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1. Introduction

The development of powerful computers and faster input/output devices coupled with
the need for storing and analyzing data have resulted in massive databases (of the order
of terabytes). Our ability to produce and store such voluminous data has far outpaced
our ability to analyze and interpret the data, and derive useful knowledge from it. Large
databases these days have millions of records and each record may have hundreds or
even thousands of fields. For example, in the business world, one of the largest databases
was created by Wal-Mart, which handles over 20 million transactions a day [6]. Similar
instances can be found in databases created by health care companies, oil exploration
firms, database marketing, and scientific research consortiums, just to name a few.

Such volumes of data clearly overwhelm more traditional data analysis methods.
A new generation of tools and techniques are needed to find interesting patterns in the
data and discover useful knowledge. These tools and techniques and their applications
are the subject of the field of Knowledge Discovery and Data Mining [26]. Successful
development of effective and efficient data mining algorithms can also provide enormous
benefits to an organization from the business standpoint. Benefits include reduced costs
due to more accurate control, more accurate future predictions, more effective fault
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detection and prediction, fraud detection and control, and automation of repetitive human
tasks.

In this paper we present the design of more effective and efficient genetic algorithm
(GA) [29,31] based data mining techniques that use the concepts of self-adaptive feature
selection together with a wrapper feature selection method based on Hausdorff distance
measure. The data mining algorithms developed are tested on a real world problem. The
problem is related to the control of a chemical process at an Eastman Kodak facility in
Longview, TX, producing a certain chemical product, with about 30 process variables.
In the process of producing the product, an undesirable byproduct is produced which is
not measured directly. To remove this byproduct, an expensive chemical is added in just
sufficient quantities. The problem is to change the controllable process variables (nine
out of the thirty variables) so that the usage of the expensive chemical is minimized.
Since there are no theoretical formulae linking the process variables with the amount of
the product produced, the only way to solve this problem is to induce the relationships
based on a set of actual plant readings. All the plant readings were normalized to be
between 0.0 and 1.0 and the goal for the plant manager was to maintain the usage of the
expensive chemical to under 0.35 at all times.

The problem was formulated as a single concept learning problem by considering
the examples where the quantity of the expensive chemical used was less than 0.35 as
being positive examples and the rest as negative examples. The goal of the data mining
algorithms would be to discover or “learn” concepts that would cover or explain all
the positive examples without covering any negative examples. In other words, the data
mining algorithms or “learning” algorithms would discover relationships among the
control variables that would reduce the usage of the expensive chemical. The available
data set is divided into two subsets for training and testing purposes. The data mining
algorithms use the first sub-set, also known as training examples, to learn or discover the
required concepts. The learned concepts are then evaluated using the holdout sub-set,
also known as testing examples.

There are many data mining algorithms currently in use. Most of them can be
classified in one of the following categories: Decision trees and rules [14,49] nonlinear
regression and classification methods [28,23], example-based methods [20,35], proba-
bilistic graphical dependency models [47,58], and relational learning models [21]. Over
the years genetic algorithms have been successfully applied in learning tasks in different
domains, like chemical process control [52], financial classification [53], manufacturing
scheduling [40], robot control [54], etc. There has also been some work done related to
developing hybrid learning systems involving genetic algorithms [9,57]. Evolutionary al-
gorithms (including GAs) have also been recently used for data mining tasks [5,12,32,44].

2. Feature selection

Feature selection is the problem of choosing a small subset of features that ideally is
necessary and sufficient to describe the target concept [37]. A goal of feature selection is
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to avoid selecting too many or too few features than is necessary. If too few features are
selected, there is a good chance that the information content in this set of features is low.
On the other hand, if too many (irrelevant) features are selected, the effects due to noise
present in (most real-world) data may overshadow the information present. Hence, this
is a tradeoff that must be addressed by any feature selection method.

The marginal benefit resulting from the presence of a feature in a given set plays
an important role. A given feature might provide more information when present with
certain other feature(s) than when considered by itself. [18,22], and [55], among others,
have shown the importance of selecting features as a set, rather than selecting the best
features to form the (supposedly) best set. They have shown that the best individual
features do not necessarily constitute the best set of features.

