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Abstract
Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, 
attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised 
machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected 
by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detec-
tion framework while considering the financial consequences of fraud detection systems. The framework was empirically 
validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed 
framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced 
data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised 
ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best 
results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This 
study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of 
effective fraud detection systems.
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1  Introduction

Mobile payment transactions are carried out using mobile 
phone technologies that allow users to deposit, withdraw, 
spend, transfer and send money. There are nearly three hun-
dred mobile payment services worldwide, which are par-
ticularly popular in Sub-Saharan Africa and Asia. In 2020, 

mobile payment transactions totaled $767 billion, conducted 
by approximately 1.2 billion registered users according to 
Statista. In addition, mobile payments have reportedly enor-
mous potential during the COVID-19 pandemic, as it can 
greatly increase the promptness and efficiency of money 
transfers while minimising the necessity of face-to-face con-
tact with bank and government staff (Blumenstock, 2020).

Recent mobile payment case studies (Iman, 2018; Joce-
vski et al., 2020; Verkijika, 2020) suggest that mobile pay-
ment systems have been challenged by several types of fac-
tors that have emerged in the context of advances in financial 
technology. Commercial and technical factors have been 
identified as particularly important to their future growth. 
As regards the first group of factors, the need to increase cost 
efficiency is particularly emphasised because most mobile 
payment transactions in developing countries are low value 
but high volume (Franque et al., 2020). Technical factors 
include, in particular, security concerns, as the legal frame-
works and enforcement mechanisms are often inadequate 
in developing countries (Akanfe et al., 2020; David-West 
et al., 2022; Pal et al., 2020). To deploy a mobile payment 
system, it is therefore necessary to minimise fraud in order 
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to increase customer trust and security, as reported in exist-
ing mobile payment acceptance models (Chin et al., 2022; 
Jia et al., 2022; Kar, 2021; Pal et al., 2021).

The increasingly growing use of mobile payments has 
boosted the chances of criminals committing mobile phone 
fraud in an illegal effort to circumvent security measures 
of mobile payment services. There is consequently a lot of 
pressure to investigate potential security threats that may 
be exploited, with the ultimate aim of preventing fraud on 
a mobile payment service and developing countermeasures 
against attacks (Chen et al., 2021; Lopez-Rojas et al., 2016; 
Rieke et al., 2013). Early detection of fraudulent transactions 
is a key task in this effort. Recent developments in mobile 
payment services have therefore heightened the need for 
automated detection systems that enable immediate detec-
tion and prevention of fraudulent transactions.

The main challenges currently facing researchers involved 
in detecting fraud in mobile payment transactions include: 
(1) extreme class imbalance (only a small proportion of cus-
tomers have fraudulent intentions); (2) changing patterns of 
fraud over time (fraudsters are always looking for new ways 
to bypass systems and commit crimes); and (3) inadequate 
selection of performance metrics. The consequence of the 
first challenge is a poor user experience for legitimate cus-
tomers, as the detection of fraudsters usually also implies 
rejecting some legitimate mobile payment transactions. The 
second challenge usually leads to a decrease in the perfor-
mance and efficiency of the detection model. Therefore, 
machine learning models must be constantly updated, oth-
erwise they will not meet their objectives. Regarding the last 
challenge, in some cases the providers of mobile payment 
systems should prefer a higher false positive rate in exchange 
for a lower false negative rate and vice versa. But how to 
choose the right ratio between these two errors remains a 
challenging area in the field of fraud detection in mobile 
payment transactions.

A relatively high detection accuracy was reported in ear-
lier research by using both traditional supervised learning 
methods (Choi & Lee, 2017, 2018) and deep learning-based 
methods (Mubalaike & Adali, 2018; Xenopoulos, 2017). 
However, a major problem with this kind of application is 
the extreme class imbalance of transactions, with a consider-
able dominance of legitimate transactions in the data. This 
in turn leads to a poor classification performance on the 
minority class of fraudulent transactions. To address this 
issue, two approaches have been utilized. The first approach 
relies on under-sampling methods used to generate a bal-
anced dataset (Pambudi et al., 2019). The main limitation of 
this approach is the loss of potentially important information 
stored in discarded legitimate transactions, which can reduce 
detection accuracy. Alternatively, an attempt has been made 
to isolate fraudulent transactions in an unsupervised fash-
ion (Buschjäger et al., 2021), inspired by outlier detection 

methods. Nevertheless, a comprehensive evaluation of 
machine learning methods is not yet available in the litera-
ture. Moreover, little is known about how the two approaches 
can be integrated to improve the detection performance. To 
overcome the above problems, here we propose to enhance 
the performance of eXtreme Gradient boosting (XGBoost), 
a state-of-the-art machine learning method, by including a 
data sampling component addressing the issue of extreme 
class imbalance of mobile payment transactions.

In many financial applications it is necessary to filter out 
unusual observations to ensure the reliability of the system 
and prevent attempts to maliciously use it. This is particu-
larly useful for detecting financial fraud attempts, as their 
behaviour patterns differ significantly from normal financial 
transactions (Bernard et al., 2021). Outlier detection meth-
ods are capable of processing all available data in real time 
to uncover patterns that evade traditional supervised learning 
methods. By doing so, organised crime groups can be iden-
tified with higher accuracy and less false positives. Outlier 
detection methods have indeed proved effective for detect-
ing credit card fraud detection (Carcillo et al., 2021), online 
banking fraud detection (Carminati et al., 2015), and health 
insurance fraud detection (Yamanishi et al., 2004). Overall, 
however, there has been limited use of these methods to 
detect financial fraud, although some review studies sug-
gest that they deserve more attention because the detection 
performance of supervised algorithms is negatively affected 
by the inherently heavily imbalanced class distribution of 
financial fraud data (Ngai et al., 2011). The scarce use of 
outlier detection methods can be attributed to the difficulty 
of detecting fraudulent behaviour (e.g., abnormal frequency 
of transactions or spending behaviour) when overlapping 
with legitimate behaviour in datasets contaminated with 
outliers and noise. Moreover, several other challenges have 
been identified that make it the difficult to detect outliers in 
the financial domain. First, efficient general purpose outlier 
detection methods are lacking because an outlier detection 
method in one fraud domain may not be appropriate for other 
scenarios, as legitimate and fraudulent behaviour is differ-
ent from domain to domain (Ahmed et al., 2016). Second, 
unsupervised learning is preferred as sufficient labelled data 
for building models are rarely available. Third, legitimate 
behaviour may change over time, and fraudsters try to make 
their activities look legitimate. To take advantages of both 
supervised machine learning and outlier detection methods, 
for the first time, we propose a semi-supervised ensemble 
fraud detection model combining unsupervised outlier 
detection and supervised XGBoost methods that exploit all 
transactions contained in a large, highly imbalanced mobile 
payment transaction dataset.

Finally, financial implications of fraud detection methods 
in mobile payment transactions have also been neglected 
in earlier research. Therefore, our third contribution is to 
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propose a novel performance measure of cost savings that 
takes into account the financial implications of false positive 
and false negative rates of fraud detection systems. Using the 
PaySim dataset, our findings provide evidence for the effec-
tiveness of both XGBoost leveraged by an under-sampling 
class-balancing procedure and extreme gradient boosting 
outlier detection (XGBOD), thus providing important tools 
to support operation and management of mobile payment 
services.

