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Abstract Cross validation (CV) has been widely used for

choosing and evaluating statistical models. The main pur-

pose of this study is to explore the behavior of CV in tree-

based models. We achieve this goal by an experimental

approach, which compares a cross-validated tree classifier

with the Bayes classifier that is ideal for the underlying

distribution. The main observation of this study is that the

difference between the testing and training errors from a

cross-validated tree classifier and the Bayes classifier

empirically has a linear regression relation. The slope and

the coefficient of determination of the regression model can

serve as performance measure of a cross-validated tree

classifier. Moreover, simulation reveals that the perfor-

mance of a cross-validated tree classifier depends on the

geometry, parameters of the underlying distributions, and

sample sizes. Our study can explain, evaluate, and justify

the use of CV in tree-based models when the sample size is

relatively small.

Keywords Cross validation � Bayes classifier �
Trees-based models

1 Introduction

Cross validation (CV) was described as early as in Stone

(1974). It has been of tremendous interest to characterize

why and how a CV method works. In statistics, most of the

theoretical works on CV concentrate on regression rather

than classification. Some well cited works include Efron

(1983, 1986), Shao (1993, 1996, 1998), and Zhang (1992,

1993a, b). One result of particular interest is Zhang’s dis-

tributional description of the CV error for linear regression

models. For the problems of model selection and error

prediction in linear models, certain forms of CV are shown

to be equivalent to well known model selection criteria

such as the Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC), and the Cp statistics. Based on

this framework, good performance of CV and asymptotic

convergence can be established.

In regression, the risk function is continuous. Hence, it

is relatively easy to study the behavior of CV. However, in

classification problems, discontinuity of categorical

responses makes it hard to establish an equivalence

between CV and some existing criteria. Despite this diffi-

culty, a number of research have been done to explore the

performance of CV (in particular, leave-one-out CV) in

classification problems. Leave-one-out CV reserves one

data point and utilizes the remaining m - 1 points to train

a model, where m is the number of data points. This pro-

cess is repeated for all m data points to obtain the estimate

of true error. Most works provided bounds on the accuracy

of the leave-one-out CV estimate. Rogers and Wagner

(1978) and Devroye and Wagner (1979a, b) obtained

exponential bounds of the leave-one-out CV estimate for a

k-nearest neighbor algorithm within the Probably Approxi-

mately Correct framework. More precisely, they provided

the bound of the probability that the leave-one-out CV

S. B. Kim (&)

Department of Industrial Systems and Information Engineering,

Korea University, Seoul, Korea

e-mail: seoungbum.kim@gmail.com; sbkim@uta.edu

X. Huo � K.-L. Tsui

Department of Industrial and Systems Engineering, Georgia

Institute of Technology, Atlanta, Georgia 30332, USA

X. Huo

e-mail: xiaoming@isye.gatech.edu

K.-L. Tsui

e-mail: ktsui@isye.gatech.edu

123

Inf Technol Manag (2009) 10:223–233

DOI 10.1007/s10799-009-0052-7



error departs from the estimate of true error. Kearns and

Ron (1999) derived sanity-check bounds for the leave-one-

out CV estimator, showing that the bounds from the leave-

one-out CV estimate are not worse than that of the training

error estimate.

Despite its popularity, the leave-one-out CV has some

shortcomings. Most obvious disadvantage is the high com-

putational cost, because the process requires training the

model for every data point. Moreover, leave-one-out CV

estimate yields high variance in spite of its low bias mainly

due to the use of similar training set in each CV step. There-

fore, the leave-one-out CV is not recommended when the

learning algorithm is instable. Hastie et al. (2001) pointed out

that the CV estimate in tree-based models can underestimate

the true error, because the reserved testing set strongly affects

determining of the optimal tree, and thus recommended five or

ten-fold CV as a good compromise between variance and bias.

Kohavi (1995), Zhang (1992), and Breiman and Spector

(1992) also showed that 10-fold CV produces smaller variance

than the leave-one-out CV. Thus, for instable algorithms (like

tree-based), the 10-fold CV is more desirable than the leave-

one-out CV to estimate the true error.

