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Abstract
The internet of things has ushered in a world of possibilities in chronic disease management. Connected to the health infor-
mation network, a health device can monitor and provide intervention recommendations to patients in real time. However, 
this new health information system may face the risk of patients not following the system’s recommendations depending on 
their perception of the system. In this paper, we consider patients’ trust in the system a key factor driving their adherence 
to the system’s recommendation and develop an analytical model to design the optimal alerting strategy in the context of 
asthma management. Our method acknowledges that patient’s trust may change over time based on their experience of using 
the system, which may influence their future adherence behavior. We derive a set of structural properties of our solution and 
demonstrate that our approach can significantly improve patients’ quality of life compared to the current practice of asthma 
management. Furthermore, we investigate various real-world scenarios, such as the case that patients may have different level 
of tolerance for receiving alerts. Based on our findings, valuable insights can be shared with patients, healthcare practition-
ers, and companies in the technology-enabled healthcare business sector.
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1  Introduction

Recent IT advancements such as the internet of things (IoT) 
have led to the development of an increasing number of con-
nected infrastructures of medical devices, software appli-
cations, and healthcare services [21]. Health information 
system (HIS) supported by health IoT not only allows care 
providers to monitor patients in real time based on patient 
data remotely acquired by sensors but also facilitates the 
efficient self-management of health conditions for patients 

themselves. The smart asthma management (SAM) system 
implemented by Propeller Health is a good example [38]. In 
this system, a Bluetooth sensor is attached to the personal 
inhaler that asthma patients carry in their daily life. The sen-
sor records the timestamp of each inhaler use. The detailed 
inhaler usage logs are then transmitted to the patients’ 
smartphone and, eventually, to a server at the company. This 
new type of HIS has opened a window of opportunity to 
enhance patient care because the use of data collected from 
IoT devices provides richer insights about patients that were 
not readily available in traditional healthcare setting in the 
past [13, 21].

The capability of health IoT to consistently interact with 
patients is expected to significantly improve care outcomes, 
especially in chronic disease management [51]. Manag-
ing chronic conditions, such as asthma and diabetes, often 
requires individual patients to make day-to-day decisions 
about their chronic disease, and a HIS powered by health 
IoT can support their decisions by recommending appropri-
ate care pathways without geographical and time limitations 
[31]. However, such an IoT-enabled intervention depends 
critically on the extent to which patients are willing to 
accept these recommendations because patients with chronic 
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conditions tend to have a high degree of autonomy in mak-
ing the decisions. Basically, patients may or may not take 
the recommended action based on their perception of the 
system [42]. Patient adherence to a course of treatment plays 
a crucial role in improving care outcomes because manag-
ing chronic disease such as asthma is done mostly outside 
the clinical setting, and it requires a high level of patient 
involvement [41]. In conventional clinical settings, a physi-
cian provides clinical guidance to patients. Following the 
suggestions of the care provider is undoubtedly important for 
patients to improve their medical condition. No matter how 
good the physician’s clinical judgment is, the patient’s health 
outcome will not improve if the patient does not adhere to 
the recommendations made by the medical professional. 
Likewise, for a HIS system to improve the patients’ health 
outcome, it is crucial that the patient follows the recommen-
dations made by the system [37]. Due to this nonadherence 
issue naturally embedded in IoT-enabled HIS, it is important 
to consider the interaction between patients and health tech-
nologies as early as the system designing phase.

As discussed in the literature, patient experience in fol-
lowing a medical intervention alters the adherence levels of 
individual patients. For instance, a false positive result from 
a medical test can deter future adherence as patients become 
less confident in the following care plan in response to the 
negative consequence of the inaccurate test result [24]. In 
this paper, we study how the outcomes of medical interven-
tion made by a HIS can affect patient adherence to future 
intervention because a mistake made by the system (e.g., a 
false alarm or a misdetection) decreases patient adherence 
to the system, whereas an accurate diagnostic decision made 
by the system can increase patient adherence. To investigate 
this dynamic interaction between patients and HIS, we focus 
on the patient’s perceived trustworthiness toward the HIS 
system as a factor affecting patient adherence. It has been 
reported that patient trust in medical technologies, including 
health IT, could affect their overall perception of the health-
care delivery process and could enhance or diminish patient 
adherence to medical recommendations [31, 42].

However, despite the importance of the patient-HIS 
interaction, the question of how to properly incorporate this 
human factor into designing and operating a HIS has not 
been thoroughly explored in the current literature. In this 
study, we establish the partially observable Markov deci-
sion process (POMDP) tailored to the SAM application. 
The POMDP model is the same as the conventional Markov 
decision process (MDP) model, except for the partial observ-
ability of the state [6]. In our model, the state includes two 
aspects: patient’s asthma control status and trust level. The 
state evolves according to the state transition function (state 
transition probability matrix). In typical MDP models, the 
decision maker can directly observe the state. However, that 
is not the case in many clinical applications. Rather, the state 

is hidden and needs to be inferred based on observations 
(biomarkers). The SAM system remotely collects patient’s 
rescue inhaler usage, which is one of the key measures for 
accurately identifying the underlying asthma control status 
of patients. On the one hand, the clinical diagnosis of asthma 
control relies on not only the rescue inhaler usage pattern but 
also various other factors, such as peak expiratory flow. In 
that sense, the patient’s true asthma control status is not fully 
observable. On the other hand, if the patient went through 
an on-site clinical consultation, the asthma control status 
can be discovered by medical professionals. In this case, 
we may fully observe the asthma control level. However, 
the trust level of a patient is never fully observable by the 
SAM system, making the state partially observable at best. 
Therefore, given the partially observable nature of the state, 
the POMDP model suits well to our study. In the POMDP 
model, the decision maker can take a certain action. In the 
SAM application, the system can either alert the patient 
(action Alert) or keep monitoring the patient while being 
silent (action Wait). The goal is to find the best alerting 
strategy for maximizing patients’ quality of life by carefully 
defining the objective (reward) function. It considers both 
the short-term and long-term improvements of patients’ 
quality of life. In recent years, the POMDP model has been 
widely adopted in the field of medical decision-making to 
identify the optimal policy for certain clinical interventions 
[7], and we believe that the POMDP model is a plausible 
analytics tool for long-term chronic disease management 
applications as well.

To fill the research gap in the literature and be consistent 
with the vision of smart and connected health, we take an 
analytic approach using the POMDP model to investigate 
the nonadherence issue of the IoT-enabled HIS. Specifically, 
using the SAM system as a motivating example, we study 
how HIS should alert patients to maximize the patients’ 
quality of life considering the human-in-the-loop nature of 
HIS. Our modeling framework considers the dynamic inter-
action between patients and the SAM system. In this paper, 
we aim to accomplish the following research objectives:

•	 Finding the optimal alerting strategy considering the 
trust-dependent patient adherence to the HIS recommen-
dation.

•	 Showing the positive impact of developing a trust-aware 
alerting strategy on patients’ quality of life through com-
parative studies with the current practice of asthma man-
agement.

•	 Investigating the importance of trust-aware HIS design 
under various practical scenarios, such as heterogeneous 
tolerance levels among patients for receiving alerts.

The important role of an information system (IS) in terms of 
improving the quality of healthcare through advanced health 
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technology and analytics is well recognized in the litera-
ture [11, 28]; hence, various algorithmic developments have 
been made [3, 9, 17, 32], which collectively take a valuable 
step toward data-driven, just-in-time, and just-for-me clini-
cal intervention [31]. If the system is perfect, 100% adher-
ence is going to yield the best health outcome for patients. 
Unfortunately, it is very challenging (if not impossible) to 
establish a HIS with perfect prognostic/diagnostic accuracy. 
In that sense, every alert sent out to patients inevitably car-
ries a risk of being a false alarm, which reduces the trust 
level of patients and affects their future adherence behavior 
negatively. Consequently, it will have a negative impact on 
patients’ quality of life. If the system is too conservative in 
terms of alerting patients to avoid undesirable false alarms, 
the misdetection rate will increase. In this scenario, similar 
to the false alarm case, both patients’ trust and quality of 
life will be negatively affected. Considering this important 
trade-off, in this paper, we investigate the real-world issues 
faced by the IT-enabled HIS industry and provide a mean-
ingful discussion to help HIS administrators design the best 
alerting strategy.

The rest of this paper is organized as follows. Section 2 
introduces our research setting describing the SAM system 
in detail, along with a brief review of the relevant literature 
on patient adherence. In Sect. 3, we introduce our POMDP 
model, based on which we provide analytical and numerical 
results in Sects. 4 and 5 , respectively. Then, we discuss the 
practical implications and potential challenges for imple-
menting our method in healthcare practice in Sect. 6. Last, 
Sect. 7 concludes the paper.

2 � Research background

We first describe general asthma care practice and the SAM 
system to provide a better view on our research setting. 
Then, we discuss how the SAM system (or any IoT-enabled 
HIS) differs from traditional healthcare delivery systems by 
having human factors in the loop. Also, we give a brief dis-
cussion on the trust-dependent patient adherence based on 
the existing literature.

2.1 � Asthma care practice and the SAM system

Asthma is a prevalent respiratory disease affecting a large 
portion of the global population [49]. Adult patients diag-
nosed with asthma need to pay attention to their asthma 
control status because poorly controlled asthma could 
significantly reduce patients’ quality of life. Asthma 
patients inhale two types of medications: controller and 
rescue medicines. Care providers prescribe a proper daily 

dose of controller medicine so that patients can keep their 
asthma under control. When patients experience exacer-
bated asthmatic symptoms, such as shortness of breath or 
severe coughing, they are advised to administer a dose of 
rescue medicine for quick relief. A rigorous asthma control 
level can be diagnosed by medical professionals based on 
numerous biomarkers (e.g., a nighttime awakenings survey 
and the peak flow rate as measured by a breathing test). 
However, there is no golden standard for asthma control 
diagnosis, and various medical agencies have published 
their own guidelines (e.g., [4, 5]).

The HIS has been widely appreciated, especially in 
asthma management, because it can facilitate consistent 
and efficient asthma self-management [51]. The SAM sys-
tem is implemented and operated by our industry collabo-
rator, a healthcare IT company headquartered in Madison, 
WI, focusing on respiratory diseases, including asthma. 
The company has developed a Bluetooth sensor that is 
attachable to personal inhalers. The sensor has received 
501(k) class II clearance from the U.S. Food and Drug 
Administration and has passed a series of tests on various 
capabilities, such as sensor actuations and data capturing, 
designed by the Federal Communications Commission 
licensing standards [27]. The attachable sensor collects 
timestamps of every inhaler use and transmits the data 
to secure Health Insurance Portability and Accountability 
Act of 1996 (HIPPA)-compliant servers through patients’ 
smartphones or a designated wireless hub provided to 
patients who do not own a smartphone. The sensor itself 
can hold data for about 3,900 events in case a reliable 
wireless network cannot be established for a period of 
time [52]. The battery of the sensor can last for over a 
year without a charge, and the sensor constantly sends 
a signal to the server so that the system can identify any 
sensors that have been turned off due to a dead battery 
[51]. The SAM system offers a dashboard that summa-
rizes the history of inhaler usage for each patient, and 
the dashboard can be accessed via web browsers or a 
smartphone app. The SAM system has a great potential 
for innovating the current practice of asthma care because 
the key for successful long-term asthma control is effec-
tive self-management [50]. In the literature, it is shown 
that having an accessible data summary tool significantly 
improves health outcomes [23]. In fact, the SAM system 
can noticeably improve asthmatic symptoms by motivat-
ing patients to pay more attention to self-monitoring their 
asthma [27]. The SAM system monitors patients consist-
ently and provides the data to the care providers filling 
the gap between periodic on-site clinical consultations. 
The SAM system, based on a data-driven analytics-based 
algorithm, can actively alert the patients if needed. Such 
efforts can potentially prevent catastrophic events (such as 
emergency room visits) in advance [51].
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2.2 � Human‑in‑the‑loop HIS

The SAM system is an innovative HIS that utilizes IoT 
health devices collecting and analyzing healthcare data to 
support asthma management decision-making. As illus-
trated in Fig. 1, all HIS with such features have two stages 
where the system and end users (patients) directly interact: 
(i) when HIS acquires data from patients and (ii) when 
patients receive a recommendation. In many cases, bias 
is inevitable in stage (i), which deteriorates the quality of 
decision from the analytics in the subsequent stages. For 
instance, in asthma management, patients’ self-reported 
symptoms and inhaler use distort the reality, which leads 
to sub-optimal recommendations by the HIS [40]. Design-
ing a bias-aware algorithm could be a viable choice to 
mitigate the bias introduced in stage (i) [3], but a more 
straightforward way to address the issue is to simply avoid 
unreliable self-reporting practice and automate the data 
acquisition process instead.

