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Abstract
Graph databases are increasingly being used in the data science field, in particular to represent different kinds of networks.
In real-world situations, the nodes and edges in a network evolve across time. For example, in a social network, people’s
preferences and relationships change, as well as the characteristics of the network entities themselves. Temporal property
graph databases aim at capturing these changes, by means of appropriate data models and query languages that allow users
to represent, store, and query time-varying graphs. In order to exploit their full potential, temporal property graph databases
require visualization tools that allow navigating graph data across time. To address this need, the present work introduces a
framework for temporal property graph visualization, denoted TGV, based on T-GQL, a data model and query language for
temporal graphs implemented over Neo4j, a widely-used graph database. TGV allows editing and running T-GQL queries,
displaying the result, and navigating such result across time. Further, TGV displays temporal graphs in a transparent way,
hiding the underlying T-GQL structure from the user.

Keywords Graph visualization · Temporal graphs · Temporal database · Neo4j

1 Introduction

Property Graphs (Angles, 2018; Hartig, 2014; Robinson
et al., 2013) have been increasingly gaining popularity,
especially for modeling and analyzing different kinds of net-
works. In short, property graphs are graphs whose nodes
and edges are annotated with attributes, denoted proper-
ties. The property graph data model underlies most graph
databases in the marketplace (Angles, 2012). Examples
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of graph databases based on this model are Neo4j1 and
Janusgraph.2 Although time is present in most real-world
applications,most efforts in thefield consider graphs as static,
that is, as of a certain moment in time (usually, the current
time). Many different kinds of changes may occur in a prop-
erty graph as the world they represent evolves over time:
edges, nodes and properties can be added and/or deleted,
and property values can be updated, to mention a few. For
instance, in a phone call network, where each vertex repre-
sents a person (or a phone number) and edges represent calls
between them, new nodes and edges are added frequently
and also the properties of the nodes may change over time.
As another example, in social networks, where each vertex
models a person or organization, and an edge represents a
relationship between two such entities during a time inter-
val, relationships and entities may also change at any time.
Ignoring the time dimension could lead to incorrect results
or prevent interesting analysis possibilities. For example, it
may be relevant to know the interval of the relationships that
occur in a social network, to weight their strength, or to find
out chains of relationships that occurred simultaneously. For
example, a user may be interested in asking for “Favourite
foods of Mary while she was living in Argentina.” Those

1 http://www.neo4j.com
2 http://janusgraph.org/
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are queries that could not be answered without accounting
for time. As another example, in a transportation network,
a planning engineer may ask for the “Time saved for going
fromBuenosAires toCórdoba after the construction ofHigh-
way Number 11.”

In light of the above, some works have proposed to extend
property graphs with the capability of keeping and querying
their history. Debrouvier et al. (2021) propose a model and a
query language (T-GQL) aimed at representing and querying
the evolution of a (property) graph across time. The proposal
applies temporal databases concepts (Tansel et al., 1993) to
graph databases, in order to model, store, and query temporal
property graphs. In the data model, nodes, relationships, and
node properties are timestamped with their temporal validity
interval, and graphs are heterogeneous, meaning that rela-
tionships may be of different kinds. These graphs are called
Interval-labeled Property Graphs. Temporal graphs not only
address the representation of the history of a graph, but also
allowdefining several different path semantics. In thismodel,
three such semantics are considered (besides the traditional
one): continuous paths, pairwise continuous, and consecutive
path semantics. Thefirst one captures paths that are valid con-
tinuously during a time interval (e.g., if Mary was a friend of
Peter and Peter a friend of Peggy, between 2019 and 2021,
then there is a continuous path [Mary, Peter, Peggy] with
interval [2019,2021]). The second one relaxes this constraint,
allowing a pairwise overlap between intervals ((e.g., if Mary
was a friend of Peter between 2017 and 2019, and Peter a
friend of Peggy between 2018 and 2021, then there is a pair-
wise continuous path [Mary, Peter, Peggy]). Finally, if there
is a pathwith no overlap, but where time intervals are consec-
utive, this path is denoted consecutive (e.g., if there is a flight
from Paris to Rome, and one hour after the arrival to Rome,
there is a flight from Rome to Athens, then there is a con-
secutive path [Paris, Rome, Athens]). Consecutive paths can
be of different kinds: shortest, earliest-arrival paths, latest-
departure paths, fastest paths, among other ones (Byun et al.,
2020). T-GQL is a high-level query language for graphs, that
allows expressing queries like the ones mentioned above.
The authors also present a Neo4j-based implementation of T-
GQL, and a client interface allowing to write T-GQL queries.
In this implementation, the underlying graph is a Neo4j
graph, where nodes and edges encode temporal information.
Further, the user is unaware of this structure.

A relevant problem that arises when working with tempo-
ral graphs is how to display them in a way that can be useful
and friendly to the users, regardless how data are actually
stored. This is not a trivial problem, given the large amounts
of data and the level of abstraction present in temporal
graph databases. The present paper addresses this problem,
building from the concepts and implementation developed
in Debrouvier et al. (2021), where T-GQL queries are exe-
cuted through a client tool called TGDB. The paper describes

the design and implementation of a framework, denoted Tem-
poral Graph Visualizer (TGV), for interacting with, and
visualizing temporal graphs. We approach the problem of
visualizing temporal property graphs in two ways. The first
one focuses on the platform infrastructure and the second one
on temporal graph visualization. The work aims at providing
a visualization platform such that the underlying data struc-
ture that supports temporal data, remains transparent to the
user. This is aligned with another goal of this work, that is,
developing a friendly interface for user interaction. Accord-
ing to Kreitzberg (2017), a well-designed software should
reduce the user’s effort to think about the way of using such
software. Thus, the idea of this work is to maintain a low
cognitive load for the platform (allowing users to focus on
the data they are analyzing), and also to reduce the training
load needed to use the application. In the platform presented
here, users can write their own queries in T-GQL, submit
them to the temporal database engine (TGBD), and navigate
the result across time in a friendly and interactive way.

1.1 Contributions

This paper describes the design and implementation of a visu-
alizationplatform for temporal property graphs.Theplatform
capabilities come in two flavours: On the one hand, starting
from the whole graph, a slider bar allows navigating across
time. This can be awkward for the user, given the amount of
data normally present in the graph. Thus, certain tools that
prune the initial graph are also provided. On the other hand,
the user can write T-GQL queries over an editor panel and
the result will be displayed graphically, in a way that she
can navigate the graph across time, starting from the query
result. For example, if a query asks for the continuous paths
in the temporal graph starting from a certain node, then only
the related nodes will be displayed, and the user can start
temporal navigation back and forth from this portion of the
graph, also interacting with different graph objects.

We would like to remark the contributions of this work
and the differences against other graph visualization tools. To
beginwith, although there are applications that allowdisplay-
ing graphs across time (for a comprehensive description see
Section 2), they do not address the problem of dynamically
querying a graph database and navigating the result (which
is in turn a temporal graph) across time. Further, consider
Neo4j’s front end, which comes with the graph database.
This tool allows writing and submitting a (non-temporal)
Cypher (Neo4j’s high-level query language) query, display-
ing the result in the visualization panel. If the query returns a
graph, the result can be displayed graphically (other options
are available). If not, it returns a table. In both cases, no
further action can be taken over the result. This is a crucial
difference with our proposal, which allows navigating the
result of a temporal query across time (e.g., through a slider),
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even when the query does not return a graph. Themechanism
allowing this, are explained in depth in Section 5.

This paper (a) describes the visualization platform intro-
duced above, as well as the rationale for its design: (b)
presents the implementation details of the tool, emphasiz-
ing on the abstraction mechanism that hides the structural
details of the temporal database and offers the user a clean
view of the temporal graph; (c) gives examples of the use
of the visual interface, either starting from the whole graph
or from T-GQL queries; and (d) discusses two case studies
that show how the visualizer works over two different kinds
of problems, one referring to the history of a social network
and the other one to flight schedules. The experiments show
that the overhead introduced by the visualization tool is not
relevant, and most of the times negligible.

