balancing the two coordinating mechanisms poses a major 
challenge to using agile in a distributed context [34].

Across all three themes, the research on ADD suggests 
that adaptations to agile have been discussed in the greater 
context of distributed development. Empirical research that 
concerns the handling of inherent conflicts treats ‘agile’ and 
‘distributedness’ as broad terms, with a diverse perspective 
on elements of managerial interest. The existing research 
seems to lack a nuanced discussion around the execution of 
ADD projects under different kinds of engagement models. 
Variations across the type of customer involvement present 
contingencies to the ways in which requirements are elic-
ited and business value is delivered by the software teams 
from across sites. We believe that narrowing our focus to 
the specific ADD contexts would be of significant interest 
to the community.

2.2 � Software project engagements

Arora et  al. [3] classify software project engagements 
into “custom developed software and packages or generic 
software products”. Xu and Brinkkemper [79] supply an 
alternate categorization as tailor-made software and prod-
uct software. Whereas a single customer forms the focus 
of tailor-made software efforts, products are created for a 
broader market. Tailor-made software can be developed 
either in-house or on a contractual basis with a vendor. Prod-
uct software can be business-to-business (B2B) or business-
to-consumer (B2C). Xu and Brinkkemper clearly differenti-
ate the categories along development lifecycle and methods, 
requirements and release management, architecture, and 
delivery and implementation. To illustrate, the architecture 
for tailor-made software can enjoy more flexibility than for 
product software, which must take a wide user base as well 
as multiple versions into account; in addition, it must be 
“future proof”.

Software product engagements involve developing “off-
the-shelf software for the mass markets” [62], or enhancing 
existing packages with new features. Product teams must con-
tinually interpret the needs of a vast external market, while 
soliciting sustained participation from stakeholders within 
the organization [46]. They must autonomously decide what 
functionality to include in a version, as well as the timeline 
to release it to the intended market segments [19, 62, 66]. 
This presents a need to precisely plan the content of a product 
release [13, 14, 31]. Organizations must also anticipate future 
products that influence consumer demands through break-
throughs and innovation. The success of a product develop-
ment project is measured in terms of “sales, revenue, market 
growth and the ability to create flexible product architecture 
that can support future releases” [26].

In this paper, we term tailor-made software efforts as ser-
vices engagements. Over the decades, the scope of software 

services has expanded to technology consulting, system integra-
tion, custom development, package implementation and appli-
cation outsourcing maintenance [52]. Stakeholders are expected 
to observe a key tenet of agile, namely, close customer involve-
ment at every stage of development. While these projects typi-
cally service a client team that sits at one location, the software 
may be developed at multiple centres across the globe. Even in 
instances when the overarching goals of two efforts are similar, 
the actual implementation varies from one customer to another, 
depending on their business processes and information systems 
[71]. Project success is measured by the fulfilment of customer 
needs upon the completion of work [26].

With a sharp focus on close customer collaboration and 
rapid creation of business value, agile methods capably sup-
port the perspective of software services projects; such an 
alignment is lacking in the case of product development 
projects. The contingencies highlighted above present addi-
tional constraints, beyond those faced during agile execution 
in a distributed setup. A holistic view of these contingencies 
induced by the unique characteristics of the project engage-
ments is crucial to draw implications for agile execution in 
distinct contexts. Our research focuses on the inherent con-
flicts faced by diverse ADD engagements, and their manage-
ment across both product development and services space.

2.3 � Ambidexterity

Ambidexterity refers to the pursuit of conflicting demands 
that require trade-offs [24]. The most extensively studied 
trade-off in business literature has been between explora-
tion and exploitation. Typically, the growth prospects of an 
organization depend on its propensity to ‘explore’, whereas 
its immediate survival depends on its capacity to ‘exploit’. 
However, it is difficult to establish an optimal mix of the 
two [47]. Generally, organizations tend to be biased towards 
exploitation, given their emphasis on short term success. 
However, activities that cover both aspects are critical for 
organizations to prosper [8, 63].

The second important trade-off addressed by ambidexter-
ity studies is between alignment and adaptability. Alignment 
refers to the actions of an entire business unit pursuing a uni-
fied goal. Adaptability refers to its ability to meet changing 
demands in the task environment. Aside from a few excep-
tions (see [12, 59], this duality has been examined only at an 
overall business unit or team level. Business units require a 
conducive organizational context to carry out their tasks and 
meet competing demands. Leaders of these units ensure that 
such a context is created [28].

The alignment-adaptability trade-off has been made cen-
tral in settings with conflicting objectives. Studies on out-
sourced software development (e.g. [12, 74] highlight the 
simultaneous ability of a vendor to adhere to client needs 
and to address evolving client requirements. Client needs 



251Information Technology and Management (2023) 24:247–266	

1 3

refer to the output expectations from a vendor in terms of 
cost, scope and quality; these may be specified in a contract. 
Evolving client requirements refer to definitional updates 
made to the artefact that is being developed. Such settings 
provide an inherent conflicting demand for alignment and 
adaptability.

There are two major ambidextrous approaches to man-
age these trade-offs: (1) Structural [75], and (2) Contextual 
[28]. Typically, exploration–exploitation trade-offs have 
been managed by following a structural approach, via the 
creation of “dual structures”; each sub-unit handles one part 
of the duality (e.g., [8] and [55, 75, 77]. On the other hand, 
alignment-adaptability trade-offs have been handled by fol-
lowing a contextual approach, this involves harnessing a 
favourable context within the business unit itself to enable 
the adequate processes (e.g., [12, 40, 59, 65, 73, 74].

In ADD settings, Ramesh et al. [65] flag the infeasibil-
ity of any structurally ambidextrous response that involves 
splitting the organization into collocated agile and globally 
distributed divisions. Given that the two aspects are insepa-
rable for ADD, they suggest developing contextually ambi-
dextrous responses to handle the problem. This demands a 
favourable project context, which is characterized by perfor-
mance management as well as social elements, in order for 
individuals to carry out their work [68].

Performance elements are defined by the behaviour-
framing attributes of discipline and stretch, whereas social 
elements are captured by relational attributes of support and 
trust [27, 28]. ‘Discipline’ induces team members to volun-
tarily strive to meet all the expectations generated by their 
explicit or implicit commitments, while ‘stretch’ induces 
them to voluntarily strive for more, rather than less ambi-
tious objectives. ‘Support’ induces team members to lend 
assistance and countenance to others, while ‘trust’ induces 
them to rely on the commitments of each other. The interac-
tion between these variables results in building ambidex-
trous capabilities.

Recent years have witnessed several debates (cf. [7, 36] 
around the conceptualization of ambidexterity. Benner and 
Tushman [7] address the critiques and suggest the need 
to take a closer look at how ambidexterity is exercised in 
varied settings. In line with their articulation, the main 
discourse continues to focus on how such a capability is 
developed. Huang et al. [36] points out that despite an 
overarching emphasis on the structural and contextual 
strategies, “few studies have explained what people actu-
ally do to accomplish ambidexterity”. Through an empiri-
cal study, they describe the emergence of practices from 
being transactional at the onset to being more relational 
in the subsequent phases. This site-shifting over time, 
through the development of a relationship between IT-
related practices and practitioners, explains how ambidex-
terity is achieved in the setting.

In a similar vein, Gregory et al. [32] conduct a micro-
foundational level study to explain the paradoxes faced by 
managers in IT transformation programs, and how they deal 
with them. They present managerial responses that involve 
a mutual blending of IT and business interests to achieve 
IT transformation objectives. Another empirical study by 
Zimmermann et al. [82] on corporate innovation initiatives 
provide evidence for how frontline managers assign less sig-
nificance to senior managers ambidextrous strategic choices. 
Instead, the findings suggest that frontline managers prefer 
to keep the focus on configurational practices to cope with 
competing forces.

In line with the call by Nosella et al. [54] and recent find-
ings by Zimmermann et al. [82], future research needs to 
analyze ambidexterity at a micro level, through the lens of 
organizational practices and routines. Our research takes a 
‘practice-centered’ approach to help develop an understand-
ing of the mechanisms followed by software teams to handle 
conflicting forces.

3 � Research design

To understand the complex phenomenon of agile distrib-
uted development (ADD), we adopt a multiple case study 
approach with embedded design involving multiple sub-
units of analysis per case [81]. Our review of the literature 
reveals that research on conflicts faced by teams in an ADD 
setting is at a nascent stage. Hence, an exploratory approach 
appears to be suitable for the study. Multiple case studies 
increase the methodological rigor by strengthening the pre-
cision and validity of the findings [51], allowing cross-case 
analysis [6] and making the evidence more compelling [80].

Examining multiple projects has helped us arrive at a 
framework to assist future ADD implementations. While 
identifying potential conflicts across ADD teams, the 
framework also suggests concrete actions that lead to better 
project outcomes in terms of software artefacts and team 
relationships. The case selection is contingent upon the 
dual dimensions of agility and distributedness. Following 
Cataldo’s [15] classification based on task modularization 
for globally distributed software development, we examine 
‘distributedness’ dimension along the lines of autonomous 
vs inter-linked team split across sites. Besides, we rely upon 
the long-standing classification (cf. [3, 79] of product devel-
opment vs services engagements to study ‘agile’ attribute of 
customer involvement for our case settings. Table 1 captures 
these classifications and illustrates the case selection criteria 
followed for this research.