However, in most real-world situations, the best set of features or the number (n)
of features in such a set is not known. Currently, there is no means to obtain the value of
n, which depends partially on the objective of interest. Even assuming that n is known,
it is extremely difficult to obtain the best set of n features since not all n of these features
may be present in the data comprising the available set of features.

There have been many approaches to feature selection based on a variety of tech-
niques, such as statistical [38], geometrical [24], information-theoretic measures [1,10,
15], mathematical programming [13], neurofuzzy [11], Receiver Operating Curves [17],
discretization [42], among others. Several researchers have also used evolutionary algo-
rithms for feature selection by using a classifier as a fitness function [8,25,33,36,48,56,
57]. GAs have also been used in feature selection for creation of ensemble classifiers
[30,46].

Feature selection has been traditionally used in data mining applications as part of
the data cleaning and/or pre-processing step where the actual extraction and learning of
knowledge or patterns is done after a suitable set of features is extracted. If the feature
selection is independent of the learning algorithm it is said to use a filter approach. [39]
presents one such filter approach to feature selection using genetic algorithms If the
feature selection method works in conjunction with the learning algorithm it is using a
wrapper approach [34,59]. The problem with the filter approach is that the optimal set
of features may not be independent of the learning algorithm or classifier. The wrapper
approach provides a better approach, however it is computationally expensive as each
candidate feature subset has to be evaluated by executing a learning algorithm on that
subset.

When used with GAs, the wrapper approaches become even more prohibitively
expensive [39]. [50] presents an approach of simultaneously doing feature selection and
optimizing feature weights using a GA. In this article we present a wrapper approach to
feature selection using a GA as the learning algorithm and show how the computational
complexity of the approach can be reduced by incorporating a second self-adaptive feature
selection approach where the learning and feature selection are done simultaneously.

The feature selection concept presented in this article is related to two aspects of
work done earlier: self-adaptation and use of non-coding material in the chromosome
structure (called introns) motivated by the existence of non-encoding DNA in biological
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systems. In biological systems an intron is a portion of the DNA that is not transcribed
into proteins. Introns can become an important part of the evolution process by providing
a buffer against the destructive effects of the genetic algorithm. At the same time introns
have been shown to be useful as a source of symbols that can be effectively used to evolve
new behaviors through subsequent evolution [41,45].

Self adaptation [3] refers to the technique of allowing characteristics of the search
to evolve during the search rather than be specified by the user. Most of the work done
on self-adaptation has focused on choices related to search operators. Aspects of these
choices are encoded along with each member of the population and they are allowed to
vary and adapt on an individual basis. One of the most common traits to be self-adapted
has been the mutation rate [7,27,51]. Others have included crossover [4] and inversion
operators [16].

3. Data mining with GA

In this section we present the design of a genetic algorithm for rule learning in a data
mining application. We discuss the five important components needed to design a GA:
(1) the representation format, (2) the fitness function, (3) the selection and reproduction
operators, (4) various parameter values, (5) a method for generating initial population
and a stopping criteria.

The representation of a concept or a classifier used by the GA is that of a disjunctive
normal form. A concept is represented as C = C1 V C2 V . . . V C p, where each disjunct
Ci (henceforth called a rule) is a conjunction of conditions,

= (
ξ1,1 & . . . & ξk1,1

)
V (ξ1,2 & . . . & ξk2,2)V . . . V

(
ξ1,p & . . . & ξkp,p

)
.