1.2 Paper Organization

This paper is organized as follows. Section 2 studies related
work to understand the current context of the relevant top-
ics, not only for visualization but also for temporal graph
databases. Section 3 briefly describes the T-GQL language.
Section 4 provides a general view and rationale of the visual-
izer, while Section 5 explains the implementation technical
details and how the temporal graph is built after a T-GQL
query is submitted and the result returned. Section 6 shows
how a temporal graph is queried and the results are displayed,
including how navigation across time is performed based on
the query results. Section 7 reports the experiments carried
out over the prototype and their results. Section 8 concludes
the paper.

2 RelatedWork

This section reviews existing work about the three topics
addressed in this paper, namely graph and information visu-
alization, and temporal databases.

2.1 InformationVisualization

Visualizing information in a way that it is both informa-
tive and appealing has been a research topic for many years.
Card et al. (1999) define information visualization as the use
of computer-supported, interactive, visual representations of
abstract data to amplify cognition.According toLima (2017),
there are three main key issues in information visualization.

1. Humans prefer curves: Humans show, since infancy, a
preference from curves, a statement corroborated by Bar
and Neta (2006), which reveals a strong human prefer-
ence for curved objects and typefaces. Also, in Vartanian

et al. (2013), a similar inclination in architectural spaces
was reported.

2. Circles equal happiness: This theory is explained by an
experiment by Bassili in 1978 Bassili (1978), where the
faces of participants are painted black and subsequently
are covered by dozens of luminescent dots. Participants
are then asked to express different emotions in order to
better understand the visual contour of each sentiment.
The conclusion of this experiment is that expressions of
anger show acute downward “V” shapes (angled eye-
brows, cheeks, and chin), while expressions of happiness
are conveyed by expansive, outward curved patterns
(arched cheeks, eyes, and mouth).

3. Spherical geometry of the eye: This third hypothesis
reveals how the circular framing and spherical geometry
of a person’s visual field, which causes a distortion sim-
ilar to a “fish-eye lens” or a “crystal ball”, could further
reinforce our innate tendency toward all circular things.

The so-called “Information Visualization Manifesto”
(Lima, 2009) claims that any information visualization
project should follow 10 rules. From these ten, two are the
most relevant to the present work: (1) “Interactivity is key”;
and (2) “Embrace time”. The first explains that through inter-
active techniques users are able to properly investigate and
reshape the layout in order to find appropriate answers to
their questions. The second rule highlights that people can
quickly realize that a snapshot in time only tells a small por-
tion of information about the community. On the other hand,
if time had been properly measured and mapped, it would
allow a rich understanding of the changing dynamics of a
given social group.

A very well-known visualization tool, Observable,3 is
worth mentioning here. It has been created byMike Bostock,
who also developed the widely used Javascript library d3.js.
Observable is a Javascript sandbox (which uses d3.js as the
visualization tool) for code sharing and open collaboration in
which non-specialized users can visualize data in real time.

2.2 GraphVisualization

Graph visualization is a particular branch of information
visualization. The Visual Complexity platform,4 is a unified
resource space for the visualization of complex networks.
Launched in 2005, itsmain goal is to leverage a critical under-
standing of different visualization methods, across a series
of disciplines, as diverse as Biology, Social Networks and
the World WideWeb. Further, Bostock publishes a notebook
(called Temporal Force-Directed Graphs) (Bostock, 2017)
which allows visualizing a temporal network that changes

3 https://observablehq.com/
4 http://www.visualcomplexity.com/vc/
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over time, using Observable. Most of the use cases in this
notebook use a slider, which allows displaying the progres-
sion of the graph, together with a ‘play’ button and the date
from which data are obtained. A similar idea is used in the
project presented in this paper.

Neovis5 is an open-source graph visualization tool created
by eleven developers from Neo4j. This tool is built using
vis.js, a Javascript library forNeo4j.6 Given a querywritten in
Cypher, a graph can be shown directly on any canvas. It also
allows the developer to modify and combine features, like
colours or families, to generate different groups. However, no
manipulation if the result is allowed (and it does not account
for queries not returning graphs as a result).

One of the most recent developments for graph visualiza-
tion from Cambridge Intelligence, ReGraph (Intelligence,
2021), is a full plain graph visualization tool designed for
React.7 React is a popular framework for web development,
and it is also used in the work described in the present paper.
This API provides a number of fully-reactive, customizable
components that can be embedded into applications. It has
two visualization components: a chart and a time bar. To
update, filter, style or highlight items in the data, users push an
updated item’s object into the component on the next render.
ReGraph updates the React network visualization to reflect
the change. Like other React components, ReGraph is in the
front end of the application. Data are passed on as a plain
JavaScript object.

A plugin for creating a visualization network, denoted d3-
network-time, is also available.8 It can be used to animate the
evolution of the network over time, or to display the network
as of a specific point in time.

2.3 Temporal Databases

Temporal databases have long been studied in the litera-
ture (Tansel et al., 1993) and they still capture the interest
of researchers and practitioners (Gamper et al., 2022). The
two main approaches for extending relational databases with
temporal semantics are tuple timestamping and attribute
timestamping (Clifford & Tansel, 1985; Gadia, 1988). In a
nutshell, tuple timestamping yields first normal form rela-
tions,while attribute timestamping produces non-first normal
form relations. In themodel presented in thiswork, the classic
approach of tuple timestamping has been followed. Another
discussion in the temporal database field refers to the rep-
resentation of time, which can be point based or interval
based. This has been studied in Toman (1996), and later, a

5 https://github.com/neo4j-contrib/neovis.js/
6 https://visjs.org/
7 https://reactjs.org/
8 https://github.com/dianaow/d3-network-time

point-based temporal extension to SQL was proposed by the
same author Toman (1997). In practice, the interval-based
approach is easier to implement and understand, and this
has been the approach in practice so far. Finally, one of the
most discussed topics in temporal databases refers to tempo-
ral dimensions. The time when a data item is valid in the real
world is called valid time, and it is the one supported by the
model in this paper. The time when a data item is valid in the
database is called transaction time. When a model supports
both, it is denoted bitemporal. Many other timelines have
been defined in the literature, we omit them since they are
beyond the scope of this paper. Jensen et al. (1994) proposed
a temporal conceptual datamodel that attempts to capture the
temporal semantics of data in a unified way, timestamping
the tuples of relations with sets of two-dimensional so-called
chronons, thus supporting valid and transaction time.

A large number of temporal data models and query lan-
guages have been introduced since the early 1990s. As
a result, the TSQL2 (Snodgrass, 1995) standard was pro-
posed as a temporal extension to the SQL-92 standard,
supporting valid, transaction, and bitemporal times. Three
distinct timelines, namely valid time, transaction time, and
user-defined times are supported in TSQL2. The SQL-2011
standard (Kulkarni&Michels, 2012) includes some temporal
features, like a period data type, temporal primary keys, tem-
poral referential integrity constraints, temporal predicates,
valid-time (application-time), transaction-time (system-time)
and bitemporal (system-application-time) tables, as well as
temporal insertions, updates, and deletions. In spite of the
above, database practitioners are still using standard SQL
formanipulating time-varying information. Therefore, Snod-
grass (2000) showed how most relational operations can be
written in standard SQL. Zimányi (2006) then showed how
to implement temporal aggregates and temporal universal
quantifiers using standard SQL. As mentioned, the inter-
est in temporal databases is rising again. For example, the
work by Dignös et al. (2016) deals with sequenced tempo-
ral queries, namely queries that are evaluated at each time
point. The driving idea is to reduce a temporal query to
non-temporal operators. Also, Lu et al. (2019) proposed
a temporal extension to the distributed Tencent database
management system for MySQL, called TDSQL. Another
example is MobilityDB (Zimányi et al., 2020), a spatiotem-
poral database management system, that builds on PostGIS
(the spatial extension of PostgreSQL), and which extends the
type system of PostgreSQL and PostGIS with abstract data
types (ADTs), in order to represent spatiotemporal data. Gao
et al. (2021) address the problem of solving so-called tem-
poral keyword queries, defined as a query over a temporal
relational database, that includes a collection of keywords, a
group-by condition along with an aggregate function, and a
time condition. Finally, in Grandi et al. (2022), the authors

123

https://github.com/neo4j-contrib/neovis.js/
https://visjs.org/
https://reactjs.org/
https://github.com/dianaow/d3-network-time


Information Systems Frontiers (2024) 26:1543–1564 1547

propose a query language and an algebra that integrates in the
same framework, streaming, temporal, and classic relational
databases.

