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Abstract  Design is a key element of both the teaching and learning of engineering 
and technology. However, the process of engineering design has yielded limited research 
results. This study explored the iterative design process by searching for sequential design 
thinking patterns. The researchers collected nine concurrent think-aloud protocols from 
fourth-grade elementary students. The study identified that idea generation plays a central 
role in design that features the dominant use of time. In addition, the researchers revealed 
significant pathways in design thinking and built a design pattern model. The results will 
not only help engineering and technology educators the understanding of design behavior, 
but also support the harmonious matching of learning and teaching styles in engineering 
and technology education.

Keywords  Design process · Design iteration · Design pattern · Protocol analysis · Design 
cognition

Introduction

Design is a key element of teaching and learning engineering and technology. Dym et al. 
(2005) noted that design has the unique feature of engineering, which involves a complex 
cognitive process. Katehi et al. (2009) emphasized design activities in engineering: “engi-
neering is the process of designing the human-made world” (p. 27). Cross (2000) stated, 
“Everything around us that is not a simple untouched piece of nature has been designed by 
someone” (p. 3). The study of technology places a considerable emphasis on design. The 
publication for K-12 technology education standards, Standards for Technological Literacy 
(STL) (ITEEA 2000/2002/2007) explicitly underlines the core concepts of design, and the 
term design appears in 11 of the 20 standards. For example, standards 8–10 describe the 
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importance of design in technology education. The three standards endorsed the attributes 
of design, the relationship between technology and engineering design, and the role of 
engineering activities in technological problem-solving. In addition, the Next Generation 
Science Standards (2013) posit engineering design as a central approach to learning sci-
ence. The science standards attribute engineering design with a similar importance to sci-
entific inquiry. NGSS claims that K-12 students should have the opportunity to practice the 
design approach, via authentic experiences to apply scientific knowledge into real-world 
problem-solving.

Research has been conducted to find design process models for the engineering design 
problem-solving (Atman et al. 2007; Hill 1998; Jin and Chusilp 2006), and there has been 
long debate upon design processes. In the late 1950s to the early 1980s, many research-
ers attempted to define design process models in terms of the design science approach 
which viewed design problems are logical, systematic, and rational (Bousbaci 2008). 
Simon (1973), for example, insisted that all design problems can be well-defined because 
he believed that designers were capable of solving problems by transforming an ill-defined 
problem into a stable and well-organized system. The underlying assumption of Simon’s 
argument was that a skilled designer can fully identify the structure of the given problem 
even if the design problem is poorly structured. Therefore, many models of design pro-
cess were illustrated in descriptive or prescriptive approach to identify the best practice 
of design processes (Cross 2008). However, the design science approach did not provide 
a rich explanation of the actual engineering design processes, which often feature com-
plex, muddy, and murky characteristics. Moreover, Dorst (2006) argued about the issue of 
design process in terms of the designer, stating “the course of the problem-solving process 
and the very structure of the ill-structured problem are determined by the possibilities for 
action that the problem solver considers” (p. 8). In the discussion of the design problem, 
Dorst highlighted the role of the problem solver, who uses his or her unique way of prob-
lem-solving. These styles vary based on prior knowledge, experience, and problem-solving 
preferences.

Despite the acknowledged importance of design in engineering, a few evidence-based 
studies have focused on the process of engineering design. Atman and Bursic (1998) con-
ducted a verbal protocol study to assess engineering students’ design processes in perform-
ing an open-ended design task. Their study showed that the verbal protocol analysis can 
successfully identify processes of engineering design, which can be used to detect good or 
poor processes of engineering students by comparing the quality of the final design. Mos-
borg et al. (2005) studied whether the block diagram design processes shown in engineer-
ing textbooks are relevant to the practice of engineering practitioners. The study showed 
that only a few engineering practitioners agreed the design process model from an engi-
neering textbook and provided alternative types of diagrams varied by their expertise and 
types of engineering tasks. Mosborg et al. concluded that there is no single correct proce-
dural pathway that designers must follow step by step in a serial manner. Jin and Chusilp 
(2006) also studied how designers follow iterative processes in various engineering condi-
tions. They stated that design is an iterative process of human cognition operated within 
the designers’ mind. Jin and Chusilp’s study confirmed that design activities involve pro-
cedural patterns of cognitive repetition that vary by problem type and constraints. Further-
more, Lawson (1979) conducted a comparative experiment to investigate the differences in 
the design behaviors of scientists and designers. The results of the experiment suggested 
that designers tended to use solution-focused approaches, while scientists emphasized 
problem-focused approaches. As shown in the prior research studies, the process of design 
varies according to the types of problems and the designer’s level of expertise. These 
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findings reaffirm the NGSS framework (NRC 2012) comparison of science practices and 
engineering practices that feature scientists seeking to discover and understand phenom-
enon and engineers seeking to create solutions to problems (NRC 2012; Kolodner 2002). 
Crismond and Adams (2012) also argued whether strategic models of the design process 
are effective. The argument concluded that beginning designers tend to treat design as an 
end product or stage, while informed designers view design activities as a managed, itera-
tive process.