This study focuses on the behavior of 10-fold CV esti-

mate in tree-based models. The main questions addressed in

this paper are (1) how well does CV in tree-based models

estimate test error? (2) How the CV performance varies

with different situations? We answer those questions using

an experimental approach. The following is a synopsis.

1. Bayes classifier Given the distribution of a point cloud,

based on the likelihood ratio approach of Neyman–

Pearson, an optimal classifier can be derived. Such a

classifier is known as a Bayes classifier. Such a

classifier is in theory the best possible classifier.

2. Cross-validated classifier Given a training set, a

classifier can be trained by minimizing average error

rate that is given in the form of CV. The description of

the CV error rate is presented in Sect. 2. This classifier

is called a cross-validated classifier.

3. Training and testing errors Both classifiers (Bayes and

cross-validated) can be applied to the training and

testing sets. A smaller error rate on the training set

does not necessarily mean optimality, because it may

be introduced by over-fitting. For a classifier, equality

between training error and testing error may be

desirable. Moreover, if the Bayes classifier is applied

to both training and testing sets, the difference between

the two error rates should be small since the difference

is only affected by sampling error. On the other hand,

if the testing-to-training error difference is large, the

randomly sampled data does not reflect the underlying

distribution which suggests that the classifier selected

is inappropriate.

4. Methodology evaluation Based on the above, the

following procedure is deployed to evaluate the

performance of a cross-validated classifier. The dif-

ference between the training error and the testing error

is calculated for the cross-validated classifier. Let e1,A

and e2,A denote the training error of the Bayes and the

cross-validated classifiers respectively, where

– ‘‘1’’ stands for Bayes classifiers,

– ‘‘2’’ stands for cross-validated classifiers, and

– ‘‘A’’ stands for the training set. Let e1,B and e2,B

denote the two corresponding testing error rates,

where

– ‘‘B’’ stands for the testing set. We consider the

differences:

D2 ¼ e2;B � e2;A vs. D1 ¼ e1;B � e1;A:

5. Main observation The main observation is that the

above two quantities have a roughly statistically linear

relationship. This is more evident in Fig. 5. We have

D1 ¼ aþ c � D2 þ e; ð1Þ

where the constant c, |c| B 1, depends on the underlying

distribution and a is the constant value. The random

variable e has zero mean and seemingly normally

distributed.

Note that the asymptotic behavior of D1 and D2 are

somewhat known. The cross-validated classifier will con-

verge to the Bayes classifier in most cases (Anthony and

Holden 1998); see also Sect. 3. Hence D1 and D2 tend to be

equal. This paper is to study their behavior in the finite-

sample cases: when the sample size is not large. It is

interesting to find that a simple linear regression model

seems to characterize the relation between D1 and D2

nicely. The impact of the geometry of decision boundary,

the parameter of the underlying distribution, and sample

size are also examined in the simulations.

The rest of the paper is organized as follows. Section 2

describes the tree-based models and their relation with CV.

Section 3 presents some theoretical analysis. Section 4

describes the simulation results. Section 5 ends the paper

with concluding remarks and suggestions for future study.

2 Cross validation in tree-based models

2.1 The cross-validation principle

Suppose we have two disjoint sets: training set and testing

set. The former set is used to learn the model and the latter

to evaluate the performance of the trained model. Let A

denote the training set of size NA and B the testing set of

size NB. Let us consider a k-fold CV and a is an algorithmic
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parameter of a model. If we denote ea
(-i) as the error rate

when excluding the ith folder during CV, the cross-vali-

dating error at a is given as

CVðA; aÞ ¼ 1

k

Xk

i¼1

eð�iÞ
a :

The principle of CV is to choose an a such that CV(A; a)

is minimized:

a0 ¼ argminaCVðA; aÞ:

Let Ta0
ðAÞ denote the model that is built by using

a = a0 together with the training sample A. The training

error based on CV can be expressed as eCV(Ta0
ðAÞ; A)

(identical with e2,A), which denotes the error rate when the

model Ta0
ðAÞ is applied to the training data A. The testing

error can be represented as eT(Ta0
ðAÞ;B) (identical with

e2,B), which denotes the error rate when the model Ta0
ðAÞ is

applied to the testing data B.

