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Abstract This paper develops tests and validates a model

for the antecedents of open source software (OSS) defects,

using Data and Text Mining. The public archives of OSS

projects are used to access historical data on over 5,000

active and mature OSS projects. Using domain knowledge

and exploratory analysis, a wide range of variables is

identified from the process, product, resource, and end-user

characteristics of a project to ensure that the model is

robust and considers all aspects of the system. Multiple

Data Mining techniques are used to refine the model and

data is enriched by the use of Text Mining for knowledge

discovery from qualitative information. The study dem-

onstrates the suitability of Data Mining and Text Mining

for model building. Results indicate that project type, end-

user activity, process quality, team size and project popu-

larity have a significant impact on the defect density of

operational OSS projects. Since many organizations, both

for profit and not for profit, are beginning to use Open

Source Software as an economic alternative to commercial

software, these results can be used in the process of

deciding what software can be reasonably maintained by an

organization.

Keywords Data mining � Model building � Open source

software � Project performance � Text mining

1 Introduction

Organizations spend a major portion of their information

technology (IT) budget on maintaining software systems

[21, 45]. These tasks typically include detecting and

removing defects in the source code, adding new func-

tionality to satisfy the user and enhancing the system to

react to changes made in the operational environment.

Earlier studies have suggested that maintenance accounts

for 60–90% of the software lifecycle costs [8, 22, 75]. It is

estimated that companies spent over 100 billion dollars on

software maintenance in year 2007 and this number is

expected to grow to over 130 billion dollars by the year

2010 [55].

To overcome high software expenses, organizations are

looking at alternative approaches to traditional solutions.

One such approach is the use of open source software

(OSS) systems. Recent reports suggest that the use of OSS

systems is increasing and it will continue to make a mark

on the software industry [13]. As the use of OSS projects in

corporate environment increases, OSS maintenance will

become a part of the overall IT costs of an organization.

The maintenance process in OSS projects is not contrac-

tually mandated. Thus, despite a minimal procurement

cost, OSS projects could potentially have a high total cost

of ownership when the maintenance related expenses are

included. Embedded enterprise use of OSS projects could

result in a complex maintenance scenario of applications

that are supported by commercial vendors and the ones that

are not.

A better understanding of OSS maintenance factors

would allow the IT decision makers to consider potential

tactical and strategic impacts of using these projects.

Investigating OSS defect occurrence and the contributing

factors would provide an insight into OSS project
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maintenance. Therefore, this research develops a model of

defect density in OSS projects that are in maintenance

phase (post production), with a particular focus on the

predictive power of the resulting model developed using

controllable factors. Historical data from post production

OSS projects hosted at SourceForge.net (SF) is used to

develop the model, using Data and Text Mining

techniques.

A review of the existing literature and the framework for

this study is presented in Sect. 2. Section 3 discusses the

methodology of this research. A comprehensive list of

independent variables is created using prior literature and

by analyzing the SF data warehouse. The analysis in Sect. 4

leads to a set of hypothesis created using the preliminary

analysis of a training data sample. The model is refined

using a validation data sample and the resulting final model

is tested on a test data sample. The predictive power of the

test sample indicates the goodness of the model and its

suitability for use over a generalized population of OSS

projects. Results are discussed in Sect. 5, followed by

implications in Sect. 6 and conclusions in Sect. 7.

2 Previous research and conceptual framework

2.1 Software defect prediction

A significant body of research is focused on predicting rate

at which defects occur in an operational software system

[30]. Post production defects account for a majority of

software maintenance costs and allocating resources to

defect reduction can be viewed as an IT investment [67].

Fenton and Neil [25] provided an extensive critique of

defect prediction models and the statistical techniques used

to develop these models. They suggest creation of holistic

models that could help understand software maintenance.

This research attempts to provide such a holistic view of

OSS maintenance by considering process, product and

resource characteristics of a project.

The software reliability approach uses the past defects of

a project to predict future defect occurrences. Biyani and

Santhanam [9] used the defect volume of previous release

to predict the defect density of next release. Li et al. [44]

found that naı̈ve time series techniques were inadequate in

predicting defect occurrence model parameters from one

software release to the next and identified the shortcomings

of the time series approach to predicting software defects.

Raja et al. [60] proposed a time series model to accurately

predict future defects in eight OSS projects. Such studies

are focused on estimating defects rather than explaining the

factors that impact defect density. They are useful for

developing testing strategies and allowing testers to esti-

mate the number of undiscovered defects [54]. This study

adds to the body of defect prediction by analyzing the

underlying factors that contribute to defect density.

Another stream of research has been focused on devel-

oping causal models to relate internal and external software

characteristics to defect occurrence and to predict reli-

ability [5], maintenance effort [3] and maintenance costs

[67]. These models use metrics that could be product,

process, or resource based. Several studies have examined

the static characteristics of size and complexity of software

to evaluate reliability and number of defects [30, 46].

Khoshgoftaar et al. [42] predicted defects for modules

using 11 product metrics. Banker et al. [4] developed a

model for software defect density using the traditional

static measures as well as external environmental factors.

Although several metrics-based predictive models have

proven promising, they are limited because of a common

lack of available metrics in practice [71].

Process quality metrics have also been studied for their

impact on software defects. Graves et al. [29] found that

process measures based on change history were better

predictors of fault rates than product characteristics. Harter

et al. [31] found that the process maturity of an organiza-

tion had a direct relationship to the number of operational

defects found in the software developed by an organization.

Mockus et al. [53] found process metrics and configuration

metrics to be important predictors of software defects in

maintenance phase. Popstajanova and Triveda [41] used

architecture, utilization, and control flow information to

predict the likelihood of defect occurrences.

Resource based characteristics also impact software

defects [1, 7, 10]. Some have supported that large teams

have more effort available to handle maintenance tasks [2],

while others argue that a large team size can cause a

negative effect on performance [11]. Conway [16] sug-

gested that communication patterns of teams are reflected

in the products they produce. Herbsleb et al. [33] found

evidence of improved maintenance performance due to the

use of management tools (e.g. CVS).