When teaching and practicing engineering design, people use various design process 
models. These models were developed through a certain depth of abstraction of complex 
design process activities (Hubka 1982). Each design process model has unique features, 
including its history, paradigm, design genre, and philosophy. However, a common driver 
of developing design process models is the behavioral pattern of design activity (Clark-
son and Eckert 2004). Therefore, this study explored the iterative procedural patterns of 
design thinking in young science students’ engineering design problem-solving. Identify-
ing iterative patterns of design thinking will provide a fundamental understanding of how 
people solve design problems. As STEM educators seek to employ engineering design as 
an approach to improve STEM learning, specifically science learning (NGSS Lead States 
2013), it is extremely important to understand how young learners navigate through the 
design process and patterns in thinking that are displayed. To investigate the design think-
ing patterns, the researchers proposed two research questions:

Research Questions:

1.	 Which cognitive activities did fourth grade elementary students display when solv-
ing an engineering design task?

2.	 What are the common problem-solving patterns of fourth grade elementary science 
students’ engineering design problem-solving?

Design nature and design process models

The process of design thinking is surely not deterministic. In a long argument on the 
design problem, Simon (1973) argued that designers have difficulties with defining prob-
lems because of the designers’ limited abilities. An underlying assumption of Simon’s idea 
was that any design problem can be proposed with a well-defined criteria and constraints 
through a mechanical process. In other words, he believed that an experienced or well-
trained designer could transform an ill-defined problem into a well-defined problem. How-
ever, Dorst (2006) suggested an alternative explanation for the design problem issue with 
three key arguments:

1.	 The “design problem” is not knowable at any specific point in the design process.
2.	 The “design problem” is hard to identify because it evolves in the design process.
3.	 The connotations of the very concepts that are used to describe a “design problem” are 

shifting as a part of the design effort (p. 16).

In fact, the deterministic nature of a design problem is closely related to the nature of 
design. Koen (2003) addressed four characteristics of engineering problems: change, best, 
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resources, and uncertainty. In terms of the change feature, Koen highlighted the fact that 
engineering problems never remain invariably, but rather are continually changed by various 
design activities as well as the surrounding conditions of the problem. Koen noted “Engineers 
cause change” (p. 11). Bucciarelli (2003) also noted that design is dynamic: “Designing, like 
language, is a social process” (p. 9). Bucciarelli referenced different design process models 
and noted that traditional design process models are described as an optimizing algorithm, 
where a designer inputs X into a model and receives Y as an output. However, Bucciarelli 
pointed that these design process models overlook two important aspects of design: its social 
nature and the people who are engaged in the design. Indeed, designers autonomously under-
take the whole design process; therefore, the design processes inevitably vary by problem-
solving style, problem type, and designer expertise.

Patterns rather than design process models

In the publication, Design Expertise, Lawson and Dorst (2009) introduced multiple views of 
design, and one approach is design as problem-solving. They pointed out that most design 
process models used for design education are based on a view of design as a problem-solving 
process. In fact, most design process models have similar problem-solving phases, such as 
identifying problems, analyzing data, generating ideas, creating a solution, and testing. It is the 
true that these design process models provide novice designers with a straightforward guide 
to defining clear, stable, and comparable design ideas. Lawson and Dorst, however, warned of 
the danger of oversimplifying the complex structure of design processes, which leads design-
ers to be incapable of handling the murky aspects of design problems.