2.4 Temporal GraphModels

Temporal graphs represent the history of a graph. They
can be classified as duration-labeled, interval-labeled and
snapshot-based. In the first class, edges are labeled with a
value representing the duration of the relationship between
the two nodes that the edge relates. The main use of this
kind of temporal graphs is for scheduling problems, where
some sort of shortest path must be computed, implement-
ing some ad-hoc variation of the Dijkstra’s algorithm. An
interval-labeled temporal graph is a graph where each edge
represents a relationship from a vertex to another one, valid
during a time interval denoted as [ti,tf]. Valid time, defined
in Section 2.3, is considered in the remainder. In Snapshot-
based temporal graphs (Semertzidis & Pitoura, 2019; Huo
& Tsotras, 2014), the history of a graph is given in the form
of graph snapshots corresponding to the state of the graph
at different time instants. Given a query, a relevant problem
consists in efficiently finding those matches in the graph his-
tory that persist over time, that means, those matches that
existed for the longest time, either contiguously (in consec-
utive graph snapshots) or not. These queries are called graph
pattern queries. Locating durable matches in the evolution of
large graphs has many applications, like for example, lasting
relationships in social networks.

The present paper is based on thework byDebrouvier et al.
(2021), where the authors define a temporal graph datamodel
where nodes and relationships contain attributes (properties)
timestamped with a validity interval. Graphs in this model
can be heterogeneous, that is, relationships may be of differ-
ent kinds. Associated with the model, the authors present a
high-level graph query language, denoted T-GQL, together
with a collection of algorithms for computing different kinds
of temporal paths in a graph, capturing the temporal path
semantics mentioned in Section 1, along with a Neo4j-based
implementation. This model is explained in the next section.

3 The T-GQLModel and Language

In order to make the paper self-contained, this section
presents in a streamlined fashion, the main notions of T-GQL
data model and query language.

3.1 T-GQL Data Model

The temporal model used in this paper is composed of three
kinds of nodes: Object, Attribute, and Value nodes. Every
Object and Attribute node, and every edge in the graph are

associated with a tuple (title, interval). The title represents
the content of the node (or the name of the relationship),
and the interval represents the period(s) during which the
node is (was) valid, and it is a temporal element (i.e., a set
of intervals). Analogously, Value nodes are associated with
a (value, interval) pair. Value nodes contain the actual value
of an attribute or property, in a certain interval.

Figure 1 shows a social network represented in the tempo-
ral model introduced above. There are three kinds of Object
nodes, namely Person, City, and Brand. There are also three
temporal relationships: LivedIn, Friend, and Fan. The first
one is labeled with the periods when someone lived some-
where. The second one is labeled with the periods when two
people were friends. The third one is labeled with the periods
when a person was fan of a certain brand. The Attribute node
Name associated with a Person node represents the name
of the person, and it is also temporal. The actual value of
the Attribute node is represented as a Value node, e.g., the
node in green with id= 35 and value Peggy Sue. Note that this
value changes to Peggy Sue-Jones, showing the temporality
of the Attribute node Name. There are other Attribute nodes
denoted Name associated with the other Object nodes in the
graph. For clarity, temporal labels are omitted for Object and
Attribute nodes.

A key issue when querying graphs is reachability, that
is, the problem of computing all nodes reachable from a
given one. Other well-known problems involve computing
the shortest path between two nodes. In a temporal con-
text, these problems become more involved, since different
semantics can be used to compute reachability. The T-GQL
model supports different kinds of temporal paths semantics,
as mentioned in Section 1. The two ones shown in this paper
are continuous path and consecutive path semantics.

Continuous paths are paths that are valid continuously dur-
ing a certain interval (as introduced in Rizzolo and Vaisman
(2008)). An example is given in Fig. 2, where two continuous
paths can be observed, (n1, n2, n3, n4, f r iend, [2, 3]) and
(n1, n5, n4, f r iend, [4, 7]). That is, n4 can be reached from
n1, traversing the edges labeled friend, during the interval
[2, 3] with a path of length 3, and during the interval [4, 7]
with a path of length 2. The interval when n4 is continuously
reachable from n1, is obtained by taking the union of both
intervals, that is [2, 7].
Consecutive paths are paths consecutive in time whose inter-
vals do not overlap. Consecutive path semantics is useful for
defining time schedules.With the notion of consecutive path,
several different temporal paths can be defined (Byun et al.,
2020). For example, the earliest-arrival path is the path that
can be completed in a given interval such that the ending time
of the path is minimum, and the latest-departure path is the
path that can be completed in a given interval such that the
starting time of the path is maximum.
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Fig. 1 Friend-of-a-Friend
Temporal Graph

3.2 T-GQL by Example

The syntax of the language has the typical SELECT-MATCH-
WHERE form. The SELECT clause performs a selection
over variables defined in the MATCH clause (aliases are
allowed). The MATCH clause is a Cypher expression, prob-
ably extended with some library functions that compute the
different kinds of paths explained above. This clause may
contain one ormore path patterns (of fixed or variable length)
and function calls. The result of the query is a temporal
graph. This can be modified by the SNAPSHOT operator,
which allows retrieving the state of the graph at a certain
point in time. Belowwe explain the basic syntax through two
examples: the social network in Fig. 1, and a flight schedul-
ing example using the graph in Fig. 3. We remark that the
data structure remains transparent to the user who only cares
about the semantic time-varying objects rather than Object,
Attribute and Value nodes.

As a first example, consider the query “Find the continu-
ous paths between Peggy Sue-Jones and Peter Green with a
length of two.” The query is written in T-GQL as:

Fig. 2 Continuous paths [cf. Debrouvier et al. (2021)]

SELECT paths
MATCH (p1:Person), (p2:Person),
paths = cPath((p1) - [:Friend*2] -> (p2))
WHERE p1.Name = ’Peggy Sue-Jones’

and p2.Name = ’Peter Green’

In this query, the cpath function computes the continuous
path. The result contains just one path of length two. It can
be seen that this starts at Peggy Sue-Jones and ends at Peter
Green, passing through Cathy Van Bourne, and it was valid
continuously between 2006 and 2023 (Now).

The next query is more involved, and gives an idea of the
power of the language: “Find the friends of Peggy while she
was living in Hasselt.” Since Peggy lived in Hasselt during
the interval [2020-Now], any person that was a friend of
Peggy at any instant of that interval would be in the result.
This is expressed in T-GQL as:

SELECT p2.Name as friend_name
MATCH (p1:Person) - [:Friend] -> (p2:Person)
WHERE p1.Name = ’Peggy Sue-Jones’
WHEN

MATCH (p1) - [e:LivedIn] -> (c:City)
WHERE c.Name = ’Hasselt’

Here, the inner query returns a collection of intervals, and
the WHEN clause performs a BETWEEN operation of each
interval in the result of the outer query against those intervals.
Only Peter Green and Cathy are in the result, since Pauline
was Peggy’s friend between 2010 and 2018.

