
/ Published online: 4 October 2022

Information Systems Frontiers (2023) 25:1925–1951
https://doi.org/10.1007/s10796-022-10320-2

Cost-based Optimization of Multistore Query Plans

Chiara Forresi1 ·Matteo Francia1 · Enrico Gallinucci1 ·Matteo Golfarelli1

Accepted: 31 July 2022
© The Author(s) 2022

Abstract
Multistores are data management systems that enable query processing across different and heterogeneous databases;
besides the distribution of data, complexity factors like schema heterogeneity and data replication must be resolved through
integration and data fusion activities. Our multistore solution relies on a dataspace to provide the user with an integrated
view of the available data and enables the formulation and execution of GPSJ queries. In this paper, we propose a technique
to optimize the execution of GPSJ queries by formulating and evaluating different execution plans on the multistore. In
particular, we outline different strategies to carry out joins and data fusion by relying on different schema representations;
then, a self-learning black-box cost model is used to estimate execution times and select the most efficient plan. The
experiments assess the effectiveness of the cost model in choosing the best execution plan for the given queries and exploit
multiple multistore benchmarks to investigate the factors that influence the performance of different plans.

Keywords Multistore · NoSQL · Query optimization · Cost model

1 Introduction

The decline of the one-size-fits-all paradigm has pushed
researchers and practitioners towards the idea of polyglot
persistence (Sadalage & Fowler, 2013), where a multitude
of databases is employed to support data storage and
querying. The motivations are manifold, including the
exploitation of the strongest features of each system, the
off-loading of historical data to cheaper database systems,
and the adoption of different storage solutions by different
branches of the same company. This trend has also
influenced the discipline of data science, as analysts are
being steered away from traditional data warehousing and

� Enrico Gallinucci
enrico.gallinucci@unibo.it

Chiara Forresi
chiara.forresi@unibo.it

Matteo Francia
m.francia@unibo.it

Matteo Golfarelli
matteo.golfarelli@unibo.it

1 DISI - Department of Computer Science and Engineering,
University of Bologna, Via dell’Università 50,
Cesena, 47522, Italy

towards a more flexible and lightweight approach to data
analysis. Multistore contexts are characterized by 1) the
replication of data across different storage systems (i.e.,
there is no sharp horizontal partitioning) with possibly
conflicting records (e.g., the same customer with a different
country of residence in different databases), and 2) a high
level of schema heterogeneity: records of the same real-
world entity may be represented with different structures,
using different naming conventions for the same kind
of data. The large volume and the frequent evolution of
these data hinder the adoption of a traditional integration
approach.

In recent work (Ben Hamadou et al., 2019; Forresi et al.,
2021; Forresi et al., 2021) we have proposed a multistore
solution that relies on a dataspace to provide the user with
an integrated view of the data. A dataspace is a lightweight
integration approach providing basic query expressiveness
on a variety of data sources, bypassing the complexity of
traditional integration approaches and possibly returning
best-effort or approximate answers (Franklin et al., 2005).
The dataspace is built in accordance with a pay-as-you-
go philosophy, i.e., by applying simple matching rules
to recognize relationships between data structures and
by letting the users progressively refine the dataspace as
new relationships are discovered (Jeffery et al., 2008).
Users exploit the dataspace to formulate GPSJ (generalized
projection, selection and join) queries, i.e., the most
common class of queries in OLAP applications (Golfarelli

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-022-10320-2&domain=pdf
http://orcid.org/0000-0002-0931-4255
mailto: enrico.gallinucci@unibo.it
mailto: chiara.forresi@unibo.it
mailto: m.francia@unibo.it
mailto: matteo.golfarelli@unibo.it

Information Systems Frontiers (2023) 25:1925–1951

et al., 1998). Queries are translated into execution plans
that consist of many local computations (carried out by the
single databases) and a global computation (carried out by
the middleware layer).

In this paper, we propose a technique to optimize the
execution of GPSJ queries by finding the most efficient
execution plan on the multistore. The main challenge lies
in devising a cross-database execution plan that couples
data fusion operations with the resolution of schema
heterogeneity and efficiently provides a correct result;
remarkably, data fusion consists in merging duplicated
records that refer to the same real-world entity into a single
representation by resolving possible conflicts (Mandreoli
& Montangero, 2019). In particular, the paper provides the
following contributions. (1) The extension of the multistore
scenario presented by Forresi et al. (2021) to consider
data that is replicated across different databases. (2) The
introduction of an advanced query planner that exploits
different characteristic of the multistore and its data. (3)
The presentation of a multi-database and self-learning cost
model to compare the complexity of execution plans and
choose the most efficient one. The cost model keeps into
account both the execution plan features and the database
resources. (4) The evaluation of the proposed on multiple
multistores with different characteristics based on a realistic
real-world scenario. An exploratory study in this direction
(only limited to a simple example) had been done by Forresi
et al. (2021); in this paper, the work is completed with
the full formalization of the approach, the introduction of
a realistic real-world scenario, the detailed discussion of
the generated query plans, the improvement of the cost
model, and the substantial extension of the experimental
evaluation.

The paper is structured as follows. Sections 2 gives
an overview of the multistore scenario and Section 3
discusses related work. In Sections 4 and 5 we introduce
the background knowledge on our multistore and the
multistore algebra that is extended from Nested Relational
Algebra (NRA), while Section 6 presents the approach to
query planning. In Section 7 we discuss the cost model
and Section 8 shows the experimental evaluation. The
conclusions are drawn in Section 9.

2Multistore Overview

The multistore operates under the following assumptions.

1. Being a multistore, there exist multiple databases, sup-
porting a variety of data models: relational, document-
based, wide-column, and key-value.

2. Records may be replicated in collections of different
databases, possibly with conflicting values.

Fig. 1 An exemplification of data model heterogeneity, schema
heterogeneity, and record overlapping in a multistore

3. Schema heterogeneity is present at different levels:
records representing the same kind of entity (e.g., a
customer) may have missing (or additional) attributes
or adopt different naming conventions; this issue may
occur between different collections, but also within
the same collection (due to the schemaless nature of
NoSQL databases).