2.2 Complexity-penalized loss function

Tree-based models are very popular in the data mining

community because they provide interpretable rules and

logic statements that enable more intelligent decision mak-

ing. In general, tree modeling involves two major steps: tree

growing and tree pruning. Tree growing searches over the

whole dataset to find the splitting points that lead to the

greatest improvements for a specified score function. After

the tree reaches the full-grown stage when no further

improvement is possible, one prunes back the tree to identify

the right-sized tree that provides the minimum error when

the tree is applied to the testing dataset (Hastie et al. 2001).

CV is adopted in the tree-pruning step. Among many

tree-pruning algorithms, cost-complexity tree-pruning

(CCP) (Breiman et al. 1984) and frontier-based tree-prun-

ing (FBP) (Huo et al. 2006) algorithms utilize the principle

of CV. The main idea of both CCP and FBP is to consider a

complexity-penalized loss function (CPLF) and search the

possible set of a penalizing parameter to find the optimal

tree using CV. The CPLF has the form

LðTbÞ þ ajTbj; ð2Þ

where L(Tb) is the loss function associated with the tree Tb,

|Tb| is the size of the tree, which is defined as the number of

terminal nodes, and a is a parameter that controls the size

of trees. We then solve the following:

Tb0
ðaÞ ¼ argminTb

LðTbÞ þ ajTbj:

2.3 Integration with cross validation

Despite the identical objective function, CCP and FBP use

different algorithms to find an optimal tree. FBP is more

advantageous to study the behavior of the CV because it

can be utilized to implement the principle of cross vali-

dation more faithfully. We begin with a brief description

on how the FBP algorithm can be used in implementing

CV. Suppose the observations are

fðx1; y1Þ; ðx2; y2Þ; ðx3; y3Þ; . . .; ðxN ; yNÞg;

where N is the number of observations, xi’s are predictor

variables, and yi’s are responses. Suppose the above set is

equally partitioned into k subsets:

S1 [ S2 [ � � � [ Sk:

At each step, we reserve one subset (e.g., Si) for testing

and use the remaining subsets to prune the tree. The core

idea of the FBP algorithm is illustrated in Fig. 1. For a

given a, when the target size of the tree is m, the minimum

value of CPLF is cm ? ma, where cm is a constant. The first

step of FBP is to list CPLF in each node of the tree using a

bottom-up tree-pruning algorithm. Then all the information

is summarized at the root node as a list of CPLFs. Thus, the

number of CPLFs at the root node should be equal to that

of terminal nodes of the tree. The next step is to plot all

the CPLF at the root node in a Cartesian plane (Fig. 1). The

x-axis is the range of a and the y-axis is the value of the

CPLFs. The lower bound of these CPLFs can be obtained

as a form of a piecewise linear function and denoted as

f-i(a), where f-i(a) is the minimum value of (2) without

testing subset Si.

For each value of the parameter a, the optimal subtree

can be obtained. Each model is then applied to the reserved

testing set. The error rate in testing can be computed and is

denoted by e-i(a). Note that functions f-i(a) and e-i(a) are

of the same variable. Because function f-i(a) is a piecewise

linear function, it is not hard to prove that function e-i(a) is

also a piecewise step function. The principle of CV is to

find the a that minimizes the average of e-i’s,

Fig. 1 An illustration of the frontier-based tree-pruning algorithm
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1

k

Xk

i¼1

e�iðaÞ:

The tree size corresponding to the optimal a is the final

tree. Figure 2 shows how the error rates (eCV(A; a)) vary

with a. The lowest part of the step function indicates the

optimal a.