Unlike stage (i), the second source of human-related bias 
has not been discussed much in the current literature. Stage 
(ii) shows that the patients who have received a suggestion 
from the HIS may or may not act accordingly. The SAM 
system can alert patients when their asthma control seems 
to be worsening [50] or when their rescue inhaler usage 
exhibits an unusual pattern [51]. The alert sent from the 
SAM system is a short message to patients recommending 
an in-person visit to their care provider for further diagnosis. 
Despite some algorithmic developments for detecting and 
predicting undesirable asthma progression trends, designing 
a good alerting policy for the SAM system is not a trivial 
task because the system would never know if the patient will 
follow the decision made by the system. Thus, it is crucial to 
investigate the patient nonadherence issue in the HIS con-
text, which is largely affected by how far patients trust the 
HIS and its suggestions.

2.3 � Trust‑dependent patient adherence

The patient nonadherence to medical recommendation in 
chronic care has been investigated extensively in the medical 
literature due to its prevalence and potential harm to patients 
[19]. Patients adhere to the doctor’s prescription and thera-
peutic recommendations better if they trust their care provid-
ers [29]. Likewise, when patients are recommended to take 
any action for care through a HIS, they may or may not take 
the action on the basis of their perception of the system [42].

Studying how patients diagnosed with asthma react to 
the alert message generated by the SAM system is closely 
related to the general theory on how human users interact 
with technologies. For instance, the technology acceptance 
model has received a significant amount of attention in the 
past and has produced various improved/extended versions 
over time [1, 2, 14, 15]. As shown in [20] and trust building 
model proposed in [37], we consider trust the most crucial 
factor that influences patient adherence. Specifically, the 
perceived trustworthiness of the system seems to have the 
most significant impact on developing a high level of user 
adherence [36]. The perceived trustworthiness, from the 
expectation disconfirmation theory, highly depends on how 
users’ expectations of the system have been met [54]. Also, 
it has been reported that patient trust in medical technologies 
affects the overall perception about the healthcare delivery 
process and eventually enhances/diminishes patient adher-
ence to medical recommendations [31, 42] In other words, 
patients tend to retain a high level of trust when they have 
had a positive experience with the system in the past. Many 
IoT-based HISs, such as the SAM system, are designed for 
assisting long-term health management. Therefore, the ini-
tial HIS adoption is not enough for ensuring an improved 
clinical outcome. Rather, positive outcomes typically 
accrue from the sustained use of the system. This is why 
we need to take the trust-dependent patient adherence issue 

Fig. 1   Illustration of the human-
involved closed-loop HIS
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into consideration when designing the HIS and its alerting 
strategy.

Patient adherence is a function of many factors ranging 
from socioeconomics to availability/access to care to patient 
preferences. Heterogeneity in these factors (at least some 
of them) is important to capture in any modeling attempt, 
Therefore, there has been valuable standalone research both 
in healthcare and management literature regarding the topic 
(e.g., [8, 24]). The issue of patient nonadherence is complex 
with numerous factors, and a single model may not be able 
to consider all of them. In this paper, we focus primarily on 
trust-dependent adherence so that we can develop a trac-
table model that is rich enough to identify and highlight 
the insights in providing medical intervention through such 
HISs.

3 � Model

We use a discrete-time, finite-horizon POMDP model to 
study the role of trust and patient adherence in the SAM 
application. The objective is to maximize the patient’s qual-
ity adjusted life days (QALDs), which account for both the 
quality and quantity of life [18], by choosing an appropriate 
alerting strategy considering uncertainties in the patient’s 
current asthma control status and the level of patients’ trust 
in the system.

We denote t as decision time, where t = 1, 2,… , tE and 
tE < ∞ . At each time epoch t, the system can take an action 
denoted by at , and there are two possible choices in the 
action space, that is, at ∈ A = {W,A} , where A and W refer 
to Alert and Wait, respectively. Action Alert implies that the 
SAM system recommends an on-site clinical diagnosis to see 
if a follow-up intervention is necessary. Action Wait simply 
means no recommendation from the system at that time. 
In other words, the system remains silent without sending 
any messages to patients. Once the patient receives an alert, 
he/she decides whether to seek on-site clinical consultation 
adhering to the SAM system’s suggestion or to ignore the 
alert. Please note that patients can visit their care provider 
without receiving an alert from the systems and such an 
unpredictable clinic visit is also considered in the model.

We define three states at any discrete time t: (i) patients 
with good asthma control and high trust level, (ii) patients 
with good asthma control but low trust level, and (iii) 
patients with poorly controlled asthma and low trust level. 
Patients with bad asthma control but high trust level are 
excluded to reflect the theories adopted from the literature 
and practice. It has been shown that users do not rely on 
technology if the technology fails to meet their expecta-
tions [54] or provides unsatisfactory performance [30, 53]. 
The performance of the SAM system, as perceived by the 
patient, must be unsatisfactory for a patient with poorly 

controlled asthma, because patients often can notice the 
degraded asthma control due to escalated asthmatic symp-
toms [44]. Therefore, we argue that having a high trust level 
with poorly-controlled asthma is a very rare (if not impos-
sible) scenario in the SAM setting. This is also consistent 
with the health belief model, which is frequently used in the 
health communication domain [12]. Excluding such a state 
is not only supported by the literature but also allows us 
to partially address the dependency between trust level and 
severity of asthma.

As discussed, the state at time t denoted by st is a com-
bination of the asthma control status and trust level of a 
patient, that is, st = sC

t
× sT

t
 , where sC

t
 and sT

t
 are the asthma 

control and trust states, respectively. We denote the afore-
mentioned state by st ∈ S = {GH,GL,BL} = {0, 1, 2} , 
where S is the entire state space, G/B indicates good/bad 
asthma control, and H/L represents high/low trust level. We 
denote the state space S by {GH,GL,BL} because it shows 
what each state means in the asthma management context. 
However, in a few places, we also use {0, 1, 2} to denote the 
state space S when a numerical representation is preferred.

The evolution of asthma control state sC
t
 is straightforward 

to understand. Bad asthma control can be improved through 
a proper therapeutic intervention and good asthma control 
might go bad naturally over time [44]. At each time instance, 
based on the data collected by the sensor, the SAM system 
decides whether to alert the patient or to do nothing. Once 
the patient observes the decision made by the SAM system 
(alert or wait), the patient then decides whether to visit the 
care provider at the hospital for clinical consultation or not. 
The in-person visit plays an important role in our analytical 
investigation. Obviously, the clinical consultation must have 
a direct impact on the health outcome (asthma control level). 
When the patient visits his/her care provider for further diag-
nosis, the care provider examines the patient through a series 
of lab tests, and the clinically-defined asthma control level 
at the time of diagnosis will be revealed [50]. If the patient’s 
asthma was poorly controlled, a therapeutic follow-up should 
be administered (e.g., making an adjustment to the prescrip-
tion), and the intervention will improve the asthma control 
level of the patient. A patient with well-controlled asthma 
may not obtain a significant benefit from the consultation, 
but the patient still can receive helpful feedback on how his/
her asthma has been controlled lately. If the patient does not 
seek a clinical consultation, however, their asthma control 
level may stay the same or worsen in the future because, in 
some cases, self-managing asthma may not be enough to 
reverse the trend of worsening asthma progression.

The on-site diagnosis also affects the level of patients’ 
trust in the SAM system as well, but unlike the asthma 
control state, the trust state sT

t
 transition involves a more 

complex mechanism. The on-site diagnosis provides an 
opportunity for patients to evaluate the performance of 
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the system. Without the on-site clinical diagnosis, patients 
can only speculate about the trustworthiness of the SAM 
system with no visible evidence. As shown in Fig. 2a, 
when the patient has received an alert and decided to visit 
his/her care provider, the trust level of the patient may 
become higher if the true asthma control level was bad 
(i.e., a correct alert) or become lower if the true asthma 
control level was good (i.e., a false alert). Patients can 
see a care provider even without receiving an alert from 
the SAM system. In that case, shown in Fig. 2b, the trust 
level can become higher if patient’s asthma was well 
controlled (i.e., correct no-alert) or lower if the patient’s 
asthma was poorly controlled (i.e., misdetection). When 
patients decide not to visit the clinic, as in Fig. 2c, they 
not only miss the chance of receiving a clinical diagnosis 
and therapeutic follow-up (if necessary) but also lose the 
opportunity to judge the appropriateness of the decision 
made by the system.

Basically, in our model, the trust level will be adjusted if 
the patient decides to visit the clinic, where the patient can 
hear his/her accurate asthma control information from the 
medical expert and compare it to what the system suggested 
because a clinical diagnosis conducted by a healthcare pro-
fessional is the most reliable way for the patient to observe 
the true accuracy of the alert (e.g., true/false positive/nega-
tive). In summary, there are three trust level updating sce-
narios as below:

•	 Gaining trust Suppose the SAM system alerted the 
patient. If the patient visited a clinic following the sys-
tem’s suggestion and found out that the current asthma 
control was indeed bad. Then, the SAM system will 
gain the patient’s trust. Sometimes, the patient may visit 
a clinic without receiving an alert from the system. If 
the patient, from the on-site diagnosis, learned that the 
asthma control was good and hence, a visit to the clinic 
was unnecessary, then the SAM system will also gain the 
patient’s trust.

•	 Losing trust Suppose the SAM system alerted the patient, 
and the patient visited a clinic on the basis of the alert. If 
the patient then found out that the current asthma control 
was good (a false alarm), the system will likely lose the 
patient’s trust. In the case where the patient decided to 
visit a clinic without receiving an alert from the system, 
if the patient learned that his/her asthma control was bad 
(misdetection), the SAM system likely will also lose the 
patient’s trust.

•	 No trust updating If the patient did not visit a clinic 
regardless of whether he/she received an alert from the 
SAM system, the patient has no opportunity to evaluate 
the performance of the system; hence, there will be no 
trust updating.

Based on the discussion above, we see that a visit to the 
clinic will always be beneficial in terms of asthma control 
but may hurt the trust level if the patient observes a mistake 
made by the system. In our setting, we assume that the on-
site diagnosis is the only reliable resource for evaluating the 
performance of the system unless the patient has been able 
to physically notice the degraded asthma control level by 
experiencing substantially excessive asthmatic symptoms. 
Therefore, if the patient never goes through a clinical diag-
nosis, the patient’s trust level will likely remain the same 
because there is no way to assess the performance of the 
system. In the SAM system’s perspective, it implies minimal 
risk of losing trust. However, it would not be easy for the 
SAM system to maintain such a patient’s asthma condition in 
the well-controlled state. In our POMDP model, we accom-
modate this key trade-off so that we can study the impact of 
having an adherence-aware alerting strategy on the patient’s 
quality of life.

In addition to the definitions of action at ∈ A and state 
st ∈ S = {GH,GL,BL} , the POMDP model defines a belief 
�t ∈ � , which is the occupation probability of a specific 
state in the entire state space S at time t, representing the 
decision maker’s belief about the unobservable true state 

Fig. 2   Illustration of various cases for trust updating
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st . The entire belief space is denoted by � . For instance, 
�t = (0.1, 0.7, 0.2) means that the patient is most likely in 
state GL with a probability of 0.7 whereas the probabili-
ties of the patient being in state GH and BL are 0.1 and 
0.2, respectively. The belief is a well-known sufficient 
statistic covering the whole process history of the state 
prior to time t [6]. Another key term in the POMDP frame-
work is the observation ot ∈ � , where ot is the observa-
tion obtained at time t after action at is taken but before 
the state transition. The observation space is � = {�, sC

t
} , 

where � = {y0,… , yM} indicates a discrete set of possible 
M+1 observations. In the SAM application, Y is simply a 
collection of a possible number of rescue inhaler uses for a 
given day t. Without the loss of generality, we assume that 
the elements in a set Y are ordered ( yj is a more desirable 
observation than yj+1 ). For example, observing one rescue 
inhaler use is more desirable than observing two or more 
inhaler uses. As mentioned earlier, if a patient visits the 
clinic, the true asthma control state is revealed by on-site 
clinical diagnosis. Thus, sC

t
 might be observed directly by 

the patient. Nevertheless, the SAM system cannot directly 
observe the trust state sT

t
 ; hence, the overall state st remains 

only partially observable. Further description about the state 
transition function and other notations follows.

q
s,a
t  : This is the probability of intervention (on-site diag-

nosis) at time t given a current state st and an action at taken. 
A patient with high adherence would have a high qs,At  (high 
intervention probability when the patient has received an 
alert) and a low qs,Wt  (low intervention probability when the 
system did not alert the patient) for all s ∈ S

�s,a
t (o) = P(ot|st, at) : This is the observation probability 

for getting an observation ot when the state is st and the 
action taken is at . As implied earlier, �s,a

t (o) depends on 
q
s,a
t  as

where yt represents the number of inhaler uses observed at 
time epoch t.