An exemplification of these problems is given in Fig. 1,
where overlapping records of customers and orders from
two DBMSs (relational and document-based) need to be
reconciled in order to obtain a clean representation that
can be used for analyses purposes. Notice the overlap
of customer 123 and order O1 in different schema
representations; orders have different attributes, customers
have different naming conventions and conflicting values
for name and age.

As discussed by Forresi et al. (2021), the above
conditions are met in many real-world applications, which
– in practical contexts – often refer to data virtualization
systems for data analysis. Below we describe two specific
contexts that emerged during our interaction with Denodo,1

one of the market-leading tools on this subject.

• Analytical data offloading: to reduce costs and optimize
performance, the historical depth of databases is kept
limited; typically, it is 1-2 years for operational
systems, and 3-5 for analytical ones (Golfarelli &
Rizzi, 2009). After these periods, data are offloaded
to cheaper as well as bigger storages, such as cloud
storages or data lakes. Offloading implies a change
of data model, a change of schema, and obviously an
overlapping of instances with the original data. For
example, offloading a relational data warehouse could
imply turning instances stored in a star schema to a
single JSON document including both measures and
dimensional attributes; alternatively, a relational flat
schema could be adopted. Similarly, invoices stored in
an ERP can be offloaded to a key-value repository,

1https://www.denodo.com

1926

https://www.denodo.com

Information Systems Frontiers (2023) 25:1925–1951

where the value stores an object including only the
attributes relevant for fiscal purposes. In the meanwhile,
the in-place data may evolve in terms of structures or
values. In this context, unforeseen analyses are often
needed, such as data enthusiasts asking to compare the
offloaded data with the in-place ones.

• Multi-cloud architecture: this context combines differ-
ent storage technologies and resources from multiple
cloud platforms (Mazumdar et al. 2019). It allows appli-
cation providers to manage the risks associated with
technology, vendor lock-in, provider reliability, data
security, and privacy thus, it is an increasingly popu-
lar tactic for designing the storage tier of cloud-based
applications (Rafique et al., 2017). The multi-cloud
architecture and related frameworks (e.g. data fabric)
accelerate digital transformation since they enable the
exploitation of data spread across different providers
and architectures, all the while overcoming data silos
through data virtualization. Multi-cloud architectures
are a panacea in presence of many company branches.
For example, consider a holding or a federation of com-
panies (e.g., hospitals in the health sector). In this case,
a lot of data is shared between the branches, but each
branch is free to choose its own storage provider (either
on cloud or on-premise), data model, and schema. To
keep it simple, let us consider the case of ICD-9-CM,2

which is often used in OLAP analysis in the healthcare
domain. ICD-9-CM changes some of its attributes and
values across the years; thus, depending on the ICD-
9-CM version adopted by each branch, data overlap-
ping and schema heterogeneity must be resolved when
cross-queries are issued over the branches’ databases.
Furthermore, every hospital or local health unit can
store such data in different data models and schemas,
depending on the adopted software.

In this paper, we consider a multi-cloud architecture case
study, where different branches of the same holding store
the same data but rely on different storage systems. Figure 2
shows a conceptual view through an ER diagram. Figure 3
shows the physical implementation. C1 to C7 represent the
collections of data, while the “:” notation is used to indicate
the entities appearing in the collection (notice that the
document-based database contains a single collection which
uses nested structures to embed orders within customers,
and order lines within orders). While Cloud 1 fully relies
on a relational database, Cloud 2 satisfies the need for data
variety support by relying on NoSQL systems; also notice
that Cloud 2 additionally stores orders’ invoices. As the
two branches belong to the same holding, both customers

2International Classification of Diseases, https://www.cdc.gov/nchs/
icd/icd9cm.htm

Fig. 2 The ER diagram of the case study

and products are partially overlapped in the two cloud
environments.

Figure 4 provides a functional overview of the multistore
system and the supported user interactions. For starters, the
user interacts with the system to create and continuously
refine the dataspace, i.e., an abstract global representation
of the data in the multistore. The dataspace is composed
of two main concepts: entities, corresponding to the real-
world entities in the multistore (e.g., customers, products),
and features, corresponding to unique representations of the
attributes describing entities (e.g., the name of customers,
the brand of products). As discussed by Forresi et al.
(2021), the dataspace is built and maintained through an
incremental and semi-automatic approach that embraces the
pay-as-you-go philosophy (Jeffery et al., 2008).

The dataspace is used to formulate GPSJ queries, which
are well-suited for data analysis; a typical OLAP query
consists of a group-by set (i.e., the features used to carry
out an aggregation), one or more numerical features to
be aggregated by some function (e.g., sum, average), and
(possibly) some selection predicates. A GPSJ queries for-
mulated on the case study would aggregate events (e.g.,
Orderline and Order) to calculate KPIs or measures (e.g.,

Fig. 3 A graphical representation of the physical implementation of
the case study. Different colors represent different databases with
different data models

1927

https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm

Information Systems Frontiers (2023) 25:1925–1951

Fig. 4 Overview of our multistore

the total Quantity, the average Price) by a grouping crite-
ria (e.g., by Product, by Customer). Based on the user’s
query, the system’s Optimizer defines the query plan to
be executed on the multistore in two steps: first, the
Query planner generates multiple query plans, then a Cost
model is used to choose the most convenient one. Query
plans are decomposed into subplans, each identified by
macro operators that embed a tree of operations. Local
subplans are computed directly on the local databases;
global subplans are computed on the middleware’s exe-
cution framework to combine the partial results from
local subplans and obtain the final result to return to the user.