A promising strategy to overcome the nebulous nature of the design process is to adopt 
patterns of design activity instead of the procedural approach (Clarkson and Eckert 2004). 
Clarkson and Eckert stated, “similarities (of various design process models) can be recog-
nized as patterns of designing, describing elements of process behavior” (p. 18). The underly-
ing assumption of the design pattern strategy is that design behaviors necessarily consist of 
numerous sets of repeated behaviors. In general, the term pattern represents a group of com-
mon elements of discernible observations in a predictable manner. For example, for a small 
engineering problem, a problem solver might begin with the specific problematic issues. In a 
large entrepreneurial project, the problem solver might start by searching market and customer 
needs or reviewing prior product feedbacks. Admittedly, the pattern approach requires enough 
data sources to detect repeatable common design process behaviors.

Patterns are widely used in various fields of science, mathematics, arts, and engineering. 
For instance, computer science often uses patterns to find sustainable solutions for software 
design. In visual art, designers use shapes and patterns in painting, drawing, ceramic tiling, or 
textiles to create the form of the artwork. Likewise, patterns in the study of engineering and 
technology education inform the engineering design process itself. Consequently, patterns of 
design process can help students to cope with the complex nature of design problems by con-
ceptualizing successful pathways to problem-solving.
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Methods

Context of the study

This study was conducted in the context of a National Science Foundation funded Math 
Science Targeted Partnership (MSP) project entitled Science Learning through Engineer-
ing Design (SLED, https​://steme​dhub.org/) of project website. The SLED team partnered 
with four school corporations located in the north-central Midwest. The overarching goal 
of the project was to improve the efficiency of science learning in grades 3–6 elemen-
tary students through an engineering-design approach. The SLED researchers primarily 
adopted an engineering design approach (Lewis 2006) and design-based science learning 
pedagogy (Fortus et al. 2004) to scientific inquiry (National Research Council 2012). The 
SLED team purposely integrated engineering and other STEM-related content to provide 
students with a strong understanding of the STEM pipeline. The SLED project team devel-
oped engineering design lessons aligned to Indiana Academic Science Standards (IDOE 
2010). The lessons were delivered during a two-week teacher professional development, 
and then the participant teachers implemented the SLED lessons in their classroom. When 
delivering the lesson to the teachers, the project team asked them to use guiding questions 
for each design stage rather than sharing the SLED design process model with their stu-
dents (see Fig. 1).

The researchers used a design task, titled Doggie Door Alarm, to capture the partic-
ipants’ problem-solving behavior. The SLED research team developed the design task 
collaboratively based on Cross (2004). The approach included a goal, constraints, and 
design criteria to gauge the final design solution. As shown in Fig. 2, the design task 
was developed to measure the transfer of knowledge acquired from the SLED lesson; 
therefore, the design task applied the same science and engineering concepts into the 

− What is the problem?
− What is the setting? 
− Who is the user or client?
− What are the constraints?

− What are your ideas?
− What are others’ ideas? 
− What materials will you need?
− What will your team measure?
− How might your scientific 

knowledge inform your design?

− How will your team create a prototype, 
model, or solution?

− Does your solution match the team’s 
plan?

− How will you record results from testing?
− What kinds of scientific concepts could 

explain your results?

− How did your model, prototype, or 
solution perform? 

− What were your results?
− What feedback did your team receive?
− How will you use this feedback to 

inform your model or solution?
− What kinds of scientific concepts 

could explain your results?

− How will you improve your solution?
− What are the results from your 

retest?
− Which solution best addressed the 

problem?

Fig. 1   ##PROJECT_NAME Design Process Model (From 2015 SLED Summer Professional Developemnt 
Presentation, 2015 retrieved from https​://steme​dhub.org/)

https://stemedhub.org/
https://stemedhub.org/


288	 E. Sung, T. R. Kelley 

1 3

SLED lesson, but with a slightly different context. The science concepts embedded in 
the design task were electricity, power, and open- and closed-circuits.

Participants

In the data collection, a group of three students collaboratively solved a design task 
as a team. As Welch (1999) suggested, the SLED project collected data as a team to 
facilitate natural design conservation when students engaged in solving design prob-
lems. The researchers collected nine design sessions from nine classrooms; 27 stu-
dents participated in the data collection. To recruit the participant students, the SLED 
researchers asked to classroom teachers to select three students based on selection-cri-
teria (Ary et al. 2014): representative of regular classroom performance and agreeable 
to audio–video recording. The demographics of the participants in Table 1 shows that 
the participants were approximately balanced in gender ratio. The ethnicity ratios were 
representative of the school district demographics.