� a,o
t (s�|s) = P(s�

t+1
|st, at, ot) : This is the state transition 

probability, which indicates the probability of moving from 
s ∈ S at time t to s� ∈ S at time t + 1 if action at was taken 
and ot was observed at time t. Furthermore, we denote the 
overall state transition matrix as �a,o

t
= [� a,o

t (s�|s)]s∈S for 
a ∈ A , o ∈ O , and s, s� ∈ S . The 3 × 3 matrix �a,o

t
 gives the 

probability of transitioning from state s to s′ . More details on 
how we construct the state transition matrix are provided in 
Appendix A. Observing sC

t
 from an on-site diagnosis ( ot = sC

t
 ) 

affects the likelihood of both future asthma control status ( sC
t+1

 ) 
and trust level ( sT

t+1
 ). This is one of the unique features of the 

SAM application. In conventional POMDP models, state tran-
sition depends only on at . However, to properly model the 

�s,a
t
(o) =

{
q
s,a
t for o = sC

t
,

(1 − q
s,a
t ) × P(yt|sCt ) for o = yt ∈ �,

SAM practice, the transition probability of our POMDP model 
depends on both at and ot.

The objective of our POMDP model is to maximize the 
patient’s reward (i.e., utility) over the decision horizon, which 
is equivalent to minimizing the patient’s total disutility. Thus, 
we define

rt(s, a, o) = r(st, ot, at) : This is the reward between 
two consecutive times t and t + 1 , where the true state is 
st , action at taken, and observation ot is seen at time t. We 
assume that the reward can be measured by the QALDs for 
a patient, where its maximum is 1 (full day), and its mini-
mum is 0. Specifically, rt(s, a, o) is computed on the basis of 
various disutility values. They are denoted as �a (disutility 
for taking action a ∈ A ), �s (disutility associated with state 
s ∈ S ), and �o

s
 (disutility for a patient in state s ∈ S to observe 

o ∈ O ) such that 0 ≤ rt(s, a, o) = 1 − �a − �s − �o
s
≤ 1 . 

Furthermore, we define r
t
(s, a) =

∑
o∈O Λs,a

t
(o)r

t
(s, a, o)

=
∑

o∈O Λs,a

t
(o)

�
1 − �

a
− �

s
− �o

s

�
.

Suppose a well-controlled asthma patient who has 
high trust in the SAM system received an alert at time 
t and visited the clinic for further diagnosis. Then, the 
reward between time t and t + 1 for this patient would be 
rt(s = GH, a = A, o = G) = 1 − �a=A − �s=GH − �o=G

s=GH
 . The 

disutility for receiving an alert ( �a=A ) may vary across patients 
because some patients might get annoyed by alert messages 
more easily than others. The disutility for having the GH state 
should not be significant because it is the most desirable state. 
�o=G
s=GH

 represents the cost for visiting a clinic and going through 
a consultation with care providers. This disutility could be 
large, because visiting a clinic is often a time-consuming task 
that interrupts the patient’s daily routine and involves mon-
etary costs. Furthermore, in this specific example, observing 
a good asthma control state after the diagnosis ( ot = sC

t
= G 

given st = GH ) should make the patient disappointed about 
the performance of the SAM system. From the definition of 
QALD, we note that 0 ≤ �a=A + �s=GH + �o=G

s=GH
≤ 1 . In short, 

rt(s, a, o) is the remaining QALD after subtracting all the SAM 
system-induced disutilities.

�a,o
�

= [�a,o
�
(s�)]

s�∈S
= [P(s�

t+1
|�t, at, ot)]s�∈S : This is the 

updated belief that is equivalent to the probability of occupy-
ing state s� ∈ S at time t + 1 given the previous belief �t if 
action taken is at , and ot was observed at time t. The updated 
belief is defined as

It should be noted that the observation probability �s,a
t (o) 

depends on the current state s rather than the future state s′ 
because the observation occurs before the state transition in 
our framework. Therefore, �s,a

t (o) cannot come out of the 
summation over s in the numerator as in typical POMDP 
models.

�a,o
�
(s�) =

∑
s∈S �(s)�

s,a
t (o)� a,o

t (s��s)∑
s∈S �(s)�

s,a
t (o)

.
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V∗
t
(�) : This is the optimal value function for a given 

belief � . The goal of the POMDP model is to find an 
action that maximizes the total expected reward on the 
basis of the current belief state �t ∈ � at time t denoted 
by V∗

t
(�) defined as

for t = 1,… , tE − 1 where the first term represents the 
expected immediate reward, and the second term is the 
expected reward of the resulting belief �a,o

�
 . After a couple 

steps of algebra, we get

For the last time epoch t = tE , the optimal value function is 
simply defined as

V∗
t
(�)

= max
a

[∑
s∈S

∑
o∈O

�(s)�s,a
t
(o)rt(s, a, o)

+
∑
s∈S

∑
o∈O

∑
s�∈S

�(s)�s,a
t
(o)� a,o

t
(s�|s)V∗

t+1
(�a,o

�
)

]
,

V∗
t
(�) = max

a

[∑
s∈S

�(s)
∑
o∈O

�s,a
t
(o)

{
rt(s, a, o)

+
∑
s�∈S

� a,o
t

(s�|s)V∗
t+1

(�a,o
�
)

}]

= max
a

[∑
s∈S

�(s)
∑
o∈O

�s,a
t
(o)

{
rt(s, a, o) + V∗

t+1
(�a,o

�
)
}]
.

In summary, Fig. 3 shows the overall decision process dia-
gram, and Table 1 provides a list of all the notations used 
in our model.

Unlike other decision processes that are typically mod-
eled by the standard POMDP framework, our process for 
the SAM system has several unique features. First, the state 
transition depends not only on the action taken but also on 
the observation seen at the current time, whereas the con-
ventional POMDP approach assumes that action is the only 
component that affects the state transition [48], which is 
considered inappropriate for some medical applications 
(such as the SAM system) in which diagnosis is a part of 
the decision process [7]. Second, there are unintended paths 
due to the misalignment between the decisions made by the 
SAM system and by the patients. The shaded boxes indicate 
the occurrence of on-site clinical diagnosis and a follow-up 
intervention (if necessary), which should increase the prob-
ability of patients being in a better asthma control state at 
the next time epoch. Depending on the current state st ∈ S 
and the action taken at time t, at ∈ A , the probabilistic state 
transition from the current state st to the next state st+1 fol-
lows different paths. For instance, if we look at the path 
shown at the very top of Fig. 3, the SAM system alerted 
the patient, and the patient visited the clinic following the 
system’s suggestion. At the clinic, the actual asthma control 

V∗
tE
(�) =max

a

[∑
s∈S

�(s)
∑
o∈O

�s,a
tE
(o)rtE (s, a, o)

]

=max
a

[∑
s∈S

�(s)rtE (s, a)

]
.

Fig. 3   Illustration of the decision-making process for the SAM system
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level is determined by on-site diagnosis, that is, ot = sC
t
 . If 

st is either GH or GL, the patient will be disappointed by the 
false alarm made by the SAM system. In this case, although 
st+1 can take any state in S due to the probabilistic state tran-
sition function, the next state will be likely st+1 = GL . The 
system, on the basis of this information, updates the belief 
�t accordingly, so that a more appropriate decision can be 
made at the next time t + 1 . Basically, the system will iden-
tify the best alerting policy using the updated belief state to 
maximize patients’ quality of life. The optimality equation 
also has a different structure compared with the conventional 
POMDPs, because of the aforementioned unique decision 
sequence of the SAM system.

4 � Analytical study: structural properties

The solution of our POMDP model has a set of structural 
properties that provide valuable insights and form the basis 
of our computational analysis using real-world SAM data. 
Throughout the analytical and computational studies, we aim 
to highlight the importance of designing a HIS that accom-
modates the concept of the patient’s trust and to discuss the 

practical implications to the field. Before moving forward, 
we first introduce the following necessary definitions:

Definition 1  (from White [55]). If 
∑�X�

i=j
x(i) ≤

∑�X�
i=j

x′(i) for 
any j ∈ {1, 2, 3,… , |X|} holds for two probability mass 
functions x and x′ with the same dimension |X|, x is stochas-
tically smaller than x′ which is denoted by x≤sx

′.

Definition 2  ( from Ferguson et   al .  [16]).  If 
x(i)∕x�(i) ≥ x(j)∕x�(j) for all i ≤ j holds for two probabil-
ity mass functions x and x′ with the same dimension |X|, x 
is smaller than x′ in the monotone likelihood ratio (MLR) 
which is denoted by x≤rx

′.

Definition 3  (from Karlin [25]). A matrix H has a prop-
erty of totally positive of order 2 ( TP2 ) which is denoted by 
H ∈ TP2 if all its second-order minors are non-negative. 
Equivalently, H ∈ TP2 if the ( i + 1)-th row MLR domi-
nates the i-th row: that is, Hj,∶≤rHi,∶ for all i > j , where Hi,∶ 
denotes the i-th row of the matrix H.

For a POMDP model, it is crucial to ensure that the opti-
mal value function is monotone and nonincreasing in � ∈ � 

Table 1   Summary of notations 
used in our study

Notation Definition

t Decision time epoch
tE End of decision timespan
st State at time t
S State space: S = {GH,GL,BL} = {0, 1, 2}

sC
t

Asthma control state at time t: sC
t
∈ {G,B} where G/B denotes Good/Bad asthma control

sT
t

Trust level state at time t: sT
t
∈ {H,L} where H/L denotes High/Low trust level

at Action taken at time t: at ∈ {W,A} where W/A represents Wait/Alert
A Action space: A = {W,A}

�t Belief state at time t: �t ∈ �

� Belief space
yt Number of rescue inhaler use at time t
Y Collection of yt : Y = {y

1

, y
2

,… , yt
1

, yt}

ot Observation at time t
O Observation space: O = {o

1

, o
2

,… , ot−1, ot}

q
s,a
t Probability of intervention at time t given a current state st and the action taken is at

�s,a
t (o) Probability of observing ot when the state is st and the action taken is at

� a,o
t (s�|s) State transition probability from s at time t to s′ at time t + 1

�a,o
t

State transition probability matrix: �a,o
t

= [� a,o
t (s�|s)]s∈S for a ∈ A , o ∈ O

rt(s, a, o) Reward function between t and t + 1 where state is st , action taken is at , and ot is observed
rt(s, a) Reward function averaged over o ∈ O : rt(s, a) =

∑
o∈O Λs,a

t (o)rt(s, a, o)

�a Disutility for taking an action a ∈ A

�s Disutility associated with state s ∈ S

�o
s

Disutility for a patient in state s ∈ S to observe o ∈ O

�a,o Updated belief vector
V∗
t
(�) Optimal value function for a given belief � ∈ �
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[33]. Monotonicity of the optimal value function exists when 
the belief vectors are MLR ordered, that is, �t ≤r �

′
t [16]. 

In the SAM application, �t ≤r �
′
t means that a patient with 

belief �t is expected to be in a more desirable state than 
the patient with belief �′

t . Because our state space can 
be naturally ordered by desirability (i.e., it is desirable to 
have better asthma control and a higher trust level), it is 
straightforward to justify the condition. In addition to the 
MLR-ordered belief vector, both the state transition prob-
ability matrix and the observation probability matrix ( �a

t
 and 

�a
t
=
[
�s,a

t (o)
]
s∈S

 ) in the POMDP model need to possess the 
TP2 property [25]. Therefore, to derive meaningful analytical 
results, we need to investigate our POMDP model to see if 
it has a monotone optimal value function nonincreasing in 
� ∈ � . We only summarize the key results here, whereas we 
show the mathematical details in Appendix A.

Analytical Result 1 (Lemma 1 and Proposition 1 in 
Appendix A)  Suppose (C1)–(C3) hold, then both �a,o

t
 

and �a
t
 have a TP2 property for all a ∈ A and t ≤ tE where 

(C1)–(C3) are

The first analytical result (AR from here and after) proves 
that the state transition probability matrix of our POMDP 
model has the TP2 property under some conditions that make 
sense in the SAM context (notations used in (C1)–(C3) 
are defined in Appendix A). (C1) simply says that having 
negative experiences with the SAM system (a false alarm 
or misdetection) increases the transition probability from a 
high trust state to a low trust state and, once the patient is 
in a low trust state, it may not be easy to come back to the 
high trust state. In other words, in many cases, it would be 
easier for the SAM system to lose trust than to gain trust 
from the patients. This cognition anchoring phenomenon 
is not specific to the SAM system but is prevalent for many 
decision support systems in various fields [34, 35]. In the 
same spirit, (C2) suggests that people often do not drasti-
cally change their trust state. Last, (C3) dictates that receiv-
ing proper intervention decreases the probability of being in 
a bad asthma control state, whereas there is no intervention 
effect if the patient’s asthma control was in a good state to 
begin with. All three conditions make practical sense in the 
SAM application. In addition to AR1, we can also show 
that, under the same conditions (C1)–(C3), the belief vectors 
defined in our POMDP model will always remain MLR-
ordered as in the following AR2.