3 Analysis

3.1 Error difference for the Bayes classifier

Some distributional analysis is given here. The dataset is

divided into a training set and a testing set. An oracle knows

the underlying distribution and is able to derive a classifier

that is statistically optimal—having the minimum expected

prediction error rate overall, following the idea of Neymann–

Pearson. Such a classifier is known as the Bayes classifier

(BC). Note that this classifier does not depend on the sample

data. Let e1,* denote the error rate by applying the BC to

data *. We can obtain e1,A and e1,B using the following

equations:

e1;A ¼
1

NA

X

i2A

IðŶBCðXiÞ; YiÞ; ð3Þ

e1;B ¼
1

NB

X

i2B

IðŶBCðXiÞ; YiÞ; ð4Þ

where N* is the size of dataset * and I is a 0-1 loss function

defined as follow:

IðŶðXÞ; YÞ ¼ 0 if Y ¼ ŶðXÞ;
1 if Y 6¼ ŶðXÞ;

�

and ŶBC(�) is the Bayes classifier. We can compute their

difference:

D1 ¼ e1;B � e1;A: ð5Þ

Distribution of D1 can be characterized by the following

proposition, simply being derived from the central limit

theorem.

Proposition 1 Suppose that the minimum misclassifi-

cation error is a constant p within the state space. When

errors e1,A and e1,B are defined as in (3) and (4), we have

e1;A�Nðp; r2
e1;A
Þ and e1;B�Nðp; r2

e1;B
Þ where p is the true

risk. Moreover, we have D1 ¼ e1;B � e1;A�Nð0; r2
D1
Þ.

Proof For i 2 A, I(ŶBC(Xi), Yi) can be considered as an

independent and identically distributed Bernoulli random

variable with success probability p, where p also is the true

risk; owing to a fixed decision boundary of the BC.

Therefore
P

i2A IðŶBCðXiÞ; YiÞ follows a binomial distri-

bution with parameters NA and p. This can be approxi-

mated by a normal distribution, NðNA � p;NA � pð1� pÞÞ.
Thus e1,A can be described as N p; pð1�pÞ

NA

� �
. Similarly, we

have e1;B�N p; pð1�pÞ
NB

� �
. Furthermore, because the dif-

ference of two normal distributions is also a normal dis-

tribution, D1 = e1,B - e1,A will also approximately follow

a normal distribution with mean 0 and variance
pð1�pÞ

NA
þ pð1�pÞ

NB
.

The assumption of a constant p is stringent, however it is

consistent with the settings in the simulations. The same

results holds in more general cases. For illustration pur-

pose, we choose not to pursue more general results. Note in

the above setting, D1 provides the minimum asymptotic

variance among all unbiased estimators. We choose not to

articulate it either; such a result is known in mathematical

statistics.

3.2 Error difference for the cross-validated classifier

Incorporating CV in tree-based models yields a classifier,

called a cross-validated tree (CVT) classifier. In the present

study, we constructed CVTs based on the FBP algorithm,

which is described in Sects. 2 and 3.

Let e2,A denote the training error based on CV, which is

the error rate by applying CVT to the training data:

e2;A ¼
1

NA

X

i2A

IðŶCVTðXiÞ; YiÞ: ð6Þ

Let e2,B denote the testing error when the CVT is applied

to the testing data:
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Fig. 2 The range of the optimal a that produces the smallest error

rate. Note that the minimum is not unique
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e2;B ¼
1

NB

X

i2B

IðŶCVTðXiÞ; YiÞ: ð7Þ

A quantity similar to the one in (5) is

D2 ¼ e2;B � e2;A: ð8Þ

Similar to the aforementioned proposition, one can see

that e2,B is approximately normally distributed because e2,B

can be viewed as a sum of i.i.d. Bernoulli random

variables. It is less evident that e2,A satisfies an

approximate normal distribution as well. Note that the

CVT depends on the training data. Our simulations show

that such a dependence is ignorable and e2,A can be

considered approximately normally distributed as well.

Figure 3 displays the normal probability plots of e2,A, e2,B,

and D2 generated by a relatively small number of sample

points (i.e., 200). All three plots do not depart substantially

from linearity, suggesting that the error distributions are

normal.