2.2 Open source software maintenance

Open source software projects are developed and main-

tained in cyberspace where users can access project

archives. This allows a unique opportunity to examine the

historical data on defect detection and removal.

Researchers have availed these rich datasets to study OSS

development and maintenance processes. Godfrey and Tu

[28] conducted one of the first analyses of Linux code

evolution and compared it to the existing laws of software

evolution. Robles [63] built on their work to test the model

on a newer dataset and found evidence of OSS evolution

being different than commercial software system (CSS)

evolution. Paulson et al. [57] compared the evolution of
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OSS and CSS projects using linear approximation tech-

niques. Koch et al. [43] found that the nature of OSS

evolution largely depends on the size of the project. Soft-

ware evolution studies have also facilitated study of soft-

ware maintenance, since they provide a framework for

analyzing OSS projects.

McConnell [48] suggested that OSS project effective-

ness can be compared to that of leading-edge organizations

that use a combination of practices to produce better

quality software at low cost and controlled schedules. Thus

the structural code quality should be compared to modern

software industry. Mockus, Fielding and Herbsleb [52]

developed a series of hypotheses through case studies of

two large OSS projects: Apache and Mozilla. Defect

Density is one of the aspects they examined. Huntley [36]

used the debugging data of the same projects and found

evidence of organizational learning in maintenance pro-

cess. He also discovered the non-uniform nature of evo-

lution of complexity and learning effects across OSS

projects. Stamelos et al. [68] studied the code quality of

OSS project and found that modularity increased code

quality and user satisfaction. Thus these researchers have

established a need for a deeper understanding of the

structural quality and defect density of OSS projects and an

examination into the factors that impact them.

The availability of data archives for OSS projects invites

the use of mining techniques. Williams and Hollingsworth

[73] demonstrated how data mined from source code

repositories can improve static analysis tools. They report

that defects reported to databases are more often reported

by users. The developers tend to directly report bugs in

source code. Thus for operational software where we are

interested in the customer usage of software and bug

detection, use of bug database is better than use of source

code [73]. Jensen and Scacchi used data mining techniques

for studying OSS development communities [40] by

combining Text Mining and link analysis to discover

update patterns. Dinh-Trong and Bieman [20] analyzed the

maintenance process by mining repositories of a long-lived

open source project, FreeBSD project. Zimmerman et al.

[76] developed an approach to use association rule mining

on CVS data to recommend source code that is potentially

relevant to a given code fragment. Ying et al. [74] devel-

oped a mining approach on the change history of source

code to identify relevant code for change task.

The majority of the OSS studies have been conducted on

small sample of large-scale OSS projects. Given the wide

range of variables available in OSS repositories and access

to techniques that enable analyzing large samples, this

study adds to the body of knowledge by using a large

sample of OSS projects and utilizes the power of data

mining techniques by using large data archives, building

hypothesis from data and then testing the hypothesis on

another sample of data. This allows development of a

robust model that can be generalized to larger population of

OSS communities.

2.3 Conceptual framework

Software defect research has traditionally focused on three

types of characteristics: Process, Product and Resource. In

OSS, however, the end user plays a significant role in

software maintenance as well. OSS development is char-

acterized by a close interaction between the end user and

the development team [24, 61]. Unresolved defect reports

are publically available on project websites and users have

the option to participate in the defect resolution process by

submitting solutions and patches. This creates a large

maintenance community that includes the end user in the

defect detection and removal process. Thus the framework

adopted for this study identifies relevant constructs from

the Product, Process, Resource and End-User characteris-

tics of OSS projects to create a model for defect density.

These aspects are discussed below.

Product characteristics refer to the attributes of the

software product. Product reliability, maintainability, por-

tability and quality are examples of the product charac-

teristics [26, 59]. Besides the traditional variables, OSS

projects provide access to additional attributes that could

potentially impact software maintenance. Free availability

of OSS projects provides the users with choice of thou-

sands of projects. The popularity of a project is critical in

bringing in new users and its eventual success [17]. Popular

OSS projects would more likely attract user contributions

that would benefit the maintenance process. Prior research

in OSS has also analyzed the affects of license choices on

the OSS project development [69]. Some licenses are more

restrictive than others, thus the extent of upgrades and

changes can affect overall maintenance process. Consid-

ering the evolving nature of software systems, it is

important to consider the ability of software to operate in

changing environment. Compatibility refers to the multiple

operating environments supported by the software [58].

OSS projects that offer support over multiple platforms

would likely attract a diverse audience and would benefit in

terms of defect detection and removal.

Process characteristics deal with the development pro-

cess of software. In the CSS domain, the capability matu-

rity model (CMM) has been proposed as a measure of the

software development process. It has been established in

prior research that process is directly related to project

outcomes [31, 71]. However, in OSS there is a lack of

formal definition of organization and process. This by no

means indicates absence of organizational structure. Past

research has identified the presence of structure and control

in OSS communities [39, 65, 72]. The use of project
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management methods to control project tasks and resources

would affect the maintenance outcomes of OSS projects

[39]. OSS projects are developed and maintained by teams

that are not physically collocated1; the ability to commu-

nicate effectively though use of multiple channels would

affect the process quality and the maintenance outcomes.

In the absence of formal requirements elicitation process,

users can request new features through online forums and

request tracking tools available through the OSS project

hosting sites. The response to implementing these features

would vary in projects depending on the internal team

processes and would likely affect software maintenance.

Resource characteristics refer to the nature of the team

and tools employed in a project. The higher the number of

team members the greater is the human effort and contri-

bution in a project [26]. Such effort includes coding, test-

ing, documentation and user support tasks. In OSS projects

there is a core group of members who take the responsi-

bility of development and maintenance. The size of this

team could impact project maintenance. OSS projects also

use tools to manage tasks and resources. Concurrent ver-

sion system (CVS) keeps records of the modification his-

tory of a software project and allows multiple programmers

to work on piece of code in parallel [51]. CVS is the most

widely used version control system. Its usage allows teams

to manage and track changes made to the source code [27].