In summary, the contributions of this study are threefold: 

1.	 Developing a novel fraud detection framework for 
mobile payment systems by integrating the XGBoost 
method with class-balancing adjustments and unsuper-
vised outlier detection methods, making it suitable for 
detecting fraud in a typical class-imbalanced mobile 
payment scenario.

2.	 Proposing a novel cost savings measure to evaluate the 
performance of mobile payment fraud detection sys-
tems. Unlike the traditional performance measures, the 
proposed measure considers both the cost savings from 
the correct detection of fraudulent transactions and the 
decrease in the margin for the transactions incorrectly 
identified as fraudulent.

3.	 Using the benchmark PaySim dataset of more than 6 
million mobile payment transactions, we demonstrate 
that the proposed fraud detection framework not only 
outperforms state-of-the-art fraud detection methods in 
terms of detection accuracy but also generates substan-
tial financial savings to the providers of mobile payment 
systems.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on fraud detection in mobile 
payment transactions with respect to data sources, methods 
used and performance achieved in earlier studies. Section 3 
outlines the proposed fraud detection framework. Section 4 
provides the results of the evaluation on the PaySim data-
set, robustness check, and financial implications. Section 5 
concludes with providing some possible directions for future 
research.

2 � Fraud Detection in Mobile Payment 
Systems – Literature Review

A considerable amount of literature has been published on 
financial fraud detection, see West and Bhattacharya (2016) 
for a review and Hajek and Henriques (2017) for a com-
prehensive evaluation of financial fraud detection methods. 
Risk factors of financial fraud were investigated, indicating 
that pressure / incentive to commit fraud is the most impor-
tant risk factor (Huang et al., 2017). Related studies can be 

broadly categorized according to the financial fraud type as 
follows (Onwubiko, 2020): (1) account takeover fraud, (2) 
payment fraud, and (3) application fraud. Onwubiko (2020) 
also identified four main fraud channels, namely physical, 
web, telephony, and mobile. Frauds in mobile payment 
transactions have increasingly been recognized as a major 
concern in finance due to recent developments in mobile 
payment services (Chen & Sivakumar, 2021). Therefore, 
security requirements must be met to address security issues 
related to mobile payment transactions, such as mobile mal-
ware and SMS-based attacks (Kang, 2018). Heterogeneous 
software and hardware mobile platforms make the security 
problems more challenging (Li & Clark, 2013).

Regarding the data used in previous studies and summa-
rized in Table 1, the lack of real-world datasets has been 
identified as a major problem in the application domain. 
Therefore, most earlier research tended to generate simu-
lated synthetic data based on features captured from real-
world fraud and legitimate transactions. To do so, Rieke 
et al. (2013) extracted payment laundering patterns from 
real-world events. However, the number of instances was 
insufficient for efficient fraud detection, as indicated by rela-
tively low false negative (legitimate) rates in early studies 
(Coppolino et al., 2015; Rieke et al., 2013). Considerable 
progress has been made by introducing the PaySim financial 
simulator (Lopez-Rojas et al., 2016, 2018) that resembles 
normal mobile transactions and injects fraudulent behav-
iour to produce a larger number of financial frauds. Agent-
based simulations and statistical analysis confirmed that 
the simulated data are as prudent as the original aggregated 
anonymized real data, thus, representing an optimal control 
environment for fraud detection in mobile payment trans-
actions. By leveraging the PaySim data, Lopez-Rojas and 
Barneaud (2019) demonstrated their advantages over the 
relatively small real-world dataset. In addition, the simulated 
data retained the transactions and causal dynamics of the 
original data. It should be however noted that by preserv-
ing the statistical properties of the real-world data, the high 
class imbalance in favour of legitimate transactions is also 
maintained in the simulated dataset.

Traditional machine learning methods with supervised or 
unsupervised learning are not effective in handling extreme 
class imbalance in the data. Although a relatively high over-
all accuracy was reported in several studies, these methods 
performed well only in terms of majority (legitimate) class 
accuracy (Choi & Lee, 2017, 2018; Du et al., 2018; Zhou 
et al., 2018). This holds also for more recent deep learning 
models, such as deep belief networks (Xenopoulos, 2017) 
and restricted Boltzman machines (Mubalaike & Adali, 
2018). To overcome this major limitation, class imbalance 
was first approached by using under-sampling methods and 
then machine learning methods were trained on the balanced 
dataset (Pambudi et al., 2019). Similarly, Xenopoulos (2017) 
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used under-sampling to produce balanced bootstraps for 
ensemble learning, and Misra et al. (2020) and Schlör et al. 
(2021) applied it to generate balanced training data for deep 
learning-based detection models. The main drawback of the 
under-sampling approach is that potentially useful instances 
are often excluded from the training data, which can sig-
nificantly degrade the detection accuracy. Alternatively, 
isolation-based approaches were used to approximate the 
data distribution and build a generative model using mixture 
components. This outlier detection method was successfully 
applied to fraud detection by Buschjäger et al. (2021).

However, a comprehensive evaluation of state-of-the-art 
machine learning-based approaches exploiting under-sam-
pling methods for handling class imbalance problem, is lack-
ing in the literature. Hybrid semi-supervised methods taking 
advantage of supervised learning and unsupervised outlier 
detection methods have also been overlooked. Finally, only 
standard performance measures have been used to evaluate 
fraud detection performance in mobile payment systems, 
thus neglecting the financial implications of fraud detection.

3 � Fraud Detection Framework

The proposed framework for fraud detection in mobile payment 
systems is presented in Fig. 1. The proposed fraud detection mod-
els are aimed to take advantage of XGBoost while overcoming 

the problem of extremely imbalanced classes in mobile payment 
transaction data. We will demonstrate that this approach is not only 
more accurate than supervised machine learning and outlier detec-
tion methods used in existing studies but that our approach is also 
more profitable in terms of the proposed cost savings measure.

3.1 � Proposed Fraud Detection Models

This section outlines two fraud detection models proposed in 
this study. First, the eXtreme Gradient boosting (XGBoost) 
method, augmented with random under-sampling, is intro-
duced to leverage both the supervised learning capability and 
robustness of XGBoost, a state-of-the-art machine learning 
method, and the data sampling component to overcome the 
class imbalance problem inherent in mobile payment trans-
action data. The second model exploits the extreme gradi-
ent boosting outlier detection (XGBOD) method, a semi-
supervised algorithm that improves the performance of the 
XGBoost method on highly imbalanced mobile payment 
transaction data by introducing outlier scores obtained from 
multiple unsupervised outlier detection methods.