Analytical Result 2 (Proposition 2 in Appendix A)  
For any two beliefs �,�� ∈ � such that � ≤r �

′ , suppose 
(C1)–(C3) hold, then �a,o

�
≤r �

a,o

�′  for any a ∈ A and o ∈ �.

(C1) vloss
HL

≥ vnone
HL

≥ v
gain

HL
and closs

LL
= cnone

LL
= c

gain

LL
,

(C2) vnone
HH

≥ 1 − vnone
LL

and vloss
HL

≤ vloss
LL

,

(C3) c0
BB

≥ c1
BB
, c0

GG
= c1

GG
, and c1

GG
c1
BB

− c1
GB
c1
BG

≥ 0.

This property is critical to our SAM application because 
the SAM system updates its estimated belief as the system 
collects new observations (either number of inhaler uses or 
the actual asthma control level determined by a physician). 
AR2 guarantees that our belief updating function retains the 
MLR ordering between two belief vectors.

The last proof we need is about the TP2 property of the 
observation probability matrix. However, the observation 
probability matrix specified in our POMDP model does 
not have the TP2 property due to the characteristics of the 
SAM system. We can forcefully make the observation 
probability matrix to have the TP2 property by assuming 
q
s=GH,a=A
t ≤ q

s=GL,a=A
t  (see Lemma 2 in Appendix A). How-

ever, this condition cannot be justified in the SAM context 
because it implies that, when there are two patients with the 
same good asthma control who receive an alert, the probabil-
ity of visiting a clinic for further diagnosis should be greater 
for a patient whose trust level is low compared to the patient 
whose trust level is high. Thus, instead, we give AR3 show-
ing that the optimal value function of our POMDP model is 
still monotone nonincreasing in � ∈ � , even without assum-
ing a TP2 observation probability matrix.

Analytical Result 3 (Theorem 1 in Appendix A)  Suppose 
(C1)–(C3) and (C6)–(C8) hold. Then, for any belief vectors 
�,�� ∈ � such that � ≤r �

′ , V∗
t
(�) ≥ V∗

t
(��) for all t ≤ tE , 

where (C1)–(C3) are listed in AR1 and (C6) - (C8) are

The conditions from (C6) to (C8) are about the disutility 
values. (C6) states that being monitored by the SAM sys-
tem without receiving any alerts should give 0 disutility. 
Using the SAM system should not change the usual way that 
patients have been using their personal inhaler. The system 
only requires a small sensor attached to the inhaler, and eve-
rything is done wirelessly and automatically. Therefore, (C6) 
is a reasonable condition in the SAM system and many other 
IoT-enabled HIS. (C7) and (C8) collectively say that visiting 
a clinical facility due to a false alarm is better than actu-
ally transitioning to a bad asthma control state. The goal of 
everyday asthma management is to keep a patient’s asthma 
condition under control; hence, assigning disutility values 
according to (C7) and (C8) intuitively makes sense.

Building upon the previous results, we derive AR4, show-
ing that the optimal alerting strategy for the SAM system, 
considering trust-dependent patient adherence, is a thresh-
old-type policy.

Analytical Result 4  (Theorem  2 and Corol-
lary 1 in Appendix A) Let a∗

t
(�) denote the opti-

mal action at time t for a given belief � ∈ � and 

(C6) �
o=y

s=0
= �

o=y

s=1
= �

o=y

s=2
= �a=W = �s=0 = 0,

(C7) �a=A + �o=sC

s=0
≤ �s=1, and

(C8) �s=1 + �a=A + �o=sC

s=1
≤ �s=2 ≤ 1 − �a=A − �o=sC

s=2
.
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d e f i n e  �∗
GH

= max{�(0) ∶ �(1) = 0, a∗
t
(�) = A} a n d 

�∗
GL

= max{�(1) ∶ �(0) = 0, a∗
t
(�) = A} . Suppose (C1)–(C8) 

hold, then we get �∗
GH

≤ �∗
GL

 . The conditions (C1)–(C3) and 
(C6)–(C8) are presented in AR1 and AR3, respectively, and 
(C4) - (C5) are

The first additional condition (C4) can be eas-
ily translated into the SAM setting. It essentially says 
that a patient with bad asthma control is expected 
to use the inhaler more often than the patient with 
good asthma control. �(a) in (C5) can be expressed  
as �(a) = q

1,a
t ∕[{�G(yt = yM)∕�B(yt = yM)}(1 − q

1,a
t ) + q

1,a
t ]. 

Therefore, (C5) implies that being in a worse state yields a 
higher probability of intervention than being in a better state 
when a = W  . In other words, when the SAM system stays 
silent (no alert), the patient with poorly controlled asthma 
is more likely to see his/her care provider than the patient 
in a good asthma control state. Considering that worsening 
asthma control typically triggers more asthmatic symptoms 
than properly controlled asthma does, both (C4) and (C5) 
are justifiable conditions in the SAM context.

Our final result (AR4) proves that the optimal alerting 
policy of the SAM system under our POMDP model can be 
defined by a threshold. In the SAM application, the thresh-
old-type policy means that the optimal policy is simply 
dividing the entire belief space by several planes (or straight 
lines). In addition, AR4 also suggests that the maximum 
alert-triggering probability for a patient with a low trust level 
is always greater than or equal to the one for a patient whose 
trust level is high (see Corollary 1 in Appendix A).

Figure 4 illustrates the insights from AR4 on the two-
dimensional belief space because the entire three-dimen-
sional belief state space � can be shown by a two-dimen-
sional surface. For instance, suppose the SAM system 
estimates the current belief �example for a specific patient. 
This patient is believed to be in a good asthma control state 
with a high trust level with a probability of 0.35, that is, 
�(0) = 0.35 . Similarly, the probability of this patient in the 
state of good asthma control with low trust is 0.31. There-
fore, the remaining probability (probability associated with 
bad asthma control) is simply 0.34. Now, �example is in the 
alert region; hence, the optimal action for the SAM system is 
to alert the patient on the basis of the threshold-type alerting 
policy derived from our POMDP model. Furthermore, AR4 
suggests that �∗

GH
 (the maximum alert-triggering probabil-

ity for a patient in GH state) cannot be greater than �∗
GL

 , as 
shown in Fig. 4. In other words, the system needs to alert a 
patient more conservatively when the patient is believed to 
trust the SAM system. For instance, a patient with high trust 
in the SAM system would receive an alert if the estimated 

(C4) �G ≤r �B where �sCt (yt) = [P(yt|sCt )] for all yt ∈ �, and

(C5) q0,a
t

≤ q1,a
t

≤ �(a) for a = W.

probability of good asthma control was below �∗
GH

 (say, 0.7), 
but a patient with a low trust level would be alerted when the 
estimated probability of being in good asthma control fell 
under �∗

GL
 (say, 0.95). Because the threshold of 0.95 ( �∗

GL
 ) is 

more sensitive than 0.7 ( �∗
GH

 ), the patient with low trust in 
the system is expected to receive alerts more often compared 
with the patient with a high trust level. In the next section, 
we shed more light on the analytical results through a series 
of computational studies coupled with real-world SAM data 
to provide an in-depth discussion on practical insights and 
implications.

5 � Computational study based on the SAM 
data

Computational studies are widely adopted in various fields 
for a comparative experiment between the newly proposed 
approach and the baseline method [7]. It is especially useful 
in healthcare applications because a numerical experiment 
does not raise ethical concerns for using a method that is 
not feasible in real-world clinical trials [39]. For instance, 
the comparison between our alerting policy and the simple 
no-alert policy (baseline method) would be challenging to 
conduct on the actual patients using the SAM system.

Many parameters in our POMDP model are directly 
estimated from real-world SAM data. The SAM data come 
from our industry collaborator who conducted a beta test in 
a mid-sized city in the United States from March 2014 to 
December 2017. A total of 326 adult patients diagnosed with 
asthma participated in the study. Among them, 31.6% (103 
patients) were male and 68.4% (223 patients) were female. 
The gender imbalance present in our data agrees with the 
findings in clinical literature, as asthma is known to have a 
higher prevalence in women than in men [46]. Of the 326 
patients, 68.7% were White/Caucasian, 18.1% were African 

Fig. 4   Summary of analytical results
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American, and 13.2% were classified as Others, including 
Asian and Native American. The city where the study was 
conducted is not a place with a diverse population (88% of 
the residents are White); hence, the ethnicity imbalance in 
the data is inevitable because it was an open-participation 
study. The average number of inhaler uses per day was 
0.23, with a standard deviation of 1.06, and about 77% of 
the participants had their asthma well controlled at the time 
of enrollment.

A list of our initial parameter specifications is shown in 
Table 2. The observation probabilities in Table 2a are esti-
mated from the real-world SAM data using the inference 
method described in [50]. The asthma control state transition 
probabilities listed in Table 2b are also estimated from the 
data except for one. Among the probabilities in Table 2b, 
the only parameter that we were not able to estimate directly 
from the data is the transition probabilities from bad asthma 
control to good asthma control after intervention because 
the SAM system lacks the capability of assessing the inter-
vention effect. Thus, we assume that a patient with poorly 
controlled asthma will regain good asthma control through 
a proper clinical intervention with a probability of 0.9. This 
probability is adopted from a clinical study. Bateman et al. 
[10] showed that 90% of the patients achieved well-con-
trolled asthma after receiving a proper intervention.

The trust state transition probabilities for all three cases 
of trust updating (trust gain, no-updating, and trust loss) 

are in Table 2c. Table 2d and 2e show our parameter speci-
fications for the intervention probabilities and disutility 
values, respectively. Those parameters are determined to 
reflect the insights obtained from the literature and can be 
adjusted to fine-tune the model suitable for the specific 
chronic condition that one is interested in. For instance, 
the preset disutility values in Table 2e can be (and should 
be) adjusted for each patient. The degree of mental fatigue 
induced by the system’s alert may differ across patients. 
Therefore, according to the SAM system administrator’s 
own understanding of each patients, he/she should be able 
to change the value of �a=A . In the next subsection, we 
adjust some parameters, especially the ones that are not 
directly estimated from the data. By doing so, we not only 
conduct a sensitivity analysis but also highlight useful 
insights addressing various practical issues in the SAM 
application.

Throughout the computational analysis, day is used 
for the time epoch t and we simplified the observation 
space down to � = {0, 1, 2+} , where 2+ refers to two or 
more inhaler uses per day. From the observation prob-
abilities in Table 2a estimated from the SAM data, we 
can see that for a patient with good asthma control, it is 
very unusual to observe more than two inhaler uses per 
day. Therefore, we will have enough differentiating power 
with the first three observations. This inhaler usage pat-
tern is commonly observed in quantitative asthma studies 

Table 2   Parameters specifications

(a) Observation probabilities

yt 0 1 2 3 4 5 6 or more
P(yt|G) 0.9566 0.0401 0.0032 0.0002 0 0 0
P(yt|B) 0.3911 0.2852 0.1543 0.0750 0.0418 0.0233 0.0163

(b) Transition probability matrix for asthma control state

No intervention Intervention

 

[
c0
ij

]
=

[
0.965 0.035

0.075 0.925

]
 

[
c1
ij

]
=

[
0.965 0.035

0.900 0.100

]

(c) Transition probability matrix for trust state

Trust Gain No Update Trust Loss
[
v
gain

ij

]
=

[
0.95 0.05

0.20 0.80

] [
vnone
ij

]
=

[
0.90 0.10

0.20 0.80

] [
vloss
ij

]
=

[
0.20 0.80

0.20 0.80

]

(d) Intervention Probability (Probability of visiting a clinic)

GH GL BL
Wait 0 0.1 0.1
Alert 0.9 0.3 0.8

(e) Disutility values

�a=W �a=A �
o=y

s∈S �o=sC

s∈{GH,GL}
�o=sC

s=BL
�s=GH �s=GL �s=BL

0 0.01 0 0.05 0.05 0 0.06 0.90
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[51]. The goal of designing the SAM system’s alerting 
policy is to maximize the reward function defined as 
rt(s, a, o) = 1 − �a − �s − �o

s
 , which can be translated into 

QALDs.