End-User characteristics refer to the attributes of the end

users of the project. Traditionally software projects are

developed for a known user with pre-defined requirements

[11, 59]. The user does not take a direct part in project

development and maintenance. Yet there is evidence that

end user participation improves software development and

maintenance process in general [32]. OSS projects have the

advantage of a more involved end user community

throughout their lifecycle [61]. OSS projects are usually

initiated by an individual programmer or group of pro-

grammers who are trying to solve a problem that is of their

own interest [19]. Although these projects do not have

predefined clients or users; once a project is launched it is

available for public use through the internet and a user

community may emerge. Users of OSS projects can be

developers themselves or a business entity that adopts OSS

projects for corporate use. The nature of the end user and

their participation level could impact the maintenance

process and the defect density and thus the user charac-

teristics are to be considered in model development.

3 Methodology

Lack of availability of rich datasets has been a challenge to

effective model building in software maintenance studies

[25]. However, OSS projects, keeping with the philosophy

of free sharing of data, provide public access to their

archives. The availability of a large amount of transactional

data, make OSS projects an ideal candidate to use

exploratory research to hypothesize models that can be

validated and tested. If models were to be built and tested

based only on existing theories in the CSS domain, there is

a chance that some critical variables might be ignored [64].

We therefore use Data Mining techniques for model for-

mulation and testing.

A purely deductive study would rely on predefined

constructs and hypothesis. If a domain is new and signifi-

cant factors are unknown, relying on existing theories can

result in missing constructs. Similarly a purely inductive

study based on observations could potentially ignore the

constructs absent in a sample, but present in a different

sample [12]. Data Mining offers the ability to explore large

datasets, create knowledge and build valid models through

a combination of deductive and inductive methods.

The over view of the model building process through

Data Mining methods from a large database is shown in

Fig. 1. An initial large data set is split into three

Fig. 1 Model building process through data mining

1 We acknowledge that there are several large Scale OSS projects

that are developed by more traditional teams of software program-

mers. Such projects provide face to face communication opportuni-

ties, user conferences and other avenues of collaboration that are not

confined to online development. However, a vast majority of OSS

projects, especially the ones hosted by source forge. Net remain small

scale projects developed through online collaboration.
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independent random samples (train, validate, and test) for

the purpose of building a final robust model that is not

subject to sampling variability within the domain of the

original data. The train sample is used to explore various

models which are refined with the validation sample and

when the final model is determined it is tested on the test

sample. Relationships between factors can be examined by

using multiple techniques e.g. logistic regression (LR),

neural networks (NN) and decision trees (DT) in the

training phase of the model building process. Each of these

techniques has its strength and weaknesses and their suit-

ability depends on the underlying patterns and relationships

in the data which represents the domain being analyzed.

A train sample is used for an initial exploratory analysis

to identify variable relationships. The identification of an

initial set of variables must be scientific rather than ran-

dom. Prior research, anecdotal references and study of

available data archives are used to identify an extensive list

of relevant variables. The tight coupling of existing

research and exploration of train samples ensures that

multiple dimensions of the problem are explored and that

the analysis is relevant to the domain. The process of initial

hypothesis development undergoes subsequent validation

analysis to establish the rigor or robustness of the model

under sampling variability. Using the validation sample the

number of variables can be reduced to refine the hypoth-

esis. Once again multiple methods can be used to ensure

that the relationships discovered in the first step hold over

the entire data set. The fit statistics of the final model and

the diagnostic testing is performed on the test sample fol-

lowing the traditional model evaluation process. If the final

model does not hold up on the test data then it would be

necessary to conclude that a robust model cannot be found

for the large data domain [23].

3.1 Data source

SourceForge.net is the world’s largest OSS project hosting

web site where developers can create, develop, and main-

tain their OSS projects. SF is a database driven web site,

which provides historic and status statistics on over

100,000 projects and records of over 1 million registered

users’ activities. SF has shared certain data with the

research community for the sole purpose of supporting

academic and scholarly research on the OSS phenomenon.

The SF data archives starting November 1999 through May

2006 were used for this research and were accessed

through a research initiative with the University of Norte

Dame [47].

The SF warehouse entity relationship diagram (ERD)

was studied in detail and the information available in each

table was decoded for investigating its usability in this

study.2 To ensure that the projects had been available at SF

for some significant time, projects that were less than a

year old (from the date of this analysis) were not consid-

ered. Some additional transformations (as discussed below)

were performed on the data to ensure the validity of the

analysis. Extensive SQL queries were used to create the

dataset and to generate the variables for each project.

Projects hosted at SF are in various stages of their life-

cycle e.g. pre-alpha, alpha, beta, production, mature and

inactive. Ignoring the lifecycle phase can result in incon-

clusive results [26, 48]. To develop a model for operational

performance of OSS projects, it is imperative to use projects

that are mature or in production. Therefore, projects in all

other lifecycle phases were excluded from the sample.

SourceForge.net allows free registration and project

hosting that leads to instances where projects are regis-

tered, but never activated. Moreover, many projects do not

maintain data on all aspects and that results in missing

values. Inclusion of such projects would impact the reli-

ability of the results. Therefore, projects that were never

operational and had no data available on development,

download or defects were excluded from the analysis. The

identified variables were collected for the remaining pro-

jects. To ensure integrity of the data collection process, the

resulting dataset was validated against an independent data

extraction performed by another analyst.

3.2 Variable identification

Identification of the initial set of variables is critical in the

Data Mining process. Selection of too few variables can

result in an incomplete analysis and may result in exclud-

ing significant factors from the final model [64]. On the

other hand, inclusion of irrelevant variables can adversely

affect the model building process and the correct identifi-

cation of the significant factors. The process of identifying

the initial set of variables for use in the Data Mining pro-

cess requires domain knowledge and an understanding of

the available data archives [50]. As discussed in Sect. 2.3,

process, product, resource and end-user characteristics play

a role in OSS maintenance. Therefore, a range of variables

is identified to reflect these constructs by studying the data

definitions of the SF data warehouse. A listing of the

variables along with the references is given in Tables 1, 2,

3 and 4. All the identified variables have been selected

because of their use in prior literature or on their apparent

connection to software maintenance. Data Mining is a

technique that provides the ability to develop hypothesis

2 Since the data was used from a third party, independent validation

of data was performed by random verification of variables with the

actual SF dataset. The results were also compared with another

independent extraction of variables from the same warehouse, to

verify the queries used for data extraction.
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Table 1 Product related variable measurement and sources identified for analysis

Variable Summary Measure Source

Functionality Functionality refers to the number of functions being offered

by the software. Functionality has been used in CSS models.