Consequently, a 2 × 2 research design (see Fig. 1) will 
ensure that we involve a significant number of revelatory 
cases that span diverse ADD contexts.



252	 Information Technology and Management (2023) 24:247–266

1 3

Ideally, we must examine one project within each of the 
four grid cells to serve the purpose of ‘theoretical replica-
tion’ [81]. We could then investigate the variance in our 
conclusions along a specific agile attribute (e.g., customer 
involvement) and a distributedness attribute (e.g., configu-
rational differences).

3.1 � Project sources

All projects that we have chosen to study have been following 
agile in a distributed setup since their inception. They all have 
sufficient maturity, with at least one-quarter of development 
effort completed at the time of our research investigation. Pro-
gress is typically measured on these projects by examining 
the team’s velocity and burndown chart. All the teams have 
reasonable agile process experience. These factors enable us 
to investigate contextual elements, which have stabilized over a 
period. We maintain homogeneity across projects by selecting 
engagements that lie within a small range of sizes, between 
three to ten software subteams. On the other hand, cases from 
heterogeneous domains throw light on a variety of issues.

To meet case selection criteria, we have reached out to 
product development as well as services-oriented software 
organizations. These are multinational corporations (MNCs) 
spread across geographies, providing a fertile ground to 
study the effects of distributedness among agile teams. 
These organizations have facilitated access to multiple pro-
jects. Hence, we adopt a “controlled opportunistic” research 
design, taking advantage of multiple sources of information 
as and when they present themselves [25].

The four organizations chosen for the research include a 
semiconductor major, a healthcare IT major, an IT consult-
ing major, and an IT services major. Table 2 summarizes 
the four cases we have studied across these organizations. 
Types I through IV refer to the 2 × 2 classification of Fig. 1.

The product-focused cases entail developing software 
solutions for a wide market. Proj ChipSys implements a 
System-on-Chip (SoC) solution aimed at enhancing some 
of the existing capabilities for wireless and mobile comput-
ing. Proj HealthSys focuses on the user and organization 
management modules for a ‘Healthcare Digital’ platform, 
which is an end-to-end solution for imaging applications.

The services-oriented cases involve developing applica-
tions to suit the needs of a single client. Proj TrainSys imple-
ments a reservation system for a train aggregator, which sells 
tickets on behalf of train operating companies. Proj HotelSys 
caters to a website and mobile application requirements for 
a conglomerate in the hospitality sector.

3.2 � Data collection

The sampling strategy ensures that significant projects are 
selected for insights and variety. We have undertaken data 
collection across the case organizations in a staggered man-
ner. Purposive sampling has guided our selection of further 
cases, contingent on the codes that have emerged from a 
preliminary analysis. This has helped us develop theory on 
an emergent basis [29]. We have restricted our attention to 
one case project at a given time; this helps us refine the data 
collection on an ongoing basis and signal new areas to be 
explored in subsequent cases.

Semi-structured interviews of 45–60 min duration form 
the primary source of data collection across the projects. 
These interviews attempt to unravel the challenges faced 
by ADD teams in the given project setting, the nature of 
interactions among the distributed teams, and managerial 
practices that are followed at each project site. We examine 
the involvement of diverse roles in the setup, such as pro-
ject managers, product owner, scrum master and develop-
ers. A common guideline has been followed to interview 
each of these profiles. All interviews are recorded and the 
transcript, together with the researcher’s understanding of 

Table 1   Case selection criteria

Agile attribute

Type of customer involvement Direct: An actual customer engages with the development team on project related matters (services engagement)
Indirect: A proxy customer, in the form of a group of representatives, provides directions to the development 

team (product development)

Distributedness attribute

Configurational differences Autonomous: Teams working on fairly independent modules across sites
Inter-linked: Teams working in a closely coupled mode across sites

Fig. 1   Research design



253Information Technology and Management (2023) 24:247–266	

1 3

the setting, are shared with the interviewee to check for any 
mistakes of commission and omission, and for any incorrect 
interpretations.

Other sources of data include documents, on-site obser-
vations, and a few project artefacts. We have obtained and 
analyzed documents such as process specifications to under-
stand the agile process steps for a given project. Alterna-
tively, a project manual helps us ascertain the particulars of 
the development work as well as team relevant details for the 
project. We have examined project artefacts such as the story 
wall at project sites. We have also undertaken in situ obser-
vations to study how team members collaborate on specific 
project tasks; these involve attending formal meetings as 
well as reflecting on team member interactions in the project 

bay. Tables 3 and 4 provides the exact break-up of the data 
sources across the case projects.

Barring the semiconductor major, all organizations pro-
vided us with a cubicle space in the project bay. Site visits 
have involved spending thirty minutes in the project bay to 
observe team interactions. We have passively participated 
in ceremonies such as sprint planning and review meetings, 
and have observed cross-site interactions on project related 
matters. Besides, we have attended a Scrum of Scrums meet-
ing to understand how teams handle cross-site dependencies 
for a project. We have witnessed at least one daily stand-up 
meeting on each case to observe the presence or lack of 
cohesion within a team. During these interactions, we have 

Table 2   Characteristics of software projects selected for the research

Product engagement Services engagement

Type I (autonomous) Type II (inter-linked) Type III (autonomous) Type IV (inter-linked)

Case(s) Proj ChipSys Proj HealthSys Proj HotelSys Proj TrainSys
Domain Semiconductor Healthcare Hospitality Transportation
Solution Mobile System-on-Chip 

(SoC) solution
Industrial cloud-based 

platform (PaaS)
Hotel website & Mobile 

application operations
Train reservation system

Elapsed time on the project 
as of our research investi-
gation

15 months 7 months 18 months A few years

Agile process experience Project driven initiative 
since inception

Enterprise-wide agile 
mandate

Project driven initiative 
since inception

Enterprise-wide agile 
mandate

Iteration lengths Sprint: 2 weeks
Release:
Depends on the function-

ality

Sprint: 2 weeks
Release:
Regular
(Three months)

Sprint: 2 weeks
Release:
Component-based, contin-

gent upon teams finish-
ing tasks across layers of 
architecture

Sprint: 2 weeks
Release:
Regular
(Bi-monthly)

Division of work 4 Scrum teams of 8 people 
each, working from 3 
sites

8 Scrum teams of 6 people 
each, working from 3 
sites

3 Scrum teams of 6 people 
each, working from 2 
sites

10 Scrum teams of 8 people 
each, working from 2 sites

Team split by geographies India (2) –
Germany (1) –
China (1)

India (3) –
France (3) –
USA (2)

India (2) –
USA (1)

India (4) –
UK (6)

Table 3   Data Collection across the projects

Organization Cases Interviews Documents Observations Project Artefact

Semiconductor major
[10 Site Visits]

Proj ChipSys 13 Process specification; Pro-
ject manual

Work at India site;
Meetings (Sprint Planning)

Virtual kanban board [Chart 
& XLS]; Sharepoint

Healthcare IT major
[29 Site Visits]

Proj HealthSys 12 Organization beliefs; Project 
manual

Work at India site Digital story wall

IT Consulting major
[16 Site Visits]

Proj TrainSys 13 Process specification; Pro-
ject article

Work at India Site Digital story Wall; Wiki Page

IT Services major
[10 Site Visits]

Proj HotelSys 11 Project bi-weekly report Work at India Site; Meetings 
(Daily scrum of scrums; 
Sprint planning; Sprint 
review)

Digital story wall



254	 Information Technology and Management (2023) 24:247–266

1 3

paid particular attention to the efforts made by team mem-
bers to alleviate the concerns faced by each other.

These sources have helped us triangulate the data and 
converge upon a single explanation for a phenomenon such 
as a conflict; the interviews allow us to form an understand-
ing of the central research themes, which are validated with 
on-site observations and project artefacts. In addition, the 
documents provide supplementary information that helps 
us comprehend the specifics of an ADD effort.

4 � Research methodology

This study adopts a neutral and passive perspective [22]. We 
follow a positivist approach informed by a priori concepts 
and the theory of contextual ambidexterity. We leverage a 
computer assisted qualitative data analysis software (CAQ-
DAS) package to develop codes by examining the data gath-
ered from interview transcripts and observations from site 
visits. The tool furnishes a feature to filter each of the data 
files, and search for specific keywords.

Coding techniques suggested by Corbin & Strauss [18] 
and Saldaña [67] have been adopted to form multiple levels 
of code, from open to selective. The data is organized at 
three levels:

•	 A case refers to an individual project that is being studied 
as part of our investigation.

•	 A construct represents a predefined theme based on 
the central elements of research. The list of constructs 
includes Challenges, Conflicts, Practices, and Project 
Context.

•	 A code corresponds to a symbolic assignment of a sum-
mative attribute for a fragment of qualitative data.