3 RelatedWork

3.1 Multistore Systems

The variety in terms of data models responds to different
requirements of modern data-intensive applications, but
providing transparent querying mechanisms to query large-
scale collections on heterogeneous data stores is an active
research area (Tan et al. 2017). A naive approach to
solve the problem of querying several data models is to
transform all datasets into a reference data model — usually
the relational one (DiScala & Abadi, 2016). This kind
of solution leads to the loss of the schemaless flexibility
and requires continuous maintenance to support schema
evolution. A different approach is proposed by multimodel
systems, which directly support several data models within
the same platform; examples of multimodel databases are
OrientDB3 and ArangoDB.4 Inter-data model querying is

3OrientDB, https://orientdb.org/
4ArangoDB, https://www.arangodb.com/

enabled by a custom query language to support nested
structures and graph queries. Besides being limited to a
predefined set of data models, these systems do not directly
support data fusion. Indeed, a data warehousing approach
relying on a multimodel system is presented by Bimonte
et al. (2021), but neither schema heterogeneity nor data
fusion is tackled.

In recent years, multistore and polystore have emerged
to provide integrated access and querying to several
heterogeneous stores through a mediator layer (middleware)
(Tan et al. 2017). The difference between multistores and
polystores lies in whether they offer a single or multiple
querying interfaces, respectively. Among the most notable
are BIGDAWG (Gadepally et al., 2016), TATOOINE
(Bonaque et al. 2016), and CloudMDsQL (Kolev et al.
2016). These systems vary in the functionalities they
support (e.g., the available data models and storage systems,
the support to the ingestion process, the expressiveness of
the querying language, the possibility to move data from
one database to another). However, none of them supports
data fusion. Remarkably, adopting these approaches in a
scenario with duplicated records would require to carry out
a pre-processing activity to clean duplicates and resolve
conflicts, which may be hindered (i) by the inability to
overwrite data in the original databases and/or (ii) by the
frequent evolution of data and schemas. Otherwise, failing
to deal with duplicated records may lead to wrong results
and, ultimately, to inaccurate decision-making.

Effectively supporting querying on a heterogeneous
system with overlapping records requires the adoption of
data fusion techniques (Bleiholder & Naumann, 2008).
The literature on this subject is very wide, thus we refer
the reader to a recent survey (Mandreoli & Montangero,
2019). Remarkably, related work in this area does not
apply directly to a polyglot system. To the best of our
knowledge, the only proposal that considers a scenario
requiring data fusion in a polyglot system is QUEPA
(Maccioni & Torlone, 2018), where the authors present a
polystore-based approach to support query augmentation.
The approach is meant to complement the other polystore
systems that actually support cross-database querying, and
record linkage techniques are only used to find related
instances in different databases, but not to solve conflicts.
Another work that proposes on-the-fly integration and
schema heterogeneity resolution in an analytical context is
(Gallinucci et al., 2019); however, the proposed approach
is limited to document-oriented databases and does not
consider data fusion.

3.2 Multistore Optimization

Besides the support to querying over heterogeneous
databases, multistore systems must adopt optimization

1928

https://orientdb.org/
https://www.arangodb.com/

Information Systems Frontiers (2023) 25:1925–1951

strategies to define efficient execution plans. In the litera-
ture, these optimization strategies are usually implemented
through rule-based mechanisms and cost models; the main
differences lie in the abstraction of the execution plan (i.e.,
whether it is considered as a whole or it is subdivided into
its local and global parts) and the level at which they operate
(i.e., at the logical or physical level).

Rule-based optimization consists in defining a set of
rules to reorder the operations within logical plans (e.g.,
by bringing selections closer to the start of the plan) (Gog
et al., 2015) or to choose the most efficient algorithm in
the translation of a logical plan to a physical one (Wang
et al., 2017). Solely relying on rule-based optimization is
considered impractical and ineffective: these rules typically
make very simplistic decisions based on the different
cardinality and complexity of each operator (Agrawal
et al., 2018), whereas the cost actually depends on many
input parameters (e.g., selectivity, disk I/O, CPU cycles).
Moreover, as new platforms and applications emerge,
maintaining a rule-based optimizer becomes cumbersome
as the number of rules grows rapidly.

Cost-based optimization relies on cost models to estimate
the cost of query plans (usually in terms of time or I/O
operations) and to choose the one that minimizes such
cost. Some approaches are limited to the optimization
of local databases computations — using either a single
(Agrawal et al., 2018) or multiple cost models (Deshpande
& Hellerstein, 2002) —, while others adopt a global
optimization technique to decide which computations
should be pushed down to local databases (Sellami &
Defude, 2018). In general, using distinct cost models for
each engine increases the accuracy of the optimization
and enables a finer characterization (Duggan et al., 2015)
(e.g., different databases may be more or less efficient in
carrying out the same operations (Forresi et al., 2021)).
The accuracy of cost models usually depends on the level
of detail that they capture; however, the risk in fine-
grained cost modeling is to make the training phase too
complex and expensive (Singhal et al., 2019). To this
end, an active learning technique (Golfarelli et al., 2019)
can be used, as it allows for a simpler initial training
and continuously improves the accuracy of the model by
automatically updating it as queries are issued by the
users. In the literature, cost models are often distinguished
between white-box and black-box models.

• White-box cost models associate theoretical formulas
to the different query operators and build up the cost
of a query by summing the cost of each operation.
In multistore systems, white-box approaches usually
require a separate cost model for each execution
engine, as the latter are too different to be represented
by a unique cost model (Bondiombouy & Valduriez,

2016). Some works break down the problem and
focus only on either the local databases (Deshpande &
Hellerstein, 2002) or the middleware (Subramanian &
Subramanian, 1998). Complete works are presented by
Sellami and Defude (2018) and Agrawal et al. (2018),
where queries are broken down into sets of logical
operators, the cost of which is determined in terms of
disk I/O, CPU, and network; however, the full details
of the adopted formulas are not disclosed. A similar
approach was adopted by Forresi et al. (2021), where
the cost of query plan operations is estimated in terms of
disk pages read and written on each execution engine.