Increase in product functionality is attained through new

releases over project lifecycle [39]

Increase in features Count feature

request closed

New modules Count file release

Maintainability Maintainability refers to the extent to which software is

maintainable. Maintainable software should not be

dependent upon a small group of people who understand it.

In OSS the ability of users to be able to understand and

maintain code is very critical [68]. If an OSS project is not

maintainable, then detecting and removing defects can be a

problem

Number of distinct members reporting the

defects

Count distinct

submitted_by

Number of distinct members fixing the

defects

Count distinct

user_id

closed_by

Compatibility The compatibility of a software project indicates the

flexibility of project use. Software that runs on multiple

platforms offers more flexibility to the user compared to

platform dependent software [37]. Similarly support for

multiple programming languages can attract contributions

from a larger user community

Number of platforms supported Count operating

systems

Number of prog; languages supported Count prog;

languages

License type OSS projects are launched under various licenses. The most

common license is the OSI license. Prior research indicates

that license choice can affect the development performance

of OSS projects [69]

License type OSI (Y/N)

Project type SF classifies projects based on various aspects, e.g., games,

application file transfer protocols, desktop applications,

operating system, etc. This variable was used to check some

types of projects are more suitable for development in OSS

community compared to others

The text description of the project was used

to create categorization for project type,

using text analysis

200 word, textual

description of

the project

Popularity OSS projects are free for download. Users have the choice of

thousands of OSS projects. The actual download of a

specific project depends upon a variety of factors, one of

them being the relevance of the product to the users.

Popularity determines how much interest there is in a

particular project. Not all downloads translate to actual

adoption. However, popularity has been used as a measure

of project success in past studies

Downloads Count downloads

Page views Count page views

Table 2 Process related variable measurement and sources identified for analysis

Variable Summary Measure Source

Project management Use of traditional project management methods include

a designated project manager and centralized task

allocations. These activities can affect the outcomes of

a software project. Though OSS projects are

developed in a more informal environment, yet

projects may use PM [39]

Whether an OSS project

decides to have a project

manager or not

Use PM (Y/N)

Process quality The overall quality of development and maintenance

process can affect the performance of a project.

In CSS, there is evidence that process quality of a

project has a positive impact reducing defects [5]

The response time to fix an

error

Mean time to fix a

defect (MTTR)

Communication

channel

Availability of various methods of communication

between the developers and the users can improve the

maintenance process in OSS projects [34]

Number of forums Count

Use of mail messaging Use mail (Y/N)

Use of news groups Use news groups (Y/N)

Requirement

implementation

CSS project performance is associated to its ability to

conform to user requirements. In OSS, there are no

predefined requirements, yet the end users can make

requests for implementing new features to the projects

Response time to feature

requests

Time to implement a

feature
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from a wide range of relevant constructs. This by no means

undermines the necessity for correct identification of the

relevancy of the initial list based.

3.3 ‘Project type’ variable creation

The projects available at SF are diverse in nature. SF pro-

vides a categorization of project, but a single project is

allowed to have multiple categories. To overcome this

dilemma, the text data describing each project was used to

create a new variable called ‘‘project type’’ through Text

Mining.

Text Mining allows the numeric interpretation of textual

data. A stop list contains words that are to be ignored while

performing Text analysis. Such a list typically contains

words that are used often and do not contain any useful

information. An initial run was performed using a stop list

containing such words e.g. on, of, the etc. This run pro-

vided with a word frequency table. A new start list was

created by removing the words that were not considered

Table 3 Resource related variable measurement and sources identified for analysis

Variable Summary Measure Source

Effort The size of the project team will be indicative of how much effort

is available for the maintenance process. There are conflicting

views on the size of a team. Some researchers support the view

that a large team size will have more effort available to the

development and maintenance process [1], while others argue

that a large team size can cause a negative effect [11]

Number of registered

developers for the

project

Team size

Team communication Conway suggested that communication patterns of teams are

reflected in the products they produce [16]. OSS teams

communicate mostly online. The frequency of this

communication can reflect on the maintenance outcomes

Frequency of

development team

communication

Messages posted at

development

forums

Version control In CSS literature, use of configuration management (CM)

techniques has been linked to better performance of software

[33]. OSS projects use configuration management tools during

development and maintenance. There is extensive use of version

control tools. The effects of CM on project performance will be

investigated

Use of CVS Use CVS (Y/N)

Number of CVS

commits

Count CVS commits

Table 4 User related variable measurement and sources identified for analysis

Variable Summary Measure Source

User type OSS projects are developed for various types of end users. Some

projects are developed purely for a development community.

Others are developed as end user applications that can be used by

non-programmers too. Considering the nature of OSS

development, the type of audience would affect the extent of end

user involvement. If the end users were programmers, they

would be able to effectively modify the code

Nature of the end user Audience

programmer (Y/N)

Activity level of user OSS user can be an active member of the development and

maintenance community. They can also contribute to the source

code and participate in the detection and removal of defects.

Anecdotal references to active user community have been made

in literature, but no empirical testing has been performed to

investigate its effects on project performance [66]. This research

uses the activity level of the user in project development and

maintenance performance. This variable has not been used in

CSS models

End user interaction Forum posts by

users

Number of users

interacting

Number of distinct

individuals posting

messages, defects

or feature requests

User involvement in the

maintenance process

Defects reported by

users who are not a

part of the

development team

Community size Using the argument that the active user has an impact on the

project performance, the effects of the size of the user

community will also be used for the model. A larger community

will imply more effort going into the development and

maintenance process. This will also test the Linus law, which

states, ‘‘Given enough eye balls, all bugs are shallow’’ [62]

Number of active users Number of distinct

senders of

messages
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project descriptors or added no usefulness to the analysis

e.g. frequent words like where, upon or abbreviation like

en, dl etc. Clustering was then performed based on soft-

ware generated singular value decomposition (SVD) terms

[14]. A maximum number of 40 clusters were allowed.