We have employed the Atlas.ti platform to develop codes 
from the collected data. The tool facilitates moving across 
categories and code. We have used it to infer relationships 
among entities, resulting in the creation of a graphical view 
of the data. Search operations can be harnessed to browse 
through relevant quotations that have been tagged with spe-
cific codes, enabling the identification of a theme across 
files, and observing how multiple themes can be interrelated 
to form a secondary-level code.

4.1 � Coding process

We develop an initial set of codes to form preliminary 
‘categories’ around a phenomenon, to highlight important 
information without making an explicit attempt to distil the 
categories (open coding). Table 5 provides a sample of pre-
liminary codes.

Subsequently, we establish links based on similarities 
and differences across the multitude of preliminary codes to 
form secondary level categories (axial coding). Eventually, 
we make broad theoretical abstractions through a further 
refinement of the developed codes (selective coding). The 
constant comparative method has been deployed to generate 
theory [30]. This method ensures repeated comparison of 
newly collected data with the previous one. Table 6 presents 
an overview of the developed codes from one of the case 
projects, Proj HeathSys. Teams in this product engagement 
were building a cloud-based PaaS solution, with “produc-
ers” in India developing the platform, while “consumers” in 
Europe & USA focused on front-end applications.

Following the coding procedure, a rigorous within-case 
analysis has been carried out to develop a sound under-
standing of each project. We document each within-case 
analysis in the form of a report, which serves as an input 
for cross-case examination, to understand variations across 

Table 4   Details of interviews across each of the case projects

$ Brief round of discussion
*Sits onsite

Organization Cases Designation of interviewees Rounds of discussion

Semiconductor major
[10 Site Visits]

Proj ChipSys Software Project Manager (SPM), Execution Lead (EL) [also 
Scrum Master], Component Lead #1, #2, #3*, Technical Lead 
[also Product Owner]*, Developer

SPM & EL (5), SPM (3), Others (1)

Healthcare IT major
[29 Site Visits]

Proj HealthSys Director Engineering$, Portfolio Lead, Portfolio Manager, Engi-
neering Manager (EM) #1, #2, Agile Coach$, Scrum Master 
(SM), Technical Lead (TL)

EM#1 (2), EM#2 (2), SM (2), TL 
(2), Others (1)

IT Consulting major
[16 Site Visits]

Proj TrainSys Delivery Manager (DM), Iteration Manager (IM), Business 
Analyst, Quality Assurance Analyst, Technical Architect, Fea-
ture Owner [also Developer], Distributed Representative [also 
Developer]*, Developer

IM (4), DM (3), Others (1)

IT Services major
[10 Site Visits]

Proj HotelSys Group Project Manager$, Onsite Technical Project Manager*, 
Project Manager (PM) [also Scrum Master], Quality Assurance 
Analyst, Test Lead, Technical Lead (TL)

PM (5), TL (2), Others (1)



255Information Technology and Management (2023) 24:247–266	

1 3

the projects. The findings from these investigations provide 
insights on the research themes.

5 � Findings

This section synthesizes evidence from multiple cases 
to elucidate the conflict between flexibility and stability 
and its management for different ADD settings. We begin 
by discussing field observations concerning variations in 
response to (1) a demand for flexibility and (2) the need 
for stability.

5.1 � Demand for flexibility

We observe distinct differences in handling the demand for 
flexibility in product development and services projects. 
Product-focused cases are heavily reliant on ever-evolving 
market dynamics, and their influence on the way teams han-
dle change requests. Notably, the teams agree to craft and 
implement feasible refinements from market preferences that 
are managed and enunciated by a proxy customer. In con-
trast, services-oriented cases rely on an onsite client offering 
clear guidance based on the impact on cross-site coordina-
tion. These teams exhibit a more welcoming and committed 
handling of changing client expectations. The direct involve-
ment of a real customer in the software development process 
results in a greater push for embracing change requests on 
an urgent basis.

5.1.1 � Type A: Product Development

Proj ChipSys has an autonomous configuration, with teams 
working on fairly independent modules across multiple sites. 
The project has strong involvement by marketing represent-
atives; these proxy customers regularly update the teams 
on market expectations, which invariably involve change 
requests to the features under development. The Software 
Project Manager (SPM) explains how such requests are 
handled:

“A request originates from the customer through 
marketing [representatives]. It will be fed back to the 
cross-functional teams (XFT) to carry out a feasibil-
ity study. Once the feasibility of the request has been 
approved, it comes back as an official backlog item to 
development.”

In acknowledgement of the inputs, each software team 
may choose to realign their execution.

Proj HealthSys has an interlinked configuration, with 
teams working in a closely coupled mode across sites. A 
centralized product management group drives requirement 
changes, assisting teams across multiple sites by conduct-
ing a feasibility analysis of any modifications to their work. 
The Portfolio Manager who has oversight across geographies 
explains:

“Once the release level planning is done, I resume 
working on the backlog roadmap, and assess the fea-
sibility margins for execution. Usually, I engage prod-
uct owners, architects, and engineering managers to 
itemise what needs to be done, and to check whether 
everyone agrees with the items on the list or not.”

Upon receiving the updated requirements, the software 
teams attempt to realign their priorities and coordinate 
across sites, so they can deliver business value as a com-
bined unit.

5.1.2 � Type B: Services

Proj HotelSys has an autonomous configuration and must 
often handle ad-hoc requests from the client. As the Scrum 
Master explains:

“[…] Because of the services industry, we must bend to 
requests. Even though I don’t have the capacity due to 
existing priorities, I may have to stay back and deliver 
it. Several such instances have occurred. Especially, this 
sprint has been very tight – some people worked on 
weekends too. It’s not something we had planned, but 
because of the late arriving work, we did it.”

Table 5   Example of organizing 
data

File Data Code

06-HC-H-MGR-22012016\01 “People are experienced in this [India] team – provides 
engineering leadership, so are looked upon to take care 
of the challenges and come up with the right solutions.”

Stability: 
Special-
ist team 
members

06-HC-H-MGR-22012016\13 “Here we have senior people – they think about the 
customer, business value—so most of the time they will 
understand [a change request] and take it further. If a 
change is not acceptable, something is not logical, then 
we are all involved to discuss and decide whether we take 
it up or not.”

Project 
context: 
Disci-
pline



256	 Information Technology and Management (2023) 24:247–266

1 3

Table 6   Coding protocol

Construct Initial coding strategy Examples from case study
[Proj HealthSys]

Developed Code

Conflict Flexibility: Focus on the data 
chunk that represents the abil-
ity of software teams to provide 
continuous delivery of a work-
ing artefact

Stability: Focus on the data 
chunk that represents the need 
of software teams to predict-
ably meet project objectives in 
the setting

Scrum master:
“It becomes a challenge when we as producers 

[platform team] keep changing things from our 
side [owing to pivots in project expectations], and 
the consumer team [application team] is not yet 
ready to adopt it. We want them to adopt it as early 
as possible. Also, if we change something or miss 
anything during the impact analysis, then we place 
added emphasis [i.e. we may have to add or remove 
certain stories] to ensure that the workflow is not 
broken.”

Project manager:
“Collectively, teams [at a given site] are responsible 

for delivering the code. We want self-sustaining 
teams. We are going in that direction. Also, teams 
themselves come up with their areas of improve-
ment. Managers only get involved to understand and 
explicate more, rather than prescribing things.”

Flexibility: Managing volatile 
dependencies due to an ever 
changing market

Stability: Cohesively managing 
work at a given site

Contextual ambi-
dexterity

Assess the extent to which teams 
simultaneously demonstrate 
flexibility* and embrace the 
need for stability* in the setting

Note: ‘High’ on both these 
dimensions (*) signifies ambi-
dexterity [53]

Project manager:
On an average [over the last 5–6 sprints]:
How often has the software team adhered to accom-

plish project objectives determined for the site?
Ambidextrous capability

Never Rarely Sometimes Often Always
✓

How often has the software team been able to accom-
modate changes to the project plan?

Never Rarely Sometimes Often Always
✓

Project context Multiple levels:
[Performance elements]
Discipline
Stretch
[Social elements]
Support
Trust

Engineering manager:
“Release Train Engineer and Scrum Master are 

supposed to look after multiple things: (1) Day-to-
day perspective of how things are progressing, (2) 
Managing dependencies, and (3) Flagging risks at 
the right time”

Technical lead:
“Once technical challenges on a new API require-

ment is identified, there will be a small group con-
sisting of architects, tech leads, and product owners 
that will meet formally over WebEx. The group will 
identify the specifics of the requirement and suggest 
changes to the existing plan.”

Scrum master:
“Basically, if it’s something about a dependency or 

schedule, it will come to the Release Train Engineer. 
If it is about a clarification/change in requirement 
or any impact analysis that we have done for our 
change, it will again be through him.”

Engineering manager:
“We try to build a dependency map and see who is 

dependent on whom, and what you need from them. 
For example, if I need something from a different 
team, then during the release planning, we will 
make a dependency map – put a sticker and explic-
itly mention the date by which I need the deliver-
able. So, it is very clear for the other team.”