• Black-box cost models hide the behavior of an
execution engine within a black-box, where the known
information is mostly limited to the issued queries
and the given response times. The estimates for query
execution times are then obtained by comparing the
characteristics of the current query with those of the
previously executed ones. Singhal et al. (2019) suggests
using black-box modeling in a multistore/polystore
system; this kind of approach is also used in non-strictly
related contexts, such as Kaitoua et al. (2019) (where
the goal is to optimize data migration between different
databases) and Golfarelli et al. (2019) (where the goal
is to estimate the cost of queries run on external web
services, whose internal characteristics are not known).

Both approaches are not exempt from risks, as devising
an effective cost model requires a careful evaluation of cost
factors. On the one hand, white-box approaches require a
deep understanding of each database’s internal mechanisms
- as well as inter-database communication patterns - in order
to algorithmically reproduce the same behavior. On the
other hand, black-box approaches require the identification
of all features (of queries and databases) that influence the
cost of queries.

Among the systems mentioned in Section 3.1: BIG-
DAWG (Gadepally et al., 2016; Duggan et al., 2015) imple-
ments black-box models for each execution engine, even
though their usage is limited to the optimization of query
portions within the same engine; TATOOINE (Bonaque
et al. 2016) makes no mention of cost optimization; and
CloudMDsQL (Kolev et al. 2016) blends rule-based opti-
mization with a combination of both white and black-box
cost modeling, but discloses no implementative details. The
multistore proposed in this paper relies on rule-based opti-
mization for a logical reordering of operations at both local
and global levels, and uses a black-box cost model with
active learning to identify the most efficient execution plan.
The choice of a black-box cost model allows to overcome
the many challenges behind white-box ones, which either
require an enormous effort to effectively model the many
factors that contribute to query costs in a complex and

1929

Information Systems Frontiers (2023) 25:1925–1951

heterogeneous environment like a multistore, or suffer the
limitations due to the assumptions that must be made to
keep the model simple. Indeed, black-box cost models auto-
matically learn and continuously fine-tune a model of the
systems’ behavior, thus unloading the burden of this task
from the user.

4Multistore Formalization

4.1 Basic Concepts

The multistore is described by a dataspace, i.e., an abstract
global representation of the data scattered across different
databases. It is composed of two main concepts: entities,
corresponding to the real-world entities in the multistore
(e.g., customers, products), and features, corresponding
to the attributes that describe entities (e.g., the name of
customers, the brand of products). These concepts are built
in a pay-as-you-go fashion by analyzing the schemas in the
data and detecting relationships between attributes.

The coexistence of different databases and the absence of
a unique reference data model carries the need for common
terminology. Consistently with the terminology proposed
by Atzeni et al. (2014), we refer to collections as the data
structures that contain sets of records associated with a
schema, and to records as the instances in a collection.
Our notion of records perfectly corresponds to the tuples
of a relational database, but the rows and documents of
wide-column and document-based databases potentially
correspond to multiple records. In fact, non-relational data
models comply with the aggregate data modeling property,
which enables the nesting of records within other records
through the array data type. We do not consider documents
and rows as a whole, but we separately model the records
available at each nesting level. Differently from Atzeni et al.
(2014), we use the term attribute (instead of field) to refer
to the single properties of each record.

Definition 1 (Collection, Record, Attribute) A collection C

is a set of records; a record r = {(a1, v1), . . . , (an, vn)} is
a set of key-value pairs, where each value vi is associated
to an attribute ai . Values are either of primitive type (e.g.,
number or string) or arrays of records.

From this point forward, we refer to primitive attributes
or array attributes based on the type of associated values. If
an attribute is nested within one or more array attributes, its
name includes the dot-concatenation of the names of those
array attributes.

Example 1 Figure 5 shows a sample document of a
document-based database, corresponding to a customer,

Fig. 5 A sample document corresponding to a customer, her orders,
and the respective order details; four records are shown in the boxes,
and each color (blue, green, and orange) corresponds to a different
schema

her orders, and the respective order details; the two order
line records (in orange) are nested within the order record
(in green), which is nested itself within the customer record
(in blue).

Our notion of schema applies to the records rather than to
the entire collections. Thus, several schemas may be found
for a collection, due to the possible presence of both schema
variability and nested records.

Definition 2 (Schema) A schema S = {a1, . . . , a|S|} is
a set of attributes that applies to one or more records in
a collection C. Each schema has a key attribute key(S),
whose values uniquely identify the records with schema S

within C.

A record r with schema S in a collection C may be
nested within another record r ′; in such a case, arr(S, C)

denotes the array attributes of r ′ that contain r . The set
of all schemas in the dataspace is indicated with S. For
the sake of simplicity, we assume all keys to be simple.
Given a record r , its schema (denoted with Sr) is the
set of attributes directly available in r . If r is contained
within an array attribute a of a record t , then (i) in Sr

we also include key(St) (this is necessary to maintain the
relationship between the schema of a nested record and
the one of the parent record5), and (ii) arr(Sr , C) extends
arr(St , C) with a, so that arr(Sr , C) provides the full

5The inclusion of key(St) in Sr will allow a mapping to be defined
between the attributes in Sr and St (see Definition 3), which – in
turn – will enable the inference of entities and relationships (see
Definition 8).

1930

Information Systems Frontiers (2023) 25:1925–1951

list of parent array attributes. Concerning the schemaless
property of non-relational databases, we take into account
every schema variation in a collection (i.e., if two records
differ even for a single attribute, we model two separate
schemas, each with its own set of attributes).

Example 2 The sample document of a collection C shown
in Fig. 5 contains four schemas:

• Sbl = {id, firstName, gender, orders}
• Sgr = {id, orders.orderId, orders.orderDate,

orders.totalPrice, orders.orderLines}
• Sor1 = {orders.orderId, orders.orderLines.quantity,

orders.orderLines.asin,

orders.orderLines.price}
• Sor2 = {orders.orderId, orders.orderLines.qty,

orders.orderLines.asin,

orders.orderLines.price}
It is arr(Sbl, C) = [], arr(Sgr , C) = [orders], and
arr(Sor1 , C) = arr(Sor2 , C) = [orders, orders.orderLines].