Fig. 2   Design Task for Think-Aloud Session (Designed by Kelley and Kaluf 2013)
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Data collection

To capture the cognitive thought processes used in design, the researchers adopted the con-
current think-aloud (CTA) technique (Atman and Bursic 1998; Ericsson and Simon 1993). 
The nine CTA sessions were collected from three elementary schools during the 2015–2016 
academic year. Once the SLED teachers completed a SLED lesson, the SLED research-
ers contacted the teacher and arranged a schedule for the data collection. The CTA ses-
sions were conducted in an empty classroom or hallway, which varied by school condi-
tions. According to the Ericsson and Simon’s guidelines (1993), the researchers provided 
the participant students with two instructions: (1) verbalize all thought processes related to 
design; and (2) utilize prior knowledge acquired from the SLED lesson. In addition, before 
starting the CTA session, the researchers collected Institutional Review Board (IRB) con-
sent forms that described the possible benefits and harms from participating in the research 
study. Then, the researchers provided the triad with the design brief, pencils, and a piece of 
blank paper for sketching. During the data collection, the researchers avoided intervening in 
the participants’ conversation as much as possible, and only guided the students to articulate 
their thinking. The entire CTA sessions were recorded via video/audio recorder (Table 2).

Data coding

The researchers analyzed the nine CTA sessions using the NVIVO software. The NVIVO 
software allowed the researchers to bypass the transcription process and directly segment 
and cod the data (Mentzer et al. 2015). To categorize the cognitive strategies that appeared 
in the CTA sessions, the researchers adopted Halfin’s codes (1973). Halfin studied successful 
engineers, scientists, and technologists, and identified 17 commonly-used cognitive strategies. 
The 17 cognitive strategies were validated through a Delphi study survey of engineering and 
technology practitioners. Of the original 17 cognitive strategies, the researchers selected seven 
cognitive strategies that frequently appeared in the SLED CTA sessions. To obtain data cod-
ing reliability, two coders trained to use Halfin’s code conducted the data analysis. A master 
coder analyzed all nine CTA sessions, and a second coded four randomly-selected sessions. 
The reliability test was conducted using intercoder agreement (Creswell 2013). The intercoder 

Table 1   Participant demographics

CTA session Gender Ethnicity

Male Female White Black Hispanic Asian Multi-racial Other

1 2 1 1 1 1
2 2 1 3
3 1 2 1 1 1
4 1 2 2 1
5 1 2 2 1
6 2 1 1 1 1
7 1 2 1 2
8 1 2 3
9 1 2 2 1
Total 12 (44%) 15 (56%) 15 (56%) 1 (3.5%) 4 (15%) 1 (%) 4 (15%) 2 (7%)
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agreement was 85.35%, which is higher than the recommended agreement rate (80%) in the 
social science (Miles and Huberman 1994).

Sequential pattern analysis

Once the CTA session coding was complete, the researchers analyzed the sequential pat-
terns of iterative design processes using the GSEQ 5.1 software. The GSEQ software was 
developed by Bakeman and Quera (2015) to analyze the sequential probability of continu-
ous string data. The sequential analysis technique was developed in the 1970s to analyze 
the sequential patterns of behavioral events (Allison and Liker 1982; Bakeman and Gott-
man 1986; Bakeman and Quera 2011). Multiple studies from various research fields have 
adopted the sequential analysis technique to identify behavioral, psychological, or social 
patterns of sequential interactions (Bakeman and Brownlee 1980; Blount et al. 1989; Gott-
man et al. 1977; Jeong 2003; Justice et al. 2002).

In order to identify the common cognitive strategies from the coded CTA data, the 
researchers conducted descriptive analyses, including frequency, rate per 10 min, duration, 
and average. In addition, the researchers analyzed the sequential patterns of cognitive strat-
egies using the two-event sequential analysis technique. The two-event sequential analysis 
seeks the probabilities of cognitive strategies from the coded CTA data. For example, the 
coded data generated a set of strings, such as “DF AN DE AN DE DF AN DE”. Then the 
two-event sequential analysis can be displayed through the transitional matrix shown in 
Table 3. In the table, codes in the Given rows represent the first event, and the Target col-
umns are the second of the two sequential events.