Word stemming was used to address the occurrence of the

same word in multiple forms e.g. walk, walking etc. The

logarithmic method was used for frequency weighing, and

the Entropy method was used for term weighing. The

expectation maximization algorithm was used for cluster-

ing. This algorithm is best suited in cases where the

expected number of categories is unknown [18].

The observations were classified into seven clusters. The

resulting clusters and the descriptive terms along with

percentages and frequencies are shown in Table 5.

The project descriptions split into seven clusters. Cluster

#1 contains terms associated with programming languages

e.g. C?? and python. Cluster #2 is associated with games,

Cluster #3 contains terms related to image programs,

Cluster #4 has terms related to databases, Cluster #5 had

terms related to JAVA and web applications, Cluster #6 has

terms related to networking while Cluster #7 has terms

related to general OSS projects. Once the Text Mining

results were merged with the original dataset, the new data

was ready to be used for model building.

3.4 Dependent variable

Occurrence of defects in operational software systems is an

area of concern for IT managers. Larger projects, with

more modules and interfaces would encounter more

defects, but also provide increased functionality. Therefore,

a common measure used in study of post deployment

software defects, is the occurrence of defects normalized

for the scale of project. Defect density is the number of

defects per size of the software. This definition controls for

variation in the size of software and allows comparing

operational defect occurrence [31].

A defect is defined as a reported bug on the SF data

warehouse. Registered SF users can report defects they

encounter in a project. The same system is used by the

project team members, thus all the defect data is

maintained at a central location. The defect dataset

includes additional information regarding the member

reporting and rectifying the defect, time of report and

resolution time. For the dependent variable, we use defect

density in terms of number of defects per thousand lines of

code (KSLOC). Thus higher number of defect reports, for

larger projects compared to smaller projects is accommo-

dated by controlling for size.3

4 Analysis

Operational OSS projects in mature or production phase

were included in the analysis. The life cycle phases of pro-

jects can be tracked using the ‘‘Trove_category’’ maintained

for every project. Any changes to the lifecycle phase, along

with the date of change are also recorded. Using SQL que-

ries, we extracted the projects that were in mature or pro-

duction phase, thus limiting our dataset to operational OSS

projects. Using the criteria of: life cycle phase, active defect

repository, and registration date of at least 1 year prior to

analysis date, a dataset of 4,965 observations was produced.

Text analysis generated variables were merged with the

dataset using the project identification number.

The resulting data was then randomly sampled into three

independent datasets: train, validate and test: 40% training,

30% validation and 30% test sample. Since the number of

low defect density projects is small compared to high

defect density, we used stratified random sampling to

ensure that every sample contained a proportionate number

of high and low defect density projects. The training

sample is used for exploring the relationships between the

variables. The validation sample is used to refine the model

and develop hypothesis. The test sample is used to test the

hypothesis and access the fit of the final model.

The process flow diagram of the analysis is shown in

Fig. 2. SAS Enterprise Miner 5.2 was used for Text and

Data Mining.

Table 5 Description terms,

frequency and percentage of

each cluster for project type

Cluster Percentage Freq Descriptive terms

1 0.150252 746 ? Library, C??, ? class, python, ? support

2 0.035851 178 ? Game, ? player, ? play, game, ? base

3 0.091037 452 ? File, ? program, ? image

4 0.082578 410 php, ? easy, mysql, web, ? database

5 0.090634 450 ? Framework, development, ? application, java, web

6 0.338771 1,682 ? Server, ? client, ? allow, ? tool

7 0.210876 1,047 ? Code, ? source, ? project, java

3 We use the raw KSLOC as an indicator of project size, with the

acknowledgement that program size can be language dependent.

However, KSLOC remains one of the most commonly used measures

of software size, especially when the purpose is to control for project

scale [28].
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4.1 Building the model

LR, NN and DT techniques were used in parallel for model

formulation. The stepwise method for variable selection

was used in the LR analysis. Stepwise LR is a recom-

mended method of variable selection for exploratory

research [35]. The results of all three methods were ana-

lyzed to devise a strategy for model improvement. Initial

runs indicated that the DT model was the best model. The

initial runs of the LR method did not produce the best

model. Further analysis of the DT model revealed a per-

sistent splitting of the nodes based on defects reported by

end users and the type of project. Based on this added

insight from the DT, interaction terms were introduced in

the LR model. With the addition of the interaction terms,

the LR model improved significantly. Once an acceptable

training model was built, the validation set was used to

evaluate the model. A comparison was then made with

specific diagnostics e.g. lift charts, to check how well the

training model holds for the validation sample. At times,

there were several iterations of re-training before a rea-

sonable model was selected. Once a model was selected,

the validation dataset can no longer be used to test the

accuracy of this model. To create a robust model, the final

hypothesized model was applied to the new test data. The

accuracy of the model on the test data gives a realistic

evaluation of the performance of the model for OSS pro-

jects in general.

Various factors are considered in the decision of the best

model. One such criterion is the receiver operating charac-

teristics (ROC) chart. A ROC chart is traditionally used in

signal detection theory to show how the receiver operates on

the existence of signal in the presence of noise. It is a plot

of the probability of detecting the true signal (sensitivity) and

the false signal (1-sensitivity) for an entire range of possible

cutoff points. In Data Mining, ROC curves are used to plot

the true positive responses against the false positives

(identified by the model). The closer the curve follows the

left-hand border and the top border of the ROC space, the

more accurate the test. The closer the test comes to the 45

degrees line, the less accurate the test is. The area under the

ROC curve measures the accuracy of the test. If the area

under curve is greater than 0.7 (The entire area being 1.00),

the resulting model is considered to be acceptable.

Based on these criteria, the LR model with interaction

terms was the best model. The ROC for the train model

was .83 which indicates excellent predictive power. The

model was evaluated performing diagnostic testing and LR

evaluation criteria. The ROC curves for the LR, DT and

NN model are shown in Fig. 3. Test sample results are

shown here for purpose of final comparison and will be

discussed in the results.