Due to both schema variability and schema denormaliza-
tion, several attributes may be found in different schemas to
represent the same property. For example, in Fig. 5 different
order line records use attributes with different names to indi-
cate the quantity of product bought (i.e., quantity and qty,
respectively). To resolve the different classes of heterogene-
ity and model the equivalence between different attributes
of the dataspace we exploit mappings.

Definition 3 (Mapping) A mapping m is a triple m =
(ai, aj , ϕ(ai ,aj)) that expresses a relationship between two
primitive attributes ai and aj belonging to different
schemas; ϕ(ai ,aj) is a bijective transcoding function to
express the values of aj in the format of ai (if no transcoding
is necessary, ϕ(ai ,aj) = I () where I () is the identity
function). The existence of a mapping between ai and aj is
indicated with ai ≡ aj .

Mappings are considered between single attributes; given
two schemas Si, Sj and an attribute ai ∈ Si , we assume
there exists at most an attribute aj ∈ Sj such that
ai ≡ aj . Mappings recognize that there is a semantic
equivalence between two attributes in different schemas,
thus we introduce features to provide a unique reference for
equivalent attributes in several different schemas.

Definition 4 (Feature) A feature represents a set of
attributes mapped to each other. We define a feature f as a
triple, where:

• a is the representative attribute;

• M is the set of mappings that link all the feature’s
attributes to the representative a. The set of attributes
represented by f is indicated with attr(f), and ∀mj ∈
M it is m = (a, aj , ϕ(a,aj)).

• is an associative and commu-
tative function that resolves the possible conflicts
between the values vi and vj of any two attributes ax

and ay represented by f by returning a (possibly new)
value vk .

Given a record r , the conflict resolution function can
be applied to r[ai] and r[aj] if {ai, aj } ⊆ attr(f); we
refer the reader to Bleiholder and Naumann (2005) for
different methods to define conflict resolution functions.
Notice that an attribute is always represented by one and
only one feature; thus, for any two features fi and fj , it is
attr(fi) ∩ attr(fj) = ∅ (otherwise, it would mean that
∃ a : f eat (a) ⊆ {fi, fj }, but |f eat (a)| = 1 by definition).
We use f eat (a) to refer to the feature of an attribute a,
rep(f) to refer to the representative attribute of f . Features
are defined even for attributes that are not associated to any
mapping; in such a case, it is | attr(f) |= 1 and M = ∅.
A feature is a key feature if its attributes act as a key in at
least one schema (and possibly play the role of foreign keys
in other schemas).

Features describe properties of real-world concepts (e.g.,
customers, products) that we refer to as entities.

Definition 5 (Entity) An entity E is an abstract represen-
tation of a real-world entity. It is associated with a set of
features FE ⊆ F and it is identified by a key feature
key(E) ∈ FE ; SE denotes the set of schemas such that
∀ S ∈ SE it is f eat (key(S)) = key(E).

Remarkably, key features may be associated with
multiple entities, while non-key features are associated with
a single entity.6

The schemaless nature of NoSQL databases allows
different records in the same collection with different
key features. We say that a collection is well-formed if
it maintains internal consistency, i.e., if there exists a
single key feature. From this point forward, we assume all
collections to be well-formed.

6At a first glance, this may look like a limitation: for instance, both
entities for products and customers (i.e., Epr and Ecu) are associated
to different “name” features (i.e., f2 and f12 in Table 1). Although
it could make sense to infer a relationship between the respective
attributes and model them through a single feature, it would open to
ambiguities when the user uses such feature for grouping or selection
purposes (i.e., would the user be interested in the name of products or
the name of customers?). By associating non-key features to a single
entity, the two names remain separate and ambiguities are prevented.

1931

Information Systems Frontiers (2023) 25:1925–1951

Table 1 An extract of the correspondences between attributes and
schemas in our case study from Fig. 3; cell [i, j] has a checkmark if
ai ∈ Sj , or the letter “K” if ai = key(Sj). Attributes are organized

by features fk and indicate the collection Cl they belong to, while
schemas are organized by entity Em

Product Orderline Order Customer Invoice

Epr Eol Eor Ecu Ein

name(f) f a C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

ProductId f1 a1 C3 �
a2 C5 �
a3 C4 K

a4 C6 K

a5 C6 K

ProductName f2 a6 C4 �
a7 C6 �
a8 C6 �

ImgUrl f3 a9 C6 �
Brand f4 a10 C4 �

a11 C6 �
a12 C6 �

OrderLineId f5 a13 C3 K

a14 C5 K

Quantity f6 a15 C3 �
a16 C5 �

OrderId f7 a17 C2 K

a18 C5 �
a19 C5 �
a20 C5 K

a21 C7 K

Invoice f8 a22 C7 �
TotalPrice f9 a23 C2 �

a24 C5 �
OrderDate f10 a25 C2 �

a26 C5 �

TaxId f11

a27 C1 K

a28 C2 �
a29 C5 K

a30 C5 �
FirstName f12 a31 C1 �

a32 C5 �
LastName f13 a33 C1 �

a34 C5 �
CreationDate f14 a35 C1 �

a36 C5 �
Gender f15 a37 C1 �

a38 C5 �

Definition 6 (Collection well-formedness) A collection C

is well-formed if there exists a feature f = key(E) such
that ∀ r ∈ C it is key(Sr) = f .

Relationships between entities are identified as follows.