The frequency of numbers in Table 3 is labeled as observed frequency (OF). Using the 
observed frequency values, the GSEQ software calculates the expected frequency (EF), 
which is the expected number of transition counts upon the observed frequency. The for-
mula for the expected frequency is presented by Bakeman and Gottman (1986):

where f(r) = sum of the counts in the rth column, Given code; f(c) = sum of the counts in 
the cth column, Target code; N = sum of the total count.

Using the observed and expected frequencies, the probabilities of the two-sequential event 
can be calculated through the formula presented in Eq. (2).

where xrc = observed frequency in the cell rth column and cth row.

(1)Expected Frequency
(

erc
)

=
f (r) × f (c)

N − f (r)

(2)
Adjusted residual (Z-score) =

xrc − erc
√

erc

(

1 −
f (c)

N

)(

1 −
f (r)

N

)

Table 3   An example transitional 
matrix

Target

DF AN DE Total

Given
DF – 2 0 2
AN 0 – 3 3
DE 1 1 – 1
Total 1 3 3 7
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In the two-event sequential analysis, the researchers pooled the nine sessions to test 
the statistical significance at the 0.05 level. Before analyzing the nine-pooled data, the 
researcher calculated the required sample size in terms of statistical significance. Bake-
man and Gottman (1986) suggested that the transition events should be at least 30, and 
the total number of events should exceed four or five times of the number of coded cells. 
Because the sequential transitions do not allow for two consecutive events, such as design-
ing to designing (DE → DE), the total number of cell size can be calculated by the formula 
K ×(K − 1) × 5, where K is the number of the coding schemes. When using seven coding 
schemes, the total cell size is 7 × (7 − 1) × 5 = 210. The researchers confirmed that the aver-
age number of transitions of a CTA session is over 30; therefore, the nine-pooled CTA ses-
sions are sufficient to generate statistical significance (30 × 9 = 270 ≥ 210).

The statistical analyses were conducted by pooling data from the nine individual ses-
sions. Bakeman and Quera (2011) warned that when pooling behavioral data of the human 
subject, researchers should avoid generalizing the sampled behavioral patterns for subjects. 
With careful consideration of this human-subject research, the researchers adopted the 
pooled sequential analysis to illustrate a general shape of the problem-solving pathways of 
cognitive strategies in an engineering design task.

Findings

Use of cognitive strategies

To investigate which cognitive strategies the participant students emphasized or overlooked 
in engineering design, the researchers summarized simple statistics based on the frequen-
cies and durations shown in Table 4. Due to the time variations of the nine CTA sessions, 
the researchers created relative frequency and duration to show the standardized duration 
and frequency by 10-min segments. Relative frequency in Table  4 represents how many 

Table 4   Summary Statistics for Nine CTA Sessions

a Relative frequency = Number of occurrences per 10-min (Freq × 600/Total duration)
b Relative duration: Time duration per 10-min (Duration × 600/Total duration)
E.g. Relative frequency for AN per 10-min = 52 × 600/6450 = 4.84, 1:47:30 = 6450 s. Relative duration for 
AN per 10-min = 363.5 × 600/6450 = 33.8, 06:03.5 = 363.5 s

Codes Total Relative frequency 
per 10-mina

Relative duration per 10-minb

Frequency Duration (mm:ss.d) Average SD Average (mm:ss.d) SD (mm:ss.d)

AN 52 06:03.5 4.84 3.36 00:33.8 00:25.9
DE 231 36:05.8 21.49 6.83 03:21.5 01:13.9
DF 19 15:08.5 1.77 1.14 01:24.5 00:40.8
MA 44 02:29.3 4.09 2.27 00:13.9 00:10.3
MO 174 33:52.3 16.19 9.97 03:09.0 01:35.2
PR 62 07:44.2 5.77 4.95 00:43.2 00:34.2
QH 117 06:06.7 10.88 6.37 00:34.1 00:17.1
Totals 699 1:47:30.0 65.02 9.58 10:00.0 00:00.0



293Identifying design process patterns: a sequential analysis…

1 3

cognitive strategies occurred each 10-min, calculated through the formula, relative fre-
quency = frequency × 600/Total duration. Likewise, the relative duration also denotes the 
relative duration for each 10-min period (relative duration = duration × 600/total duration).