Discipline: Clarity in role speci-
fication

Stretch: Shared discretionary 
work effort

Support: Designated boundary 
spanner individual

Trust: Visibility of work pro-
gression



257Information Technology and Management (2023) 24:247–266	

1 3

Such unplanned requests result in an intermittent reliance 
across the sites to complete work. The onsite team lends 
a supporting hand, and shares responsibility with the vari-
ous offshore teams to ensure that the updated requests are 
developed on time.

Proj TrainSys with an inter-linked configuration is obliged 
to comply with the client’s expectations on an ongoing basis. 
The client in this case is a Train Operating Company (TOC). 
The Delivery Manager, who keeps track of the progress on 
work deliverables, remarks:

“Anything that originates from the client’s end leaves 
us with little choice. We just have to do it. The India 
team owns the vertical. If the client comes back saying, 
they need this feature and they are willing to pay for it, 
and it’s revenue for their business, then we will do it.”

The interlinked mode of engagement warrants continuous 
task coordination across sites to fulfil project expectations. 
With each instance of a change request, Proj TrainSys relies 
on dedicated representation from across sites to ensure that 
client demands are adequately met.

Overall, we see that product-focused cases rely upon 
software teams implementing feasible updates from evolv-
ing market preferences, whereas the services-oriented cases 
involve more committed handling of client expectations by 
the executing teams.

In light of our findings, we propose the following:

P1: Given an ADD setting, the mode of agile project 
engagement—whether there is indirect or direct customer 
involvement—has a direct bearing on the response to 
demand for flexibility

5.2 � Need for stability

Our case settings reveal that an autonomous versus inter-
linked work breakdown across sites results in distinct han-
dling of the need for stability. This time, we will contrast 
projects in the two ADD team configurations.

5.2.1 � Configuration I: Autonomous

Operating in a product development mode, Proj ChipSys 
wishes to ensure that a component is comprehensively man-
aged out of a given site. In the words of the SPM:

“We are emphasizing to the organization that we want 
to have a Centre of Excellence (CoE); the CoE will 
be the key focus for a business unit and a particular 
location.”

In the services-oriented setting, Proj HotelSys involves 
independent teams that work on a specific module or func-
tion from a given site. As the business analyst remarks:

“The reason we have identified individual teams and 
given them specific responsibilities is to make things 
simpler. To achieve the greater cause, the first respon-
sibility of the team is to achieve their own targets. 
Once that is accomplished, then probably they can 
look outward and ask - now that we have achieved our 
goals, is there something we can do to help others?”

The software teams rely on their independent respon-
sibilities to manage overall commitments for a given site. 
This also enables specific sites to control overheads, such as 
coordination costs, which could adversely affect the progress 
of the project.

5.2.2 � Configuration II: Inter‑linked

In the product development setting, Proj HealthSys has one 
site acting as a “producer” responsible to provide infrastruc-
ture, which “consumers” leverage to develop their applica-
tions. An engineering manager explains the mode of work-
ing at the India site:

“Since the platform [teams in India] needs to cater 
to multiple applications [teams in France and USA] 
at the same time with a similar set of capabilities, the 
teams here prefer to work jointly to ensure that site-
level commitments are handled adequately.”

Any slippage on delivering a dependent piece of work 
on time from a given site results in overall project delays. 
Therefore, the teams at a given site prefer to support each 
other in their endeavour to complete and deliver work to 
their counterparts as per the committed timeline.

In the services-oriented setting, Proj TrainSys has the 
front-end and back-end work addressed by different sites 
across geographies, with occasional overlaps. The teams 
again prefer to ensure that they work collaboratively at a 
given site to manage their commitments. As the delivery 
manager states:

“Every development site [involving multiple teams] 
will manage all stages, starting from the conceptual-
ization of a feature until it goes live. The entire lifecy-
cle is managed collaboratively by the respective unit.”

Overall, we witness that projects with an autonomous 
work breakdown across development sites have teams 
working in a self-contained mode at a given site to com-
prehensively handle a component or a feature, whereas 
projects involving inter-linked work breakdown across 
development sites involve teams working in a collabora-
tive manner at a given site to ensure that dependencies 
are adequately met.

In the light of our findings, we propose the following:



258	 Information Technology and Management (2023) 24:247–266

1 3

P2: Given an ADD setting, the type of distributed team 
configuration—whether it is autonomous or inter-
linked—has a direct bearing on the response to the need 
for stability

Integrating the pieces of evidence gathered across our 
case settings, Table 7 summarizes the findings on the notion 
of conflict between flexibility and stability for the ADD set-
ting. This presents a nuanced perspective on the central 
conflict of an ADD team’s need to accommodate change 
requests versus ensuring that the project progresses as per 
plan.

5.3 � Managing the conflict between flexibility 
and stability

The dual demands of flexibility and stability across our 
case settings have teams grappling with local, site-related 
work responsibilities while coordinating global, cross-site 
dependencies. Our investigation reveals that performance 
elements (e.g., clarity in role specification, time manage-
ment of meetings) enable teams to manage their responsi-
bilities effectively, whereas social elements (e.g., type of 
boundary spanning, extent of mutual responsiveness) help 
them handle cross-site relations.

We observe different kinds of managerial patterns across 
the cases (see Table 8), which provides us guidance for con-
flict management in an ADD setting.

Upon closer investigation, we witness the interplay 
between specific performance and social elements, which 
results in innovative coping mechanisms for the ADD set-
ting. We choose to illustrate only those that prominently 
manifest in the projects that we have considered.

5.3.1 � Interplay between Clarity in role specification 
and Type of boundary spanning

Operating in an autonomous distributed configuration, Proj 
ChipSys relies on sharply defined responsibilities for each 
team member. A dedicated manager role is responsible for 

tracking the progression of the project work. An execution 
lead ensures that all of the work from the India site is han-
dled in an adequate manner. Consequently, the setup is able 
to establish clear standards of performance and behaviour. 
The key responsibilities are clearly stated, and individuals 
take efforts to ensure that they fulfil them. This enables the 
teams to work in a self-contained mode and to handle their 
commitments in a responsive manner (stability).

With such clearly defined roles, we have seen that Proj 
ChipSys accords the freedom to team members to span 
cross-site boundaries and reach out to their counterparts to 
discuss and resolve project related matters. We also observe 
that clearly defining the responsibilities for each team mem-
ber results in specific ownership of project matters across 
sites. For instance, the managers collaborate across sites to 
discuss the progression of the overall project. The execution 
lead reaches out to their counterparts to provide intra-team 
updates and to seek clarifications.

A similar scenario can be witnessed in the autonomous 
context of Proj HotelSys. Except for the iteration manager 
(who also plays the Scrum Master role), the setting clearly 
defines roles for a business analyst, quality assurance analyst 
and developer. Again, team members have the freedom to 
reach out to their counterparts to conduct role-relevant dis-
cussions. This facilitates ease of handling cross-site relations 
especially in the wake of regularly evolving requirements 
(flexibility).

In an inter-linked distributed configuration, we witness 
role specifications and boundary spanning decisions that 
are distinct from the autonomous setting. Proj HealthSys 
relies on a significant overlap in the role definition of team 
members with the program-level individuals; responsibili-
ties intersect across the engineering manager, Scrum Master, 
release train engineer and value stream engineer roles. These 
overlaps enable the teams to allow multiple individuals to 
keep a focus on key project management activities, such as 
tracking work progression for a given site. Subsequently, 
they prefer to work in a dependent mode and handle their 
responsibilities in a collaborative manner (stability).

Table 7   Conflict between flexibility and stability

Product development Services

Autonomous Software teams work in a self-contained mode on specialized 
units at a given site while pushing to accommodate volatile 
requirements. They take evolving market preferences into 
consideration, up to a feasible extent

Software teams work in a self-contained mode 
to align with their specific work specializa-
tions for a given site. They rely sporadically 
on their counterparts, to manage regular client 
expectations in a committed manner

Inter-linked Software teams are pushed to work in a collaborative manner 
on their specialization at a given site, while faced with han-
dling extensive mutual dependencies across sites. They must 
consider evolving market preferences, up to a feasible extent

Software teams push to work in a collaborative 
manner on their specialization at a given site, 
while faced with frequent cross-site coordina-
tion of tasks. This helps them manage client 
expectations in a committed manner



259Information Technology and Management (2023) 24:247–266	

1 3

In the presence of such overlaps, we see an attempt to 
manage the chaos that arises from the shared responsibili-
ties. The setting relies on a designated cross-site boundary 
spanner, in the form of a dedicated release train engineer 
who resolves project related matters. This facilitates dedi-
cated cross-site coordination of tasks in the wake of updated 
customer demands (flexibility).

Overall, the clarity in role specification drives the cross-
site boundary spanning choices across three of the four pro-
jects under study. The remaining project serves to highlight 
an exception. Proj TrainSys (with inter-linked configuration) 
functions with an overlap in role specifications across man-
ager, feature owner, business analyst and technical architect. 
Despite such role overlaps, their team members can partake 
in cross-site discussions. Consequently, the setup engages 
in extensive intra-site discussions to ensure that miscom-
munication is avoided. However, the teams still experience 
chaos in the setting owing to multiple voices that generate a 
communication trap on project relevant matters.