3.3 Convergence of CVT

We will argue that under amenable situations, the CVT

should converge to the optimal Bayes classifier. Under this

convergence, similar to the argument in Sect. 1, one can

show that D2 asymptotically satisfies a normal distribution

with zero mean. In fact, asymptotically, D1 and D2 should

be equal!

We now present our convergence analysis. Since we

consider a tree-based binary classification model, the sta-

tistical formulation can be summarized as follows: Con-

sider a univariate response random variable Y = 0 or

Y = 1 and a random vector X (which is called predictor).

Recall (Xi, Yi) denotes the ith observed pair of the predictor

and the response. Suppose there is a geometrically man-

ageable (which will be specified later) subset X. If X [ X,

we have Pr(Y(X) = 1) = p = 1 - Pr(Y(X) = 0), where

probability p [ 1/2; if X 62X, then we have Pr(Y(X) = 0)

= p = 1 - Pr(Y(X) = 1). Under this model, apparently the

Bayes classifier is
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Fig. 3 Normal probability plots

for the errors from CVT based

on 200 sample points: a training

errors from CVT (e2,A),

b testing errors from CVT

(e2,B), and c differences

(D2 = e2,B-e2,A)
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TBCðXÞ ¼
1; x 2 X;
0; x 62 X:

�

Moreover, by definition, we have that TBC minimizes the

following

EI½TðXÞ 6¼ Y� ¼ Pr½TðXÞ 6¼ Y �;

where E stands for expectation, I[*] is an indicator function

of event *, and Pr[*] stands for the probability of event *.

Denote a partition of the training set XA with 10 folders as

XA ¼ Xð1Þ [ � � � [ Xð10Þ, where X(k), k ¼ 1; 2; . . .; 10 are 10

mutually exclusive and roughly equally sized subsets of XA.

Denote X�k ¼ XA n XðkÞ; 1� k� 10, to be the subset of XA

after eliminating X(k). Let T(X-k; a) be the tree-based binary

classifier that is obtained by applying the algorithm descri-

bed in Sect. 2 to subset X(k) with parameter a. The cross-

validation criterion picks the a that minimizes the following:

X10

k¼1

X

i2XðkÞ

I½TðX�k; aÞðXiÞ 6¼ Yi�=jXAj; ð9Þ

where T(X-k; a)(Xi) is the predicted value of the classifier

T(X-k; a) at Xi, and |XA| denote the cardinality of set XA.

We consider two properties, under which we argue that

the CVT classifier converges to the Bayes classifier. First,

recall that in the algorithm in Sect. 2, we first build a big

tree, then adopts a fast algorithm to prune the large tree. The

underlying geometric region X should be representable by a

subtree model; i.e., a classifier according to an admissible

subtree of the initial large tree is close to the classifier that is

defined on X, e.g., TBC. Otherwise, the tree-based approach

has no hope to converge to the optimal classifier.

Property 1 When the sample size is large enough, an

admissible subtree of the largest possible tree (which is

built according to the entire sample) leads to a classifier

which has statistically similar performance of a classifier

that is based merely on whether or not the predictor X is

inside X, e.g., the Bayes classifier TBC.

We also must assume that distribution of the predictor X

is controllable such that when the sample size is large, the

optimal classifier is achieved for similar values of a.

Property 2 The distribution of the predictor X is ‘‘rea-

sonable’’ such that when the total sample size for training

set XA is large, the classifier T(X-k, a) for 1 B k B 10 and

T(XA; a) lead to similar classification rule for similar

values of a. This is to ensure that optimal classifier is

achieved simultaneously (with respect to value of a) for

T(X-k; a) with different k.

The reasonableness in the above property means that

sets XA as well as X�1; . . .;X�10 have similar statistical

behavior, such that tree classifiers that are built according

to them are similar as well. Note that the tree classifier,

under Property 1, would converge to the Bayes classifier.

This property is to ensure that the convergence occurs for a

similar a value. The reasonableness can be examined by

noticing that XA as well as X�1; . . .;X�10 are samples from

an identical source with about the same sizes.

The actual proof of the above two properties will be

tedious, and perhaps more suitable for a mathematically

oriented paper. However, they are true at least intuitively.