The summary data presented in Fig.  3 indicates that the participants frequently used 
Designing (DE, f = 231), Modeling (MO, f = 174), and Questioning (QH, f = 117) strategies 

Session 1 Session 2

Session 3 Session 4

.

Session 5 Session 6

Session 7 Session 8

Analyzing
(AN)

Designing
(DE)

Defining
Problem

(DF)

Managing
(MA)

Modeling
(MO)

Predicting
(PR)

Questioning
(QH)

Session 9 Pattern codes

Fig. 3   Mean time percentages of cognitive strategies for nine CTA sessions
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during their design problem solving. On the other hand, Defining problem (DF, f = 19), 
Managing (MA, f = 44), Analyzing (AN, f = 52), and Predicting (PR, f = 62) were less fre-
quently utilized. The relative durations show that participants spent an average of 3:21.5 s 
on Designing, 3:09.0 s on Modeling, 0:13.9 s on Managing, 0:34.1 s on Questioning, and 
0:43.2 s on Predicting per 10-min period. The researchers confirmed that the participant 
students hugely emphasized designing and modeling cognitive strategies, and less often 
referenced defining, analyzing, questioning, and predicting strategies.

Common patterns in the use of cognitive strategies

Bakeman and Gottman (1986) suggested that in order to run sequential pattern analysis, 
the sum of a sequential event must have at least 30 event counts. However, the number 
of Defining Problem frequency counts in Table 4 does not meet the criteria for sequential 
analysis (DF, f = 19 < 30). Therefore, upon a careful review of the Halfin’s coding schemes, 
the researchers collapsed Defining Problem (DF) and Analyzing (AN) into a new category. 
The description of Analyzing in Halfin’s code was the process of identifying, isolating, 
taking apart, or breaking down the given problem. Therefore, the researchers framed the 
merged category as a problem-space that includes searching for the features of the prob-
lem space, identifying criteria and constraints, exploring the investigated areas of problem, 
and framing a problematic design situation (Cross 2004; Dorst and Cross 2001; Goel and 
Pirolli 1992; Yilmaz and Daly 2016).

To investigate the common cognitive patterns in participants’ design strategies, the 
researchers conducted a two-sequential pattern analysis using GSEQ  5.1 software. The 
researchers pooled the nine CTA sessions, which resulted in observed frequencies shown 
in Table 5. The Given columns represent the first codes, and the Target columns are the 
later codes from the two-sequential patterns. For example, 14 frequencies across Given DE 
and Target MA represent that in the nine CTA sessions, the number of transitions from DE 
to MA occurred 14 times.

To identify the significant patterns in two-event transitions, the researchers generated 
the expected frequencies in Table 6 using GSEQ 5.1 software (see Eq. 1).

In addition, using Eq. (2), the GSEQ software calculated the z-scores and probabilities 
for two-event sequential transitions from the nine-pooled CTA sessions.

Table 5   Observed frequencies for nine pooled CTA sessions

Observed Frequency Target Total

Designing Managing Modeling Predicting Questioning Defining 
and analyz-
ing

Given
Designing 14 48 33 36 16 147
Managing 12 15 1 8 2 38
Modeling 25 9 13 48 11 106
Predicting 39 2 3 5 3 52
Questioning 52 10 28 3 14 107
Defining and analyzing 25 5 13 2 10 55
Total 153 40 107 52 107 46 505
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Table 7 shows the results of the two-event transition sequential analysis. The statisti-
cal probabilities shown in Table 7 were calculated as two-sided P values. A right-tailed 
significance at 0.05, for example, implies that the probability of the two-sequential event 
occurring is more than 95%. The statistics identified the right-tailed significant patterns as 
Designing → Predicting (p < 0.001, z = 3.66), Managing → Modeling (p = 0.007, z = 2.7), 
Modeling → Questioning (p < 0.001, z = 4.98), and Predicting → Designing (p < 0.001, 
z = 5.17). The results show a bi-directional iteration between Designing and Predicting. 
The description of the Predicting strategy was “The process of prophesying or foretelling 
something in advance, anticipating the future on the basis of special knowledge”, which is 
a unique feature of engineering design that predicts the possible consequence of the ideas. 
This result suggests that there is no cognitive border between predicting and generating 
ideas; rather, participants used the two strategies simultaneously during their design prob-
lem-solving. Meanwhile, the data illustrates that Modeling, which is largely represented by 
sketching behaviors, led to uses of the Questioning strategy. Table 5 shows that 48 of 107 
Questioning instanced directly followed after Modeling strategies. This finding confirmed 
that the modeling behavior is a mixture of mental and physical reactions that represent 
an internal idea in an external, drawn form (Goldschmidt 1991; Tversky and Suwa 2009; 
van der Lugt 2005). Moreover, the use of drawing, or sketching facilitates creative design 
inquiry by igniting designers’ cognitive linkages between the external representation and 
internal mental image.