In light of this evidence, we propose the following:

P3a: For an autonomous ADD configuration, if there is 
clarity in role specification, then the flexibility-stability 
conflict is best managed when the entire team is given the 
freedom to span cross-site boundaries for project related 
matters.
P3b: For an inter-linked ADD configuration, if there is an 
overlap in role specification, then the flexibility-stability 
conflict is best managed when a designated individual is 
assigned to span cross-site boundaries for project related 
matters.

5.3.2 � Interplay between Ownership of code and Team 
inclusivity in meetings

Both product development cases (Proj ChipSys and Proj 
HealthSys) have embraced weak ownership of code mod-
ules; any team member can modify the code, provided the 
module’s owner is kept in the loop. The accountability for 
a particular code module lies with a specific developer, 
which ensures that each team member actively handles their 
respective modules. At an aggregate level, this enables team 
commitments to be managed responsively (stability).

With the authority being split across individuals for sepa-
rate code modules, we have observed that the entire team 
participates in formal meetings, such as sprint planning and 
reviews. The planning meeting enables independent code 
owners to understand the expectations of the module. The 
review meeting requires them to showcase developed mod-
ules and receive feedback on the functionality. Even regular 
ceremonies, such as daily stand-up meetings mandate par-
ticipation by all team members to share updates on the work 
progression. Such an elevated level of inclusivity ensures 
that the entire team discusses project related matters among 
themselves (in regular meetings) as well as in the presence 
of counterparts (in formal meetings) on an ongoing basis. 
This facilitates the ease of handling project contingencies, 
especially during instances of updated market preferences 
(flexibility).

In direct contrast, both services-oriented cases (Proj 
HotelSys and Proj TrainSys) rely on collective code owner-
ship, wherein the whole team takes accountability for the 
entire codebase. Whenever a specific issue is raised over 

Tab. 8   Managerial patterns for ADD setting

Each of the grey colored boxes denote the synthesized evidence (across two projects for a given ADD type) gathered from the field



260	 Information Technology and Management (2023) 24:247–266

1 3

a module, the teams do not attribute it to a specific devel-
oper. Instead, the entire team readily takes account of the 
issue and seeks to jointly address it. This approach enables 
the entire team to appreciate specific features related to the 
codebase. They collaborate to ensure that bugs are resolved 
on an immediate basis, creating a strong focus to fulfil team-
level commitments (stability).

In the presence of collective ownership, we have observed 
that a subset of team members may participate in formal 
meetings such as sprint planning and review. With Proj 
HotelSys and Proj TrainSys, we have observed a quality 
assurance analyst taking the lead and presenting the software 
artefact to the customer at the review meeting. Along similar 
lines, a regular meeting, such as a Scrum of Scrums, does 
not necessitate participation from the entire team. In most of 
the cases, the Scrum Master and/or quality assurance person-
nel take the responsibility to present and discuss team-level 
progression on project work with their counterparts.

Whenever customer demands must be refined, these rep-
resentatives take the lead and engage in relevant discussions 
within their team, appraising the members of changes to 
the scope of requirements, and preparing to embrace modi-
fications to the backlog. Subsequently, these individuals 
interface with their counterparts to discuss dependencies or 
intermittent reliance on each other’s team for completion of 
the tasks. Such an approach enables the committed handling 
of cross-site efforts on project related matters (flexibility).

Overall, the code ownership approach drives team mem-
ber inclusivity in meetings across all the projects under 
study. Considering this evidence, we propose the following:

P4a: For a product-focused ADD setting, if there is col-
lective ownership of code, then the flexibility-stability 
conflict is best managed when the relevant team members 
actively participate in meetings.
P4b: For a services-oriented ADD setting, if there is 
weak (individual) code ownership, then the flexibility-
stability conflict is best managed when the entire team 
actively participates in meetings.

5.3.3 � Interplay between Time management of meetings 
and Visibility of work progression

Given an autonomous distributed configuration, Proj Chip-
Sys and Proj HotelSys rely upon complete visibility of work 
progression, in terms of the status of stories, task dependen-
cies and trends. They have adopted a proprietary tool that 
consists of virtual storyboard, which is readily accessible by 
each project stakeholder. The teams regularly update their 
progress on the tool to ensure that the most recent status of 
stories (completed, in-progress or yet to be taken up) is made 
available across sites. Every individual can track the move-
ment of stories at any given point in time. They also mark 

dependent stories on the board to clearly convey target dates 
for handling such work across sites. The tool also depicts the 
burndown chart for a given site and metrics such as veloc-
ity. These artefacts facilitate teams in managing cross-site 
discussions on project related matters, especially in the wake 
of regularly evolving requirements (flexibility).

When teams maintain complete visibility of work pro-
gression, we have seen that they conduct meetings in a 
disciplined manner. Each of the two case projects follows 
daily stand-up for a fixed duration, wherein the team mem-
bers refer to the storyboard and update individual progress. 
Along similar lines, meetings such as Scrum of Scrums or 
their derivatives (e.g. XFT meeting in the case of Proj Chip-
Sys) are also held for a precise time duration; the teams are 
reasonably aware of the discussion points and take stock 
of dependencies by referring to the virtual board. Formal 
meetings such as planning and review are also held in a 
timely manner. While team members discuss concerns and 
voice their opinions on stories, the meetings are completed 
on time. Such a disciplined nature of conducting meetings 
ensure that teams remain focused on their commitments and 
strive towards fulfilling them (stability).

A contrasting picture emerges for an inter-linked distrib-
uted configuration. Both the case projects (Proj HealthSys 
and Proj TrainSys) must rely on partial visibility of work 
progression. Despite sharing the most recent status of sto-
ries and flagging the movement on dependent tasks with a 
proprietary tool, we notice that Proj HealthSys teams refrain 
from sharing site-relevant trends (such as velocity and burn-
down charts) with their counterparts; they prefer to keep 
such metrics internal to a given site. Members of Proj Train-
Sys do not tag cross-site dependencies for reference. Instead, 
they prefer to discuss them over regular meetings. Overall, 
such partial visibility results in teams grappling with clarity 
on project movement from across sites on a real-time basis. 
When change requests arrive, this pushes them to engage in 
task-directed discussions with counterparts to handle cross-
site dependencies in a responsive manner (flexibility).

When teams maintain partial visibility of work progres-
sion, we observe that they conduct meetings in a more flexi-
ble manner. Proj HealthSys presents evidence for team mem-
bers stretching beyond the set agenda for regular meetings. 
Apart from sharing updates, the team members also discuss 
impediments faced in their tasks in daily stand-up meet-
ings. Consequently, the teams end up creating bandwidth 
beyond the stipulated time to ensure such discussions could 
be accommodated. We witness a similar trend in planning 
as well as review meetings. The planning meeting involves 
detailed discussion on the stories across sites, whereas 
the review meeting entails rich feedback on the developed 
stories. In addition, Proj TrainSys engages in the conduct 
of meetings such as story kick-off and desk check, which 
are respectively held at the beginning and completion of 



261Information Technology and Management (2023) 24:247–266	

1 3

each story. The objective of these meetings is to discuss the 
undertaken story for development in detail and to ensure that 
the acceptance criteria are being followed. Consequently, 
the teams follow a nimble approach towards the conduct of 
such meetings. This enables teams to gain significant clarity 
(through planning and kick-off) or process feedback (through 
review and desk check) on project deliverables to ensure that 
site-level commitments are seldom compromised (stability).

Overall, the visibility of work progression drives the time 
management of meetings across all the case projects under 
study. In light of this evidence, we propose the following:

P5a: For an autonomous ADD configuration, if there is 
complete visibility of work progression, the flexibility-
stability conflict is best managed when formal as well as 
regular meetings are conducted in a time-precise manner.
P5b: For an inter-linked ADD configuration, if there 
is partial visibility of work progression, the flexibility-
stability conflict is best managed when formal as well as 
regular meetings are conducted in a time-flexible manner.

5.3.4 � Interplay between Discretionary work effort 
and Mutual responsiveness across sites

Given an autonomous configuration, software teams from 
both the case projects (i.e. Proj ChipSys and Proj HotelSys) 
work in a self-contained mode at a given site. Each of the 
team handles either a specific module, feature or a compo-
nent. For instance, Proj ChipSys involves display/graphic 
module being handled at India site, the camera module get-
ting developed at the Germany site, and the video module 
being managed out of the China site. In such a scenario, 
we witness independent discretionary work effort of team 
members at a given site. They rely upon extensive intra-team 
support, where team individuals assume additional respon-
sibilities, to ensure that the module is handled adequately. 
Proj ChipSys entails swiftness of the team members to seek 
immediate clarifications among themselves and proceed with 
development at a given site. Proj HotelSys follows the con-
cept of core and feature team members, who regularly stretch 
their work boundaries. For instance, the technical lead (core 
team member) responsible for addressing code-related con-
cerns, also takes up stories for development to assist feature 
team members. This high level of intra-team support enables 
each of the team to handle their commitments such that pro-
ject objectives are adequately met (stability).