T-GQLalso addresses path queries over consecutive paths.
To illustrate this, the graph containing flight schedules and
airport locations in Fig. 3 is used. Thus, we can ask “How can
we go from Buenos Aires to London as soon as possible?”.
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Fig. 3 A temporal model for
flight schedules

Here, the difference with the continuous path semantics
is clear: a path in the solution of the latter must be such that
the intervals of the edges are pairwise disjoint. In particular,
this is a fastest path query. The T-GQL query is written as
follows:

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.Name = ’Buenos Aires’ AND

c2.Name = ’London’

It can be seen on Fig. 3, that the fastest way to go from
Buenos Aires to London is taking the direct flight between
EZE and LHR. The travel time in this case will be 10 hours.
The other possible way, the one that goes through Sao Paulo,
takes more time.

4 A Platform for Graph Visualization

The main goal of this work consists in developing a graph
visualization platform that seamlessly integrates with the T-
GQL engine. That is, given a T-GQL query, the result (a
temporal graph) is captured by the visualizer, displayed in a
panel, and navigated back and forth in time. In addition, the
platform allows visualizing a temporal graph across time, by
selecting a date interval and navigating across time using a
slider button. The implementation of the temporal graph data
model is based on structural information that allows handling
time in a transparent way. The visualization tool hides this
structure from the user, leaving only the relevant nodes and
edges. Finally, the tool must be able to handle a number of
nodes and edges usually larger than the ones that can fit on a
screen.

In this section we focus on the graphic interface, and in
Section 5 we explain how it is implemented. Section 4.1

presents the languages and frameworks used in the imple-
mentation while in Section 4.2 we describe the platform
interface. Section 4.3 explains the color criteria chosen for
drawing the graphs.

4.1 Language and Frameworks

The graphic interface is written in Javascript, in order to
favor accessing to interface and visualization libraries and
bootstrapping the work. The React.JS9 framework is chosen
for building the platform and handling user interaction. In
React.JS, access to information is handled as follows. In an
HTML web page there is only one DOM element10 that is
visually represented, denoted here as the Real DOM. React
manages DOM elements through a Virtual DOM hooked to
the Real DOM, so the chosen library must be able to adapt to
this. In case of failure, conflicts occur at theReact’s sidewhen
trying to synchronize itsVirtualDOMwith the real one.Well-
known visualization libraries and frameworks work with
their own Virtual DOM or even modify the real DOM, in
order to leverage the creation of visualization elements. The
vis.js library is also used, since it is 100% compatible with
React.

4.2 Platform Interface: Description and Rationale

To provide a clean interface, we developed a simple layout,
which remains the same for every screen across the whole
platform. It is composed of a navigation drawer on the left-
hand side and amain panel. The former contains the different
navigation links allowing switching between screens. This
navigation drawer is collapsable into single icons in order to

9 https://es.reactjs.org/
10 According toW3.ORG (Jonathan Robie, 1998) DOM is the acronym
forDocumentObjectModel and it is the application programming inter-
face (API) for HTML and XML documents.
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Fig. 4 TGV Settings View

provide a larger main section area when preferred. The main
panel aims at holding the varying information regarding the
different tabs. With this fixed layout the user can focus on
the information in the main section. This approach is simi-
lar to the way in which Bloom,11 the Neo4j’s visualization
platform, handles its interface, and, given that the underlying
database is Neo4j, users will find this interface familiar.

Figure 4 depicts the Settings View, where we can also
see the navigation drawer and the main panel. This screen
allows setting different configuration parameters. Following
Patel andMistry (2016), the focus is on the layout andmotion
inside each view. Pieces of information are put together into
card modules appearing whenever they are required. We can
see two groups of settings, one for nodes (on the left) and one
for edges (on the right). Both are arranged on their own cards,
that contain a table with rows for each type. This allows an
expandable layout that can easily adapt to several different
databases. All the information needed is retrieved through a
direct query to the database (there is also a default selector).
For each node type there are four available settings, three
of them strictly used for visualization styling purposes and
one for querying. Each of this four columns has its own type
of button. The Type button allows defining the type of node
to be configured. Note that these types represent the way in
which user perceives the nodes in the graph, but behind the
scenes they are actually Object nodes in the underlying tem-
poral graph structure.The Color selector allows customizing
visualization. The color picker has a palette selection, gra-
dient, and also manual RGB color insertion. This feature is

11 https://neo4j.com/product/bloom/

important for large graphs, to easily relate similar colors with
node types.

Node and Edge Settings The Icon selector allows the user
to choose from a list of preloaded icons to be used in the
selection module on the visualization view, to quickly iden-
tify the node type. TheMain Attribute selector has two main
purposes.On the one hand,when showing for example, a Per-
son node, the user may want to quickly identify the persons
being represented. However, such a node may have many
attributes describing it. Therefore, it would be of help for
the user to define the attribute she would like to use to iden-
tify a node at first glance. In the social network case, for
example, the user would typically choose the Name prop-
erty. In the visual interface, when hovering over a node, the
value of this attribute is shown. We remark, again, that in the
underlying structure, Person is actually an Object node and
Name is an Attribute node, but all of these is hidden from the
user.

Note that, due to the number of expected nodes, the graph
visualization is text-free and attributes become visible only
when the user places the cursor over a node or edge. Nev-
ertheless, when a query includes a selection condition in the
WHERE clause, the nodes satisfying this condition are dis-
played with a wider border. This is further explained in the
next section. The Query selector is a query builder, which
allows starting the navigation focusing the visualization on
the part of the temporal graph that is of interest to the user, for
example, filtering out node types the user is not interested in.
To build the query, a dropdown list offers a checkbox allow-
ing multiple selections at the same time. Finally, since lists
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could be large, the component also has a search box that
filters the dropdown list through a fuzzy search.12

Finally, since T-GQL allows heterogeneous property
graphs (that is, graphs with several different relationships
between nodes), users can also set the color of each relation-
ship (edge), to easily distinguish between them.The selection
component is the same color picker described before for
nodes.

Temporality Settings Management and selection of tempo-
ral filters is done through a slider component. This slider has
several characteristics that impact on its usability, depending
on the type and amount of data that the user manipulates. A
limit selector allows defining the lifespan of the slider, while
a granularity selector defines the step in which users can
increase or decrease the selection for the sliding filter. Nev-
ertheless, when the step (i.e., granularity) is small, it becomes
a continuous slider. Four granularities are allowed, namely
years, months, days, and hours.

Main Panel The main panel is depicted in Fig. 5. Several
modules or boxes are defined (indicated with the letters A to
D in the figure), according with the functionality they encap-
sulate. We describe these modules next.

– A. Query Box. The query editor, located in the upper part
of the main panel, is implemented as a customization of
the CodeMirror project.13 Here the user writes the T-
GQL query that is dynamically displayed in module B.
We would like to remark again, that this feature distin-
guish this tool from the usual temporal graph visualizers
(described inSection 2),which require ad-hoc data prepa-
ration for particular cases. Also, note that, different from
graph visualizers like the Neo4j interface (which manage
non-temporal graphs), T-GQL and TGVhandle temporal
graphs seamlessly.

– B. GraphModule. This is the main module where results
retrieved by the query are displayed. Figure 5 shows this
module and its two parts: the center one displays the
temporal graph; the bottom part includes the color ref-
erences (in this figure, the colors for Brand, City and
Person nodes, and Friend, Fan and LivedIn relation-
ships), that provide information for better understanding
the visualization. Shape and color are leveraged to easily

12 A fuzzy search is done by means of a fuzzy matching program,
which returns a list of results based on likely relevance even though
search words and spellings may not exactly match. Exact and highly
relevant matches appear near the top of the list. (see https://whatis.
techtarget.com/definition/fuzzy-search). A comparison between the
different available algorithms and their conflicts can be found at https://
aip.scitation.org/doi/10.1063/1.5114193
13 More information related to this project can be found in https://
codemirror.net/

allow visual association. Colors are used to distinguish
types, while shapes allow distinguishing elements, with
circles referring to nodes and lines referring to relation-
ships. This practice of taking advantage of n-dimensions
of visualization follows the idea of visual variables and
their categorizations presented by Bertin (1983). The
time slider is located below these references. The text
on the right-hand side of the slider remarks the selected
period.