The above concept C is said to have a size of p (which we refer to as the rule size). An
ideal concept would cover all the positive examples without covering any of the negative
examples. In order to handle continuous variables each condition ξ j,i is in the form of a
closed interval [ai bi ], i.e.,

ξ j,i = (ai ≤ X j ≤ bi ), if ai ≤ bi

or (ai ≥ X j ≥ bi ), if ai ≥ bi

The following example will help explain the above representation. Consider the
following concept C for a problem involving two attributes X1 and X2:

C = [(−10)(0.40.9)] V [(00.5)(−0.20.9)]

= [(−1 ≤ X1 ≤ 0) and (0.4 ≤ X2 ≤ 0.9)] OR

[(0 ≤ X1 ≤ 0.5) and (−0.2 ≤ X2 ≤ 0.9)]

In terms of the above representation, p = 2, k1 = k2 = 2, C = C1 V C2, C1 =
(ξ1,1 & ξ2,1), C2 = (ξ1,2 & ξ2,2), ξ1,1 = (−1 ≤ X1 ≤ 0), ξ2,1 = (0.4 ≤ X2 ≤ 0.9), ξ1,2 =
(0 ≤ X1 ≤ 0.5), and ξ2,2 = (−0.2 ≤ X2 ≤ 0.9).
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Each member of the population in the GA is a single disjunct Ci = (ξ1,i & . . . &
ξki,i ). Using the above example, C1 and C2 would be individual members (chromosomes)
in the population represented as a string of four numbers as shown below:

C1 : −1 0 0.4 0.9

C2 : 0 0.5 −0.2 0.9

Note that the value of Ki for each i in the above representation is same as the total number
of attributes. The selection of relevant attributes is done implicitly by the GA, by learning
condition ξ j,i that represent the entire domain of the irrelevant attribute X j . Later on we
will present a feature selection method where the value of Ki will be simultaneously
learned by the GA along with the rules.

The genetic algorithm tries to find the best possible disjunct that explains as many
positive examples of the concept as possible while covering as few of the negative
examples as possible. At each generation it retains the best disjunct and replaces the rest
through the application of the genetic operators. After the genetic algorithm converges,
the best disjunct found is retained and the positive examples it covers are removed. The
process is repeated until all the remaining positive examples in the data set are covered.
The final rule or concept is then the disjunct of all the disjuncts found. This procedure
for searching the instance space (I-space) is called explanation based filtering.

Most of the parameter values for the GA were selected based on the common values
often found in the literature. Note that the main purpose of this paper is to highlight a
methodology for improving the performance of the basic GA and make it more robust
for data mining applications. Since the same basic GA is used in all the four methods
discussed, improving the performance of the basic GA by tweaking its various parameter
values will not have any effect on the conclusions reached in this paper about the relative
performance of the methods.

The GA implemented here uses a uniform crossover operator with a probability of
crossover equal to 0.7. The interval range for each attribute on the rule is considered as
a single entity for the purpose of crossover. The mutation operator used can be thought
of as a specialization/generalization operator, which either increases or decreases (with
equal probability) the interval range of an attribute by either increasing or decreasing the
upper or lower interval limit with equal probability of 0.1. The reproduction operator
uses a tournament selection with a size of 2. All the population members, except for the
best one, are replaced from one generation to the next by applying the genetic operators.
Please refer to [29] for detailed information about the implementation of the above
operators.

The fitness function looks at the number of positive and negative examples covered
by the rule but it also assigns partial credit for the number of attribute intervals on that rule
that match the corresponding attribute values on a positive training example. Specifically,
the fitness function is given by

F = α + Cν(p − n), (1)
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whereα is the total number of partial matches, C is a constant,ν is the number of attributes,
p is the number of positive examples covered by the rule, and n is the number of negative
examples covered by the rule. Note that the partial credit portion of the fitness functions
plays an important role in the initial generations in guiding the concepts that are being
developed towards covering positive examples. As the concepts start covering more and
more positive examples, the second term in the fitness function becomes correspondingly
more dominant. The fitness function thus behaves like an adaptive function.

The initial population is created by generating disjuncts using random numbers for
the lower and upper interval limits corresponding to each attribute. A population size
of 100 is used and the terminating criterion for the GA is the non-improvement in the
fitness value of the best individual in 10 generations. Note that since the fitness value
can only improve by covering more positive examples and since there are finite number
of positive examples to cover, it follows that the GA terminates after finite number of
generations. All the algorithms used in this paper were implemented in C++ on a Sun
workstation running SunOS 5.7.