3.1.1 � Extreme Gradient Boosting with Random 
Under‑Sampling

The proposed RUS+XGBoost integrates the random under-
sampling (RUS) method with XGBoost, as depicted in 

Table 1   Summary of data and methods used in previous studies

Legend: Acc – accuracy, AUC​ – area under ROC curve, DT – decision tree, EM – expectation-maximization, F1 – F1-score (average of precision 
and recall), FNR – false negative (legitimate) rate, GB – gradient boosting, LR – logistic regression, MLP – multilayer perceptron, NB – Naïve 
Bayes, PNN – probabilistic neural network, RF – random forest, SVM – support vector machine, XGBOD – extreme gradient boosting outlier 
detection, and XGBoost – eXtreme Gradient boosting

Study Data (# fraud / legitimate) Method Performance

Rieke et al. (2013) synthetic logs (20/5,297) predictive security analyser FNR=0.550
Coppolino et al. (2015) synthetic logs Dempster-Shafer theory FNR=0.240
Xenopoulos (2017) PaySim (492/284,315) ensemble of deep belief networks Acc=89.05, AUC​=0.961
Choi and Lee (2017; 2018) Korean payment data (2,402/274,670) unsupervised (EM, K-means, 

FarthestFirst, X-means, MakeDen-
sity), supervised (NB, SVM, LR, 
OneR, C4.5, RF)

Acc=99.97

Mubalaike and Adali (2018) PaySim (8,213/6M) restricted Boltzman machines Acc=91.53
Du et al. (2018) PaySim (8,213/6M) SVM with LogDet regularization Acc=97.57, AUC​=0.978
Zhou et al. (2018) Chinese bankcard enrolment (5,753/∼

52M)
GB DT, LR, RF, rule-based expert Precision=50.83, Recall=0.25

Pambudi et al. (2019) PaySim (4,093/246,033) RUS+SVM F1=0.900, AUC​=0.880
Misra et al. (2020) PaySim (492/284,315) Autoencoder+MLP Acc=0.999, F1=0.827
Mendelson and Lerner (2020) PaySim (8,213/6M) cluster drift detection AUC​=0.898
Turner et al. (2021) Bitcoin blockchain transactions DeepWalk network analysis −
Schlör et al. (2021) PaySim (8,213/6M) deep MLP with ReLU and iNALU F1=0.880, AUC​=0.960
Buschjager et al. (2021) PaySim (269/572K) generalized Isolation Forest AUC​=0.821
This study PaySim (8,213/6M) RUS+XGBoost, XGBOD
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Fig. 2. The RUS component is first used to generate bal-
anced training samples, and XGBoost then generates addi-
tive models to produce the final prediction on whether the 
mobile payment transaction is fraudulent or not.

Under‑Sampling for Handling Class Imbalance Problem  The 
extremely high imbalance between legitimate and fraud 
classes makes detecting financial fraud a challenge (Du 
et al., 2018). Considering the importance of class imbalance 
in financial fraud detection, numerous methods have been 
used to improve the classification performance of supervised 
learning methods. In the related literature (Pambudi et al., 
2019), data-level solutions have been particularly successful 
because they allow to address the imbalance problem before 
training machine learning methods. In addition, data-level 
methods integrated into classifier ensembles appear to be 
particularly effective (Galar et al., 2012). From the data-level 
methods, over-sampling methods create artificial instances 
in the minority class to balance the training data. However, 
this can lead to problems of overfitting and overgeneraliza-
tion as instances of the majority class are ignored. Moreover, 
given the gradual increase in data on financial fraud, under-
sampling methods should be a better choice than their over-
sampling counterpart.

The RUS method used in this study enables controlling 
for the number of samples selected from the original data. 
RUS is a non-heuristic method that randomly selects a data 
subset from the majority class, which is computationally 

effective and enables sampling heterogeneous data (Haixi-
ang et al., 2017).

Extreme Gradient Boosting  XGBoost is a computationally 
efficient and scalable implementation of gradient boosted 
decision trees that build additive models in a stepwise fash-
ion. The overall error is minimized incrementally by intro-
ducing additive models based on the errors obtained in the 
previous steps. This results in an ensemble of base learners 
with better prediction ability than the individual classifiers. 
This is achieved by gradually improving the accuracy, low 
tree depth and equal contribution of the base learners to 
the final combined model. To further improve robustness to 
noise and overfitting, gradient boosting was augmented with 
a random sampling scheme (stochastic gradient boosting). 
XGBoost is an enhanced implementation with a more regu-
larized model to control overfitting. The objective function 
of XGBoost to be minimized is given as follows (Chen & 
Guestrin, 2016):

where yi is the target value of the i-th instance, ŷ(t)
i

 is its 
predicted value at the t-th iteration, ft(xi) is the additive 
decision tree model greedily added to improve the model 
performance, and Ω(ft) is a regularization term penalizing 
the model complexity. The goal of this regularization proce-
dure is to compress the weights for many features to zero to 

(1)obj(t) =

n
∑

i=1

(yi −
(

ŷ
(t−1)

i
+ ft(xi))

)2

+

T
∑

t=1

Ω(ft),

Fig. 1   Fraud detection framework
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perform feature selection, which is advantageous when deal-
ing with high-dimensional data. Therefore, XGBoost is cur-
rently one of the best performing classifiers across domains 
and has been successfully applied to insurance fraud detec-
tion (Dhieb et al., 2019).

3.1.2 � Extreme Gradient Boosting Outlier Detection Model

The XGBOD method (Zhao & Hryniewicki, 2018) is a semi-
supervised ensemble algorithm integrating multiple unsu-
pervised outlier detection algorithms and an XGBoost clas-
sifier, as illustrated in Fig. 3. First, unsupervised methods are 
used to obtain data representations in terms of transformed 
outlier scores (TOS). Second, a feature selection method is 
used to reduce the TOS feature space so that only relevant 
TOS are retained. Then, the outlier score matrix is combined 
with the original features to produce a combined feature 
space. An improved feature space is thus generated, and the 
XGBoost classifier is used in this feature space to produce 
the final outlier scores for each mobile payment transac-
tion. The advantage of this approach is its good predictive 

Fig. 2   Flowchart of RUS-
XGBoost for fraud detection

Fig. 3   Flowchart of XGBOD for fraud detection
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ability, which is due to its robustness to overfitting and data 
imbalance.

In the proposed XGBOD-based fraud detection model, a 
variety of unsupervised outlier detection methods (presented 
in Section 3.2.2) are used to produce the TOS features. To 
maintain the balance between their diversity and accuracy, 
the balance selection algorithm (Zhao & Hryniewicki, 2018) 
is used to perform TOS selection. This algorithm applies a 
discounted accuracy function Ψ(TOSi) to pick the subset of 
p most relevant TOS. The function is defined as follows:

where AUCi is the AUC​ performance of the i-th outlier 
detection method, and �(TOSi, TOSj) denotes the Pearson 
correlation coefficient between a pair of TOS.

3.2 � Machine Learning Methods for Comparative 
Evaluation

In this section, we present the machine learning methods 
used for comparative evaluation in detecting fraud in mobile 
payment transactions. The methods can be broadly divided 
into (1) machine learning methods with supervised learning 
that address the class imbalance problem typical for financial 
fraud detection data, and (2) outlier detection methods.

3.2.1 � Supervised Learning Methods for Imbalanced Data

k‑nearest Neighbour Classifier  The k-nearest neighbour 
(k-NN) method is an instance-based non-parametric clas-
sifier that uses training instances for comparison purpose. 
An instance is classified considering its k most-similar 
instances (typically in terms of Euclidean distance) using 
a majority vote. This simple approach proved to be accu-
rate in a comparative analysis of machine learning meth-
ods for highly imbalanced credit card fraud detection 
(Awoyemi et al., 2017). In financial fraud detection, it 
is assumed that fraud instances are far from the samples 
of the legitimate class. Therefore, k-NN can be effec-
tively used even in unsupervised outlier detection mode 
(Ramaswamy et al., 2000).