– C. SelectorModule.Located in the upper-right part of the
panel, this module provides detail about any node that is
selected. Given the large amount of data the temporal
graph can contain, the node’s information is exposed in a
separate box for exploring its content. This information
includes a list of the different Attribute and Value nodes
related. The temporality related to them is also added
(that is, the historical values and intervals of the node
properties), so that behaviour can be better understood
when filtering the graph through the slider. This is further
explained in Section 6.

– D. Filters. In this module, selections can be performed.
Although these are simple filters which are applied after
the query is run, they are useful to clean and focus the
visualization on what really matters to the user.

4.3 Color Criteria

We conclude this section explaining the mechanism for
choosing the color criteria when drawing graphs (specifically
paths). This is inspired in thework byCynthiaBrewer (2004),
who developed an online tool for choosing color palettes.14

There are three types of schemes, namely: sequential, diverg-
ing and qualitative. In the present paper, a qualitative palette
was selected since it allows distinguishing the different paths,
since the colors are more contrasting. The chosen palette
contains 12 different colors (Fig. 6). It is worth noting that
when there are more than 12 different paths to show (see
Section 5.3), the colors repeat cyclically, meaning that path
13 has the same color as path number 1.

5 TGV implementation

We now explain the technical details of the implementa-
tion, with focus on how the temporal graph infrastructure is
defined and how query results are processed. In Section 5.1
we explain the abstraction developed to hide from the user
the actual implementation of the temporal graph. Section 5.2

14 https://colorbrewer2.org/
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Fig. 5 Temporal Graph
Visualizer (TGV)

discusses granularity issues, typical in temporal database
environments. Finally, Section 5.3 details how the graph is
rebuilt from the query result.

5.1 Underlying Structure Abstraction

One of the main goals of this project is to be able to abstract
the underlying structure of temporal property graphs from
the user. We explain this next.

Consider for example the graph in Fig. 1. The Person node
with id = 19, corresponds to Pauline Boutler, who lived in
London from 1978 until the present day. Figure 7 shows the
Neo4j implementation of the portion of the temporal graph
presented in Fig. 1 corresponding to Pauline. As explained
in Section 3, there are three types of nodes in this struc-
ture: Object nodes (in blue), Attribute nodes (in orange), and
Value nodes (in green). The Person,City and Brand nodes are
Object nodes. In Neo4j, the labels of the node types are pre-
ceded by a colon, as can be seen in the figure. Further, we can
see in the figure that Object nodes contain a property called
title. In Fig. 7 the title property takes the values Person, City,
and Brand. Object nodes are linked to Attribute nodes and
Attribute nodes to Value nodes through a relationship called
Edge. Attribute nodes also contain an attribute title instanti-
ated in this example with the value Name, which is the name
the user has defined for the attribute in all the node types (e.g.,
the name of a city, the name of a brand, and the name of a
person). Value nodes contain an attribute value instantiated

with the actual value of the attribute, and an attribute interval,
containing the interval for this value (e.g., value = London,
and interval = [0, Now]. In other words, in Fig. 7, the names
in the green nodes are the values of the property called value
in nodes of type Value, and the names in the blue nodes are
the values of attribute title in the nodes of type Object in
the underlying graph. Finally, the LivedIn, Friend, and Fan
relationships exist between two Object nodes, with their cor-
responding intervals. In simple words, we can say that the
temporal property graph is represented by a non-temporal
Neo4j property graph.

The temporal graph semantics is implemented through the
complex structure explained above, which, of course, must
be hidden from the user for both, querying and visualization.
As an example, Fig. 8a shows how the graph of Fig. 7 is seen
by the user when she asks for a snapshot as of 2005, while
Fig. 8b shows the snapshot as of 2015. We can see that the
user is not aware of the different kinds of nodes, and only sees
the abstraction of interest. Instead, in the implementation, the
information conveyed by the schema is displayed in a concise
and clear way, coalescing Attribute and Value nodes into the
Object nodes, allowing the user to expand the Object nodes
when she needs them, for example to display the attributes
of a Person node. This can be seen in Fig. 9 which depicts
how the user sees the information in the interface. The user
just sees a node corresponding to Pauline, and her temporal
relationships. All other nodes remain hidden, although their
information is still accessible through other methods such as

Fig. 6 Twelve-class paired
color palette by Cynthia Brewer
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Fig. 7 Social network underlying implementation for Pauline

hovering over or selecting the node. On the right-hand side
of the same figure, a Person node can be seen (actually an
Object node with title = Person). All the information about
this person (including the validity intervals of the attributes)
is available for the Person node over which the cursor is
being positioned.

5.2 Handling Temporal Granularity

Handling different time granularities is a key issue in tempo-
ral databases. T-GQL allows representing temporal objects
with different granularities in the same database. Further, a
query may include temporal conditions with a granularity

different than the one of the database objects, and T-GQL
deals with this in a transparent way. For example, to com-
pare the year 2020 against the day 10-20-2020, both dates
must have the same granularity. Thus, a conversion is per-
formed at the database level (we do not give here details on
how the conversion is done). However, the visual interface
must deal with this issue when handling time visualization
constraints. For time filtering on the visual interface, the only
conversions required refer to the time span to be displayed.
That is, the minimum value in the slider interval must be
converted to the minimum value allowed for the granularity
in which data are displayed, and analogously for the maxi-
mum. The same technique is used for the starting and ending

Fig. 8 Abstraction for Pauline
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Fig. 9 The graph in Fig. 7 as
seen in the visual interface

points of the intervals of the properties. In short, there are
two intervals, which are converted into timestamps, and then
a simple comparison checks if the temporality of the element
overlaps with the temporality of the filter. Finally, temporal
databases represent the (moving) current instant with the spe-
cial valueNow as the upper bound of the intervals. This value
is implemented as the largest number allowed by the database
system.

As an example of the above, consider again the graph of
Fig. 7 and a query asking for the friends of Pauline during
2005. Two comparisons are needed here, since Pauline has
two friends: Peggy Sue and Cathy. The query filter in this
case is the interval [2005-01-01 - 2005-12-31], thus, the first
comparison involves the filter and the validity interval of her
friendship with Peggy Sue, namely, [2010-01-01 - 2018-12-
31]. In this case, the intervals do not overlap. The second
comparison is between the filtering interval and the friend-
ship interval with Cathy, that is, [2002-01-01 - 2017-12-31].
The intersection between those intervals is [2005-01-01 -
2005-12-31]. Figure 8a shows the resulting graph.