• A many-to-one relationship from Ei to Ej on a feature

f is indicated with Ei
f−→ Ej ; it is inferred if ∃f :

1932

Information Systems Frontiers (2023) 25:1925–1951

∀ Si ∈ SEi
, Sj ∈ SEj

it is attr(f) ∩ {Si \ key(Si)}
=
∅ ∧ key(Sj) ∈ attr(f). In other words, the many-to-
one relationship is inferred if the attributes of f in the
schemas of Ei are non-key attributes mapped to the
keys of the schemas of Ej .

• A one-to-one relationship between Ei and Ej on f is

indicated with Ei
f←→ Ej ; it is inferred if ∃f : ∀ Si ∈

SEi
, Sj ∈ SEj

it is key(Si) ∈ attr(f) ∧ key(Sj) ∈
attr(f).

In a many-to-one relationship Ei
f−→ Ej , Ej is coarser

than Ei and Ei is finer than Ej . It is Ei ⇒ Ek if there exists
a path of -to-one relationships from Ei to Ek .

Example 3 Table 1 presents our motivating example in
terms of schemas, attributes, features and entities. On the
columns, the schemas are organized by entities; on the rows,
attributes are organized by features, and the mappings are
implicit between attributes of the same feature. For instance,
it is a15 ≡ a16 since f eat (a15) = f eat (a16) = f6.
Mappings reveal the relationship between the schemas. It is
SEpr = {S1, S2, S3} since key(S1) ≡ key(S2) ≡ key(S3);
similarly, it is SEol

= {S4, S5}. From f1 it is inferable a

many-to-one relationship Eol
f1−→ Epr . Notice that (i) each

attribute is contained only in one schema, (ii) each schema
contains one key attribute, (iii) each schema contains at most
one attribute per feature, and (iv) there exist features (e.g.,
f1) that overlap with more entities.

As discussed by Forresi et al. (2021), features and entities
are obtained incrementally in a pay-as-you-go fashion
(Jeffery et al., 2008). An automatic procedure is first run
to discover mappings and infer the relationships to define
features and entities; then, users can refine mappings and
update the knowledge on features and entities, as long as the
specified constraints are not violated.

4.2 Dataspace and Supporting Structures

The dataspace is the data structure that provides the
integrated, high-level view of the data in the multistore.

Definition 7 (Dataspace) The dataspace D is a directed
graph D = (E, L) where E is the set of entities in the
dataspace and L is the set of links (i.e., many-to-one or
one-to-one relationships) between the entities. A fact of the
dataspace is an entity E∗ for which there is no finer entity
in D, i.e., � E ∈ E : E → E∗; the set of facts in D is
f act (D) = E∗ ⊆ E .

Example 4 Figure 6 shows the dataspace of the case study.
Since customer and product records are overlapped, it is

Fig. 6 The dataspace D of the case study

φ(Epr) = φ(Ecu) = true, while φ(Eol) = φ(Eor) =
φ(Ein) = false. The only fact entity is Eol (shown with a
bolder border).

To denote the relationships between collections and
entities, we introduce the concept of granularity and the
expressions of entity representation and entity description
are used.

Definition 8 (Granularity, entity representation, and entity
description) Let C a well-formed collection whose key
feature f ; its granularity gran(C) is the entity E that
corresponds to f , i.e., key(E) = f . If gran(C) = E,
then we say that C is represented by E. C is described by
E if there exists an attribute a ∈ C such that f eat (a) ∈
FE, f eat (a)
= key(E). A collection can be described by
more entities, and an entity can describe more collections.
The entity representing a collection (i.e., its granularity) also
describes it.

A collection contains a portion of the multistore data
that refers to some of the dataspace’s entities. A collection
graph is the portion of the dataspace indicating the entities
describing a collection.

Definition 9 (Collection graph) Given a collection C, its
collection graph CGC = (EC, LC) is a subgraph of D
limited to the entities of D that describe C.

When a collection is described by a single entity, its
records contain only primitive attributes (i.e., first normal
form) and values of all non-key attributes only depend on
the key attribute (i.e., third normal form). In presence of
two (or more) entities, the collection makes use of either
nesting or flattening: we refer to nesting when non-primitive
attributes are used and to flattening when values of non-key
attributes depend on other non-key attributes.

Example 5 Figure 7 shows examples of different collection
graphs representing the same set of entities, where Eol

is the only fact entity for each collection. Ci is a fully
nested collection, where the granularity is Ecu; Ck is a fully
flat collection, where the granularity is Eol (indeed, there
are two records, one for each order line, and order and
customer attributes are duplicated); Cj is an intermediate

1933

Information Systems Frontiers (2023) 25:1925–1951

solution, where the granularity is Eor : customer attributes
are flattened, whereas order line attributes are nested.

Collection graphs may be of arbitrary complexity. We
distinguish three patterns of collection graphs, which are
used by the multistore algebra. The key aspect in common
is the presence of a single fact entity. Let CGC = (EC, LC).

• A normal graph (NoR) is composed by a single entity.
In this case, it is LC = ∅ and EC = E = gran(C) =
f act (CGC).

• A nested graph (NeR) is composed by at least two
entities and there is a single path of edges that are
directed towards gran(C), i.e., there is only one fact
entity f act (CGC), which is the one entity farthest
away from gran(C). In this case, ∀ E ∈ {EC\gran(C)}
it is E ⇒ gran(C).

• A flat graph (FlR) is composed by at least two entities
and all edges are directed away from gran(C) =
f act (CGC). In this case, ∀ E ∈ {EC \ gran(C)} it is
gran(C) ⇒ E.

If a collection graph conforms to one of these patterns,
we indicate it with rep(CGC) ∈ {NoR,NeR,FlR}. Notice
that, given our internal consistency assumption on the
granularity of collections, each collection is associated to a
single collection graph.

Example 6 In Fig. 7, it is rep(CGCi
) = NeR and

rep(CGCk
) = FlR, while rep(CGCj

) = ∅.

5Multistore Algebra

In this section, we present the algebra we adopt to
formulate query plans. Section 5.1 presents an extension

of traditional Nested Relational Algebra (NRA) with data
fusion operations; Section 5.2 introduces entity views as a
high-level abstraction for query plans and the high-level
operators to formulate query plans with entity views.