Support Vector Machine  SVM is a particularly effective 
classifier for financial fraud detection due to its capacity to 
deal with high-dimensional data (Du et al., 2018; Pambudi 
et al., 2019; Seera et al., 2021). The SVM algorithm aims to 
find the optimal separating hyperplane that maximizes the 
margin between instances from different classes. The deci-
sion boundary is represented by a subset of the data known 
as support vectors. Finding the parameters of the hyperplane 
is an optimization problem that takes into consideration 

(2)Ψ(TOSi) =
AUCi

∑k

i,j=1
∣ �(TOSi, TOSj) ∣

,

both, minimizing the training error and maximizing the 
margin. To handle nonlinear relationships in the data, ker-
nel functions (e.g., linear, polynomial or radial basis func-
tions) are employed to map the classification problem from 
the original feature space to a new feature space of higher 
dimension where linear separation is possible.

Random Forest  Random forest (RF) integrates multiple 
decision tree predictors trained independently on different 
data samples. This allows to generate a number of trees, 
ensuring that the generalization error converges to a certain 
limit. Another major advantage of RF is its non-differenti-
able decision boundary. In addition, random feature selec-
tion is used to split the nodes in each tree, making the RF 
classifier more robust to noise. The application of RF in 
financial fraud detection is particularly effective when the 
class distribution is imbalanced because its hierarchical 
structure enables learning patterns from both classes (Nami 
& Shajari, 2018). These advantages explain the good per-
formance of RF on financial fraud detection tasks (Zhou 
et al., 2018).

3.2.2 � Outlier Detection Methods

Outlier detection is typically conducted using unsuper-
vised machine learning methods. The methods presented 
in this section are trained to represent the legitimate data 
using clusters of similar data observations. Then, an unseen 
instance is assigned a score that is compared to a threshold 
representing the decision boundary separating legitimate 
instances from outliers.

The evaluation conducted in this study contains four types 
of outlier detection methods, namely (1) proximity-based 
methods, (2) linear model-based methods, (3) ensembling 
methods, and (4) neural network-based methods.

Proximity‑Based Methods  To detect outliers, proximity-
based methods investigate the neighbourhood of each data 
instance. For example, the local outlier factor (LOF) method 
(Breunig et al., 2000) uses the Euclidean distance between 
the data instance and its closest neighbour to obtain an out-
lier score. In the k-NN method (KNN) (Ramaswamy et al., 
2000), a partition-based algorithm is first used to identify 
candidate partitions containing outliers, and then the dis-
tances of instances from these partitions are calculated to 
detect outliers. An important advantage of proximity-based 
methods is their independence of the data distribution. In 
other words, no a priori knowledge about the data distribu-
tion is required. However, these methods usually do not scale 
well for high-dimensional data. To reduce the sensitivity of 
LOF to the curse of dimensionality, the cluster-based local 
outlier factor (CBLOF) method (He et al., 2003) replaces 
closest neighbours with closest clusters, and the angle-based 
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outlier detection (ABOD) method (Kriegel et al., 2008) 
replaces distances with the angular radius and variance of 
each data vector. The histogram-based outlier detection 
(HBOS) method assumes independence of features to score 
instances in linear time and is thus computationally more 
efficient compared to nearest-neighbour-based methods. 
However, HBOS fails in detecting local outliers because the 
density estimation produced by histograms does not allow 
modelling local outliers.

Linear Model‑Based Methods  Linear model-based meth-
ods rely on the construction of decision boundary sep-
arating instances in the legitimate class from the rest 
of the input data space. The one-class SVM (OCSVM) 
method (Schölkopf et al., 2000) constructs a separating 
hyperplane in high-dimensional space by minimizing the 
structural risk to capture regions of data belonging to 
the legitimate class. To prevent overfitting, this method 
allows a certain percentage of data instances (regulariza-
tion parameter) to fall outside the separation boundary. 
The minimum covariance determinant (MCD) method 
(Hardin & Rocke, 2004) combine a multivariate loca-
tion and scale estimator with a robust clustering algo-
rithm so that the determinant of the covariance matrix is 
minimized for each cluster. This method is first trained 
to fit a minimum covariance determinant model and 
then the outlier score is calculated using the Mahalano-
bis distance. However, problems can arise when clusters 
overlap significantly, leading to poor convergence of the 
algorithm.

Ensembling Methods  Isolation Forest (Liu et al., 2008) 
aims to separate outliers from the rest of the data samples. 
To calculate an isolation score for the data instances, ran-
dom forest is employed. The method assumes that outliers 
are susceptible to isolation and, therefore, can be isolated 
closer to the root of the tree. Specifically, the average path 
length from the root of the trees can be used obtain the 
isolation score. Isolation trees are thus able to build sub-
models on different data samples while maintaining low 
computational complexity and the ability to scale to handle 
large volumes of data and high-dimensional problems. Sim-
ilarly, lightweight on-line detector of anomalies (LODA) 
comprises a collection of weak learners represented by 
one-dimensional histograms approximating probabilities 
of random data projections. The use of sparse projections 
makes LODA robust to both the large number of samples 
and missing data, allowing the detection of anomalous sam-
ples in real-time (Pevny, 2016).

Neural Network‑Based Methods  Neural network-based 
methods utilize feature learning to reduce dimensionality. 
An autoencoder is an unsupervised neural network capable 

of nonlinear dimensionality reduction and reproducing 
input data vectors. Sakurada and Yairi (2014) showed that 
autoencoder (AE) can be successfully applied to outlier 
detection. To detect outliers in financial fraud, AEs can be 
trained to learn legitimate behaviour and compute a recon-
struction error representing the outlier score (Sakurada & 
Yairi, 2014). To achieve robustness in learning disentan-
gled representations, variational autoencoder (VAE) was 
proposed that utilizes both the joint data distribution and 
their latent generative factors (Burgess et al., 2018). VAE 
represents a probabilistic graphical model whose posterior 
distribution is estimated using a neural network. The out-
lier score of VAE is calculated as the reconstruction prob-
ability. Recently, generative adversial networks (GANs) 
have been deployed to unsupervised outlier detection. 
Specifically, multi-objective generative adversarial active 
learning (MO-GAAL) uses GANs to sample informative 
potential outliers following a mini-max game between 
a discriminator and a generator (Liu et al., 2019). Thus, 
GANs assist the discriminative algorithm in finding a 
boundary that can effectively separate fraudulent outliers 
from legitimate normal data. This has been exploited in 
several studies on financial fraud (Sethia et al., 2018; Dele-
court & Guo, 2019).

3.3 � Performance Evaluation

In many related studies (Du et al., 2018; Misra et al., 2020; 
Mubalaike & Adali, 2018), the ratio of correctly classified 
transactions to the total number of transactions (i.e., accu-
racy) has been used as the evaluation measure. However, in 
the scenario of class-imbalanced data, this measure fails to 
detect well the model performance for the minority (fraud) 
class.