5.3 Rebuilding the Temporal Graph

T-GQLqueries are submitted to the engine from the so-called
query box shown in Section 4. The engine returns the result
in a JSON structure. Thus, in order to display the temporal
graph on the main panel, it must be rebuilt from the query
result. The graphic interface is the integration point with the
T-GQL engine. The visual interface software hooks up to the
backend through an endpoint, using the database engine as
a service provider. This avoids creating interfaces to inter-

act with both applications. In the JSON structure mentioned
above, the identifiers of the returned nodes are stored in the id
property. Since the information returned by the TGDB is not
enough to display the graph (i.e., information about edges is
not included), the Neo4j database must be accessed through
a Cypher query to obtain the nodes that participate in the T-
GQLquery result, together with all their relationships, taking
into account also the filters applied by the user. In summary,
once the query is submitted by the user, the following steps
are executed:

Step 1 Rebuild the user T-GQL query string to:

(a) remove the properties in the SELECT clause
(b) get the selected nodes requested in the WHERE
clause

Step 2 Run the modified T-GQL query obtained in the
previous step.
Step 3 Parse the resulting JSON structure to obtain the
list of node ids involved in the query result ([nodeIds]).
Step 4 Execute the Cypher query:

MATCH (n:Object)-[r]->(m:Object)
WHERE n.id in [nodeIds]
AND m.id in [nodeIds]
RETURN collect([[n.id,m.id],
type(r), r.interval]

The query above returns a list with the type of edge
between every pair of nodes involved in the query along
with its interval.
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Step 5 If the query returns paths, create the set restricted
edges containing all edges in the result, along with their
direction.

Step 1 is basically a query preprocessing task, explained
next. We need to replace the attributes in the SELECT clause
with node variables, so the query can return, in the JSON
document, all the information needed to rebuild the graph.
For example, in Step 1 (a), the following query:

SELECT c.Name
MATCH (c:City)

will be transformed into:

SELECT c
MATCH (c:City)

Note that the original query would just return a list of city
names, and thus the identifiers of those nodes will be the ones
of the Value nodes rather than the identifiers of the Object
nodes. To obtain the edges involved in the query, the ids of
the corresponding Object nodes are needed. By converting
c.Name to c, the engine will return a list of the ids of the
Object nodes. With such list, the edges can be retrieved. The
attributes that the user needs are not relevant in this case,
because the displayed graph shows all the attributes in the
selector module. The process above is carried out by means
of a simple string search by finding the start of the SELECT
clause and the start of theMATCH clause, and then obtaining
the sub-string in-between these indices (a string containing a
number of variables or variablesmentioning an attribute after
a dot, separated by commas.) Then, a split is done using the
comma as separator. Now every element corresponds to a an
item in the SELECT clause. Finally, a dot is looked for when
parsing every item. If found, from the dot on, everything is
removed.

For Step 1 (b), theWHERE clause is parsed, to find all the
items requested by the query, in order to highlight themwhen
building the graph. To achieve this, the following two regular
expressions are used:

1- /\s?(\w+.?\w+|\w+\[\w+\])\s?=\s?
(’[\w\s-._]+’|\d+)/g
2- /(\w+).?\[?(\w+)\]?\s?=\s?
(’[\w\s-._]+’|\d+)/

The first expression is used to obtain a list of terms of the
formWord = Word (considering blanks, enter, tabs, etc), after
the WHERE clause. The second one receives every expres-
sion obtained with the previous regular expression and will
extract the requested value. Thus, expressions of the form
variable.attribute = constant are retrieved. These values are
stored in a array that is then used to highlight the desired

nodes. For instance, consider the following WHERE clause
(see Example 1 below):

p2.Name = ’Pauline Boutler’ and
cPath((p1)-[:Friend*2]->(p2))

Applying the first regular expression, the term p2.Name =
’Pauline Boutler’ will be obtained, since the expression after
the “and” does not involve the “=” symbol. Then, the sec-
ond expression will store the attribute “Name” and its value
“Pauline Boutler”.

After the preprocessing above, we are ready to continue
with the next steps. To execute Step 2, the application hooks
up to the T-GQLbackend through an endpoint, using it as ser-
vice provider. Similarly, to execute the Cypher query in Step
4, the application access Neo4j through an endpoint. In Step
5, the set restricted edges is built from the edges obtained
in Step 4, and it is used to prevent inserting (and displaying)
the same edge twice with different directions.

The user can narrow the types and number of nodes to
be shown when the graph is rebuilt and displayed in the
main panel. A temporal filtering can also be applied using
the slider component, removing every node and edge outside
the selected range. Finally, once the visualization is repre-
sented in the main panel, the user is able to hover over nodes
and edges to analyze information about types and temporal
ranges at a glance. If more information is needed about the
node, she can click on any node and the information will be
displayed. The following example helps to understand the
idea.

Example 1 Consider a query over the database of Fig. 1, that
asks for the names of the “friends of the friends” of Pauline
Boutler, during a continuous interval, together with informa-
tion of the latter. The query is expressed in T-GQL as follows.

SELECT p1, p2.Name
MATCH (p1:Person), (p2:Person)
WHERE p2.Name = ’Pauline Boutler’ and

cPath((p1)-[:Friend*2]->(p2))

The TGDB service returns the result in JSON format, con-
taining a list of nodes and attributes satisfying the query. The
result is shown in Fig. 10. Here, the id property in column
p1 contains the id of the Object node (needed to rebuild
the graph), corresponding to Pauline Boutler. However, note
that the id property in column p2.Name corresponds to the
Value Node, since the SELECT clause asks for p1 (a node)
and p2.Name (a property). Thus, we apply Step 1 above to
modify the query. In this case, the query would be modified
as follows (replacing p2.Name with p2):

SELECT p1, p2
MATCH (p1:Person), (p2:Person)
WHERE p2.Name = ’Pauline Boutler’ and

cPath((p1)-[:Friend*2]->(p2))
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Fig. 10 Result for the original
query in Example 1, returned by
the database engine, in JSON
format

The result obtained from the TGDB is shown in Fig. 11.
Now, both ids correspond to the Object nodes, which are
necessary to obtain the information on edges not present in
this result. Note that the id of the Value node in Fig. 10 was
34, and the id of the Object node in Fig. 11 is 21. Thus, in
order to display the graph, the databasemust be queried again
to get this information (Step 3, Step 4). The new query will
only involve the nodes in the result of the user query rather
than the whole graph. Thus, the identifiers of the nodes in the
result are collected, and the Cypher query below is submitted
to the Neo4j database:

MATCH (n:Object)-[r]->(m:Object)
WHERE n.id in [19,21]
AND m.id in [19,21]
RETURN collect([[n.id,m.id],
type(r), r.interval]

The query above returns the information needed to dis-
play the graph. The color of different types of nodes and
edges will be the ones selected by the user in the previous
screen. ��

If the original query asks for paths, the process is slightly
different. Similarly to the previous case, the returned JSON

structure is parsed to obtain the node ids (Step 3) in order
to execute Step 4. However, in this case, a color code is
associated with the nodes belonging to a certain path. Also,
as stated in Step 5, the restricted set of edges is created. The
TGDB response returns the nodes in each path in natural
temporal order. The program iterates over the paths and each
path is given a different color code. This color code is stored
in the node. Therefore, when a node participates inmore than
one path, since each node can be painted in only one color,
the last path in which that node appears is the one that gives
the color to it. Each color code is an integer from 0 to 11.
That is, the first path in the iteration has a color code of 0
and the last one a color code of 11. Moreover, every different
node encountered is stored in a list, which is used to fetch
the edges involved. Further, the color for a node is chosen
depending on whether the node is part of a path or not. If
it is, we proceed as above. If it is not part of a path, the
specific color for that type of node (which was selected in
the settings view) is used. Before consolidating this node in
the visualization, a verification is made to corroborate that it
belongs to theWHERE clause, obtained in Step 1(b), in which
case it is distinguished, for clarity.After nodes are completed,
an iteration over the edges is performed, validating intervals
and types from filters.

Fig. 11 Result for the modified
query in Example 1, returned by
the database engine, in JSON
format
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6 Querying and Visualizing Temporal Graphs

This section is aimed at showing how the visualizer is used to
navigate and analyze temporal property graphs. The first part
shows how the complete graph is navigated over time. For
this, a query returning the whole graph in Fig. 1 is submit-
ted. In the second part, a query restricting the social network
graph is shown, to convey the idea of how a typical user will
operate with the tool presented here, based on the assump-
tion that a user normally focuses on the history of just a
part of the graph, or on some kind of summarization of the
graph that reduces the usually huge number of nodes that a
graph contains. Again, we remark that operating in this way
is not possible in most graph visualization tools. That is, once
the query result is returned, we keep the result and navigate
through this result over time, while in typical graph inter-
faces, the result of a query cannot be used to further navigate
the graph (also, recall that not always a query returns a graph,
but a table, like in Neo4j).