In this paper, we choose to sacrifice the mathematical rigor

in order to focus on the simulation study that come later.

We now show that the aforementioned two properties will

lead to the convergence of the CVT to the Bayes classi-

fier. According to Property 1, there exists an a such that

T(X-k; a) becomes a classifier that purely depends on the

membership of the predictor X in the underlying set X.

Suppose this classifier is T. From Property 2, such a clas-

sifier can be achieved simultaneously for all the k, 1 B

k B 10. Note that when the sample size goes to infinity, the

value of the expression in (9) satisfies:

X10

k¼1

X

i2XðkÞ

I½TðXiÞ 6¼ Yi�=jXAj ) EI½TðXÞ�;

where ‘‘)’’ stands for ‘‘converging to,’’ and the right hand

side is minimized by the Bayse classifier. From the definition

of the Bayes classifier, the minimizer T should be the Bayes

classifier. This demonstrates that the CVT, when the sample

size converges to infinity, converges to the Bayes classifier.

Remark 1 Property 1 is to ensure that the geometric

region X is manageable by a binary tree model.

Remark 2 Property 2 says that when the sample is large,

the sets XA;X�1; . . .;X�10 have similar statistical behav-

ior, so they lead to the similar tree classifier for a similar

and moderate a.

Remark 3 The above argument can be generalized to any

K-fold cross validation as long as K is finite. The above

argument cannot be utilized for leave-one-out cross vali-

dation because the number of folders then goes to infinity

along with the sample size.

3.4 D1 versus D2

As mentioned above, in an asymptotic sense, the CVT

should converge to the Bayes classifier. Hence we should

have D1 = D2 for a large sample size. In the small sample

case, the aforementioned may not be true. It is interesting

to observe that the two normally distributed random vari-

ables D1 and D2 seem to fit nicely into a simple linear

regression model based on an ordinary least squares esti-

mation method. In particular, we can conjecture that the

following is approximately true in finite-sample situations:
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D1 ¼ aþ c � D2 þ e; ð10Þ

where the error e has zero mean and a constant variance and

the y intercept a is constant value. Moreover, we have that

0 \ c\ 1 and the value of c together with the variance of e
depend on the underlying geometry, the sample size, and the

ratio between the numbers of training and testing samples. A

direct application is as follows: a combination of larger c and

smaller variance of e indicates an amenable scenario to adopt

the CV approach. Such an observation can be utilized to

develop guidelines on when to apply CV when the data size

is small. Evidently, such a guideline is important in appli-

cations. This paper focuses on the framework, instead of

deriving the exact guideline for specific models.

4 Simulations

4.1 The setting

Data points X are uniformly generated in a unit square.

Figure 4 illustrates 200 data points. Decision boundaries

are as follows.

– Case 1: X 2 Br where Br is a rectangular decision

boundary for 0.2 B X1 B 0.8 and 0.3 B X2 B 0.8.

– Case 2: X 2 Bc where Bc is a circular decision boundary

for (X1-0.5)2 ? (X2-0.5)2 \ 0.22.

– Case 3: X 2 Bt where Bt is a triangular decision

boundary for X2 [ 0.2, X2 \ 2X1- 0.2, and x2 \
-2X1 ? 1.8.

Success probability p plays the role as in the following:

– If input X 2 Bx for x 2 fr; c; tg, then we have response

Y ¼ 1 with probability ðw.p:Þ p;
0 w.p: 1� p:

�

– If input X 62 Bx, then we have response

Y ¼ 1 w.p. p� 1;
0 w.p. p:

�

For each generated data, we compute a series of

aforementioned error rates (e1,A, e2,A, e1,B, and e2,B).