4. Feature selection as self-adaptation

The GA presented above is modified as follows to incorporate the self-adaptive feature
selection method. Each population member contains, in addition to the disjunct, a binary
vector for feature selection that also evolves alongside the disjunct. A feature is selected
if the corresponding bit in the selection vector is 1. For example, if we have five attributes
in the original feature set a typical rule (disjunct) represented in the new approach would
look like the following:

X1 X2 X3 X4 X5

((0 0.1) (0.12 0.24) (0.23 0.5) (0.4 0.7) (0.2 0.87))
0 1 0 1 1

Since only X2, X4, and X5 have a corresponding 1 on the selection vector, the rule
becomes:

IF(0.12 ≤ X2 ≤ 0.24) and (0.4 ≤ X4 ≤ 0.7) and (0.2 ≤ X5 ≤ 0.87)

The uniform crossover operator is applied to the trio of values (the interval limits
and the selection bit) for each attribute instead of the pair of values as in the last section.
The mutation operator flips the binary digits on the selection vector in addition to chang-
ing the pair of numbers for each attribute as explained in the last section. The initial
population is created as before with the interval pairs for each attribute on a member
created with uniform distribution and the binary selection vector randomly generated
with a probability of Fselect for selecting a particular feature (i.e., a 1 appearing on the
selection vector corresponding to that feature). The fitness function remains the same
as before except that the selection vector is also used in deciding which attributes are
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considered for fitness evaluation. Since the fitness evaluation now also depends on the
feature subset selected we can hypothesize that this would start evolutionary pressures
for good features to be selected.

Note that an attribute’s interval limits on a rule can change due to crossover or
mutation even when that feature is not selected in the rule. This is similar to the concept
of introns mentioned earlier where non-coding genes are allowed to propagate and evolve
in the hope that in a later generation they might be found to be useful. The interval limits
of the attributes not selected in a rule can be thought of as introns. Since these are not
used in the fitness evaluation they do not affect the computation time. The only additional
resource they consume is the memory storage. However, since the GA used is a fixed
length GA the use of introns in this case does not lead to the problems of bloat so often
associated with the use of introns in the genetic programming community.

In the next section we present a wrapper method for feature selection that can be
used with the GA designed above.

5. Hausdorff distance measure and feature selection

5.1. Hausdorff distance

The Hausdorff distance measure is widely used in computer vision and graphics appli-
cations due to its excellent discriminant properties. It has, however, not received much
attention in the feature selection literature. The Hausdorff distance [43] is a measure
of similarity, with respect to their position in metric space, of two non-empty compact
sets A and B. It measures the relative position of each point in a set with that of an-
other set. Let X1 = {x11, x12, . . . , x1m} and X2 = {x21, x22, . . . , x2n} be two finite point
sets and d a distance over this space. The measure d can be any distance including
the 1-norm,1 the Euclidean norm, as well as simple difference between correspond-
ing coordinates in each dimension, among others. The Hausdorff distance is defined as
follows:

∀x1∈ X1, D(x1, X2) = min
x2∈X2

{d(x1, x2)} (2)

h(X1, X2) = max
x1∈X1

{D(x1, X2)} (3)

H (X1, X2) = max {h(X1, X2), h(X2, X1)} (4)

Where, h(X1, X2) is the directed Hausdorff distance from X1 to X2. It identifies the
point x∗ ∈ X1 that is farthest (using a pre-specified norm) from any point in X2 and
measures the distance from x∗ to its nearest neighbor in X2. Essentially, h(X1, X2) ranks
each point in X1 based on its distance from the nearest point in X2 and then uses the
largest ranked such point (x∗, the point in X1 farthest away from X2) as the distance.
If h(X1, X2) = A, then each point in X1 has at least one point in X2 within radius
of A. For smaller values of A, X1 is nearly included in X2. The Hausdorff distance
itself, H (X1, X2) is the maximum of the directed Hausdorff distances h(X1, X2) and
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h(X2, X1).H (X1, X2) can be calculated in O(m, n) for two point sets of size m and n
respectively. [2] improve this to O((m + n) log(m + n)).