5.1 � Computational experiments under various 
scenarios

As mentioned, some parameters in Table 2 used for solving 
the POMDP model are adopted from the relevant literature 
rather than directly estimated from the data. Therefore, here, 
we change those parameters to further confirm our analytical 
findings and to discuss some interesting issues of the SAM 
system.

First, patients may show different behaviors toward clini-
cal interventions. Some patients are reluctant to seek inter-
ventions because they do not want to disturb their everyday 
life routines (intervention-averse patients). By contrast, some 
other patients seek interventions actively (intervention-seek-
ing patients) because, for them, the fear of having poorly 
controlled asthma overshadows the hassle of going through 
an intervention. We should be able to study this issue by 
adjusting the intervention probabilities. For instance, for a 
patient in the GH state (good asthma control with high trust 
level), the initial intervention probability was set to 0.9 when 
a = A (Alert) in Table 2d. An intervention-averse patient 
should exhibit much lower intervention probability than 
0.9. Similarly, we can adjust the intervention probabilities 
of patients in other states to reflect patients’ heterogeneous 
behavior toward intervention.

Second, patients may have different tolerance levels 
toward receiving alerts from the SAM system; that is, some 
patients can be annoyed by alert messages much more than 
some other patients who are willing to tolerate receiv-
ing a few alerts. The issue of different alert fatigue levels 
can be studied by adjusting disutility values in Table 2e. 
For instance, the initial value set for disutility caused by 

receiving an alert from the SAM system was relatively 
small (0.01). To reflect the inflated disutility for alert-averse 
patients, we can increase the value to a number much larger 
than 0.01, say 0.1. It should be noted that 0.1 is a substantial 
disutility because it is roughly translated into a 10% quality 
loss of the patient’s entire day.

Lastly, we investigate another interesting question: What 
if the primary goal of the system administrator (company) 
was to retain customers (patients) using their service? In 
other words, for the company, having patients in the GL state 
(good asthma control but low trust level) could be as bad as 
having them in the BL state (bad asthma control and low 
trust level), although the GL state is much better for patients 
than the BL state. By making the disutility value associated 
with the GL state comparable to the one for the BL state, 
we study how alerting policy changes when the company 
focuses primarily on retaining as many customers as possi-
ble rather than improving the health outcome of the patients. 
This is an undesirable situation in the perspective of asthma 
care yet is still possible. Therefore, our analysis may reveal 
the potential risk of the HIS industry.

Various parameter specifications used in the computa-
tional experiments are listed in Tables 3 and 4. The two 
scenarios in Table 3, (S1) and (S2) represent intervention-
averse and intervention-seeking patients, respectively. As 
shown, (S1) has a significantly reduced probability of inter-
vention compared to the base-case (S0), and (S2) assumes 
inflated probability to reflect patients’ active intervention-
seeking behavior.

In addition to (S1) and (S2) in Table 3, we introduce three 
more practical scenarios in Table 4.

•	 (S3) High penalty on receiving alerts It assumes that 
the patient may suffer from psychological discomfort 
triggered by receiving alerts from the system, and the 
alert fatigue leads to a noticeably reduced quality of life 
(increased �a=A).

Table 3   List of intervention 
probabilities changed for the 
experiments

(S0) Base-case (S1) Intervention-averse 
patients

(S2) Intervention-seeking 
patients

GH GL BL GH GL BL GH GL BL

Wait 0 0.10 0.10 0 0.05 0.10 0.10 0.30 0.50
Alert 0.90 0.30 0.80 0.40 0.10 0.30 0.95 0.70 0.90

Table 4   List of disutility values 
changed for the experiment

Case �
a=W �

a=A �
o=y

s∈S �o=sC

s∈{GL,GL}
�o=sC

s=BL
�
s=GH �

s=GL �
s=BL

(S0) 0 0.01 0 0.05 0.05 0 0.06 0.90
(S3) 0 0.10 0 0.10 0.10 0 0.20 0.80
(S4) 0 0.01 0 0.19 0.19 0 0.20 0.80
(S5) 0 0.01 0 0.05 0.05 0 0.80 0.90
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•	 (S4) High penalty on clinical visits It assumes that 
what makes patients feel bothersome is the intervention 
rather than receiving alert messages. For this scenario, 
we increased the disutilities associated with a clinic visit 
( �o=sC

s∈0,1
 and �o=sC

s=2
).

•	 (S5) High penalty on trust loss It penalizes being in the 
GL state as strongly as being in the BL state, reflecting 
the perspective of the company.

The optimal alerting policies for all six scenarios includ-
ing the base case are shown in Fig. 5. In Fig. 5, we observe 
that the alert region (shaded area) is slightly larger for 
intervention-averse patients (S1) compared to the base-case 
(S0). However, the changes in both thresholds are not notice-
ably large. It means that, when the patients enrolled in the 
SAM program are believed to be intervention averse, the 
system does not need to change its alerting policy signifi-
cantly. By contrast, we see that the alert region noticeably 
reduces for intervention-seeking patients (S2). In the SAM 
application, intervention not only affects the transition from 
a bad asthma control state to a good asthma control state 
but also provides an opportunity for patients to evaluate 
the performance of the system and updates their trust level 
accordingly. Hoff and Bashir [22] suggest that the reliability 
and performance of the information system are especially 
crucial if the system provides detailed feedback to users. 
In other words, the patients who frequently visit the clinic 

have more opportunity to evaluate the performance of the 
SAM system; hence, the system should worry more about 
making mistakes such as false alerts. In contrast, the per-
formance of the system becomes less influential when the 
patient is intervention averse, and this partially explains why 
we observed negligible changes in alerting policy under the 
scenario (S1). When patients are assumed to experience sig-
nificant discomfort by either receiving alerts (S3) or going 
through interventions (S4), the SAM system alerts patients 
cautiously to avoid excessive disutility. Lastly, if the com-
pany wants to keep their customers (patients) in a high-trust 
state, that is, (S5) in Table 4, the system should apply sig-
nificantly more conservative alerting rules for patients who 
trust the system, which is reflected by the small alert region 
shown in Fig. 5. Interestingly, for the same scenario (S5), the 
probability threshold for low-trust patients is comparable to 
the one under the base setting (S0). That means, when the 
SAM system believes that the patient is already in a low-
trust state, it would alert those low-trust patients without 
worrying about false alarms.

5.2 � Comparative discussion on the current practice 
of asthma management

In the current practice of asthma management, various 
medical institutes and government agencies created asthma 
action plans so that patients may assess their asthma control 
level by referring to them [51]. The asthma action plans 

Fig. 5   Optimal alerting policies under various scenarios
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have become the standard way to provide guidance to asthma 
patients [45]. Therefore, it is permissible for the company 
that provides the SAM service to adopt one of the action 
plans and simply use it as its alerting policy. We would like 
to clarify that the asthma action plans are not solely based on 
inhaler usage. They often involve many other symptoms and 
health indicators such as the peak expiratory flow. Unfortu-
nately, the current SAM system is not able to collect such 
diverse biomarkers from patients because the data acquisi-
tion is remote and wireless. Therefore, we only adopt the 
guidelines on inhaler use.

We consider two asthma action plans that are imple-
mentable to the SAM system. The American Lung Asso-
ciation [4] suggests that it may indicate a poorly controlled 
asthma if the patient had to use his/her rescue inhaler more 
than twice a week. We shall denote this action plan as the 
ALA Plan. Similarly, the Asthma Society of Canada [5] 
recommends patients contact their care provider when the 
number of rescue inhaler uses becomes more than four times 
a week, and we denote this action plan as the ASC Plan. The 
misalignment among various asthma action plans is caused 
by the complex nature of asthma and, to our best knowledge, 
there is no single best asthma action plan. We also include 
two more benchmark policies. First, we design a conserva-
tive action plan where intervention is recommended for 
patients whose number of inhaler uses per week is greater 
than or equal to 7, i.e., once a day on average. We denote 
this action plan as the 7PW (seven-per-week) Plan. Second, 
we include the no-alert policy, denoted as the NO Plan, as 
a baseline.

We present the QALDs and number of days in good 
asthma control for each alerting policy (the mean values 
computed from 10,000 numerical experiments) in the left-
hand graph in Fig. 6. The numerical simulation was done 
by the correlated gamma-based hidden Markov model spe-
cifically designed for the asthma management applications 
and well-validated by the real-world health data [50]. The 

computational experiments are done under the base-case 
scenario (S0).

Our alerting policy considering the trust-dependent 
patient adherence yields the highest QALDs compared with 
other benchmark plans. The 7PW plan shows unsatisfac-
tory performance comparable to the NO Plan because the 
7PW Plan is as conservative as the no-alert policy. Although 
the QALD obtained by implementing our alerting policy is 
the highest, the ALA Plan seems to perform comparably 
to our approach. As a matter of fact, on average, the ALA 
Plan yields slightly more days with good asthma control 
(1761.665) compared to our alerting policy (1761.426). 
Therefore, on the right-hand graph in Fig. 6, we examine 
our alerting policy and the ALA Plan more closely on the 
basis of the number of misdetection days (undetected bad 
asthma control days) and the number of alerts. We observe 
that the ALA Plan sends out substantially more alerts than 
our alerting policy. This indicates that the ALA Plan is a 
very sensitive alerting policy. In other words, aggressive 
alerting is the ALA Plan’s strategy to minimize misdetec-
tion. Conversely, our alerting policy provides a comparable 
number of good asthma control days, sacrificing only a few 
more misdetections (39.568 vs. 43.371). This means that the 
alerting strategy that accounts for the trust-dependent patient 
adherence can ensure high QALDs while minimizing alert 
fatigue. If we focus solely on maximizing the number of 
good control days, some existing asthma action plans might 
be able to achieve the goal. However, properly considering 
the interaction dynamics between patients and the SAM sys-
tem can reduce alert fatigue substantially while obtaining a 
comparable (if not better) health outcome. Lowering alert 
fatigue is important because patients who have cumulated 
an excessive amount of alert fatigue may abandon the SAM 
system, which is an undesirable scenario for both the com-
pany and the patients.

Fig. 6   Comparison between the optimal alerting policy and asthma action plans
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6 � Practical implication and discussion

We developed a specialized POMDP model and derived 
the optimal alerting policy considering the trust-dependent 
patient adherence. The mathematical model may not be 
able to capture every aspects of the complex patient-HIS 
relationship, but the analytical process shown in this paper 
provides valuable and practical insights. In conventional 
physician-patient relationship, it is well known that adher-
ence is one of the primary reasons for suboptimal clini-
cal benefit [56]. The same issue is present for HIS-patient 
interaction. As healthcare community adopts analytical 
methods more than ever before [51], it has become clear 
that patients’ adherence to the recommendation from 
the analytics-based system is crucial for ensuring a sat-
isfactory health outcome. Our study provides actionable 
insights to promote better healthcare practice using the 
HIS.

We shed light on the importance of considering adher-
ence issue in HIS applications. The best health outcome 
can only be obtained by carefully studying the patients’ 
adherence behavior and improving the algorithm embed-
ded in the HIS. We numerically showed the potential 
benefit of bringing the concept of trust into HIS design 
for improving patients’ overall quality of life. Also, our 
study gives a guideline for alerting patients. Our results 
show that patients with a high trust level need to be alerted 
cautiously, whereas a more aggressive alerting strategy is 
acceptable for patients with a low trust level. Although this 
insight is consistent with the existing findings in [8], we 
further explain the mechanism through the lens of patients’ 
trust. Every alert comes with a risk of being a false alarm 
and losing the patients’ trust level. At the same time, there 
is a risk of misdetection whenever the system remains 
silent. In this study, we emphasized that optimally bal-
ancing the trade-off is crucial for maximizing the patients’ 
quality of life. This insight would be helpful for designers 
when they develop a HIS in various healthcare domains.