5.1 NRA and Data Fusion Operations

Query execution plans are formulated in Nested Relational
Algebra (NRA). A summary of the supported NRA
operators is shown in Table 2. In this paper, NRA is slightly
extended to support the data fusion operations required by
our multistore scenario.

The most important addition to NRA is the extension of
the join operator’s semantics to handle data fusion. We do
this by relying on the merge operator (�) (Forresi et al.,
2021), which addresses the extensional and intensional
overlap between collections. In particular, given two
collections represented by the same entity (e.g., customers),
the merge operator exploits mappings to resolve schema
heterogeneity (e.g., to recognize that the customers’ names
are reported in both collections with different naming
conventions) and record overlapping (e.g., to produce a
single record for customers that are replicated in both
collections). Its goal is to keep as much information as
possible, both from the extensional and the intensional
points of view. The merge operator (�) answers this need by
(i) avoiding any loss of records, (ii) resolving mappings by
providing output in terms of features instead of attributes,
and (iii) resolving conflicts whenever necessary.

First, let us formalize the merge operation between two
generic recordsets.

Definition 10 (Merge operation) Let Ri and Rj be the
recordsets of two schemas Si and Sj , with ak ∈ Si and
al ∈ Sj such that ak ≡ al , i.e., ∃f : {ak, al} ⊆ attr(f).

Fig. 7 Three examples of collection graphs representing the same data in different ways (i.e., CGCi
, CGCj

, CGCk
), alongside the corresponding

records in a document-based representation (i.e., Ci, Cj , Ck). The fact entity is in bold, while the granularity is in grey

1934

Information Systems Frontiers (2023) 25:1925–1951

Table 2 NRA operators
Operator Description

πY (C) Denotes a projection operation on collection C, where Y is a set of
projection predicates.

σx(C) Denotes a selection operation on collection C, where x = ∧
T

is a conjunction of selection predicates; each selection predicate
t ∈ T is in the form (a, ω, v), where a is a primitive attribute,
ω ∈ {=;>;<;
=;≥;≤} and v is a value.

γ(F,Z)(C) Denotes an aggregation operation on collection C, where F is the
group-by set (i.e., a set of features) and Z is the set of aggregations;
each aggregation is in the form (f, op) where f is a feature and op

an aggregation function.

ν(F ′,a,Z)(C) Denotes a nest operation on collection C, where F ′ is the group-by
set (i.e., a set of features), a is an array attribute to be created, and
Z is the set of features to be nested within a.

μa(C) Denotes the unnest of an array attribute a on collection C.

(C1) ��(ai ,aj) (C2) Denotes a join operation between collections C1 and C2 based
on the join predicate ai = aj , with ai ∈ C1, aj ∈ C2. If
∃f : {ak, al} ⊆ attr(f), it can be shortened as (C1) ��f (C2).

(C1) �(ai ,aj) (C2) Denotes a merge operation between collections C1 and C2 based
on the join predicate ai = aj , with ai ∈ C1, aj ∈ C2. If
∃f : {ak, al} ⊆ attr(f), it can be shortened as (C1) �f (C2). See
Definition 10.

The merge of the two recordsets Ri �f Rj produces a
recordset Rij with schema Sij = S∗

i ∪ S∗
j ∪ S∩

ij such that:

• S∗
i = {a ∈ Si : � a′ ∈ Sj s.t . a ≡ a′}

• S∗
j = {a′ ∈ Sj : � a ∈ Si s.t . a ≡ a′}

• S∩
ij = {rep(a) : a ∈ Si, ∃ a′ ∈ Sj s.t . a ≡ a′}

Rij results in a full-outer join between Ri and Rj where
the values of attributes linked by a mapping are merged
through function . In particular, given a record r ∈ Rij

obtained by joining s ∈ Ri and t ∈ Rj (i.e., s[ai] = t[aj]),
it is s.t . a ∈ Si, a

′ ∈
Sj ,a ≡ a′.

Example 7 With reference to Table 1, consider the merge
between two product schemas, i.e., S1 �f1 S3, and consider
two records s and t , s ∈ C4 with schema S1, t ∈
C6 with schema S3. Let the values of ProductName
be s[a6] = “Blueseventy Vision Goggles” and t[a8] =
“B70 VG”. The merge of s and t produces a record r

where and is a conflict-
resolution function that decides between “Blueseventy
Vision Goggles” and “B70 VG”.

Ultimately, the merge operator is applicable to two
collections Ci and Cj represented by the same entity (i.e.,
E = gran(Ci) = gran(Cj)) and it is declared as
Ci �key(E) Cj . We further impose that the two collections
share the same collection graph (i.e., CGCi

= CGCj
); this

limitation is necessary (i) to enable the application of the
merge operator to all entities in the two collections and (ii)

to return a collection Cij with the same representation of
the two input collections. In particular, depending on the
representation of the collection graphs, we distinguish the
following three situations.

• If NoR, the result of the merge operation is trivial, as it
simply produces a consistent recordset of E.

• If NeR (i.e., it is E′ → E, where E′ is nested
within E), the merge operation is recursively applied
to the nested levels of the two collections. As per
its definition, the merge on key(E) produces a single
attribute for the primitive attributes in common between
the two collections, while the array attributes ai and aj

respectively contain the records of E′ in Ci and Cj are
kept distinct. Thus, the merge operation is also applied
between the recordsets within ai and aj to produce a
consistent recordset of E′ within a unique array aij .
This is recursively applied if there is another entity
E′′ → E′, where E′′ is nested within E′.