The Hausdorff distance H is a metric over the set of all closed, bounded sets [19].
Being a true distance, it also obeys the properties of identity, symmetry, and triangle
inequality. In the context of classification, it follows that the description of a concept is
identical only to its own description, the order of comparing different concepts does not
matter, and the descriptions of two different concepts cannot be similar to some third
concept.

5.2. Feature selection with Hausdorff (HS) distance applied to GA

The following algorithm is used for applying feature selection using Hausdorff distance
measure to the GA.

Algorithm HS + GA (feature selection with Hausdorff distance applied to GA):
Variables in data: v1, v2, . . . , vk

S = set of all input variables = Ø

1. Set i = 1; While i < k + 1, do

a. Calculate Hi (X1, X2) for vi .

b. i = i + 1.

c. Go to 1(a).

2. Sort Hi (., .), in descending order, with the corresponding variables (v1, . . . , vk).

3. Set j = 0; Until stopping criterion is met, do

a. δ = � j ; S = S + (v j+1, v j+2 . . . , v j+δ)

b. Let GA induce the best concept with input S.

c. Evaluate quality of the learned concept.

d. j = j + δ.

e. Go to 3(a).

4. Return the final concept learned.

Step 1 calculates the Hausdorff distance Hi (X1, X2) between positive and negative
examples, individually for each of the k variables (features) in the data set. This is followed
by sorting the Hi values, and the corresponding variables are noted (v1, . . . , vk) in Step
2. This is followed by evaluation of the feature set by learning the best concept. We use
the GA, discussed above, for generating the learned concept. The concepts are generated
iteratively as more variables are added to the data set, in ascending order, based on their
corresponding Hi values. The quality of the concept thus generated is evaluated using
the fitness function in (1). The algorithm stops when a pre-specified stopping criterion
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(no improvement in classification accuracy) is reached, and the final concept learned is
returned.

In the next section we discuss the problem domain and present the experimental
results.

6. Experimental results

6.1. Experimental design

The data set had 572 instances, of which 355 were positive examples and 217 were
negative examples. It was randomly broken up into 10 pairs of training and testing (or
holdout) sets with 344 and 228 examples respectively (each with the same proportion
of positive and negative examples). Three different problem variations were created
from the above data set. In the first case only the 9 controllable variables were used.
In the second case all the 30 variables were used, and for the last case 20 additional
variables were added by recombining some of the original 30 variables to create a data
set with 50 variables. Having these three different sizes of essentially the same prob-
lem allows us to test the performance of the system as the size of the problem domain
increases and study its scale-up properties, something very crucial for data mining ap-
plications. The last problem variation also allows us to test the effectiveness with which
the data mining system can detect the irrelevant attributes. Typical data mining appli-
cations involve a lot of irrelevant attributes and it is widely recognized that around
80% of the resources in such applications are spent on cleaning and preprocessing the
data.

When applying the Hausdorff distance measure for feature selection the variables
are added as follows: For the 9 variable problem the variables are added in increments
of 5 (i.e., �0 = 5 and �5 = 4). For the 30 and 50 variable problems, we start with 5 and
10 variables and then add in increments of 10 (i.e., �0 = 5, �5 = 5, �10 = 10, etc.).

6.2. Results and discussion

The detailed results for the 9 variable, 30 variable, and the 50 variable problems are
presented below in Tables 1–3. Each experiment was repeated 5 times with a different
random number seed. The values in each cell of the tables are the average of those 5
trials. To evaluate the effect of feature selection on the performance of the system, 4
different versions of the system were tested. In the first case, a simple GA (as described
in Section 3) is used to learn the concepts. In the second version (GAFS), the self-adaptive
technique of explicit feature selection (as discussed in Section 4) is applied to the GA.
In the third version (HS + GA), feature selection with Hausdorff distance (as discussed
in Section 5) is used with the GA. And, finally, both the techniques of feature selection
are combined in (HS + GAFS). For benchmarking purposes we also present the results
of using a decision tree learning method C4.5 [49] on the data sets. Three criteria are
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Table 1
Results for 9 variable problem.