To visualize the right-trailed significant patterns, the researchers drew the pattern dia-
grams in Fig. 4. The diagrams illustrate that the significant pathways have higher than a 
95% statistical probability.

Meanwhile, the transition diagrams in Fig. 5 show that there exist negative transitions 
at the 0.05 significance level. These negative significances imply that the transitions hap-
pened less than 5% of possibilities. As Fig. 5 illustrated, the probability of the transition 
from Modeling to Designing is less than 0.001 (z = − 4.47); only 25 instances of Designing 
strategy (f = 147) occurred after Modeling (f = 106). Likewise, the transition from Design-
ing to Questioning (p = 0.029, z = − 2.19), Predicting to Modeling (p = 0.003, z = − 3.02), 
Predicting to Questioning (p = 0.02, z = − 2.33), and Questioning to Predicting (p = 0.002, 
z = − 3.03) have negative significances. These negative patterns indicate that the directional 
pathways between the two strategies have a weak mental relationship during students’ 
design problem-solving process.

Table 6   Expected frequencies for nine pooled CTA sessions

Expected frequency Target

Designing Managing Modeling Predicting Questioning Defining and 
analyzing

Given
Designing 14.95 47.11 19.97 47.23 17.74
Managing 14.62 8.34 3.54 8.36 3.14
Modeling 47.98 8.69 11.60 27.43 10.31
Predicting 20.49 3.71 11.69 11.72 4.40
Questioning 48.46 8.77 27.64 11.73 10.41
Defining and analyzing 21.44 3.88 12.23 5.18 12.26
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One interesting finding from the negative pattern was an insignificant probability from 
Modeling to Designing. The interesting aspect of this pattern is that there exists a strong 
positive pathway in its opposite, Designing to Modeling. To further explore the Modeling 
to Designing pathway, the researchers sought alternative pathways from the entire transi-
tional probabilities in Table 7. The alternative pathways shown in Fig. 6 indicate that Ques-
tioning, Designing and Analyzing, and Predicting strategies proxy the pattern of Modeling 
to Designing strategies.

Problem solving pathways

In order to further illustrate the problem-solving pathways of design thinking patterns, the 
researchers demonstrated the problem-solving pathway diagram shown in Fig. 7.

The problem-solving pathway diagram was illustrated in Table  7 using right-tailed 
events only (positive z-scores). The statistical description of the right-tailed probabilities is 
that the two-sequential events with positive z-scores occurred more than 50%. The pathway 

Fig. 4   Right-tailed significant patterns at the 0.05 level. Note n frequency of a single event; f frequency of 
transition

Fig. 5   Left-tailed significant patterns at the 0.05 level
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diagram shows that participant students often began the design activity with defining and 
analyzing (f = 55) the given problem statement. Then, they moved to designing solution 
ideas (Defining and Analyzing → Designing, f = 25), modeling or sketching ideas (Defin-
ing and Analyzing → Modeling, f = 13), or managing the team dialogue (Defining and Ana-
lyzing → Managing, f = 5). When participants engaged in the Designing strategy (f = 147), 
the most frequent cognitive strategy, they frequently proceeded to the Modeling strategy 
(Designing → Modeling, f = 48), and Predicting (Designing → Predicting, f = 33). These 
pathways illustrate that participants commonly used drawing or sketching to facilitate idea 
generation. Moreover, the bi-directional pathway between designing and predicting shows 
that predicting the consequence of the design ideas and generating design ideas involve a 
strong mental relationship.