Recall that 10-fold CV is used to obtain e2,A and e2,B.
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Fig. 4 Illustration of 200

simulated data with three

different decision boundaries.

a rectangular decision

boundary, b circular decision

boundary, and c triangular

decision boundary

Inf Technol Manag (2009) 10:223–233 229

123



4.2 Relation between D1 and D2 and effects

of the geometry of decision boundaries

To identify a statistical relation between D1 and D2, we

utilize a linear regression analysis. D1 is taken as the

response variable and D2 as the predictor variable. Figure 5

represents linear regression lines between D1 and D2 with

three different types of decision boundaries. Our experi-

mental results with the finite sample size show that dif-

ferences between testing and training errors from the Bayes

classifiers (D1) and the CVT (D2) are not zero but can be

modeled by a simple linear regression model.

Slopes of regression lines are shown in Table 1. Note

that the sample size does not significantly affect the slope.

It can be also seen that the slopes of the regression models

through the origin (values in the parentheses in Table 1)

are not significantly different from the ones of the regres-

sion models with the intercepts. This small difference,

however, does not indicate that the y intercepts are statis-

tically zero.

Table 1 shows that the relationship of the difference

between testing and training errors of the BC and CVT is

affected by the geometry of the decision boundaries. The

closer the slope is to one, the less the difference between
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Fig. 5 Regression plots

between D2 and D1 with

rectangular, circular, and

triangular boundaries.

Regression lines are generated

with p = 0.1 and sample size

300. The diagonal lines
(D1 = D2) are plotted as

references

Table 1 Slopes of the regression models with different decision boundaries and dataset sizes

Sample size 20 50 100 200 300 400 500

Rectangle 0.852 (0.852) 0.635 (0.703) 0.745 (0.741) 0.764 (0.760) 0.747 (0.734) 0.797 (0.797) 0.775 (0.774)

Circle 0.501 (0.476) 0.529 (0.518) 0.528 (0.529) 0.502 (0.494) 0.516 (0.511) 0.548 (0.531) 0.528 (0.519)

Triangle 0.525 (0.530) 0.489 (0.433) 0.403 (0.409) 0.459 (0.460) 0.485 (0.483) 0.387 (0.388) 0.516 (0.513)

The values in the parentheses indicate the slopes in the regression models through the origin
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D1 and D2. It is not hard to imagine why a rectangular

decision boundary has a larger value of the slope than other

decision boundaries. This is due to the characteristic of the

recursively binary splitting of the feature space in tree-

based models. Furthermore, Table 2 shows the coefficient

of determination (R2) of each boundary. It shows that a

rectangular boundary yields larger R2 than the others,

which suggests that a strong degree of linear association

between D1 and D2. In other words, a CVT based on a

rectangular decision boundary behaves more like the Bayes

classifier compared to circular and triangular boundaries.

4.3 The effect of the parameters in an underlying

distribution

Recall that the underlying distribution in our simulation is

Bernoulli(p), where p is the constant misclassification rate

applying to the entire state space (see Sect. 1). Table 3

describes the slopes of regression lines with different val-

ues of p with a rectangular decision boundary.

The other geometries of decision boundaries give sim-

ilar results. Figure 6 displays the boxplots of the slopes for

different parameter values. It shows that parameter values

between 0.1 and 0.2 produce a strong linear relationship

between the BC and the CVT, however this relation

becomes weaker as the parameter value becomes either

extremely small or close to 0.5. It is not difficult to explain

why D1 and D2 have a weak linear relationship as p

approaches to 0.5. If p equals 0.5, we have the same

probability for each class being inside or outside of a

decision boundary. In this case, classification processes are

mostly affected by random effects instead of the decision

rule. This randomness causes a weak relationship between

the two classifiers. For small p (e.g., p = 0.01), the rela-

tionship of two classifiers is very sensitive to the changes

of error rates because both classifiers render very small

error rates. Such a high sensitivity results in a weak rela-

tionship between the two classifiers. R2s for the above

regression analysis show similar patterns with slopes in

regression models (this result is not reported).