As noted in previous research (Lopez-Rojas & Barneaud, 
2019), an inherent problem in detecting financial fraud that 
needs to be addressed is the unknown distribution and 
impact of all fraudulent transactions. In the absence of an 
adequate measure of fraud detection performance, exist-
ing fraud detection approaches rely on traditional measures 
of classification performance. The most desirable perfor-
mance measure is the ability to correctly identify fraudu-
lent transactions (true positive rate). In addition, minimiz-
ing false positive and false negative transaction rates (see 
confusion matrix in Table 2) is also a desirable quality of 
fraud detection systems, especially in a changing fraudulent 

Table 2   Confusion matrix for fraud detection

Prediction/Target Positive Negative

Positive (fraudulent transaction) TP FP
Negative (legitimate transaction) FN TN
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environment. Here, we use these standard classification 
measures to evaluate the performance of fraud detection 
models. The true positive rate (Recall) is defined as the 
number of transactions correctly identified as fraudulent as 
a percentage of all fraudulent transactions as follows:

where TP and FN are the numbers of true positive and false 
negative transactions. The false positive rate (FPR) is the 
number of transactions incorrectly identified as fraudulent 
as a percentage of all legitimate transactions:

where FP and TN are the numbers of false positive and true 
negative transactions. The false negative rate (FNR) is the 
number of transactions incorrectly identified as legitimate 
as a percentage of all fraudulent transactions:

In reality, financial institutions try to reduce the risk of 
fraud while trying to comply with regulations, but Recall is 
difficult to estimate in the real world because FN is unknown 
(hidden fraud). Therefore, financial institutions can only 
calculate Precision (i.e., the number of transactions cor-
rectly identified as fraudulent as a percentage of all transac-
tions that are expected to be fraudulent) (Lopez-Rojas & 
Barneaud, 2019):

Previous studies have also considered the F1 measure (Pam-
budi et al., 2019; Schlör et al. 2021), defined as the harmonic 
mean of precision and recall:

The area under the receiver operating characteristic curve 
(AUC​) has also been used as a more appropriate measure 
for fraud detection in mobile payment transactions due to 
its robustness to imbalanced data (Buschjäger et al., 2021; 
Mendelson & Lerner, 2020). AUC​ can be defined as the 
probability that a fraud detection model ranks a randomly 
selected fraudulent transaction higher than a randomly 
selected legitimate transaction, as follows:

where T is the cut-off point.

(3)Recall =
TP

TP + FN
,

(4)FPR =

FP

FP + TN
,

(5)FNR =

FN

TP + FN
= 1 − Recall.

(6)Precision =

TP

TP + FP
.

(7)F1 = 2 ×
Precision × Recall

Precision + Recall
.

(8)AUC = ∫
1

0

Recall(T) ×
d

dT
FPR(T)dT ,

3.4 � Cost Savings Measure

In addition to the traditional performance measures 
above, here we propose a measure of cost savings measure 
to account for the financial implications of fraud detec-
tion models. The proposed cost savings measure was 
inspired by profit-based loan default prediction systems, 
considering potential returns and losses (Papouskova & 
Hajek, 2019; Ye et al., 2018). On the one hand, correct 
detection of a fraudulent transaction leads to the follow-
ing cost savings:

where CSTP are cost savings from TP transactions, TPi 
is the i-th transaction of TP, Ai is the amount of the i-th 
transaction, TPB is the number of TP transactions detected 
by the reference fraud detection system, and AF is the 
average amount of fraudulent transactions. We also took 
into account that fraud now costs financial institutions 
$3.36 for every dollar lost to fraud and that the current 
average percentage of successful fraud attempts is 48% 
(i.e., TPB=0.52).1

On the other hand, mobile transactions generate a revenue 
margin of 3.5% on average (Bansal et al., 2019). Therefore, 
we also considered the cost of FP transactions, estimated as 
the decrease in the margin for these transactions:

where CostFP is cost of FP transactions, FPj is the j-th FP 
transaction, AL is the average amount of legitimate transac-
tions, and ATj is the amount of the j-th transaction. The total 
cost savings CStotal is then calculated as:

Note that the proposed measure is expressed in financial 
terms and is instance-dependent (with respect to the amount 
of each transaction), allowing for a direct interpretation by 
financial institutions.

4 � Experimental Results and Analysis

4.1 � Data

Consistent with most previous studies (Buschjäger et al., 
2021; Du et al., 2018; Xenopoulos, 2017), we used the 

(9)CSTP =

n
∑

i=1

(TPi × Ai × 3.36) − (TPB × AF × 3.36),

(10)CostFP = (TN × AL × 0.035) −

m
∑

j=1

(FPj × ATj × 0.035),

(11)CStotal = CSTP − CostFP.

1  https://​chain​store​age.​com/​study-​fraud-​costs-​incre​ased-​73-​year-​
over-​year-​us-​retai​lers

https://chainstoreage.com/study-fraud-costs-increased-73-year-over-year-us-retailers
https://chainstoreage.com/study-fraud-costs-increased-73-year-over-year-us-retailers
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PaySim dataset2 in this study. The main objective of the 
simulations performed by Lopez-Rojas and his research 
team (Lopez-Rojas et  al., 2016, 2018; Lopez-Rojas & 
Barneaud, 2019) was to replicate typical fraud scenarios 
that have similar statistical characteristics to the original 
mobile payment transaction data. To this end, different types 
of fraudulent transactions were injected, including cash-in 
(increasing account balance), cash-out (withdrawing cash), 
payment (paying for goods or services), transfer (to another 
user) and debit (sending money to a bank account). PaySim 
simulated 743 time steps, representing thirty days of real-
time data. To introduce fraudulent behaviour into the sys-
tem, 1,000 fraudsters were included with a 3% probability 
of committing fraud at any time step. A total of 6,362,620 
mobile transactions were involved in the dataset, of which 
8,213 were fraudulent. Table 3 provides descriptive statistics 
of the dataset, and Fig. 4 shows the numbers and amounts of 
transactions in time steps.

We opted for this dataset for several reasons (Lopez-Rojas 
& Barneaud, 2019). First, real-time historical data do not 
include enough fraudulent transactions. Therefore, some pre-
vious studies have considered all abnormal transactions to 
be fraudulent (Choi & Lee, 2017). Second, privacy protec-
tions prevent companies from making datasets public. Third, 
fraudulent behaviour is adaptive, making it difficult to cre-
ate sufficiently diverse real-world fraud data. In addition, a 
similar approach based on typical real attack scenarios was 
taken in studies related to online banking fraud detection 
(Carminati et al., 2015).

4.2 � Experimental Setup

For data partitioning, we randomly created training and 
testing data with a 3:1 ratio (75% training data, 25% 

testing data). To ensure reliable performance evaluation, we 
repeated this process five times. Since the performance of 
the fraud detection methods strongly relies on their hyper-
parameter selection, we then conducted their optimal selec-
tion using 5-fold cross-validation on the training data (for 
the list of hyperparameters and their values, see Appendix 
Table 9). Then, we performed fraud detection in mobile 
payment transactions using the above supervised learning 
and outlier detection methods. For experiments, we used the 
following implementations: (1) supervised learning meth-
ods in the Python library Scikit-Learn 0.23.0, (2) the RUS 
algorithm available in the library Imbalanced-Learn 0.6.2, 
and (3) the outlier detection methods available in the library 
PyOD (Zhao et al., 2009). The performance of the methods 
was evaluated using the measures defined in the following 
subsection.

4.3 � Empirical Results

We performed empirical experiments using the PaySim 
dataset. This section consists of four subsections. First, we 
investigate the performance of supervised learning methods 
and the effect of random under-sampling on their effective-
ness. Second, the performance of outlier detection methods 
is evaluated. Third, the financial consequences of the fraud 
detection models are evaluated. Finally, the robustness of the 
models is tested using a credit card fraud dataset.