In the presence of such intra-team discretionary work 
effort, we observe that the teams rely upon the focused inter-
vention of specific members from across sites for project 
related queries. As the teams prefer to work in a self-con-
tained mode, they seem reluctant as a group to provide addi-
tional priority to sort cross-site related issues. Proj ChipSys 
presents evidence of teams across site acknowledging each 

other’s concern yet seldom initiating prompt actions. Thus, 
the teams rely upon repeated checks with specific individu-
als (i.e., Product Owner in these cases) to receive adequate 
responses. Proj HotelSys entails focused intervention from 
onsite team members that act as mediators between offshore 
teams and client as well as other vendor teams. In this sce-
nario, the onsite team takes up the responsibility to assist 
offshore teams in their endeavour to coordinate discussions 
across the site. This enables the teams to conduct focused 
cross-site coordination for project relevant matters, espe-
cially during instances of updated customer expectations 
(flexibility).

On the other hand, our inter-linked distributed configura-
tion cases (Proj HealthSys and Proj TrainSys) involve soft-
ware teams working in a collaborative manner at a given site. 
Proj HealthSys relies upon the willingness of teams to lend 
additional support to each other for handling contingencies 
faced at a given site. Similarly, Proj TrainSys depends upon 
leveraging the expertise of members across teams. Espe-
cially during instances when an individual has spent consid-
erable time at the distributed site, he/she is willing to readily 
share relevant insights across the teams. This high level of 
inter-team support enables the teams to jointly manage their 
commitments such that the dependent work is handled in an 
effective manner (stability).

In the presence of such shared discretionary work effort 
between teams at a given site, we witness that the teams rely 
upon dedicated representation from across sites for project 
related queries. As the teams engage with their demanding 
work effort for a given site, they seem to place the emphasis 
on a particular individual to ensure that cross-site coordina-
tion needs are sorted. Proj HealthSys relies upon the effort of 
a release train engineer to coordinate with the counterpart on 
project related matters. Proj TrainSys relies upon a specific 
representative who sits with the distributed unit to ensure 
that dependencies are effectively handled. This facilitates 
dedicated cross-site coordination of dependencies in the 
wake of an updated scope of requirements (flexibility).

Overall, the kind of discretionary work effort followed at 
a given site drives the nature of mutual responsiveness with 
the counterparts, across all the case projects under study. In 
light of this evidence, we propose the following:

P6a: For an autonomous ADD configuration, if there is 
independent discretionary work effort of team members, 
the flexibility-stability conflict is best managed when each 
team relies upon focused intervention of certain individu-
als for mutual responsiveness across sites.
P6b: For an inter-linked ADD configuration, if there is 
shared discretionary work effort between teams, the flex-
ibility-stability conflict is best managed when the cohort 
of teams rely upon dedicated representation of an indi-
vidual for mutual responsiveness across sites.



262	 Information Technology and Management (2023) 24:247–266

1 3

To summarize, each of the four interactions presented 
here involves a specific performance element and a social 
element (cf. [28]. The software teams across case projects 
have devised focused strategies to synchronize the handling 
of work responsibilities and cross-site relations. Thus, the 
project context serves to enable the software teams to exe-
cute their respective ADD efforts in a smooth manner.

Based on the findings from across the case projects, we 
present our ADD management framework (see Fig. 2) as 
follows.

6 � Discussion

A major contribution of our study entails providing greater 
clarity on the flexibility-stability conflict in a wide variety 
of ADD settings. In addition, this research extends ambi-
dexterity literature by explaining the interplay between the 
performance and social elements for a given project context, 
by suggesting concrete steps on how software teams can 
manage these forces, based on empirical evidence.

6.1 � Theoretical implications

Previous studies that have examined trade-offs in manag-
ing projects largely focus on the exploration–exploitation 
dilemma at an organization-level. In the IS domain, research 
has explicitly considered the trade-off between alignment-
adaptability at the business unit or team level; we harness 
this further to characterize the flexibility-stability conflict. 
Alignment refers to the pursuit of the entire unit working 
towards a common goal, whereas adaptability concerns the 
unit’s ability to meet changing demands in the task envi-
ronment [28]. Researchers [9, 78] have used the flexibility-
stability construct to highlight inherent conflicting forces in 
a given setting.

Lee et al. [45] emphasizes that agile methods, which 
encourage teams to embrace change, must be modified to 
incorporate more rigor and discipline in globally distrib-
uted contexts. Ramesh et al. [64, 65] highlight competing 
demands between the tenets of agile and distributedness in 
ADD projects; whereas an agile setting relies on informal 
processes to facilitate coordination, distributed settings 
typically employ formal mechanisms. Our study provides 
insights beyond this conceptualization of the central conflict 
in ADD settings. Our research identifies contextual elements 
that help us characterize the dynamics of these conflicting 
forces.

This study has implications for the theory of ambidex-
terity, which has been recognized as a valuable approach 
to understanding the dynamics of contingencies faced 
by organizations, business units and/or teams. Gibson 
and Birkinshaw [28] have characterized the elements of 

contextual ambidexterity, which guides business units and 
teams to handle conflicting forces.

Existing research [45, 64, 65] suggest techniques that 
teams can adopt to mitigate the conflict. Lee et al. [45] char-
acterizes these coping strategies along two dimensions: (1) 
Whether the strategy concerns the initiation or execution 
phase of the project lifecycle, and (2) Whether the strategy 
focuses on task-related, people-related or technology-related 
aspects. Ramesh et al. [64, 65] suggest practices in the form 
of formal and informal processes, which give rise to specific 
mitigation strategies to the conflicting demands. They map 
these strategies to the well-known antecedents (discipline, 
stretch, support and trust) of contextual ambidexterity.

Our work builds upon the approaches of the predecessors 
and specializes it further. Rather than directly focusing on 
general strategies (cf. [28] adopted by software teams, we 
leverage the notion of project context in each ADD setting 
to derive insights. We explicate discipline aspects in terms 
of (1) clarity in role specifications and (2) time management 
of meetings, and stretch aspects such as (3) discretionary 
work effort and (4) ownership of code; support elements 
in terms of (5) type of boundary spanning and (6) extent of 
mutual responsiveness; trust established by (7) visibility of 
work progression and (8) team member inclusivity in meet-
ings. We provide exemplars for how these elements manifest 
themselves in practice. Our case settings reveal interactions 
between performance and social elements in each ADD 
context, which help software teams manage the conflicting 
forces that are present in the setting.

6.2 � Practical implications

The domain of software development is characterized by a 
high level of requirements uncertainty [11], complexities 
of coordination arising from task inter-dependencies, arte-
fact evolution through continuous client involvement, wide 
swings in task performance by personnel with similar back-
grounds [20], and so on. General directives of organization 
theory do not directly translate to this context, given these 
differences. By consulting our case studies, practitioners 
specifically executing ADD projects can develop clarity on 
the nature of conflict between flexibility and stability that 
are prevalent in their setting. This research explores these 
forces in detail and provides a nuanced understanding of 
different types of ADD setups. Contingent upon their con-
text (see Fig. 1), the managers would be able to character-
ize the fundamental conflict in their setting. Equipped with 
this understanding, they can better execute their project 
implementation.

Moreover, this study shall assist practitioners in future 
ADD implementations by providing guidance on conflict 
management for the setting. This becomes even more rel-
evant given the current pandemic scenario which has made 



263Information Technology and Management (2023) 24:247–266	

1 3

distributed mode of work prominent. An empirical contri-
bution of this study is the ADD managerial framework (see 
Fig. 2) that we propose for handling such efforts. Through 
multiple case studies with varied agile and distributedness 
characteristics, we present the framework in action across 
several scenarios. The contextual elements reveal specific 
managerial patterns (see Table 8) for a given setting. These 
patterns could be leveraged in practice to develop team-level 
strategies for effective handling of the conflicting forces.

Subsequently, this study serves to inform managers to 
diagnose problems that may be present in an existing con-
text. The interactions between the specific performance and 
social elements highlighted in this research may be com-
pared with the prevalent contextual elements. In the event 
of a mismatch, inferences could be drawn from this study to 
make the project context more conducive to handle flexibil-
ity-stability conflict present in the setting.

This study also provides pointers to individuals on an 
ADD team. Our research reveals that the approach adopted 
by teams towards code ownership drives member partici-
pation in meetings. Moreover, clarity in role specifications 
has an influence on cross-site boundary spanning decisions. 

Such findings have implications for the salience of team 
dynamics in a given ADD setup.

Finally, our in-depth case studies paint a valuable picture 
of different types of ADD setups and lay a foundation for 
future researchers to develop and test propositions that are 
presented in this research.

7 � Conclusion

Since early 2000s, agile has primarily been considered 
suitable for a collocated work setting. However, the global 
realities continued the push for adapting agile in a distrib-
uted context. Fast forward to the 2020s, the pandemic has 
prompted organizations to foster hybrid work models; the 
restriction of collocation for agile teams has been further 
relaxed. ADD studies have gained more prominence in the 
wake of this development. Our research focuses on a central 
issue of analyzing inherent conflicts and their management 
in varied ADD setups.