Figure 12 shows the social network graph in Fig. 1, as
seen in the visualizer interface. The query in the top panel
retrieves all Person, City, and Brand nodes in the graph:

SELECT a0, a1, a2
MATCH (a0:Person), (a1:City), (a2:Brand)

The result is displayed in the main panel. The cursor hovers,
in this figure, over the Friend relationship (we can see the
box with the type and interval of the relationship). It can also
be seen on the panel on the right-hand side, the Person node
corresponding to Peggy Sue-Jones, along with the history of
her name (as a single and married person). This is because,
the user clicked over the node corresponding to Peggy, which

appears with a thick border in the main panel. We can also
see that there are three edges (in blue) from Peggy’s node
to the cities where she lived: Brussels, Antwerp, and Hasselt
(as shown in Fig. 1).

Now, we move the slider in a way such that the graph
displayed on the screen is restricted to the interval Dec.2004-
Dec.2005. The result is shown in Fig. 13). The Friend
relationship in the period 2010-2018 (which was displayed
in Fig. 12 with the box over it) is no longer present. Also,
since Peggy lived in Brussels between 1979 and 1989, this
edge is no longer shown, neither is shown the edge from
Peggy to Hasselt, because she started living in the latter in
2020. Finally, hovering over the LivedIn relation (for Peggy)
and clicking into the associated city node, we can see, on the
right-hand side of the panel, the information about the city
of Antwerp (which becomes the node marked with a thick
blue line in the graph).

In the next query, the user asks for the friends of Peggy
and the cities where they lived, when Peggy was living in
Antwerp (that is, between 1990 and 2019). Thus, she writes:

SELECT p1,p2,c1
MATCH (p1:Person)-[:Friend]->(p2:Person)
-[:LivedIn]->(c1:City)
WHERE p1.Name = ’Peggy Sue-Jones’
WHEN

MATCH (p1) - [e:LivedIn] -> (c:City)
WHERE c.Name = ’Antwerp’

We can see that the user is only interested in the Person
nodes corresponding to Peggy and her friends, and the City
nodes corresponding to the citieswherePeggy’s friends lived.
Since the query does not ask for the continuous paths, any

Fig. 12 Social network
temporal graph of Fig. 1
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Fig. 13 Social network
temporal graph as of the interval
Dec.2004-Dec.2005

path in the graph will satisfy the query provided it matches
the pattern, regardless the time intervals of the Friend rela-
tion. Figure 14 depicts the result. Note that now the user
poses the cursor over Pauline, one of Peggy’s friends. The
node corresponding to Peggy is marked in thick black line
since it is in theWHERE clause (as explained in Section Step
1 in Section 5), and the user also selected the Person node
corresponding to Cathy, another friend of Peggy. This node
is marked in blue thick line. Also note that the LivedIn rela-
tionship for the cities where Peggy lived, are not indicated in
the figure since they are not requested in the query.

7 Experimental Evaluation

We carried out a series of experiments to study the per-
formance of the application under different scenarios. The
study consisted in running a collection of queries over dif-
ferent databases with a varying number of nodes and edges.
It is important to remark that the experiments reported here
are not aimed at evaluating the query response times (which
depend on the temporal database engine), but to estimate the
overhead introduced by the visualizer. Thus, relevant to this
goal is the size of the graph displayed on the screen (or the

Fig. 14 Peggy’s friends when
she lived in Antwerp (light
blue), and the cities they lived in
(green)
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number of nodes in a query result) rather than the size of the
database, since the latter will impact mainly on the database
engine. Also note that, normally, the user will manipulate
and navigate across time, small portions of a graph on screen,
generally focusing on some relevant objects (e.g., a person,
a brand).

Two cases are studied: (a) A social network similar (but
larger) to the example discussed throughout the paper, for
analyzing continuous paths; (b) A flight schedule network,
to address consecutive paths. Queries over these databases
are run using the client tool TGDB explained above.

All experiments were run under the same environment, a
Neo4j 3.5.17 server run on Ubuntu 16.04 64-bits, with a 12
core CPU and 25 GB of RAM.

7.1 Social Network Use Case

Three different (synthetic) social network databases were
created with an increasing number of nodes and edges.
Table 1 shows the characteristics of each database. The
database contains three kinds of Object nodes: Persons,
Cities, and Brands. There are also two relationships: Friend
(between person nodes), and Fan (from a person to a brand).
We defined, for each synthetic database, topology parameters
that are relevant to the results. For example, the maximum
number of friendship relationships (Max friendships) for the
Social Network 3 (SN 3) database is twenty-five and a person
may be fan of up to ten brands (Max fans). We also guarantee
that there will exist in the graph, continuous paths of length
five (parameter cPath min Length).

To analyse these databases, we defined five different
queries, detailed below. The rationale behind these queries is
that they allow studying to what extent the number of nodes
in the result impact on the overhead of the visualizer, since,
as we will see, they return graphs of different sizes.

Table 1 Parameters used in the creation of social network databases

Social
Network 1

Social
Network 2

Social
Network 3

Nodes 392 1950 2100

Edges 1348 13537 23870

Persons 70 500 500

Cities 30 50 100

Brands 30 100 100

Max friendships 5 25 100

Max
friendship
intervals

2 2 2

Max fans 2 25 10

cPath min
Length

5 5 5

Query 1 Retrieve all people, cities and brands in the database
at any time.

SELECT p, c, n
MATCH (p:Person),(c:City),(n:Brand)

Query 2 List all the continuous paths for the Friend relation,
with lengths 2 and 3, between Hilton Turner and Jan Dickens.

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = cPath((p1)-[:Friend*2..3] ->(p2))
WHERE p1.Name = ’Hilton Turner’ and

p2.Name = ’Jan Dickens’

Query 3 List all the friends of Hilton Turner and the cities
where they lived between 2000 and 2004.

SELECT c.Name , p1.Name, p2.Name
MATCH (p1:Person)-[:Friend]->(p2:Person),

(p2)-[:LivedIn]->(c:City)
WHERE p1.Name = ’Hilton Turner’
BETWEEN ’2000’ and ’2004’

Query 4 Retrieve all the friends of Hilton Turner when she
was living in Danaeview (a fictitious place, of course).

SELECT p2.Name as friend_name, p1
MATCH (p1:Person)-[:Friend]->(p2:Person)
WHERE p1.Name = ’Hilton Turner’

WHEN
MATCH (p1)-[e:LivedIn]->(c:City)
WHERE c.Name = ’Danaeview’

Query 5 Find all the friendships of distance 2 for the person
with id=250.

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = cPath((p1)-[:Friend*2]->(p2))
WHERE p1[id] = 250

Table 2 reports the number of nodes returned for each
query and database. This is aligned with our goals, since (as
mentioned above), the user will normally want to see a lim-
ited number of nodes and edges on the screen, for example,
focusing on a person or brand. Thus, we believe that a max-
imum number of two hundred and fifty nodes in the result
(or six hundred, as in the airport use case studied in the next

Table 2 Number of nodes returned by queries Q0 to Q5 for the Social
Network databases

Query Social Network 1 Social Network 2 Social Network 3

Q1 130 N/A N/A

Q2 3 5 19

Q3 4 14 25

Q4 2 5 6

Q5 3 109 258
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Table 3 Difference in response times between TGV and the T-GQL
client for the Social Network graph (msecs)

Query Social Network 1 Social Network 2 Social Network 3

Q1 145 N/A N/A

Q2 38 43 44

Q3 39 60 65

Q4 42 47 77

Q5 46 121 885

section) seems reasonable as an upper limit to evaluate the
overhead of the graphic tool.