4.3.1 � Supervised Learning Methods

In the first set of experiments, we compared the perfor-
mance of four supervised learning methods (XGBoost, k-
NN, SVM, and RF), without using RUS, to obtain baseline 
performance. Table 4 shows the testing results of overall 
accuracy Acc, AUC​, F1, Precision and Recall. The values of 
performance measures were obtained as the average of five 
experiments. For each performance measure, the number in 
bold represents the best value among the tested methods. 
The non-parametric Wilcoxon test was performed on the 
performance measure values obtained in the five experi-
ments to statistically compare the performance between the 
best performing method and the remaining methods. Signifi-
cantly similar results at the 5% level with respect to AUC​ and 
F1 are marked with an asterisk.

In terms of accuracy, all the supervised learning methods 
used performed well. However, as noted above, the extreme 
class imbalance suggests that this evaluation measure is not as 
relevant in this case. As for the AUC​ measure, XGBoost was 
superior to the other methods, indicating a well-balanced perfor-
mance for both legitimate and fraud classes. The good balance 
between Precision and Recall caused XGBoost to achieve the 
best results also in terms of F1 measure. By contrast, SVM and 
k-NN performed well only with respect to Precision and Recall, 

Table 3   Attributes in the PaySim dataset

Attribute Mean value / Range

Step 1-743
Type of transaction cash-out (35%), cash-in (34%), trans-

fer and debit (31%)
Amount of transaction 180K
Customer name 6.35M unique values
Initial balance 834K
New balance 855K
Recipient name 2.72M unique values
Initial balance of the recipient 1.1M
New balance of the recipient 1.22M
Fraud 0 (legitimate 6.36M) / 1 (fraud 8.2K)

2  https://​www.​kaggle.​com/​ealaxi/​paysi​m1

https://www.kaggle.com/ealaxi/paysim1
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respectively, making them unsuitable methods for fraud detection 
in mobile payment transactions. Overall, these results indicate 

that only XGBoost without class-balancing adjustment is suitable 
for detecting fraud in such a class-imbalanced scenario.

Fig. 4   Visualization of amounts and counts of transactions in the PaySim dataset

Table 4   Fraud detection 
performance of supervised 
learning methods

The best results are in bold, * statistically similar at 5% as the best performer in bold. The experiments 
were performed on Intel®  Core™ i5-8400 CPU @ 2.8GHz, 32 GB RAM with six cores on a Windows 10 
oper. system in the Python libraries Scikit-Learn 0.23.0 and Imbalanced-Learn 0.6.2

Method AUC​ F1 Acc Precision Recall Execution time [s]

k-NN 0.9313 0.1588 0.9881 0.0873 0.8744 4,581.4
SVM 0.6543 0.4655 0.9991 0.9474 0.3086 12,082.9
RF 0.8961 0.8394* 0.9996 0.9146 0.7756 1,196.2
XGBoost 0.9350 0.8410* 0.9998 0.8794 0.8059 207.0
RUS+k-NN 0.8996 0.0405 0.9475 0.0207 0.8516 145.3
RUS+SVM 0.8344 0.0321 0.9431 0.0164 0.7255 1,041.5
RUS+RF 0.9933* 0.2305 0.9914 0.1303 0.9947 12.6
RUS+XGBoost 0.9955* 0.2812 0.9934 0.1637 0.9976 2.4
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Then, we investigated the effect of the RUS under-
sampling procedure on the performance of the supervised 
learning methods. On the one hand, Table 4 shows that 
RUS greatly improved the values of AUC​ for SVM, RF 
and XGBoost. On the other hand, there was a considerable 
deterioration in F1, which can be attributed to the lower 
Precision achieved at the cost of higher Recall. In other 
words, RUS caused almost all fraudulent transactions to be 
detected, but this was accompanied by a substantial increase 
in the number of FP transactions. This resulted in a bias 
for the minority class while reducing the accuracy for the 
majority class. It is worth noting that we also experimented 
with other heuristic-based under-sampling methods, such 
as edited neatest neighbour and Tomek links, to address the 
class imbalance problem but without improvement in detec-
tion performance. Finally, it should be noted that the execu-
tion time (training time + testing time) was substantially 
reduced by using RUS. For example, RUS+XGBoost was 
computationally most efficient with 2.38 seconds compared 
to 207.02 seconds required for XGBoost without using RUS.

4.3.2 � Outlier Detection Methods

In the seconds run of experiments, the performance of 
XGBOD was evaluated compared with other outlier detec-
tion methods. Table 5 shows that XGBOD significantly out-
performed the remaining methods in terms of AUC​ and F1. 
In addition, XGBOD was also dominant with respect to both 
Precision and Recall, indicating excellent performance on 
both classes.

These results can be explained by the semi-supervised 
learning approach used in the XGBOD method. This is 
because, unlike other outlier detection methods, XGBOD 
leverages the labels assigned to mobile transactions. In 

addition, the transactions contained in the majority class 
of legitimate transactions are fully utilized by the multiple 
unsupervised outlier detection methods that produce outlier 
scores in XGBOD. The XGBoost algorithm applied in the 
improved XGBOD feature space exhibits good robustness to 
overfitting and data imbalance, and outperforms the super-
vised learning methods reported in Table 4 in terms of AUC​ 
and F1. However, it should be admitted that the drawback of 
XGBOD is the longer execution time, on average 4,256.25 
seconds.

4.4 � Financial Impact of Fraud Detection

To investigate the financial consequences of the evaluated 
fraud detection systems, we used the performance measures 
defined in Eqs. 9-11. Table 6 shows the average financial 
performance of all methods in terms of cost savings from TP 
transactions, cost of FP transactions and total cost savings. 
To calculate these results, we used the average amounts of 
fraudulent and legitimate transactions in the data, i.e., AF = 
1,468,000 and AL = 178,200.

In general, supervised learning methods outperformed 
outlier detection methods in terms of overall cost savings, 
which can be attributed to the high Recall values of super-
vised learning methods. Note that cost savings from TP 
transactions were considered to have a stronger financial 
impact on total cost savings compared to FP transactions. 
In contrast, XGBOD delivered the lowest costs associated 
with FP transactions, which is related to its high Precision 
performance. Surprisingly, SVM and unsupervised outlier 
detection methods used in previous studies (Buschjäger 
et al., 2021; Du et al., 2018) did not perform well in terms 
of financial impact and provided negative overall cost sav-
ings due to their low Recall values.

Table 5   Fraud detection 
performance of outlier detection 
methods

The best results are in bold, # The experiments were performed on GPU NVIDIA GeForce GTX 1060 
6GB, 1280 cores on a Windows 10 oper. system in the Python library PyOD

Method AUC​ F1 Acc Precision Recall Execution time [s]

ABOD 0.8353 0.0680 0.9953 0.0675 0.0685 2,646.5
CBLOF 0.8593 0.0822 0.9954 0.0829 0.0822 41.3
HBOS 0.7731 0.0077 0.9951 0.0078 0.0076 4.1
LODA 0.6818 0.1060 0.9954 0.1026 0.1096 14.8
Isolation Forest 0.8358 0.0189 0.9964 0.0307 0.0137 189.9
KNN 0.8618 0.1260 0.9957 0.1288 0.1233 1,948.5
MCD 0.7705 0.1084 0.9956 0.1087 0.1081 127.4
OCSVM 0.6732 0.0273 0.9951 0.0272 0.0274 802.9
AE# 0.8050 0.0869 0.9954 0.0870 0.0868 931.1
VAE# 0.8050 0.0869 0.9954 0.0870 0.0868 2,922.9
MO-GAAL 0.9071 0.6059 0.9980 0.5902 0.6225 13,184.4
XGBOD 0.9958 0.8737 0.9994 0.9942 0.7793 4,256.3
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4.5 � Comparison with State‑of‑the‑art Methods