4.2 The hypothesized model

The defect density (DDen) will be affected by the product,

process, resource and end-user characteristics. Using the

significances of the variables in the exploratory analysis

and using the prior framework discussed in Sect. 2.3,

hypotheses were developed using the train sample. The

significance values and the signs reveal the relationships

between the independent variables and the dependent var-

iable. Several hypothesis are developed using the initial

analysis and are refined using the validate sample. Finally

the test data sample is used to determine the predictive

power and goodness of the model. These steps ensure that

the model holds well across all samples of data and those

hypotheses are created and tested on different samples.

Following is a brief discussion of the hypotheses.

Open source software domain offers a wide variety of

projects to choose from. However, some projects enjoy

significant popularity compared to the rest. Projects attract

a wide range of users. The reasons of this popularity can be

the nature of the project. The popularity of OSS projects

Fig. 2 Process flow diagram

for the analysis
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can be determined by the interest of the user and developer

community. The survival of OSS projects depends upon

attracting new developers, users and in some cases spon-

sors who can provide monitory donations. Popular projects

would attract traffic and downloads. Popular projects

would attract more interest in use and contributions to

maintenance process. Prior literature in OSS has focused

on the popularity of a project in terms of downloads and

page views [70]. In fact it has been used as a measure of

success of OSS projects, high popularity indicating that

there is a high demand for the project and it provides

superior software solutions. Projects with more visibility

would attract contributions and downloads. Similarly in the

event of a defect, a larger user and developer base would be

available to detect and remove defects. Therefore, we

analyze the affects of popularity on defect density and

hypothesize that:

H1 Popular OSS projects will have a lower defect

density.

In terms of process features, we explore the affects of

process quality. Prior research in CSS indicates that if the

process quality is high, there can be a significant reduction

in defect density [31]. Occurrence of defects in software is

inevitable. However, their detection and removal efficiency

can significantly impact the ability of a project to retain

customers and reduce operational costs. When a defect is

detected, the team needs to resolve it effectively and

swiftly. Delays in resolution of operational defects can

increase the operational costs of software systems and

reduce customer satisfaction [15]. A project with a high

process quality would have effective maintenance resolu-

tion practices. Poor process quality can also result in ripple

effect i.e. defects leading to additional defects [49].

Therefore a high process quality reflects lower defect

density. The training session supports the significance of

process quality in defect density. Therefore it is hypothe-

sized that:

H2 OSS projects that have a high process quality will

have a low defect density.

An active user community is a unique characteristic of

OSS projects. There is a high level of transparency in the

development and maintenance process. The end users have

access to source code and maintenance archives. There is

anecdotal evidence that this characteristic of OSS projects is

a potential reason for the success of projects. Users who take

ownership of the project and take an active part in the

maintenance process can effectively become stakeholders in

the maintenance outcomes. Support for process improve-

ment due to end user participation has been studied in CSS as

well [6, 38]. Due to the voluntary nature of the maintenance

process, an active user community becomes vital for project

success. We therefore consider the end user activity in the

maintenance process in our model. The train sessions support

the suggestion that an involved community of end users

could significantly reduce the defect density of OSS projects.

This leads to the hypothesis:

H3a OSS projects with high end user involvement will

have a low defect density.

Open source software projects differ in nature. Some

projects are large scale applications while others are small

size plug-ins. The role and nature of user participation also

varies from project to project. In a few domains, end user

involvement in maintenance can be indicative of a con-

founding role of end user activity. Complex projects

require a certain level of understanding of system modules

and their interactions. Interactive user driven applications

can benefit from user involvement. This was supported by

the train sessions, which indicate that that the effects of

project participation varied with the type of projects. Dif-

ferent domains have a different expectation from the end

user. Thus leading to the hypothesis:

H3b The relationship between end-user activity and

defect density will be moderated by project type

Fig. 3 ROC curves for LR, DT

and NN
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Once a defect is detected in a project, its effective and

timely resolution can depend on the availability or lack of

availability of manpower. OSS projects thrive in online

communities that can promote defect detection; however,

in operational projects a degree of understanding of the

software itself is required to resolve defects. Effort has

been traditionally operationalized as the availability of

team members. OSS teams vary in size from a single

developer project to several hundred developers. Team size

is significant in operational performance because larger

teams can not only work on improvement of existing

software, but also enable effective post deployment defect

resolution. Many OSS teams use subject matter experts

(SME) to manage maintenance process and have dedicated

members for various parts of the software system. Prior

research in OSS indicates that team members become part

of the development teams for a wide variety of motiva-

tions; however, once committed to a project the additional

resource can improve project performance [62]. Analysis

of the train sample indicates a significant relationship

between team size and DDen. This leads to developing the

hypothesis that:

H4 OSS projects with larger teams will have lower defect

density.

4.3 Variable operationalization

Section 2.3 provided an overview of the variables used in

initial analysis. In this section we discuss the detailed

operationalization of the constructs tested in the hypothe-

sis. Table 6 presents a list of the independent variables

used, their symbol and an operationalization summary.

The partial, simplified Entity relationship diagram of the

SF repository is shown in Fig. 4.

The total number of reported defects for every project is

extracted using the project identifier and the defect artifact

identifier. The defect density was computed by dividing the

total defects by KSLOC. The distribution of defect density

reveals that the cutoff of 10 defects per KSLOC (thousand

lines of code) was a reasonable point of discrimination

between high and low defect density. Therefore, we binned

the projects as a 0 or 1 based on the defect density. Projects

with less than 10 defects per KSLOC are coded as ‘‘low’’

defect density (DDen = 0) and the project with greater

than 10 defects per KSLOC are coded as ‘‘High’’ defect

density (DDen = 1). Thus we get a dichotomous or binary

dependent variable, with a one indicating a high defect

density and a zero indicating a low defect density. The

frequency plot of defect density is shown in Fig. 5 and the

summary statistics is shown in Table 7.

The popularity of a project is measured in terms of the

number of downloads. The SF data warehouse contains the

actual count of number of downloads for every project. We

used the project identification numbers to extract the

number of downloads for each project. The frequency plot

of the number of downloads is shown in Fig. 6. SF itself is

an OSS project and provides information on its own

development and maintenance at the repository. It has the

highest number of downloads.