The findings reveal that product-focused agile cases 
tend to implement only feasible updates to the market 

Fig. 2   ADD Managerial Frame-
work



264	 Information Technology and Management (2023) 24:247–266

1 3

demands, whereas the services-oriented cases exhibit a 
more committed handling of modifications arising from 
changed client expectations.

In our studies, we have seen one or more software teams 
operate out of a single geography. We find that the autono-
mous configuration forces each of these teams to work in 
a self-contained mode from their respective project site, 
whereas the inter-linked configuration results in these 
teams working in a collaborative mode to manage their 
commitments.

In summary, our research reveals that the type of agile 
project engagement, i.e., product development versus 
services, drives the response to demand for flexibility, 
whereas the distributed team configuration, viz. autono-
mous versus inter-linked split, drives the response to 
the need for stability in the ADD setting. To manage the 
conflicting forces, our case settings reveal interactions 
between performance and social elements in each ADD 
context. By consulting our cases, managerial patterns 
could be leveraged in practice to develop relevant strate-
gies for effective handling of the conflicting forces.

Funding  No funding was received for conducting this study.

Declarations 

Conflict of interests  The authors have no competing interests to de-
clare that are relevant to the content of this article.

References

	 1.	 Agile alliance. (2001). Retrieved from http://​agile​manif​esto.​org/ 
(Accessed on 1st June 2021)

	 2.	 Alzoubi YI, & Gill AQ (2014). Agile global software devel-
opment communication challenges: a systematic review. Paific 
Asia Conference on Information Systems (PACIS)

	 3.	 Arora A, Arunachalam VS, Asundi J, Fernandes R (2001) The 
Indian software services industry. Res Policy 30(8):1267–1287

	 4.	 Baheti P, Gehringer E, Stotts D (2002) Exploring the efficacy of 
distributed pair programming. Extreme programming and agile 
methods—XP/Agile Universe 2002. Springer, Berlin Heidel-
berg, pp 208–220

	 5.	 Baldwin CY, Clark KB (2003) Managing in an age of modular-
ity. Manag Modular Age: Archit, Netw, Organ 149:84–93

	 6.	 Benbasat I, Goldstein DK, Mead M (1987) The case 
research strategy in studies of information systems. MIS Q 
11(3):369–386

	 7.	 Benner MJ, Tushman ML (2015) Reflections on the 2013 decade 
award - “exploitation, exploration, and process management: the 
productivity dilemma revisited” ten years later. Acad Manag 
Rev 40(4):497–514

	 8.	 Benner MJ, Tushman ML (2003) Exploitation, exploration, and 
process management: the productivity dilemma revisited. Acad 
Manag Rev 28(2):238–256

	 9.	 Boehm B, Turner R (2004). Balancing agility and discipline: 
Evaluating and integrating agile and plan-driven methods. 

In Software Engineering, 2004. ICSE 2004. In: Proceedings. 
26th International Conference on (pp. 718–719). IEEE.

	10.	 Braithwaite K, Joyce T (2005) XP expanded: distributed 
extreme programming. Extreme programming and agile pro-
cesses in software engineering. Springer, Berlin Heidelberg, pp 
180–188

	11.	 Brooks FP (1987) No silver bullet. IEEE. Computer 20(4):10–19
	12.	 Cao L, Mohan K, Ramesh B, Sarkar S (2013) Evolution of gov-

ernance: achieving ambidexterity in IT outsourcing. J Manag 
Inf Syst 30(3):115–140

	13.	 Carlshamre P, Sandahl K, Lindvall M, Regnell B, Nattoch Dag 
J (2001). An industrial survey of requirements interdependen-
cies in software product release planning. In: Proceedings of the 
Fifth IEEE International Symposium on Requirements Engi-
neering, Los Alamitos, CA, IEEE

	14.	 Carlshamre P (2002) Release planning in market driven soft-
ware product development: provoking an understanding. Requir 
Eng 7(3):139–151

	15.	 Cataldo M (2007). Dependencies in geographically distributed 
software development: overcoming the limits of modularity. 
Doctoral dissertation, Carnegie Mellon University

	16.	 Chow T, Cao DB (2008) A survey study of critical success fac-
tors in agile software projects. J Syst Softw 81(6):961–971

	17.	 Cockburn A (2002) Agile software development. Pearson Edu-
cation, Boston

	18.	 Corbin J, Strauss A (2008) Basics of qualitative research: tech-
niques and procedures for developing grounded theory. Califor-
nia, CA, USA, Thousand Oaks

	19.	 Dahlstedt A, Karlsson L, Persson A, NattochDag J, Regnell B 
(2003). Market-driven requirements engineering processes for 
software products – a report on current practices. International 
Workshop on COTS and Product Software RECOTS, held in 
conjunction with the 11th IEEE International Requirements 
Engineering Conference, Los Alamitos, CA, IEEE

	20.	 DeMarco T, Lister T (2013) Peopleware: productive projects 
and teams. Addison-Wesley, Heidelberg

	21.	 Dorairaj S, Noble J, Malik P (2011) Effective communication 
in distributed Agile software development teams. In: Sillitti A, 
Hazzan O, Bache E, Albaladejo X (eds) Agile processes in soft-
ware engineering and extreme programming. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp 102–116. https://​doi.​org/​10.​
1007/​978-3-​642-​20677-1_8

	22.	 Dubé L, Paré G (2003) Rigor in information systems positivist 
case research: current practices, trends, and recommendations. 
MIS Q 27(4):597–636. https://​doi.​org/​10.​2307/​30036​550

	23.	 Dullemond K, van Gameren B, Van Solingen R (2009). How 
technological support can enable advantages of agile software 
development in a GSE setting. In: Global Software Engineer-
ing, 2009. ICGSE 2009. Fourth IEEE International Conference 
on (pp. 143–152). IEEE

	24.	 Duncan RB (1976) The ambidextrous organization: designing 
dual structures for innovation. Manag Org 1:167–188

	25.	 Eisenhardt KM (1989) Building theories from case study 
research. Acad Manag Rev 14(4):532–550

	26.	 Fogelström ND, Gorschek T, Svahnberg M, Olsson P (2010) 
The impact of agile principles on market-driven software prod-
uct development. J Softw Maint Evol Res Pract 22(1):53–80

	27.	 Ghoshal S, Bartlett CA (1994) Linking organizational context 
and managerial action: the dimensions of quality of manage-
ment. Strateg Manag J 15(S2):91–112

	28.	 Gibson CB, Birkinshaw J (2004) The antecedents, conse-
quences, and mediating role of organizational ambidexterity. 
Acad Manag J 47(2):209–226

	29.	 Glaser BG (1978). Advances in the methodology of grounded 
theory: theoretical sensitivity

http://agilemanifesto.org/
https://doi.org/10.1007/978-3-642-20677-1_8
https://doi.org/10.1007/978-3-642-20677-1_8
https://doi.org/10.2307/30036550


265Information Technology and Management (2023) 24:247–266	

1 3

	30.	 Glaser BG (1965) The constant comparative method of qualita-
tive analysis. Soc Probl 12(4):436–445

	31.	 Greer D, Ruhe G (2004) Software release planning: an 
evolutionary and iterative approach. Inf Softw Technol 
46(4):243–253

	32.	 Gregory RW, Keil M, Muntermann J, Mähring M (2015) Para-
doxes and the nature of ambidexterity in IT transformation pro-
grams. Inf Syst Res 26(1):57–80

	33.	 Hoda R, Noble J, Marshall S (2011) The impact of inadequate 
customer collaboration on self-organizing Agile teams. Inf 
Softw Technol 53(5):521–534

	34.	 Hole S, Moe NB (2008) A case study of coordination in dis-
tributed agile software development. Software process improve-
ment. Springer, Berlin Heidelberg, pp 189–200

	35.	 Holmström H, Fitzgerald B, Ågerfalk PJ, Conchúir EÓ (2006) 
Agile practices reduce distance in global software development. 
Inf Syst Manag 23(3):7–18

	36.	 Huang J, Newell S, Huang J, Pan SL (2014) Site-shifting as the 
source of ambidexterity: empirical insights from the field of 
ticketing. J Strateg Inf Syst 23(1):29–44

	37.	 Hummel M, Rosenkranz C (2014). Measuring the impact of 
communication in agile development: a research model and 
pilot test. In: Proceedings of the Nineteenth Americas Confer-
ence on Information Systems

	38.	 Jalali S, Wohlin C (2012) Global software engineering and 
agile practices: a systematic review. J Soft: Evolut Process 
24(6):643–659

	39.	 Jensen B, Zilmer A (2003) Cross-continent development 
using Scrum and XP. In: Marchesi M, Succi G (eds) Extreme 
Programming and Agile Processes in Software Engineering. 
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 146–153. 
https://​doi.​org/​10.​1007/3-​540-​44870-5_​19