To further show the effectiveness of the proposed fraud 
detection model, the obtained AUC​ was compared with 
that of previous studies that examined the same dataset 
(Table 7). The best AUC​ performance thus far reported was 
achieved using SVM with LogDet regularization (Du et al., 
2018). Our result in Table 4 obtained for SVM confirm that 

equipping SVM with LogDet regularization improves the 
AUC​ performance. Indeed, the traditional SVM method 
is reportedly sensitive to outliers and noisy data (Shajalal 
et al., 2021). Table 7 also shows that deep neural networks 
performed well in previous studies (Schlör et al. 2021; Xen-
opoulos, 2017). However, their performance is limited by 
the relatively low number of fraudulent transactions in the 
dataset. By contrast, the worst performance was reported for 
the Isolation Forest method (Buschjäger et al., 2021). Note 
that the results for Isolation Forest obtained here (Table 5) 
are consistent with those from Buschjäger et al. (2021). The 
results in Table 7 suggest that the proposed XGBoost-based 
models perform better than those used in previous studies 
in terms of AUC​, which can be attributed to their good scal-
ability and efficient processing of sparse data.

4.6 � Robustness Check on Bank Payment Datasets

To confirm the obtained performance evaluation, we 
checked the robustness of the considered fraud detection 
methods using a bank payment dataset. The BankSim data-
set3 (Lopez-Rojas & Axelsson, 2014) was generated using 
a multi-agent simulation based on a sample of transac-
tional data from a Spanish bank. The dataset was validated 
using statistical techniques and social network analysis of 
customer-merchant relationships, thus approximating key 
features of real bank payment frauds. Each transaction was 
characterized by payment amount (in EUR), customer and 
merchant zip codes, customer gender and age, and merchant 
category (e.g., fashion, technology, transport, and travel). A 
total of 594,643 transaction records were included, of which 
7,200 were fraudulent transaction. The simulation was run 
for 180 steps representing months. Thieves were injected to 
steal or clone an average of three credit cards at each step 
and conduct approximately two fraudulent transactions per 
day. The result of the simulation is depicted in Fig. 5.

The BankSim dataset provides a benchmark for detecting 
fraud in bank payment transactions, as several recent studies 
have shown (Cui et al.. 2021; Vaughan, 2020). As a robust-
ness check, we trained the evaluated models on the BankSim 
dataset using the same experimental setup as for the Pay-
Sim dataset. Note that the sampling process and data col-
lection system was unique and heterogeneous for both data-
set, which allowed us to verify the robustness of the tested 
fraud detection models. The results in Table 8 suggest that 
the under-sampling procedure is not as effective for smaller 
financial fraud datasets, improving the performance of super-
vised learning methods only in terms of AUC​. In contrast, 
the performance of unsupervised outlier detection meth-
ods substantially improved compared to the large PaySim 

Table 6   Financial impact of fraud detection methods

* amounts are given in mil. units of an African currency that could 
not be disclosed by data providers, the best results are in bold

Method CS
TP

* Cost
FP

CS
total

k-NN 3,576.4 120.3 3,456.1
SVM −2,135.4 218.3 −2,135.6
RF 2,575.1 923.1 2,574.2
XGBoost 3,630.7 380.5 3,630.3
RUS+k-NN 3,443.3 519.3 2,924.0
RUS+SVM 2,155.9 561.4 1,594.5
RUS+RF 4,903.3 85.8 4,817.5
RUS+XGBoost 4,932.9 65.9 4,866.9
ABOD −4,556.9 23.5 −4,580.4
CBLOF −4,418.7 22.6 −4,441.3
HBOS −5,171.0 24.2 −5,195.2
LODA −4,142.3 23.8 −4,166.2
Isolation Forest −5,109.6 10.7 −5,120.3
KNN −4,004.2 20.7 −4,024.9
MCD −4,157.7 22.2 −4,179.7
OCSVM −4,971.4 24.3 −4,995.7
AE −4,372.6 22.6 −4,395.3
VAE −4,372.6 22.6 −4,395.3
MO-GAAL 1,031.6 10.7 1,020.9
XGBOD 2,612.9 0.1 2,612.8

Table 7   Comparison of fraud detection performance of the proposed 
XGBoost-based models with the results of previous studies

The best results are in bold

Study Method AUC​

Xenopoulos (2017) ensemble of deep belief 
networks

0.961

Du et al. (2018) SVM with LogDet regulariza-
tion

0.978

Pambudi et al. (2019) RUS+SVM 0.880
Mendelson and Lerner (2020) cluster drift detection 0.898
Schlör et al. (2021) deep MLP with ReLU and 

iNALU
0.960

Buschjager et al. (2021) generalized Isolation Forest 0.821
This study RUS+XGBoost 0.996

XGBOD 0.996

3  https://​www.​kaggle.​com/​ealaxi/​banks​im1

https://www.kaggle.com/ealaxi/banksim1
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dataset, suggesting their poor scalability. Overall, XGBoost 
and XGBOD performed well in terms of both AUC​ and F1 
measures, indicating their good robustness to data size.

4.7 � Discussion

Prior studies (Buschjäger et al., 2021; Pambudi et al., 2019) 
have noted the importance of addressing the problem of 
extreme class imbalance in mobile payment transactions. 
Therefore, our first set of experiments was designed to 
investigate the effect of under-sampling the majority class 
of legitimate transactions on the performance of supervised 
learning methods. Consistent with Pambudi et al. (2019), we 
observed that the detection performance improved for most 
of the machine learning methods, especially for the proposed 
RUS+XGBoost fraud detection model. In contrast to earlier 
findings (Buschjäger et al., 2021), however, the second set 
of experiments did not detect any evidence for the effective-
ness of outlier detection methods. However, when conducted 
in a semi-supervised manner, the proposed XGBOD detec-
tion model was found to be superior even to the supervised 
learning methods. Finally, the financial consequences of the 
fraud detection models were examined to provide guidance 
on how to set up the right performance metrics for fraud 
detection in mobile payment transactions. This experiment 
addressed the need for an adequate measure of fraud detec-
tion performance as raised in recent research (Lopez-Rojas 
& Barneaud, 2019). We found that RUS+XGBoost per-
formed best in terms of cost savings from correctly detecting 
fraudulent transactions, while XGBOD minimized the cost 
of false positive transactions.