The process quality is operationalized as the time taken

to resolve reported defects and other artifacts. For every

project there can be several artifacts including defect

reports. The time taken by the team to resolve an issue is

computed as the difference between the defect report time

and the defect resolution time. Since the defect repository

Table 6 Hypothesis, measures and symbols used in the model

Construct Hypothesis Measure Symbol

Defect

density

The defect density is measured in terms of number of defects per KLOC. If the number of defects per release

are low, the defect density is coded as 0 and vice versa

(DDen)

Popularity H1 The number of downloads (Dwnlds) are used as a surrogate of project popularity. It is expected to have a

significantly improve maintenance and thus reduce the defect density

(Dwnlds)

Quality H2 Mean Time to Remove (MTTR) a defect is used to operationalize process quality. A high (MTTR) reflects

low quality, thus, resulting in a high defect density

(MTTR)

User

activity

H3a The user involvement in the maintenance process is measured as the defects reported by the end users

(BNU). OSS success has been attributed to a user community actively engaged in the process of defect

detection. A high number of user detected defects is expected to have a significantly negative relationship

to defect density

(UsrAct)

H3b The user activity will vary for various types of projects. Some domains make effective use of user

participation while others are more suited for internal defect tracking. The type of project is ascertained by

text analysis of project description. The interaction of user activity and project type is expected to be

significant to defect density

(UsrAct)

(PrjType)

Team Size H4 A large team can allocate resources on defect resolution effectively because of the availability of more

maintainers. A larger team size is expected to have a significantly positive impact on maintenance

outcomes and reduce the defect density

(TSize)
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is used for reporting and tracking, the data on time auto-

mated and we consider it to be precise. However, lack of

precision is actual report time by the team members is a

limitation that is beyond the control of the study. The time

stamps are available as UNIX epoch time and are trans-

formed into days to produce MTTR in the units days. The

frequency plot of the MTTR is shown in Fig. 7. As can be

seen a majority of the projects have resolution times in the

range of 1–10 days. Defect that takes longer to resolve

have a wider spread and have been combined for the ease

of scaling the graph. The summary statistics of MTTR is

shown in Table 7.

End user activity is measured in terms of user partici-

pation in the maintenance process. The user identification

numbers of the team members can be identified through

their group affiliations. Defects reported by SF registered

members who do not belong to the project team are con-

sidered user reported. We used queries to identify the count

Fig. 4 Partial, simplified ERD

of the data source

Fig. 5 Frequency plot of defect density
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of user reported defects using nested queries.4 The fre-

quency plot of end user activity is shown in Fig. 8 and the

summary statistics in Table 7.

Each SF registered member is assigned a user identifi-

cation number. A registered member can become member

of multiple projects. The user identifier and the project

identifier together can be used to compute the team size for

an individual project. The frequency plot of team size is

shown in Fig. 9. The summary statistics of the variable is

shown in Table 7.

Operationalization of the variable PrjType was dis-

cussed in Sect. 3.3. The frequency plot of the variable is

shown in Fig. 10.

The final form of the model can be written as:

Logit DDenð Þ ¼ b0 þ b1ðdwnldsÞ þ b2ðMTTRÞ
þ b3ðUsrActÞ þ b4ðUsrAct x Pr jTypeÞ
þ b5 Tsizeð Þ

Figure 11 shows the final model that is to be tested

along with the hypothesis numbers. This final model was

tested on the independent test sample data. The results are

discussed in the next section.

Fig. 8 Frequency plot of the number of user reported defects

Fig. 9 Frequency plot of team size

Table 7 Summary statistics and pair-wise correlation coefficient of the variables

Mean SD Min Max DDen Dwnlds MTTR UsrAct Cluster

Dden 2.215386 11.311 0.0024 572.428

Dwnlds 108,837.9 1,733,675.12 0 100,177,172 0.0228

MTTR 84.15856 0 1,342 129.684 -0.0006 0.0501

UsrAct 56.06593 261.845 1 10,140 0.3200 0.0704 -0.02424

PrjType 3.983518 1.808 1 6 -0.01584 -0.02036 -0.05873 -0.0042

TSize 5.005844 9.796 1 302 0.0986 0.0506 0.02598 0.3818 0.01427

Fig. 6 Frequency plot of the number of downloads

Fig. 7 Frequency plot of the MTTR

Fig. 10 Frequency plot of project type4 All SQL queries are available from the first author upon request.
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5 Results

To test the fit of the final model, the first step is to ensure

that the model contains all required variables, entered in

the correct functional form. Next, the goodness-of-fit is

used to evaluate the effectively of the model. This ensures

that knowing the values of all the independent variables in

the model allows an accurate prediction of defect density,

better than the case of no information in the independent

variables. The next step is to evaluate how well the group

of independent variables explains the defect density. In LR

models, the Log Likelihood (LL) criteria are used to select

model parameters. The values of -2LL of the model with

and without the independent variables were used to check

the model fit. The fit of the model is determined by the

reduction in the value of -2LL with and without the

covariates. The results of this test are shown in Table 8.

The results showed that the overall model is significant

(p \ 0.0001).

A variety of specification tests recommended for LR

models were performed on the final model [35, 50]. The

Pearson Residuals and Deviance Residuals were examined

and no violations were detected. The highest condition

number of the model was 1.56, which is well within the

recommended cutoff limit. The variance inflation factor

(VIF), of the independent variables was well below 5,

suggesting that multicollinearity was not affecting the

estimates [35, 50].

As previously discussed, the accuracy of LR model can

be judged by the area under the ROC curve. As a rule, area

under the curve indicates how well the model provides

discrimination between the high and low values of the

target variable. For the final model the area under the test

data ROC curve was .827, which implies that the model

provides excellent discrimination between the projects of

high and low performance. This test model ROC curve also

compares favorably with the Training and Validation

curves in Fig. 3. The estimates of the parameters are shown

in Table 9. The significances confirm that all the hypoth-

eses developed in the previous section are supported in the

final model testing.