4.4 The effect of the sample size

We study the relationship of the equality between testing

and training errors from both classifiers with different

sample sizes. First we consider five different total sample

sizes (testing & training): 100, 200, 300, 400, 500. For each

sample size, we consider five different ratios of testing to

the training samples: 1:3, 1:2, 1:1, 2:1, 3:1. Table 4

shows the slopes in a regression line from different ratios

of the training and the testing sample sizes. Again, because

the intercepts in a regression line are not statistically sig-

nificant, we consider the slopes with zero intercept

shown in the parentheses in Table 4. Figure 7 illustrates a

Table 2 Coefficient of determination (R2) with different decision

boundaries and sample sizes

Sample size 20 50 100 200 300 400 500

Rectangle 0.878 0.705 0.733 0.718 0.643 0.729 0.674

Circle 0.339 0.441 0.459 0.430 0.456 0.431 0.467

Triangle 0.449 0.282 0.316 0.320 0.370 0.388 0.414

Table 3 Slopes in a regression line with different parameters

0.01 0.05 0.1 0.2 0.3 0.4 0.5

1 0.261 (0.261) 0.631 (0.626) 0.747 (0.741) 0.747 (0.741) 0.700 (0.700) 0.506 (0.522) 0.120 (0.099)

2 0.352 (0.339) 0.624 (0.623) 0.875 (0.874) 0.810 (0.810) 0.458 (0.432) 0.275 (0.228) 0.002 (0.033)

3 0.272 (0.279) 0.460 (0.561) 0.743 (0.743) 0.790 (0.789) 0.714 (0.680) 0.496 (0.400) -0.181 (-0.162)

4 0.348 (0.359) 0.570 (0.570) 0.770 (0.767) 0.619 (0.624) 0.458 (0.419) 0.157 (0.120) 0.158 (0.179)

5 0.301 (0.301) 0.690 (0.690) 0.714 (0.716) 0.822 (0.716) 0.542 (0.535) 0.481 (0.397) -0.089 (-0.101)

Average 0.307 (0.301) 0.595 (0.614) 0.770 (0.768) 0.758 (0.736) 0.575 (0.553) 0.082 (0.107)

SD 0.042 (0.041) 0.087 (0.052) 0.062 (0.062) 0.083 (0.073) 0.126 (0.133) 0.080 (0.101)

The values in the parentheses are the slopes in a regression line through the origin
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0.0

0.5

1.0

)p(retemaraP

epol
S

Fig. 6 Boxplots of slopes in a regression line with different

parameters. Plots are generated with rectangular decision boundary
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three-dimensional contour plot in which x and y-axes rep-

resent the sample size and the ratio of testing to training

samples. For example, if the values on the x and y-axes are

300 and 2, this indicates that the experiment is performed

using 100 training samples and 200 testing samples. The

z-axis (the values on the contour plot) indicates the slopes

of each regression line. This plot can be used to determine

the ratio of testing to the training sample size for achieving

the targeted performance. For instance, if we want our

CVT classifier to be 1
0:84677

of the Bayes classifier, the

corresponding values on the x-axis suggest the ratio

corresponding to the different total sample sizes. The result

also indicates that changes of slopes become stabilized

when sample size is larger than 300. This may indicate the

border line between the large sample (asymptotic) size and

the finite sample size.

5 Conclusions

An experimental study is presented to measure the per-

formance of CV in tree-based models. We compares a CVT

with a Bayes classifier, which is derived from the knowl-

edge of the underlying distribution. We focus on the finite-

sample case. Main observation is that the differences

between testing and training errors from both the CVT and

the Bayes classifiers follow a simple linear regression

model. The slope of the regression line and the variance of

the random error can be served as a measure on how well

CV may work in that particular situation for tree-based

models. R2 are employed to validate the relation. Both the

slope and R2 being equal to one suggests a strong rela-

tionship between two classifiers. In addition, it is demon-

strated that the above relation is influenced by other factors

such as the shape of the decision boundaries, the probabi-

listic parameter of the underlying distribution, and the

sample size. It should be noted that because our current

study was conducted based solely upon 10-fold CV, the

results may not be generally applicable to CV on different

number of folds. There are interesting directions for future

research: one can extend our study to other learning algo-

rithms, such as support vector machines, neural networks,

and so on. Authors believe that the finite sample behavior

of the cross validation error is a fascinating research topic.
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