Simple GA GA with Hausdorff Dist. Combining both
w/o feature simultaneous FS applied to GA FS techniques

C4.5 selection (GA) FS (GAFS) (HS + GA) (HS + GAFS)

Data set (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size

1 78.6 14.72 43 78.77 20.67 4 78.86 9.61 3.2 78.77 32.51 4 78.86 21.45 3.2
2 84.3 16.42 49 83.63 24.52 4 82.10 9.97 3.6 83.63 39.77 4 82.10 25.22 3.6
3 81.7 12.03 47 81.32 22.24 4.2 80.52 10.36 3.8 81.32 33.83 4.2 80.52 21.95 3.8
4 85.2 12.8 47 80.26 21.78 3.6 80.52 8.89 3.6 80.26 35.05 3.6 80.52 22.16 3.6
5 85.2 18.87 67 83.95 21.83 3.4 83.49 10.84 3.8 83.95 38.26 3.4 83.49 27.27 3.8
6 84.3 16.24 53 85.52 24.71 3.8 84.02 9.78 3.8 85.52 38.11 3.8 84.02 23.18 3.8
7 82.5 13.45 41 79.56 21.14 4 80.61 11.90 4 79.56 35.23 4 80.61 25.99 4
8 84.3 14.52 55 81.32 21.04 3.8 80.79 10.94 3.4 81.32 35.40 3.8 80.79 25.30 3.4
9 83 12.78 45 82.55 23.11 3.6 81.14 8.54 3.4 82.55 35.70 3.6 81.14 21.13 3.4

10 80.8 17.23 49 81.4 21.31 3.6 81.75 9.97 3.4 81.4 36.05 3.6 81.75 24.72 3.4
Avg. 82.99 14.91 49.6 81.73 22.24 3.8 81.38 10.08 3.6 81.73 35.99 3.8 81.38 23.84 3.6
Std. 2.13 2.23 7.43 2.02 1.43 0.25 1.52 0.99 0.25 2.02 2.18 0.25 1.52 2.14 0.25

Paired t-test (2 tail)

PC4.5 n.s. 5.8E–6 1E–8 0.01 7.7E–5 1E–8 n.s. 5E–11 1E–8 0.01 7.6E–8 1E–8
PGA n.s. 1.3E–8 0.09 n.s. 4E–10 n.s. n.s. 0.09 0.09
PGAFS n.s. 6E–11 0.09 n.s. 3.9E–10 n.s.
PHS+GA n.s. 3.9E–10 0.09

used for doing the comparisons. The prediction accuracy of the concept learned on the
hold-out testing sample, the computation time, and the simplicity of the concept learned
as measured by the number of rules in the concept. For fairness of comparison, the
population size of the GA was fixed at 100 for all the three problem sizes so that the
number of function evaluations across the problem sizes would remain more or less the
same. The average and standard deviation values are provided together with the results
of Paired t-test for statistical test of significance. Table 4 summarizes the average results.
Figures 1–3 depict the comparative performance of the four methods on the three criteria.

Some of the major findings can be summarized as follows:

• Performance of the simple GA quickly deteriorates as the problem size increases.
Its prediction accuracy plummets at the same time its computational time and the
complexity of the concept increase substantially. For C4.5, the performance is more
stable for the prediction accuracy and the complexity of the concept. However, its
computational time also increases substantially with the increase in problem size.
Note that the GA is much better at producing simpler and compact concepts as
compared to the C4.5. This might be especially important for managerial purposes
as the concepts produced by the GA are easy to understand and hence easier to
implement.

• When self-adaptive feature selection is added to the simple GA (GAFS), the perfor-
mance in terms of computation time and the simplicity of the concept does improve
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Table 2
Results for 30 variable problem.