We can see that over databases SN 2 and SN3,Query 1 did
not finish within a reasonable time (this is denoted as N/A),
because of the high maxFriendships parameter (25 in this
case, while in SN 1 this parameter has a value of 5), which
makes it hard to compute the paths.We remark that this output
is due to the engine and not to the visualizer. We can also see
thatQueries 1 and5 (except for SN1, in the case ofQ5) are the
ones returning the largest number of nodes. We also remark
that response times for Queries 1 and 5 (not detailed here
since this is not relevant to our goals) are much higher than
for the other queries (the former produce a higher number of
nodes in the query result). To speed up query performance,
temporal indexingmethods are being studied (Kuijpers et al.,
2022), however this is beyond the scope of this work, and we
have not indexed the graph.

To estimate the overhead introduced by the visualization
tool, we measured the difference in the query response times
when the queries are run using the T-GQL client and the
interface TGV. Table 3 depicts the results. In the first column
from the left, we abbreviated the identification of the queries
as Q1,...,Q5. It can be seen that, for SN 1, and Queries Q2 to
Q5, the difference in response times remains almost constant,
around 40 milliseconds. All these queries return less than ten
nodes in the result. For Queries Q2 and Q3 in SNs 2 and 3,

Fig. 15 Response times depending on the number of nodes for the
Social Network graph (msecs)

Fig. 16 Difference between the average TGV and TGDB response
times depending on the number of nodes for the Social Network graph
(msecs)

the difference stays around 60 milliseconds, a little higher
than in the previous case, because the number of nodes in
the result is slightly above 10. Finally, for Query Q1 in SN
1, and Q5 in SNs 2 and 3, the difference is above 100 msecs,
which is consistent with the number of nodes in the result,
which is above one hundred. It follows that, as expected, as
the number of nodes in the result of the query increases, so
does the difference between the response times in TGV and
TGDB. The only partial exception to this rule is Query 4, for
SN3,with a lownumber of nodes in the result and a difference
of around 80 msecs (probably the size of the database plays a
part here). Nevertheless, in all cases, the difference remains
lower than one second.

Figure 15 depicts graphically the query response times
with respect to the number of nodes in the result (regardless
the queries). We can see that the running times using both
tools are similar (note that both curves are displayed together,
with a small difference between each other). Figure 16 shows
the difference between running timeswith respect to the num-
ber of nodes in the result. In both figures we can see that,
below130 nodes, the lines remain almost horizontal, strongly
increasing after this value. Our conjecture is that the reason
is two-fold: on the one hand, due to the size of the result, the
query takes more time to run in nominal terms (as Fig. 15
shows), which also increases the absolute value of the differ-
ence. On the other hand, as the size of the result increases, the
process described in Section 5 (which involves re-querying

Table 4 Parameters used in the creation of each database

Airport 1 Airport 2 Airport 3

Nodes 60 600 1800

Edges 82 788 2400

Cities 10 100 300

Outgoing flights per airport 3 6 9

Flights per destination 3 6 9
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Fig. 17 Airports temporal graph

the database with the ids of the nodes in the result) also takes
more time. Further, although we can see a peak when the
result size is above 130 nodes, note that the difference still
remains below one second (see Fig. 16), which means that
the cost of running the query is led by the database engine
and not by the visualizer.

7.2 Airport Use Case

To test consecutive paths, a different scenario was devised.
In this case, three airport databases were created with an
increasing number of nodes and edges. Table 4 shows the
databases characteristics. The graph contains two kinds of
nodes, Cities and Airports, a relation LocatedAt, from air-
ports to cities, and another relation Flights, between airport
nodes. Figure 17 shows the complete graph loaded on the
visualizer. The queries are listed next.

Query 6 List all the airports and cities in the database.

SELECT a, c
MATCH (a:Airport), (c:City)

Query 7 Compute the fastest paths between the airports
located in the cities of Port Berniecebury and West Hipolito-
haven.

Table 5 Number of nodes returned by queries Q6 toQ10 for theAirport
databases

Query Airport 1 Airport 2 Airport 3

Q6 20 200 600

Q7 3 2 2

Q8 4 4 2

Q9 3 8 6

Q10 11 45 36

SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),

(c2:City)<-[:LocatedAt]-(a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))

WHERE c1.Name = ’Port Berniecebury’ AND
c2.Name = ’West Hipolitohaven’

Query 8 Compute the latest departure path since 17:04 in
2020-12-11 between Port Berniecebury and West Hipolito-
haven.

SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),

(c2:City)<-[:LocatedAt]-(a2:Airport),
path = latestDeparturePath((a1)
-[:Flight*] ->(a2),
’2020-12-11 17:04’)

WHERE c1.Name = ’Port Berniecebury’ AND
c2.Name=’West Hipolitohaven’

Query 9 List all the airports and cities that have direct flights
from Port Berniecebury.

SELECT a1, a2, c1
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport)

-[:Flight]
->(a2:Airport)

WHERE c1.Name = ’Port Berniecebury’

Table 6 Difference in response times between the interface and the
T-GQL server for the Airports graph (msecs)

Query Airport 1 Airport 2 Airport 3

Q6 22 66 130

Q7 18 25 17

Q8 22 14 14

Q9 20 16 14

Q10 21 18 14
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Fig. 18 Response times depending on the number of nodes, for the
Airports graph (msecs)

Query 10 List all the airports and cities at a 4-scale distance
from Port Berniecebury. Of course of the city names are fic-
titious.

SELECT a1, a2, c1
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport)

-[:Flight*4]
->(a2:Airport)

WHERE c1.Name = ’Port Berniecebury’

Table 5 shows the number of nodes returned for queries
Q6 to Q10 and the three Airport databases. Note that the
largest results are obtained for Q6 and (in less degree) Q10.

Table 6 shows the results of this second set of experi-
ments, that is, for queries Q6 through Q10. Figure 18 depicts
graphically the execution times with respect to the number of
nodes in the result (regardless the queries), using the visual-
izer and theT-GQLclient tool. Figure 19 shows the difference
between running times with respect to the number of nodes
in the result. As in the social network case, with less than 10
nodes in the query result, the response times are quite con-
stant, around 20 milliseconds in this case. As the number of
nodes in the result increases, the difference in response times
does too, although the increase curve is less steep. Further, in

Fig. 19 Difference between the average TVG and TGDB response
times depending on the number of nodes, for the Airports graph (msecs)

this case, the maximum difference between response times is
about 130 milliseconds for 600 nodes. In the case of Query
Q6, with 600 nodes in the result (for the Airport 3 case), the
difference is 130 msecs, with 600 nodes in the result, and
the total running time to display the resulting graph is about
3 seconds, as shown in Fig. 19. This figure also shows that,
compared with the social network case, below 100 nodes
in the result the line is less straight, although the difference
between values is still low.

8 Conclusion

We presented a framework for temporal property graphs
visualization, denoted TGV, to be used together with T-
GQL, a data model and query language for temporal graphs
implemented over a Neo4j graph database, and described
in previous work. TGV allows editing and running T-GQL
queries, displaying the result, and navigating such result
across time. Although the visualization research and devel-
opers community has produced tools that show the evolution
of graphs over time, to the best of the authors’ knowledge
none of those tools are based on queries on temporal property
graph databases, allowing temporal graph visualizations on-
the-fly, based on database query results. The paper describes
the visual interface and the different criteria adopted during
its development, as well as implementation details. Particu-
lar attention was given to the process of hiding from the user
the underlying structure of the temporal graph. Experimental
results queryPlease check and confirm if the presentation of
backfundinfo and conflicts of interest is presented correctly.
showed that the overhead introduced by the visualization tool
is not relevant, and most of the times negligible.
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