The second most frequent strategy in the nine CTA sessions was the Questioning strat-
egy (f = 107). The transitions from Questioning provide a critical implication of how and 

Fig. 6   Alternative transitional routes from modeling-to-designing strategy

Fig. 7   A problem-solving pathway model using right-tailed probabilities of two-event sequences (positive 
z-scores). Note The numbers on the arrow lines are the p values of the transition from one to another. For 
example, the line from defining and analyzing to managing with 0.529 implies that the possibility of the 
transition from defining and analyzing to managing is 47.19% (1 − p value) of the entire transitions from 
the state of defining and analyzing
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why participants maneuver strategy during the design process. After using the Question-
ing strategy, participants moved to Designing (Questioning → Designing, f = 52), Modeling 
(Questioning → Modeling, f = 48), Defining and Analyzing (Questioning → Defining and 
Analyzing, f = 14), or Managing strategies (Questioning → Managing, f = 10). The itera-
tions surrounding the questioning strategies confirmed the role of doubt in design thinking, 
which energizes and enhances the quality of creative work by leveraging designing, mod-
eling, and analyzing the problems (Locke et al. 2008). In addition, as the Next Generation 
Science Standards emphasized scientific inquiry (NGSS Lead States 2013), these results 
indicate that engineering and technology educators need to emphasize design inquiry abil-
ity when teaching design thinking (Dym et al. 2005).

Conclusions

The underlying idea of the study was to search for iterative design thinking patterns in 
young students’ design problem-solving. The researchers expected that the investigation of 
young students’ thinking patterns would provide a fundamental data point for understand-
ing human cognition in terms of problem-solving. The first achievement of this study was 
the successful adoption of the sequential pattern analysis to detect patterns of students’ 
problem-solving. The sequential pattern analysis was introduced in the early 1970s to iden-
tify patterns of behavioral interactions between mothers and infants (Gottman et al. 1977). 
The research method has been adopted in many studies to examine patterns of iterative 
behavior or cognitive events. The researchers confirmed that the use of sequential analysis 
successfully depicted the actual process of engineering design in young learners’ problem-
solving. As shown in Fig. 7, the results of two-event sequential analysis created a pathway 
model of cognitive strategy that illustrates the detailed iterations of design thinking.

Second, the researchers confirmed that the statistical analysis identified four signifi-
cant two-event sequential patterns. The problem-solving patterns found in this study may 
be useful for engineering and technology teachers when instructing engineering design 
approach to students. For example, the iterative patterns between Designing and other cog-
nitive strategies confirmed that when students generate ideas, designing is a central point 
of the entire process, often followed by drawing, predicting, or questioning. This pattern 
concurs with the idea that design is an ongoing process of developing and refining ideas 
(Dorst and Cross 2001). In addition, the iteration between Designing and Predicting illus-
trates that when young students were given an open-ended design problem, they tended 
to journey within the solution-space, often using the designing and predicting strategies 
(t (Designing + Predicting) = 43:50.0, 40.78% of the total duration). This result informs 
when instructing design lessons using engineering design approach, teachers might need to 
teach assessment technics such as Decision Matrix with ideation strategies (Kelley 2010). 
Moreover, the data provides evidence that the transition from Modeling to Questioning has 
a significant possibility at the 0.05 level. This result supports Goldschmidt’s study (1991) 
that sketching is an important cognitive tool to externalize internal mental images. The 
use of the Modeling strategy has the same implications as Tversky (2003); sketching is a 
critical process of creative idea generation when designers make inferences from the seeing 
that objects of sketching.

Finally, the results of this study can contribute to improving the efficiency of teach-
ing and learning by fitting teaching style and learning style. Felder and Silverman (1998) 
studied the relationship between learning and teaching styles in engineering education. 
They found that mismatched learning and teaching styles not only leads to poor student 
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performance, but also results in teacher frustration. Admittedly, like a human nature, mul-
tiple pathways of cognitive strategies exist to develop a successful design solution. Moreo-
ver, as Buchanan (1992) stated, a design problem has multiple solutions due to the inde-
terminacy of design problems, including clients, situations, criteria, constraints, resources, 
and even end users. The researchers believe that the accumulation of the strategic pattern 
data of design pathways will not only develop our understanding of design behavior, but 
also support the harmonious matching of learning and teaching styles in engineering and 
technology education.

Future works

Future work will include a comparative experiment between experts and novices to identify 
the effective design pathways of cognitive strategies. Atman et al. (2007) investigated how 
expert and novice designers use design strategies differently, and that expert designers tend 
to emphasize defining the problem and gathering information more than novice designers. 
The researchers believe that the comparative study will identify effective strategic patterns 
of the design process as well as better inform the greater engineering education community 
of effective design problem-solving strategies.
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