It should be noted that the actual implementation of 
our method in healthcare practice must be done with cau-
tion because, despite its promising features, our model 
has some limitations. First, the parameter specifications 
in our model are justified only in the context of asthma 
management. We acknowledge that our assumptions may 
not be feasible in other applications for managing differ-
ent medical conditions. For instance, a HIS for Type-2 
diabetes management may collect the blood glucose level 
through sensors and wireless communication channels. A 
specific model may need to be designed tailored to the 
symptomology of diabetes which must be vastly different 
from managing asthma conditions. Second, we primar-
ily focus on trust for investigating the patient adherence 

behavior. There are other factors involved in the inter-
action between patients (users) and the HIS. According 
to the survey results, most of users of the SAM system 
operated by our industry collaborator are satisfied with 
the accessibility (ease-of-use) and usefulness of the sys-
tem; hence, those factors are not considered in our study. 
However, there might be a considerable variance among 
patients in terms of the perceived quality of the system, 
especially for a newly-developed HIS. In such a case, in 
addition to trust, it might be worthwhile to study other 
factors as well. Furthermore, we ignore any external forces 
that might affect the behavior of patients. For instance, 
if a patient recently witnessed a friend having a positive 
experience with the same HIS, the patient’s adherence 
behavior toward the alert might be positively influenced. 
If the patients’ trust is heavily influenced by factors that 
are unknown to the model, the performance of the analyt-
ics method is expected to decrease. We conducted a sen-
sitivity analysis on this aspect and reported the results and 
relevant discussions in Appendix B. Interested readers can 
refer to Appendix B to see the potential negative impact. 
Our study aims to provide practical insights through an 
analytical lens. Extending the model to a more general 
complex scenario can quickly make the model analytically 
intractable; hence, a machine learning-based approach 
might be a plausible alternative.

7 � Conclusion

In addition to making advancements in health technolo-
gies and analytics, a HIS must be designed considering the 
human-technology relationship to successfully realize the 
desirable positive health outcome. In the SAM context, the 
HIS may ask a patient to seek a clinical follow-up based on 
the patient’s inhaler usage log collected by the IoT-enabled 
personal inhaler. The performance (accuracy) of the data-
driven algorithms that detect the undesirable asthma exac-
erbation is crucial. However, it is also important to note that 
the recommendation provided by the system may or may 
not be accepted by the patient. Furthermore, patient adher-
ence to the recommendation may change over time as the 
patient’s trust in the SAM system dynamically evolves on 
the basis of the patient’s experience of using the system. 
We analytically and numerically showed that considering 
trust-dependent patient adherence might be critical in the 
IoT-enabled HIS context.

Our study has both methodological and practical contri-
butions. We developed a specialized POMDP model and 
derived the optimal alerting policy considering the trust-
dependent patient adherence. The mathematical model 
may not be able to capture every aspects of the complex 
patient-HIS relationship but the analytical process shown in 
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this paper provides valuable insights. The optimal alerting 
policy has desirable structural properties that can be eas-
ily translated into actionable guidelines in practice due to 
its simple threshold-type characteristics. We show that the 
best alerting strategy may vary depending on the patient’s 
trust level, and we demonstrate that alert fatigue can be sig-
nificantly reduced by considering such information in the 
system design.

A set of studies that extends our current research is 
needed in the future. First, it is important to find the ways to 
accurately estimate the key parameters, such as the asthma 
control state and trust state transition probabilities. The cur-
rent SAM system is not capable of collecting data on vari-
ous biomarkers that are measured only at clinical facilities 
by medical experts. This is a well-known limitation of HIS 
based on remote patient monitoring technologies [50]. Simi-
larly, accurate inferences on trust state transition probabili-
ties is also challenging with the current SAM infrastructure. 
Taking advantages of the recent advancements in healthcare 
technologies, the HIS now can be integrated with one or 
more databases to create a set of comprehensive electronic 
health records (EHRs). Many firms in the health information 
service domain, including our industry collaborator, are cur-
rently trying to merge their HIS and EHR systems at local 
hospitals to achieve the aforementioned goals.

Overall, it seems clear that focusing solely on methodo-
logical advancement is not enough for ensuring the best pos-
sible health outcome from the HIS. Fueled by the technical 
improvements in artificial intelligence, many algorithms 
have been developed and tested in diverse healthcare appli-
cations, making a quantum leap in algorithmic develop-
ment. However, we may want to put more effort into how 
stakeholders (patients, physicians, insurers, and companies) 
interact with the HIS. Without a deeper understanding of the 
matter, we will encounter various issues in having the HIS 
successfully implemented in real-world healthcare practice. 
By studying the complex relationship between the HIS and 
its stakeholders, the advancements in healthcare technolo-
gies may truly transform the current practice of medicine.

Appendix A: Proofs of analytical results

The following results are used throughout Appendix.

Lemma A.1  [25] For two probability mass func-
tions x and x′ with the same dimension |X| , x ≤s x

′ iff ∑
i∈X x(i)f (i) ≥

∑
i∈X x

�(i)f (i) for every non-increasing f in 
i ∈ X.

Lemma A.2  [47] For two probability mass functions x and x′ 
with the same dimension |X| , if x ≤r x

′ then x ≤s x
′.

Lemma A.3  [26] If P ∈ TP2 and x ≤r x
′ are two probability 

mass functions with the same dimension |X| , then xP ≤r x
′P 

provided that P have appropriate dimension.

Lemma A.4   [43]  For x ≤r x
′ in  Def ini t ion 2, 

x ≤r (1 − �)x + �x� ≤r x
� for any arbitrary � ∈ [0, 1].

Lemma A.5  [48] The optimality equation V∗
t
(�) is piecewise 

linear convex hence can be written in terms of the maximum 
of a finite number of linear functions as:

for all t ≤ tE where the |S|-dimensional vector �i
t
=
[
�i
t
(s)

]
 for 

s ∈ S called the �-vectors.

Proof of analytical results 1 and 2

Analytical Results 1 and 2 are crucial because, based on 
them, we can claim a monotone optimal value function non-
increasing in � ∈ � . We first show Lemma 1 as follows:

Lemma 1  Suppose (C1)–(C3) hold, then the state transition 
probability matrix �a,o

t
 has TP2 property for all a ∈ A and 

o ∈ � where (C1)–(C3) are

Proof of Lemma 1  First, we consider o = y ∈ Y for a ∈ A . In 
this case, the transition probability matrices are

where ΓW,y

0j
 , ΓW,y

1j
 , and ΓW,y

2j
 can be replaced with ΓA,y

0j
 , ΓA,y

1j
 , 

and ΓA,y

2j
.

Let us ignore the denominator and focus on the numerator 
for each entry in �a,y

t  . Note that [px,z
ij
] = cx

kl
× vz

qu
 denotes a 

matrix of transition probabilities from state i to state j for 
i, j ∈ {0, 1, 2} , where x ∈ {1, 0} , z ∈ {gain, loss, none} , 
k = G if i ∈ {0, 1} , k = B if i = 2 , l = G if j ∈ {0, 1} , l = B 
if j = 2 , q = H if i = 0 , q = L if i ∈ {1, 2} , u = H if j = 0 , 
and u = L if j ∈ {1, 2} . Then, we have

V∗
t
(�) =max

k

[∑
s∈S

�(s)�k
t
(s)

]

for some �t =
{
�0
t
, �1

t
, �2

t
,…

}
,
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gain
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The first, second, and third rows have the following 
relationship:

where the first inequality holds because of (C2) and the sec-
ond inequality holds due to (C3). It can be shown that 
c0
GB
vnone
HH

= 1 −
∑2

j=0
Γ
W,y

0j
 , c0

GB
vnone
LH

= 1 −
∑2

j=0
Γ
W,y

1j
 , and 

c
0

BB
v
none

LH
= 1 −

∑
2

j=0
Γ
W,y

2j
 .  Because both 

(

1 − c0GBv
none
LH

)

∕
(

1 − c0GBv
none
HH

)

 and (1 − c
0

BB
v
none

LH

)
∕
(
1 − c

0

GB
v
none

LH

) are non-nega-
tive, we obtain

which  d i rec t ly  impl i e s  �
a,y

t (⋅|0)≤r�
a,y

t (⋅|1) and 
�
a,y

t (⋅|1)≤r�
a,y

t (⋅|2) from Definition 2. Thus, from Defini-
tion 3, �a,y

t ∈ TP2 for a ∈ A and t ≤ tE.
Now, for o=sH

t
 and a=W  , the transition matrix without 

the normalizing denominators is

and we can derive following relationships
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1,gain

11
p
1,gain

12

p
1,loss

20
p
1,loss

21
p
1,loss

22

⎤⎥⎥⎦

=

⎡⎢⎢⎣

c1
GG

v
gain

HH
c1
GG

v
gain

HL
c1
GB
v
gain

HL

c1
GG

v
gain

LH
c1
GG

v
gain

LL
c1
GB
v
gain

LL

c1
BG
vloss
LH

c1
BG
vloss
LL

c1
BB
vloss
LL

⎤⎥⎥⎦
,

where the first inequality holds because of (C1) and 
(C2), the second inequality holds due to (C3), and 
the second equality is based on (C1). Therefore, 

�̃
W,sC

t

t
(⋅|0)≤r�̃

W,sC
t

t
(⋅|1)≤r�̃

W,sC
t

t
(⋅|2) which implies that 

�
W,sC

t

t ∈ TP2
 from Definition 3. Similarly, for o=sH

t
 and a=A , 

we have

and we derive following relationships

where the first inequality holds because (C2) and the sec-
ond inequality holds due to (C3). The second equality is 
based on (C1). Therefore, �̃

A,sC
t

t
(⋅|0)≤r�̃

A,sC
t

t
(⋅|1)≤r�̃

A,sC
t

t
(⋅|2) 

which implies that �A,sC
t

t ∈ TP2 from Definition 3. Based on 
all results above, we see that �a,o

t
∈ TP2 for a ∈ A , o ∈ O , 

and t ≤ tE . 	�  ◻

Lemma 1 shows that the state transition probability matrix 
�a,o
t

 has the TP2 property. We can also show that the TP2 prop-
erty can be retained after simplifying the state transition prob-
ability matrix to �a

t
 as follows:

Proposition 1  Suppose (C1)–(C3) hold, then the �a,o
t

∈ TP2 
for all a ∈ A and t ≤ tE.

Proof of Proposition 1  To recall, the overall transition prob-
ability for at = W  is expressed as

c1
GG

v
gain

HH

c1
GG

v
gain

LH

≥
c1
GG

v
gain

HL

c1
GG

v
gain

LL

=
c1
GB
v
gain

HL

c1
GB
v
gain

LL

and
c1
GG

v
gain

LH

c1
BG
vloss
LH

=
c1
GG

v
gain

LL

c1
BG
vloss
LL

≥
c1
GB
v
gain

LL

c1
BB
vloss
LL

,

�̃
A,sC

t

t
=

⎡
⎢⎢⎢⎣

�̃
A,sC

t

t
(⋅�0)

�̃
A,sC

t

t
(⋅�1)

�̃
A,sC

t

t
(⋅�2)

⎤
⎥⎥⎥⎦
=

⎡⎢⎢⎣

p
1,loss

00
p
1,loss

01
p
1,loss

02

p
1,loss

10
p
1,loss

11
p
1,loss

12

p
1,gain

20
p
1,gain

21
p
1,gain

22

⎤⎥⎥⎦

=

⎡⎢⎢⎣

c1
GG

vloss
HH

c1
GG

vloss
HL

c1
GB
vloss
HL

c1
GG

vloss
LH

c1
GG

vloss
LL

c1
GB
vloss
LL

c1
BG
v
gain

LH
c1
BG
v
gain

LL
c1
BB
v
gain

LL

⎤⎥⎥⎦
,

c1
GG

vloss
HH

c1
GG

vloss
LH

≥
c1
GG

vloss
HL

c1
GG

vloss
LL

=
c1
GB
vloss
HL

c1
GB
vloss
LL

and
c1
GG

vloss
LH

c1
BG
v
gain

LH

=
c1
GG

vloss
LL

c1
BG
v
gain

LL

≥
c1
GB
vloss
LL

c1
BB
v
gain

LL

,
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Now, let px,z
i⋅

 denote the a vector of transition probabilities 
from state i to j ∈ {0, 1, 2} for any given x ∈ {1, 0} and 
z ∈ {none, gain, loss} . Then, from Definition 2, we obtain

where the inequality holds because of condition (C1) and 
the equality holds due to condition (C3). Similarly, we show

where the equality and inequality hold due to conditions (C1) 
and (C3), respectively. Furthermore, from the same condi-
tions (C1) and (C3), it is easy to show that p1,gain

1⋅
= p

0,none

1⋅
 

because c0
GG

= c1
GG

 , c0
GB

= c1
GG

 , and vnone
LL

= v
gain

LH
.

Let �W
t
(⋅|i) denote a |S|-dimensional vector of state tran-

sition probabilities from state i to j ∈ {0, 1, 2} . Then, from 
Lemma A.4, we get

Now we show

where the inequality in the first expression holds because of 
condition (C2) and the rest is due to condition (C3). Based 
on this result, we obtain following relationship:

Therefore, based on Definition 3, �W
t
∈ TP2.