Fig. 5   Visualization of amounts and counts of transactions in the BankSim dataset

Table 8   Fraud detection performance on the BankSim dataset

The best results are in bold

Method AUC​ F1 Acc Precision Recall

k-NN 0.9466 0.2029 0.9089 0.1131 0.9851
SVM 0.7723 0.6849 0.9941 0.9208 0.5451
RF 0.8973 0.8145 0.9957 0.8332 0.7966
XGBoost 0.9112 0.8391 0.9963 0.8240 0.8240
RUS+k-NN 0.9454 0.3216 0.9535 0.1941 0.9371
RUS+SVM 0.9433 0.3379 0.9571 0.2065 0.9291
RUS+RF 0.9746 0.4674 0.9738 0.3073 0.9754
RUS+XGBoost 0.9774 0.4898 0.9760 0.3266 0.9789
ABOD 0.9852 0.5039 0.9877 0.5032 0.4995
CBLOF 0.9688 0.6072 0.9902 0.6069 0.6074
HBOS 0.9340 0.1490 0.9787 0.1488 0.1488
LODA 0.7272 0.0743 0.9770 0.0736 0.0736
Isolation Forest 0.9647 0.3932 0.9851 0.3974 0.3867
KNN 0.9894 0.5957 0.9899 0.5956 0.5961
MCD 0.9695 0.6922 0.9923 0.6928 0.6944
OCSVM 0.4431 0.0077 0.9758 0.0075 0.0075
AE 0.9350 0.3861 0.9848 0.3829 0.3813
VAE 0.9351 0.3863 0.9848 0.3829 0.3813
MO-GAAL 0.9367 0.3510 0.9807 0.3029 0.4173
XGBOD 0.9968 0.7893 0.9953 0.8018 0.7084
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Based on the experimental results of this study, we pro-
pose the following suggestions for mobile payment systems.

Firstly, the providers of mobile payment systems should 
pay more attention to recent developments in the machine 
learning research. Specifically, XGBoost enhanced with 
class-balancing or outlier detection methods should be 
applied to effectively handle the extreme class imbalance 
problem in the data and accurately detect fraud in mobile 
payment transactions. RUS+XGBoost is particularly recom-
mended for its low execution time, indicating its capability 
for real-time fraud detection.

Secondly, cost savings and transaction costs should be 
considered when implementing fraud detection systems 
in mobile payment systems. For fraud detection models in 
mobile payment systems, these evaluation metrics are criti-
cal due to the high costs associated with mobile payment 
default. The proposed cost savings measure can be used for 
this purpose as it offers providers appropriate guidance for 
making decisions on the selection cost-effective fraud detec-
tion systems.

The importance of accurate and cost-effective fraud 
detection systems has dramatically increased during the 
COVID-19 pandemic because many emerging and devel-
oping countries used mobile money transfer to provide 
COVID-19 aid (Blumenstock, 2020). Indeed, mobile pay-
ment systems provide a fast and scalable solution while 
complying with social distancing measures, which encour-
aged government-to-person mobile payments. To enable 
sustainable solutions for mobile money transfer, fraud 
detection technologies represent a critical component of 
the frameworks for sustainable government-to-person 
mobile money transfers proposed in response to COVID-
19 (Davidovic et al., 2020).

Finally, our results suggest that unsupervised outlier 
detection methods are not appropriate for fraud detection 
in mobile payment transactions. The current study was 
unable to evaluate the use of the fraud detection system 
in a real environment because the number of labelled 
instances is insufficient in existing real-world data. 
Instead, we experimented with a controlled environment 
with fraudulent behaviour injected into the data to obtain 
a well-performing fraud detection system. However, we 
believe that the accuracy of the proposed fraud detection 
system would not deteriorate in real-world applications 
as the data used in this study are based on the real-world 
anonymized data. To further improve the detection accu-
racy and to assist the providers of mobile payment sys-
tems with the development of fraud detection systems, 
large labelled real-world data should be collected and 
made available to enable effective training of state-of-
the-art supervised learning methods.

5 � Conclusion

In this paper, we have proposed an XGBoost-based fraud 
detection framework while considering the financial impact 
of fraud detection. The findings from this study make sev-
eral noteworthy contributions to the current literature. First, 
the XGBoost model was combined with under-sampling 
to effectively address the problem of extreme class imbal-
ance and avoid overfitting. Second, to fully exploit the large 
amount of underlying data, unsupervised outlier detection 
methods were integrated into the XGBoost-based model. 
The comparison of the XGBoost-based fraud detection 
performance with various state-of-the-art machine learn-
ing methods confirmed that we have found a cutting-edge 
solution for fraud detection in mobile payment systems. 
Our findings also suggest a role for the proposed model in 
promoting cost savings of fraud detection systems. Taken 
together, our results strongly argue against a major role of 
single machine learning methods and unsupervised outlier 
detection methods in fraud detection of mobile payment 
transactions, implying that ensemble XGBoost-based meth-
ods are preferable.

In the future research, ensemble methods combined with 
alternative under-sampling and unsupervised outlier detection 
methods should be further investigated, including automatic 
optimization of outlier detection ensembles (Reunanen et al., 
2020) and the XGBoost method enhanced with weighted and 
focal losses (Wang et al., 2020). Unfortunately, it was not pos-
sible to investigate our model’s robustness against different 
mobile payment transaction data distributions due to privacy 
concerns and other limitations of existing datasets. Therefore, 
further data would be needed to evaluate model robustness, 
including testing the feasibility of transfer learning across mul-
tiple datasets. The proposed fraud detection models should also 
be applied to solving related fraud detection problems, such as 
credit card and loan frauds, which also exhibit class imbalance 
characteristics and large real-world datasets are available for 
these problems (West & Bhattacharya, 2016). Other possible 
application fields of the proposed model include credit scoring 
(default prediction) (Mahbobi et al., 2021), direct marketing 
(Wong et al., 2020), and customer churn prediction (Wong 
et al., 2020). An issue that was not addressed in this study 
was the interpretability property of the fraud detection models. 
Therefore, further research might explore the tradeoff between 
achieving a high detection accuracy while maintaining inter-
pretability (Hajek, 2019). Finally, the current investigation was 
limited by the use of the cost savings measure only to evaluate 
the trained model, and thus not in the objective function of the 
fraud detection model. Future research should therefore exam-
ine the performance of fraud detection models using the cost 
savings measure as the objective function. This could lead to 
our model delivering even greater cost savings to the end user.
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Appendix A

Table 9   Settings of machine learning methods

Method Parameters

ABOD contamination = the proportion of frauds in the training dataset, neighbours k = {5, 10}
CBLOF number of clusters = 8, clustering estimator = K-means, alpha = 0.9
HBOS alpha = 0.1
LODA number of bins = 10, number of random cuts = 100
Isolation Forest number of estimators = {100, 200}
KNN neighbours k = {2, 3, 5}, radius = 1.0
MCD contamination = the proportion of frauds in the training dataset
OCSVM kernel function: {linear, polynomial, RBF with gamma = 0.01}, nu = 0.1
AE hidden activation = ReLU, optimizer = adam, epochs = 100, dropout rate = 0.2,

L2 regularizer = 0.2, hidden neurons = [8, 4, 4, 8]
VAE hidden activation = ReLU, optimizer = adam, epochs = 100, gamma = 1.0,

dropout rate = 0.2, L2 regularizer = 0.1, encoder neurons = [8, 4, 2], decoder neurons = [2, 4, 8]
MO-GAAL contamination = the proportion of frauds in the training dataset, number of

sub generators = 10, learning rate of the discriminator = 0.01, learning rate
of the generator = 0.0001, epochs = 20

XGBOD estimator list = {ABOD, CBLOF, HBOS, LODA, Isolation Forest, KNN,
MCD, OCSVM, AE, VAE}, p = 5, learning rate = 0.1

k-NN k = 2, 3, 5
SVM complexity parameter C = 1, kernel function: {linear, polynomial, RBF with gamma = 0.01}
RF number of trees = {100, 200}
XGBoost booster = gbtree, eta = 0.3, gamma = 0, maximum depth of a tree = {3, 6, 9},

sampling method = uniform, lambda = 1, alpha = 0
RUS sampling strategy = {0.5, 0.75, 1.0}

Table 9.
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