Simple GA GA with Hausdorff Dist. Combining both
w/o feature simultaneous FS applied to FS techniques

C4.5 selection (GA) FS (GAFS) GA (HS + GA) (HS + GAFS)

Data set (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size

1 82.4 56.33 55 83.77 96.46 4 81.84 43.67 4 80.88 74.81 3.62 78.42 41.27 2.4
2 83.3 89.28 47 82.63 92.74 4 85 48.88 4.8 84.39 75.4 3.2 86.05 47.02 4.4
3 82.8 58.68 47 80.53 100.42 3.8 80.44 38.47 3.6 82.37 79.5 4.4 81.84 54.24 5.2
4 84.2 40.84 33 79.56 86.88 3.6 78.69 42.46 3.8 82.37 69.29 2.8 83.07 38.46 2.8
5 85.6 46.14 39 83.77 87.17 3.6 77.72 46.18 4.6 85.44 82.72 4.2 82.28 39.89 3.4
6 85 47.96 31 83.51 70.32 5 80.62 44.35 4 83.33 51.31 4 84.04 41.21 3.6
7 77.2 81.28 51 87.11 85.79 4.8 86.41 45.04 4.6 83.33 53.65 4 84.48 38.58 3.2
8 84.6 59.85 39 82.72 67.54 4.2 80.79 44.37 3.8 85.09 52.71 3.2 83.6 42.53 3.6
9 80.2 62.08 31 81.23 74.14 4.4 78.86 42.03 3.6 80.61 56.35 3 81.23 50.75 3.6

10 78.5 66.51 43 78.95 60.91 3.6 77.72 34.97 2.8 85.35 52.37 3.8 83.07 43.73 4.2
Avg. 82.38 60.90 41.6 82.38 82.24 4.1 80.81 43.04 3.96 83.32 64.81 3.62 82.81 43.77 3.64
Std. 2.85 15.16 8.44 2.41 13.25 0.5 2.94 3.93 0.6 1.76 12.69 0.55 2.07 5.31 0.8

Paired t-Test (2 tail)

PC4.5 n.s. 0.0068 2E-7 n.s. 0.004 2E-7 n.s. n.s. 2E-7 n.s. 0.005 2E-7
PGA 0.05 3.9E-6 n.s. n.s. 4.2E-5 0.06 n.s. 7.5E-6 n.s.
PGAFS 0.05 3.5E-4 n.s. 0.05 n.s. n.s.
PHS+GA n.s. 5.5E-4 n.s.

Figure 1. Comparative performance based on accuracy %.
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Table 3
Results for 50 variable problem.

Simple GA GA with Hausdorff Dist. Combining both
w/o feature simultaneous FS applied to FS techniques

C4.5 selection (GA) FS (GAFS) GA (HS + GA) (HS + GAFS)
Data
set (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size

1 82.1 160.43 37 72.9 126.18 4.6 76.32 94.21 4.8 84.04 28.38 3.8 83.33 25.92 4
2 82.1 146.73 37 75.09 150.77 5.8 73.42 100.81 5.8 82.81 66.05 3.8 84.21 50.61 3.6
3 83 111.41 45 79.12 161.99 6.8 76.67 87.18 5.0 82.02 62.74 3.8 83.51 52.30 4
4 85.2 101.6 39 75.26 145.42 5.8 74.12 109.02 6.2 84.04 60.63 3.6 82.37 41.12 2.8
5 78.1 106.61 47 79.04 171.63 7.2 71.14 91.80 5.2 84.65 68.61 3.8 83.68 21.17 4
6 83.4 102.47 35 77.72 153.59 6.4 73.86 80.52 4.6 84.91 62.82 3.8 84.65 52.12 4
7 86.1 181.86 41 76.31 132.74 4.8 78.25 91.67 5.0 85.18 71.49 3.8 84.91 49.38 3.4
8 83 221.51 33 72.02 130.60 4.8 73.25 102.58 6.0 83.69 71.37 4.4 81.32 49.05 3.8
9 77.3 155.5 39 74.47 155.9 6.2 73.07 83.78 4.8 81.14 29.94 4.8 82.02 24.54 4.8

10 83.4 213.4 39 77.55 171.14 7.6 75.35 86.97 5.0 80.61 60.99 3 81.32 48.79 3.6
Avg. 82.37 150.15 39.2 75.95 150.0 6.0 74.54 92.86 5.24 83.31 58.3 3.86 83.13 41.5 3.8
Std. 2.77 45.06 4.26 2.44 16.23 1.04 2.09 8.97 0.56 1.60 15.86 0.47 1.31 12.6 0.52

Paired t-test (2 tail)

PC4.5 4E–4 n.s. 6E–9 7.6E–7 0.003 2E–9 n.s. 1.8E–4 1E–9 n.s. 2.9E–5 8E–9
PGA n.s. 1.6E–5 0.097 2.6E–5 1.9E–7 6E–4 3.7E–6 5.8E–8 1E–4
PGAFS 2.1E–5 8.2E–5 2E–4 5.2E–7 2E–6 0.001
PHS+GA n.s. 0.002 n.s.