For at = A , we follow the identical procedures and get 
following relationships:

�W
t
=

⎡
⎢⎢⎣

�
1 − q

0,W
t

�
p
0,none

00
+ q

0,W
t p

1,gain

00

�
1 − q

0,W
t

�
p
0,none

01
+ q

0,W
t p

1,gain

01

�
1 − q

0,W
t

�
p
0,none

02
+ q

0,W
t p

1,gain

02�
1 − q

1,W
t

�
p
0,none

10
+ q

1,W
t p

1,gain

10

�
1 − q

1,W
t

�
p
0,none

11
+ q

1,W
t p

1,gain

11

�
1 − q

1,W
t

�
p
0,none

12
+ q

1,W
t p

1,gain

12�
1 − q

2,W
t

�
p
0,none

20
+ q

2,W
t p

1,loss

20

�
1 − q

2,W
t

�
p
0,none

21
+ q

2,W
t p

1,loss

21

�
1 − q

2,W
t

�
p
0,none

22
+ q

2,W
t p

1,loss

22

⎤
⎥⎥⎦
,

c0
GG

vnone
HH

c1
GG

v
gain

HH

≤
c0
GG

vnone
HL

c1
GG

v
gain

HL

=
c0
GB
vnone
HL

c1
GG

v
gain

HL

⇔ p
1,gain

0⋅
≤rp

0,none

0⋅
,

c0
BG
vnone
LH

c1
BG
vloss
LH

=
c0
BG
vnone
LL

c1
BG
vloss
LL

≤
c0
BB
vnone
LL

c1
BB
vloss
LL

⇔ p
1,loss

2⋅
≤rp

0,none

2⋅
,

⎧⎪⎨⎪⎩

p
1,gain

0⋅
≤r�

W
t
(0�⋅)≤rp

0,none

0⋅

p
0,none

1⋅
= �W

t
(1�⋅) = p

1,gain

1⋅

p
1,loss

2⋅
≤r�

W
t
(2�⋅)≤rp

0,none

2⋅

.

⎧⎪⎨⎪⎩

c0
GG

vnone
HH

c1
GG

vnone
LH

≥
c0
GG

vnone
HL

c1
GG

vnone
LL

=
c0
GB

vnone
HL

c1
GG

vnone
LL

⇔ p
0,none

0⋅
≤rp

0,none

1⋅

c1
GG

v
gain

LH

c1
BG

vloss
LH

=
c1
GG

v
gain

LL

c1
BG

vloss
LL

≥
c1
GB

v
gain

LL

c1
BB
vloss
LL

⇔ p
1,gain

1⋅
≤rp

1,loss

2⋅

,

p
1,gain

0⋅
≤r�

W
t
(⋅|0)≤rp

0,none

0⋅
≤rp

0,none

1⋅
= �W

t
(⋅|1)

= p
1,gain

1⋅
≤rp

1,loss

2⋅
≤r�

W
t
(⋅|2)≤rp

0,none

2⋅

⟺ �W
t
(⋅|0)≤r�

W
t
(⋅|1)≤r�

W
t
(⋅|2) .

where (C1) and (C3) were used and, using (C2) and (C3), 
we further obtain

Now, from Lemma A.4, we show

Therefore, based on Definition 3, � A
t
∈ TP2 hence � a

t
∈ TP2 

for all a ∈ A and t ≤ tE . 	�  ◻

Furthermore, from Lemma 1, we get

Proposition 2  For any two beliefs �,��

∈ � such that 
� ≤r �

′ , suppose (C1)–(C3) hold, then �a,o
�

≤r �
a,o

�
′  for any 

a ∈ A and o ∈ �.

Proof of Proposition 2  Let �t(o) denote a 3-by-3 matrix 
defined as

which has three identical columns for o ∈ O and a ∈ A . 
Now, based on Definition 3, it is easy to show that the fol-
lowing matrix has TP2 property

where the operator ◦ indicates element-wise multiplication 
(Hadamard product). For each belief, we get

⎧
⎪⎪⎨⎪⎪⎩

c0
GG

vnone
HH

c1
GG

vloss
HH

≥
c0
GG

vnone
HL

c1
GG

vloss
HH

=
c0
GB

vnone
HL

c1
GB

vloss
HL

⇔ p
0,none

0⋅
≤rp

1,loss

0⋅

c0
GG

vnone
LH

c1
GG

vloss
LH

=
c0
GG

vnone
LL

c1
GG

vloss
LL

=
c0
GB

vnone
LL

c1
GB

vloss
LL

⇔ p
0,none

1⋅
= p

1,loss

1⋅

c0
BG

vnone
LH

c1
BG

v
gain

LH

≤
c0
BG

vnone
LL

c1
BG

v
gain

LL

=
c0
BB
vnone
LL

c1
BB
v
gain

LL

⇔ p
1,gain

2⋅
≤rp

0,none

2⋅

,

⎧
⎪⎨⎪⎩

c1
GG

vloss
HH

c1
GG

vloss
LH

≥
c1
GG

vloss
HL

c1
GG

vloss
LL

=
c1
GB

vloss
HL

c1
GB

vloss
LL

⇔ p
1,loss

0⋅
≤rp

1,loss

1⋅

c1
GG

vloss
LH

c1
BG

v
gain

LH

=
c1
GG

vloss
LL

c1
BG

v
gain

LL

≥
c1
GB

vloss
LL

c1
BB
v
gain

LL

⇔ p
1,loss

1⋅
≤rp

1,gain

2⋅

.

p
0,none

0⋅
≤r�

A
t
(⋅|0)≤rp

1,loss

0⋅
≤rp

1,loss

1⋅

= � A
t
(⋅|1)≤rp

1,gain

2⋅
≤r�

A
t
(⋅|2)≤rp

0,none

2⋅

⟺ � A
t
(⋅|0)≤r�

A
t
(⋅|1)≤r�

A
t
(⋅|2) .

�t(o) =

⎡⎢⎢⎣

Λ0,a
t (o) Λ0,a

t (o) Λ0,a
t (o)

Λ1,a
t (o) Λ1,a

t (o) Λ1,a
t (o)

Λ2,a
t (o) Λ

2,a
t (o) Λ

2,a
t (o)

⎤⎥⎥⎦
,

�t(o)◦�
a,o
t

=

⎡⎢⎢⎣

Λ0,a
t (o)Γa,o

t (0�0) Λ0,a
t (o)Γa,o

t (1�0) Λ0,a
t (o)Γa,o

t (2�0)
Λ1,a

t (o)Γa,o
t (0�1) Λ1,a

t (o)Γa,o
t (1�1) Λ1,a

t (o)Γa,o
t (2�1)

Λ2,a
t (o)Γ

a,o
t (0�2) Λ2,a

t (o)Γ
a,o
t (1�2) Λ2,a

t (o)Γ
a,o
t (2�2)

⎤⎥⎥⎦
,
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and

From Lemma A.3, �
(
�t(o)◦�

a,o
t

)
≤r�

′
(
�t(o)◦�

a,o
t

)
 holds 

because �t(o)◦�
a,o
t

∈ TP2 . Based on Definition 3, we rewrite 
the expression as

From the definition of our belief updating function, we get

�
(
𝚿t(o)◦𝚪

a,o
t

)
=

[∑
s∈S

�
(
s�
)
Λs,a

t
(o)Γa,o

t

(
s�|s)

]

s�∈S

,

��
(
𝚿t(o)◦𝚪

a,o
t

)
=

[∑
s∈S

��
(
s�
)
Λs,a

t
(o)Γa,o

t

(
s�|s)

]

s�∈S

.

�
�
�t(o)◦�

a,o
t

�
≤r�

�
�
�t(o)◦�

a,o
t

�

⟹

∑
s∈S �(0)Λ

s,a
t (o)Γ

a,o
t (0�s)∑

s∈S �
�(0)Λ

s,a
t (o)Γ

a,o
t (0�s)

≥

∑
s∈S �(1)Λ

s,a
t (o)Γ

a,o
t (1�s)∑

s∈S �
�(1)Λs,a

t (o)Γa,o
t (1�s)

≥

∑
s∈S �(2)Λ

s,a
t (o)Γ

a,o
t (2�s)∑

s∈S �
�(2)Λs,a

t (o)Γa,o
t (2�s) .

The Analytical Result 1 is based on Lemma  1 and 
Proposition 1, and the Analytical Result 2 is equivalent to 
Proposition 2.

Proof of analytical result 3

The Analytical Result 3 shows that our optimal value func-
tion is nonincreasing in � ∈ � without assuming an unreal-
istic TP2 assumption on the observation probability matrix. 
First, we give Lemma 2 as follows:

Lemma 2  For yt ∈ Y and sC
t
∈ {G,B} , let �sCt =

[
�sCt (yt)

]
 be 

a |Y|-dimensional probability vector where �sCt (yt) = P(yt|sCt ) 
and define � = �G(y

M)∕�B(y
M) where 0 < 𝛾 ≤ 1 . Suppose fol-

lowing conditions are satisfied for all a ∈ A , then the obser-
vation probability matrix �a

t
=
[
Λs,a

t (o)
]
s∈S,o∈O

∈ TP2 for all 
a ∈ A and t ≤ tE.

Proof of Lemma 2  We give proof only for at = W  because 
the proof for at = A is identical. For at = W , the observation 
matrix for ot ∈ O =

{
0, 1, 2

+
, sC

t

}
 is defined as

because Λs,a
t

(
o = sC

t

)
= q

s,a
t  and Λs,a

t

(
o = yt

)
=
(
1 − q

s,a
t

)
× P

(
yt|sCt

) 
for yt ∈ Y . Each row in �W

t
 , �W

t
(⋅|i) , denotes an observa-

tion probability vector with dimension of |O| for state i.
For the first and second rows in �W

t
 , we see

where the last inequality holds because of (C2). Thus, from 
Definition 2, �W

t
(⋅|0)≤r�

W
t
(⋅|1).

(C4) �G≤r�B,

(C5) q0,a
t

≤ q1,a
t

≤ �(a) = q1,a
t
∕
{
�
(
1 − q1,a

t

)
+ q1,a

t

}
≤ q2,a

t
.

�W
t
=

⎡⎢⎢⎣

�W
t
(⋅�0)

�W
t
(⋅�1)

�W
t
(⋅�2)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

�
1 − q

0,W
t

�
�G(0)

�
1 − q

0,W
t

�
�G(1)�

1 − q
1,W
t

�
�G(0)

�
1 − q

1,W
t

�
�G(1)�

1 − q
2,W
t

�
�B(0)

�
1 − q

2,W
t

�
�B(1)

�
1 − q

0,W
t

�
�G
�
2+

�
q
0,W
t�

1 − q
1,W
t

�
�G
�
2+

�
q
1,W
t�

1 − q
2,W
t

�
�B
�
2+

�
q
2,W
t

⎤⎥⎥⎦
,

(
1 − q

0,W
t

)
�G(0)(

1 − q
1,W
t

)
�G(0)

=

(
1 − q

0,W
t

)
�G(1)(

1 − q
1,W
t

)
�G(1)

=

(
1 − q

0,W
t

)
�G
(
2+

)
(
1 − q

1,W
t

)
�G(2

+)
≥

q
0,W
t

q
1,W
t

,
Multiplying a non-negative quantity ∑

s∈S �
�(s)Λ

s,a

t
(o)∕

∑
s∈S �(s)Λ

s,a

t
(o) 

yields

which implies �a,o
�
≤r�

a,o

�′  for any a ∈ A and o ∈ O based on 
Definition 3. 	�  ◻

�a,o
�
(0)

∑
s∈S �(s)Λ

s,a
t (o)

�a,o
�� (0)

∑
s∈S �

�(s)Λ
s,a
t (o)

≥
�a,o
�
(1)

∑
s∈S �(s)Λ

s,a
t (o)

�a,o
�� (1)

∑
s∈S �

�(s)Λ
s,a
t (o)

≥
�a,o
�
(2)

∑
s∈S �(s)Λ

s,a
t (o)

�a,o
�� (2)

∑
s∈S �

�(s)Λ
s,a
t (o)

.