	40.	 Kietzmann J, Plangger K, Eaton B, Heilgenberg K, Pitt L, Ber-
thon P (2013) Mobility at work: a typology of mobile communi-
ties of practice and contextual ambidexterity. J Strateg Inf Syst 
22(4):282–297

	41.	 Kircher M, Jain P, Corsaro A, Levine D (2001) Distributed 
extreme programming. Extreme Programming and Flexible 
Processes in Software Engineering, Italy, pp 66–71

	42.	 Korkala M, Abrahamsson P (2007) Communication in distributed 
agile development: a case study. In: Software Engineering and 
Advanced Applications, 2007. 33rd EUROMICRO Conference 
on (203–210). IEEE

	43.	 Korkala M, Abrahamsson P, Kyllonen P (2006) A case study on 
the impact of customer communication on defects in agile soft-
ware development. In Agile Conference, 2006, IEEE

	44.	 Lee S, Yong HS (2010) Distributed agile: project management in 
a global environment. Empir Softw Eng 15(2):204–217

	45.	 Lee G, DeLone W, Espinosa JA (2006) Ambidextrous coping 
strategies in globally distributed software development projects. 
Commun ACM 49(10):35–40

	46.	 Lehtola L, Kauppinen M (2006) Suitability of requirements pri-
oritization methods for market-driven software product develop-
ment. Softw Process: Improv Pract 11(1):7–19

	47.	 Levinthal DA, March JG (1993) The myopia of learning. Strateg 
Manag J 14(S2):95–112

	48.	 Malone TW, Crowston K (1994) The interdisciplinary study of 
coordination. ACM Comput Surv (CSUR) 26(1):87–119

	49.	 Maruping LM, Venkatesh V, Agarwal R (2009) A control theory 
perspective on agile methodology use and changing user require-
ments. Inf Syst Res 20(3):377–399

	50.	 Melnik G, Maurer F (2004). Direct verbal communication as a 
catalyst of agile knowledge sharing. In Agile Development Con-
ference, 2004. IEEE

	51.	 Miles MB, Huberman AM (1994) Qualitative data analysis: an 
expanded sourcebook. Sage

	52.	 Nambisan S (2001) Why service business are not product busi-
nesses. MIT Sloan Manag Rev 42(4):72

	53.	 Napier NP, Mathiassen L, Robey D (2011) Building contextual 
ambidexterity in a software company to improve firm-level coor-
dination. Euro J Inform Sys 20(6):674–690

	54.	 Nosella A, Cantarello S, Filippini R (2012) The intellectual struc-
ture of organizational ambidexterity: a bibliographic investigation 
into the state of the art. Strateg Organ 10(4):450–465

	55.	 Reilly CA, Tushman ML (2004) The ambidextrous organization. 
Harv Bus Rev 82(4):74–83

	56.	 O’Leary MB, Cummings JN (2007) The spatial, temporal, and 
configurational characteristics of geographic dispersion in teams. 
MIS Q 31(3):433–452

	57.	 Paasivaara M, Lassenius C, Heikkila VT (2012). Inter-team coor-
dination in large-scale globally distributed scrum: do Scrum-of-
Scrums really work? In: Empirical Software Engineering and 
Measurement (ESEM), 2012 ACM-IEEE International Sympo-
sium on (pp. 235–238). IEEE

	58.	 Parnas DL (2001) On the criteria to be used in decomposing sys-
tems into modules. In: Broy M, Denert E (eds) Pioneers and their 
contributions to software engineering. Springer Berlin Heidelberg, 
Berlin, Heidelberg, pp 479–498. https://​doi.​org/​10.​1007/​978-3-​
642-​48354-7_​20

	59.	 Patel PC, Messersmith JG, Lepak DP (2013) Walking the tight-
rope: an assessment of the relationship between high-performance 
work systems and organizational ambidexterity. Acad Manag J 
56(5):1420–1442

	60.	 Persson JS, Mathiassen L, Aaen I (2012) Agile distributed soft-
ware development: enacting control through media and context. 
Inform Sys J 22(6):411–433

	61.	 Podgurski A, Clarke LA (1990) A formal model of program 
dependences and its implications for software testing, debugging, 
and maintenance. IEEE Trans Softw Eng 16(9):965–979

	62.	 Potts C (1995) Invented requirements and imagined customers: 
requirements engineering for off-the-shelf software. In: Require-
ments Engineering, 1995, Proceedings of the Second IEEE Inter-
national Symposium on (pp. 128–130). IEEE

	63.	 Raisch S, Birkinshaw J, Probst G, Tushman ML (2009) Organiza-
tional ambidexterity: balancing exploitation and exploration for 
sustained performance. Organ Sci 20(4):685–695

	64.	 Ramesh B, Cao L, Mohan K, Xu P (2006) Can distributed soft-
ware development be agile? Commun ACM 49(10):41–46

	65.	 Ramesh B, Mohan K, Cao L (2012) Ambidexterity in agile dis-
tributed development: an empirical investigation. Inf Syst Res 
23(2):323–339

	66.	 Regnell B, Brinkkemper S (2005) Market-driven requirements 
engineering for software products. Engineering and managing 
software requirements. Springer, Berlin, Heidelberg, pp 287–308

	67.	 Saldaña J (2014) Coding and analysis strategies. In The Oxford 
handbook of qualitative research, Heidelberg

	68.	 Schulze P, Heinemann F, Abedin A (2008). Balancing exploitation 
and exploration. In: Academy of Management Proceedings (Vol. 
2008, No. 1, pp. 1–6). Academy of Management 2008

	69.	 Simsek Z, Heavey C, Veiga JF, Souder D (2009) A typology for 
aligning organizational ambidexterity’s conceptualizations, ante-
cedents, and outcomes. J Manag Stud 46(5):864–894

	70.	 Šmite D, Moe NB, Ågerfalk PJ (2010) Fundamentals of agile 
distributed software development. Agility across time and space. 
Springer, Berlin Heidelberg, pp 3–7

	71.	 Staats BR, Brunner DJ, Upton DM (2011) Lean principles, learn-
ing, and knowledge work: evidence from a software services pro-
vider. J Oper Manag 29(5):376–390

	72.	 Sutherland J, Viktorov A, Blount J, Puntikov N (2007) Distributed 
scrum: agile project management with outsourced development 
teams. In: System Sciences, 2007. HICSS 2007. 40th Annual 
Hawaii International Conference on pp. 274a-274a. IEEE

https://doi.org/10.1007/3-540-44870-5_19
https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1007/978-3-642-48354-7_20


266	 Information Technology and Management (2023) 24:247–266

1 3

	73.	 Tiwana A (2008) Do bridging ties complement strong ties? An 
empirical examination of alliance ambidexterity. Strateg Manag 
J 29(3):251

	74.	 Tiwana A (2010) Systems development ambidexterity: explaining 
the complementary and substitutive roles of formal and informal 
controls. J Manag Inf Syst 27(2):87–126

	75.	 Tushman ML, O’Reilly CA III (1996) Managing evolutionary and 
revolutionary change. Calif Manag Rev 38(4):8–28

	76.	 Van Looy B, Martens T, Debackere K (2005) Organizing for con-
tinuous innovation: on the sustainability of ambidextrous organi-
zations. Creat Innov Manag 14(3):208–221

	77.	 Vanhaverbeke W, Peeters N (2005) Embracing innovation as 
strategy: corporate venturing, competence building and corporate 
strategy making. Creat Innov Manag 14(3):246–257

	78.	 Vinekar V, Slinkman CW, Nerur S (2006) Can agile and tradi-
tional systems development approaches coexist? Ambidextrous 
View Inf Syst Manag 23(3):31–42

	79.	 Xu L, Brinkkemper S (2007) Concepts of product software. Eur 
J Inf Syst 16(5):531–541

	80.	 Yin RK (2009). Case study research: design and methods, 5. Sage
	81.	 Yin RK (2003) Case study research - design and methods. Applied 

social research methods series, 5. Sage
	82.	 Zimmermann A, Raisch S, Cardinal LB (2018) Managing per-

sistent tensions on the frontline: a configurational perspective on 
ambidexterity. J Manag Stud 55(5):739–769

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.


	Conflict management in agile distributed development: evidence from product development and services engagements
	Abstract
	1 Introduction
	2 Literature review
	2.1 Agile distributed development
	2.2 Software project engagements
	2.3 Ambidexterity

	3 Research design
	3.1 Project sources
	3.2 Data collection

	4 Research methodology
	4.1 Coding process

	5 Findings
	5.1 Demand for flexibility
	5.1.1 Type A: Product Development
	5.1.2 Type B: Services

	5.2 Need for stability
	5.2.1 Configuration I: Autonomous
	5.2.2 Configuration II: Inter-linked

	5.3 Managing the conflict between flexibility and stability
	5.3.1 Interplay between Clarity in role specification and Type of boundary spanning
	5.3.2 Interplay between Ownership of code and Team inclusivity in meetings
	5.3.3 Interplay between Time management of meetings and Visibility of work progression
	5.3.4 Interplay between Discretionary work effort and Mutual responsiveness across sites


	6 Discussion
	6.1 Theoretical implications
	6.2 Practical implications

	7 Conclusion
	References