Table 4
Summary of results.

Simple GA GA with Hausdorff Dist. Combining both
w/o feature simultaneous FS applied to FS techniques

C4.5 selection (GA) FS (GAFS) GA (HS + GA) (HS + GAFS)
No. of
Variables (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size (%) Sec. Size

9 82.99 14.91 49.6 81.73 22.24 3.8 81.38 10.08 3.6 81.73 35.99 3.8 81.38 23.84 3.6
30 82.38 60.90 41.6 82.38 82.24 4.1 80.81 43.04 3.96 83.32 64.81 3.62 82.81 43.77 3.64
50 82.37 150.15 39.2 75.95 150.0 6.0 74.54 92.86 5.24 83.31 58.3 3.86 83.13 41.5 3.8

significantly without significant deterioration in the prediction accuracy of the con-
cepts learned. However, the general performance trend as the problem size increases
remains the same, with a steep degradation in performance as the problem size in-
creases from 30 variables to 50 variables. As hypothesized earlier, the main advantage
of the self-adaptive feature selection method would be to improve the computational
time required, but it is interesting that in doing so it also generates a much more simpler
concept.
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Figure 2. Comparative performance based on CPU time.

Figure 3. Comparative performance based on rule size.

• The wrapper approach of feature selection using Hausdorff distance (HS + GA)
provides the most benefit on all the three criteria only for the 50 variable problem.
Since the learning algorithm (GA in our case) has to be applied multiple times in a
wrapper approach, this method of feature selection provides maximum advantage only
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at larger problem sizes. The trade-off between the two feature selection approaches,
GAFS and HS + GA, is evident in the 30-variable problem when the wrapper approach
significantly improves the prediction accuracy but at the same time significantly adding
to the computation time.

• It would seem that combining both of these approaches of feature selection might
provide the best of both worlds—providing significant improvement in the prediction
accuracy of the concepts at the same time tempering the computational requirement of
the wrapper approach. That is indeed the case. For larger problem sizes the combined
method significantly reduces the computation time compared to the wrapper approach
without significantly affecting the prediction accuracy or the simplicity of the concept
learned. For example, for the 30 variable and 50 variable problems the HS + GAFS
method effectively reduces the computational time by about 33 and 29% respectively
compared to the HS + GA method without a significant reduction in the accuracy of
the learned classifiers. Note that the HS + GAFS method also results in significant
improvement in the computation time and the complexity of the concept as compared
to the C4.5 for larger problem sizes.

• The HS + GA and the HS + GAFS methods also provide a much more stable perfor-
mance as the problem size increases, without drastically increasing the computational
requirement.

7. Conclusions

Evolutionary algorithms are excellent for performing global search, especially when
the search landscape is complex with multiple global as well local optima. They have
been shown to be robust in searching for global optima without getting trapped in lo-
cal optimum solutions. However, one of the reasons why the use of evolutionary al-
gorithms (especially GAs) has not received widespread attention in the data mining
community is that the GAs tend to be computationally expensive, and become pro-
hibitively so, once the problem size increases. The only way of mining the robustness
and adaptiveness of these techniques without sacrificing their ability to do a global search
for data mining problems is to synergistically marry them to techniques that can pro-
vide faster, reliable, and parallel methods of extracting promising features that they can
exploit.

We presented two such approaches of using feature selection in cooperation with
a GA and showed how combining them can significantly improve the performance of
the simple GA without a corresponding increase in the computational requirement even
when the problem size increases.

Note

1. The 1-norm between two points A(x1, y1) and B(x2, y2) is defined as d(A, B) = |x1 − x2| + |y1 − y2|.
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