�a,o
�
(0)

�a,o
�� (0)

≥
�a,o
�
(1)

�a,o
�� (1)

≥
�a,o
�
(2)

�a,o
�� (2)

,
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Similarly, for the second and third rows in �W
t

 , we get

where the last inequality holds due to (C2).
From (C1), �G≤r�B which implies �G(0)∕�B(0) ≥ 

�G(1)∕�B(1) ≥ �G(2)∕�B(2) . Because 
(
1 − q

1,W
t

)
∕
(
1 − q

2,W
t

)
 

is always positive, the inequalities do not change after mul-
tiplication. Therefore, the first and second inequalities hold. 
Now, based on Definition 2, �W

t
(⋅|1)≤r�

W
t
(⋅|2) . Because 

�W
t
(⋅|0)≤r�

W
t
(⋅|1) and �W

t
(⋅|1)≤r�

W
t
(⋅|2) , from Definition 

3, �W
t
=
[
Λs,W

t (o)
]
s∈S,o∈O

∈ TP2 for t ≤ tE . Following the 
same procedure for a = A , it is easy to show that 
�A

t
=
[
Λs,A

t (o)
]
s∈S,o∈O

∈ TP2 for t ≤ tE . 	�  ◻

We stated that (C5) is not a viable assumption in the 
SAM application. Therefore, we need to find a way to ensure 
monotonic nonincreasing value function in � ∈ � without 
depending on Lemma 2. To do so, we give Lemma 3 and 
Proposition 3 as below:

(
1 − q

1,W
t

)
�G(0)(

1 − q
2,W
t

)
�B(0)

≥

(
1 − q

1,W
t

)
�G(1)(

1 − q
2,W
t

)
�B(1)

≥

(
1 − q

1,W
t

)
�G
(
2+

)
(
1 − q

2,W
t

)
�B(2

+)
≥

q
1,W
t

q
2,W
t

,

Lemma 3   The  va lue  func t ion  fo r  a ∈ A  i s 
Va
t
(�) =

∑
s∈S �(s)

�
rt(s, a) +

∑
s�∈S �

a
t
(s��s)�̃�(�,a)

t+1
(s�)

�
 where 

�(�, a) = argmaxk
�∑

s∈S �(s)
∑

s�∈S �
a
t
(s��s)�k

t+1
(s�)

�
 a n d 

�k
t+1

(s�) is �-vector defined by Lemma A.5. Then, based on 
the revised �-vector �̃�

t
(�, a) , the optimizing �-vector for a 

given belief  � ∈ � is  denoted as �
k∗(�)
t  where 

k
∗(�) = argmax{�(�,W),�(�,A)}

�∑
s∈S �(s)�̃

�(�,W)
t

(s),
∑

s∈S �(s)�̃
�(�,A)
t

(s)
�
.

Proof of Lemma 3  First, we express the optimal value func-
tion for the updated belief �a,o

�
 in terms of �-vectors intro-

duced in Lemma A.5 as

where �k
t+1

(
s�
)
 is the �-vector in Lemma A.5.

Now, the optimal value function for an action a is

V∗
t+1

(�a,o
�
) = max

k

��
s�∈S

�a,o
�
(s�)�k

t+1
(s�)

�

= max
k

��
s�∈S

�∑
s∈S �(s)�

s,a
t (o)� a,o

t (s��s)∑
s∈S �(s)�

s,a
t (o)

�
�k
t+1

�
s�
��

= max
k

�
1∑

s∈S �(s)Λ
s,a
t (o)
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Then, the optimal value function for a given action 
a  b e c o m e s  Va

t
(�) =

∑
s∈S �(s)�̃

�(�,a)
t (s)  ,  w h e r e 

�(�, a) = argmaxk
�∑

s∈S �(s)
∑

s�∈S Γ
a
t

�
s��s��k

t+1

�
s�
��

.
Based on this formulation, we can see that the overall 

optimal value function is expressed as

where 
k
∗(�) = argmax{�(�,W),�(�,A)}

�∑
s∈S �(s)�̃

�(�,W)
t

(s),
∑

s∈S �(s)�̃
�(�,A)
t

(s)
� . 	

� ◻

Proposition 3  Suppose the following conditions on disu-
tility hold in addition to (C1)–(C3), then the optimizing 
revised �-vector is non-increasing in s ∈ S for an arbitrary 
belief � ∈ � : that is, for any s1, s2 ∈ S such that s1 < s2 , 
�̃
k∗(�)
t

(
s
1

)
≥ �̃

k∗(�)
t

(
s
2

)
 for all t ≤ tE.

Proof of Proposition 3  From Lemma 3, we know that

First, we can show that rt(s, a, o) is a non-increasing func-
tion in s ∈ S for any a∈A and o ∈ O . Based on (C6), we can 
derive following minimums and maximums.

From (C7)–(C8), it is straightforward to show that 
mina,o

[
rt(s = 0, a, o)

]
≥ maxa,o

[
rt(s = 1, a, o)

]
 a n d 

mina,o
[
rt(s = 1, a, o)

]
≥ maxa,o

[
rt(s = 2, a, o)

]
 . Therefore, 

rt(s, a, o) is non-increasing in s ∈ S.
At the last time epoch t = tE , the optimal value function 

is defined as

which implies that the�-vector can be defined as 
�tE (s) = rtE (s, a) =

∑
o∈O Λs,a

tE
(o)rtE (s, a, o) . From the result 

above, rtE (s, a, o) is non-increasing in s ∈ S for any a∈A 
and o ∈ O hence the optimizing �-vector at time tE is non-
increasing in s ∈ S . In other words, the assertion holds when 

V∗
t
(�) = max

{
VW
t
(�),VA

t
(�)

}
=
∑
s∈S

�(s)�̃
k∗(�)
t ,
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o=y

s=0
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o=y

s=1
= �

o=y

s=2
= �a=W = �s=0 = 0,

(C7) �a=A + �o=sC

s=0
≤ �s=1,

(C8) �s=1 + �a=A + �o=sC

s=1
≤ �s=2 ≤ 1 − �a=A − �o=sC

s=2
.

�̃
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[∑
o∈O
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t
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(
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∑
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t

(
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(
s�
))]

.
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[
rt(s = 0, a, o)

]
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s=0
,

max
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[
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]
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[
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,

t = tE . Now, assume inductively that the assertion holds at 
t + 1, t + 2,… , tE and assume the optimizing �-vector �̃k∗(�)

t  
is associated with action a∗ . Based on (C1)–(C3) and Propo-
sition 1, �a

t
∈ TP2 and, from Definition 3 and Lemma A.2, 

we get

From the above inequalities and Lemma A.1,

where the inequality holds due to the induction assumption 
and similarly we get

Therefore, 
∑

s� Γ
a∗

t

�
s��s��k

t+1

�
s�
�
 is non-increasing in s ∈ S.

Because both rt(s, a∗, o) and 
∑

s� Γ
a∗,o
t

�
s��s��k

t+1

�
s�
�
 are 

non-increasing in s ∈ S , we have

where 
∑

o∈O Λs,a∗

t (o)= 1 for any given s ∈ S . Based on 
the results above, for any s1, s2 ∈ S such that s1 < s2 , 
�̃
k∗(�)
t

(
s
1

)
≥ �̃

k∗(�)
t

(
s
2

)
 for all t ≤ tE . 	�  ◻

Finally, based on Lemma 3 and Proposition 3, we give Theorem 1.

Theorem  1  Suppose (C1)–(C3) and (C6)–(C8) hold. 
Then, for any belief vectors �,�� ∈ �  such that �≤s�

′ , 
V∗
t
(�) ≥ V∗

t

(
��
)
 for all t ≤ tE.

Proof of Theorem 1  Based on Lemma 3, the optimal value function is

From Lemma A.1 and Proposition 3, we get
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where the first inequality holds because of the definition of 
the optimal value function. 	�  ◻

As we see in Theorem 1, we do not need the TP2 property 
on the observation probability matrix. Therefore, it is per-
missible to violate (C5) in Lemma 2. The Analytical Result 
3 is a summary of Theorem 1, Lemma 3, and Proposition 3.

Proof of analytical result 4

The Analytical Result 4 is based on Theorem  2 and 
Corollary 1.

Theorem 2  Let a∗
t
(�) denote the optimal action at time t 

for a given belief � ∈ � . Suppose (C1)–(C4) and (C6)–
(C8) hold. Furthermore, suppose (C5) holds fora = W 
and 

∑
s

�
�(s) − ��(s)

�∑
s� �

A
t
(s��s)�̃�(�,A)

t+1

�
s�
�
≥ 0 holds. 

Then, if a∗
t

(
�′
)
= W  then a∗

t
(�) = W  and if a∗

t
(�) = A , then 

a∗
t

(
�′
)
= A for any �,�′ ∈ � such that �≤s�

′.

Proof of Theorem 2  Consider the case of a∗
t

(
�′
)
= W . Theo-

rem 2 says that VW
t

(
�′
)
≥ VA

t

(
�′
)
 and VW

t
(�) ≥ VA

t
(�) . Now, 

suppose the converse is true which means VW
t

(
�′
)
≥ VA

t

(
�′
)
 

and VW
t
(�) < VA

t
(�) . In this case, we get

Because (C4) holds and (C5) holds for a = W  , based on 
Lemma  2, �W

t
∈ TP2 . Also, because (C1)–(C3) hold, 

�W
t
∈ TP2 based on Proposition 1. When both �W

t
 and �W

t
 

have TP2 property, we can show that VW
t

(
�′
)
− VW

t
(�) ≤ 0 

because VW
t
(�) ≥ VW

t

(
�′
)
 for �≤s�

′ . We omit this 
proof which depends on (C6)–(C8), Lemma  A.1, and 
Proposition 2.

Now, from (1), we obtain

Because �̃�(�,A)
t  is the optimizing �-vector, we get

w h i c h  c o n t r a d i c t s  t o  t h e  c o n d i t i o n ∑
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Now, consider the case of a∗
t

(
�′
)
= A . Theorem  2 

shows that VA
t
(�) ≥ VW

t
(�) and VA

t

(
�′
)
≥ VW

t

(
�′
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 . Sup-

pose the converse is true which means VA
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t
(�) and 
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t
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(
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 . Then, we obtain

Therefore, VA
t

(
��
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t
(�) and, as shown before, ∑
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�
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t (s) < 0 which contradicts to the 
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∑
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�
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�
�̃
�(�,A)
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From Theorem 2, we get Corollary 1 as follows:

C o r o l l a r y  1   D e f i n e  t w o  p ro b a b i l i t i e s  a s 
�∗
GH

= max{�(0) ∶ �(1) = 0, a∗(�) = A} and �∗
GL

= max

{�(1) ∶ �(0) = 0, a
∗(�) = A} . Suppose the conditions in 

Theorem 2 hold, then �∗
GH

≤ �∗
GL

.

Proof of Corollary 1  Suppose the converse is true, 𝜋∗
GH

> 𝜋∗
GL

 , 
and specify two beliefs �1 and �2 as �1 = [ �∗

GH
0 1 − �∗

GH
] 

and �2 = [ 0 �∗
GH

1 − �∗
GH

] . Then, by definition, it is easy 
to see that a∗

(
�1

)
= A and �1≤s�2 . Therefore, based on 

Theorem  2, a∗
(
�2

)
= A . Now, because a∗

(
�2

)
= A and 

�2(0) = 0 , by definition, we get �∗
GL

≥ �∗
GH

 which contradicts 
to 𝜋∗

GH
> 𝜋∗

GL
 . 	�  ◻

Appendix B: Sensitivity analysis

To check the robustness of our model and to quantify 
the impact of potential violation of our assumption on 
trust transition, we conduct a series of numerical experi-
ments assuming that the patients are enrolled to the SAM 
program for a year (365 days). In our study, we initially 
assume that the trust state evolves according to the trust 
state transition probability matrix (Table 2 in the manu-
script). There are two probability matrices: one for the 
case when the patient visited a clinic and went through a 
clinical diagnosis and another for the case when there was 
no diagnosis performed. The matrices are defined based 
on the assumption that trust mainly depends on the per-
formance of the system (e.g., false alarm and misdetection 
reduce the trust level whereas correct alert/no-alert should 
increase the trust level). To forcefully create a hypothetical 

VA
t
(�) − VA

t

(
�′
)
> VW

t
(�) − VW

t

(
�′
)
≥ 0 .

Table 5   Sensitivity analysis on random trust state transition

Probability of random trust state transition

10% 30% 50% 70% 90%

Mean QALD 323.771 320.093 316.587 314.054 311.214
(SD) (7.548) (6.885) (6.308) (6.247) (5.705)
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scenario where trust is affected by other unknown fac-
tors, we assume that a random trust state transition occurs 
with a probability � . In other words, instead of following 
the specific trust state transition function, for 365 × � days 
within a year, the trust level of the patient is determined by 
flipping a coin (50/50% chance of being in high/low trust 
state). By increasing � , to some extent, we can show how 
robust (or vulnerable) the method is when our assumption 
on trust transition was violated. Table 5 summarizes the 
numerical experiment results. For each simulation run, we 
assumed 1000 patients are using the SAM system. The end 
of decision time is 365 ( tE=365).

As expected, larger � (i.e., trust depends more heav-
ily on other factors than the performance of the system) 
reduces the performance (mean QALD) of our method. 
Under the perfect scenario where trust depends solely on 
the performance of the system, the average QALD per year 
is about 344 (as reported in Fig. 6 in the manuscript). The 
average QALD decreases by 6% when 10% of the trust 
state transition is triggered by other factors unknown to 
the model.
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