The popularity of an OSS project has a significant

negative relationship to defect density and significantly

reduces its defect density; therefore H1 is supported by the

final analysis. Higher downloads of a project indicate that

the project has an interested group of users who are

downloading the project for evaluation or use. Thus while

evaluating the maintenance outcomes in terms of defect

detection and removal for an OSS project, the past data on

downloads can be useful.

The process quality results in a significant reduction in

defect density, reflected by a positive coefficient of MTTR

being significant in the model; therefore H2 is supported by

the final analysis. Projects that take a longer time to recover

Fig. 11 Model of OSS defect

density

Table 8 Likelihood ratio test for global null hypothesis: beta = 0

-2 Log likelihood Likelihood ratio

v2
df Pr [ v2

Intercept

only

Intercept and

covariates

904.912 649.183 217.4447 15 \0.0001

Table 9 Model parameters and estimates

Parameter Estimate Error Wald v2 Pr [ v2

Intercept 3.5859 0.2930 14.78 \.0001

Dwnlds -1.548 0.0694 4.97 0.003

MTTR 0.0125 0.00731 2.93 0.008

UsrAct -0.004 0.00197 28.02 \.0001

UsrAct 9 PrjType _1 -.01357 0.00230 4.29 0.00384

UsrAct 9 PrjType _2 0.0388 0.00178 4.75 0.0029

UsrAct 9 PrjType _3 0.0171 0.00191 0.8 0.0371

UsrAct 9 PrjType _4 -0.0129 0.00236 0.3 0.0518

UsrAct 9 PrjType _5 -0.0139 0.00655 4.49 0.0348

TSize -0.6219 0.0135 7.91 0.004
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from the defects that occur, exhibit low performance and a

high defect density. A prompt response to the defects

would also translate into low operational downtime and

thus help manage IT expenses.

If the end users are active in participating in defect

detection, the project exhibits low defect density. This

indicates that the user population of the project displays a

sense of citizenship and becomes a productive stakeholder

in the maintenance process. The affects do, however, vary

according to the nature of the project. Both H3a and H3b

are supported by the results of the final analysis.

Team size has a significant negative result on defect

density. This indicates that even though the participation is

voluntary, the commitment to serve on a project team

provides increased effort for the maintenance process. H4

was supported by the results of the final analysis. Com-

mercial companies that use OSS projects, at times dedicate

manpower resources to these projects. The research results

indicate that such increased resource allocation could

improve the OSS project and help in managing the defect

density.

6 Discussion

6.1 Implications

This study is the first of its kind to develop a predictive

model for OSS maintenance outcomes utilizing the com-

plete SF dataset and using multiple Data Mining tech-

niques. The use of multiple Data Mining techniques on a

large database for model development offers a fertile

avenue for future research. The use of separate data for

model creation, validation and testing gives some assur-

ance that the results are robust across samples from the SF

OSS data set. At the same time Data Mining sampling

techniques provide the ability to explore a wide range of

factors. Such methods can be used in other domains (where

large transactional data is available) to improve the existing

theories by supplementing the choice of available con-

structs and powerful computation.

The use of Text Mining to create new variables, pro-

vides an avenue for using qualitative research methods

along with quantitative methods to extract useful knowl-

edge from the rich textual archives created and available in

the new age of cyber communication.

The affects of end-use involvement in project perfor-

mance calls for more work in the area of potential use in

CSS projects. This role varies by the nature of the project

that indicates that the role of end user changes as the nature

of project changes. It would be worthwhile to study CSS

projects and see if the pattern is across domains i.e. CSS or

OSS or is across project types.

For practitioners, this study provides a framework for

evaluation OSS projects. It gives the development team

factors identified in the study that can be monitored and

improved to control maintenance tasks. The model can also

be used as an alert system to signal upcoming potential

performance issues to users and development teams. End

users can plan better for budget and system downtime. The

development teams can factor in model indicators to esti-

mate manpower requirements and plan for upgrades.

6.2 Limitations and future research

This research exclusively uses project data from the largest

OSS project hosting community, SF. There is a possibility

of the results not being generalizable over other OSS

communities. Given the fact that SF is the largest and the

most popular community, this threat is not deemed critical.

However, future replication, validation and enhancement

of this model requires similar analysis to be performed on

datasets from other OSS communities e.g. Freshmeat.org.

The computation of defect density relies on the

assumption that all reported defects are legitimate, accurate

and complete. However, it is possible that some defect

reports may be invalid, e.g. an erroneous or duplicate

report submitted by a user. In such a case, the reliability of

the measure becomes doubtful. To mitigate this issue, the

defect reports that had the same report and removal time

were excluded from the analysis.

The total defects were normalized for project size in

KSLOC, when computing the DDen. Raw KSLOC mea-

sure includes comments in the source code. The variation

in density of comments across different projects can

introduce some unnecessary noise. This variation might

cause inflation in project size for well commented projects

and vice verse. The size of program in terms of lines of

code also varies with languages. Some programming lan-

guages produce more lines of code than others. Despite

these limitations, KSLOC is a useful and consistent mea-

sure of size especially, when used to normalize quality

indicators [56].

To overcome the threats to validity, data collection was

carefully designed. Two researchers extracted data inde-

pendently and compared the counts to verify the queries

used for data extraction. Multiple methods and multiple

samples ensure that the errors in establishing relationships

are minimized. Some OSS projects have internal defect

reporting and communication channels. Such data is not

available through the SF warehouse and its inclusion in the

analysis is beyond the scope of this work.

Another study (already in progress) uses the defect

intensity categorization to create a model that predicts

major defects vs. minor defects. Such model could be used

by IT professionals to develop response plans for
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addressing major maintenance blackouts and develop bet-

ter mechanisms for evaluating OSS projects.

7 Conclusions

The study develops a model to predict the defect density in

post production OSS projects and identifies the factors that

affect maintenance outcome. Data Mining and Text Mining

methods were used on archival data of SF projects in the

operational phase. After investigating a wide range of

variables using multiple techniques, the resulting model

reveals that the end user activity in the process of main-

tenance is critical to OSS defect density. The number of

downloads and the type of the project are also important in

evaluating OSS projects in terms of maintenance. The

study also confirms that Data Mining techniques can con-

tribute to effective predictive model building in OSS

domain.
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