• If FlR (i.e., it is E → E′ and the records contain
attributes of both E and E′), the merge cannot be
applied, because each collection contains multiple
records for the instances of E′ (with potentially
conflicting values). Indeed, this operation would need
to be expanded to a complex set of operations, where
the instances of E′ are extrapolated from the respective
collections, merged to resolve potential conflicts, and
then joined back with the respective instances of E (see
Forresi et al. 2021 for further details).7

7Ultimately, the same set of operations corresponds to converting the
two collections into two separate NoR representations and merging

1935

Information Systems Frontiers (2023) 25:1925–1951

Fig. 8 Examples of merge operation on two records in NeR

Example 8 Figure 8 shows the effects of the merge
operation on two records in NeR with Eor → Ecu. First,
the merge operation produces a consistent representation of
Ecu; since two attributes with the same name cannot coexist,
the orders arrays are renamed to orders1 and orders2.
Then, the merge is applied on the two arrays to produce a
consistent representation of Eor as well. Figure 9 shows an
example of two records in FlR with Eor → Ecu that cannot
be merged as resolving conflicts of Ecu instances in the
same collection would require a complex set of operations.

5.2 Entity Views

To simplify the discussion on query plans, we introduce
the notion of entity views. An entity view (EV) is a
runtime-computed collection that provides a standard
representation for the records modeling a set of entities. It is
called a view because it is not persisted; differently from a
typical view, however, it is not exposed to the user, but it is
used internally to generate query plans.

them. Since the query planner in Section 6 explores all conversions
to different representations, the restriction of the merge operator to
collections in NeR and NoR does not limit the expressiveness of the
approach.

Being a collection, an EV is associated with a collection
graph as well, but only in one of the three special patterns
(i.e., EVs can be only in either normal, nested or flat form).

Definition 11 (Entity view) An entity view is a collection χ

whose records represent the features of a given set of entities
in accordance to a schema representation. Its collection
graph CGχ is such that rep(CGχ) ∈ {NoR, NeR, F lR}.

Fig. 9 Examples of two records in FlR that cannot be merged

1936

Information Systems Frontiers (2023) 25:1925–1951

An EV is either local or global. A local entity view (LEV)
is obtained from collections belonging to the same database,
thus it provides a partial representation of a set of entities. A
global entity view (GEV) provides a complete and cleansed
representation of a set of entities in the multistore; it can be
obtained in two ways: either by merging LEVs represented
by the same set of entities across all databases or through a
join of GEVs.

Limiting EVs to the three schema representations poses
certain limits; for instance, collection Cj in Fig. 7 mixes
different representations, thus it cannot be considered an
EV without applying first some schema transformations.
However, enforcing these schema representations enables
the definition of an algebra of operations on the EVs. In
particular, operations on entity views are defined through
EV operators, i.e., macro-NRA operators (distinguished
from simple ones by the hat ˆ symbol) that embed a tree
of NRA operations. Macro-NRA operators are high-level
operators that aid the creation and discussion of execution
plans.

5.2.1 LEV Creation

A LEV creation is defined as π̂(Cχ , CGχ, Fχ , pχ). This
operation creates a LEV χ defined by CGχ from a set of
collections Cχ belonging to the same database. Notice that π̂
also embeds the optional application of selection predicates
pχ ; each p ∈ pχ is in the form (f, ω, v), where f is a
feature, ω ∈ {=; >; <;
=; ≥; ≤} and v is a value. The
underlying tree of NRA operations mainly depends on how
the collection graphs of the collections in Cχ differ from
rep(CGχ). The complexity of the creation operation is non-
trivial and it is discussed in full detail in the Appendix.
Figure 10 shows some examples.

• On the left the operations to obtain χ ′, i.e., a NeR view
of Ecu and Eor from the relational collections C1 and
C2. This requires to join the two collections (which
produces a flat representation of Eor and Ecu) and then
to change the collection’s granularity to Ecu by nesting

the order records within an array attribute (i.e., orders),
created for each customer. Conversely, no operation
would be necessary to obtain such a view from C5,
which is natively in NeR.

• On the right the operations to obtain χ ′′, i.e., a NoR
view of Ecu from the document-based collection C5.
This requires to unnest the orders array attribute and
to project only the features corresponding to Ecu.
Conversely, no operation would be necessary to obtain
such a view from C2, which is natively in NoR.

5.2.2 GEV Creation

A GEV creation is defined as �̂ (X, pX), where X is a
set of LEVs, |X| ≥ 2, and pX is an optional conjunction
of selection predicates defined as in Section 5.2.1. This
operation creates a GEV χ ′ by resolving conflicts between
duplicated records from two or more LEVs sharing the
same collection graph CG′, i.e., ∀χ ∈ X it is CGχ =
CG′. The details of the NRA plan produced by the
GEV creation are discussed in the Appendix. Essentially,
this macro-operator produces a left-deep tree of binary
merge operations between LEVs. Once all LEVs have been
merged, the optional selection predicates are applied.

5.2.3 Join of GEVs

A join of GEVs is defined as �̂� (X), where X is a set of
GEVs, |X| ≥ 2. The obtained GEV χ ′ is the result of join
operations between the GEVs in X, all of which represent
connected but non-overlapping sets of entities: on the one
hand, given any two entity views χi ∈ X and χj ∈ X, it is
Eχi

∩Eχi
= ∅; on the other hand, the sets of entities must be

connected, i.e., Eχ = ⋃
χi∈X Eχi

is a connected set in Dq .
The details of the NRA plan produced by the entity view
join are discussed in the Appendix. Similar to the merge,
this macro-operator produces a left-deep tree of binary join
operations between two entity views. The result is a GEV
that provides a cleansed representation of all the records in
the multistore that are required to answer the query.

Fig. 10 Examples of NRA operations corresponding to LEV creations

1937

Information Systems Frontiers (2023) 25:1925–1951

5.2.4 Optimization of Entity View Operations

The three entity view operations defined above implement
some logical rules to produce an optimized NRA tree.

• Despite the possible presence of multiple schemas in
the same collection, the plans avoid accessing the same
collection multiple times (unlike Forresi et al. 2021). In
particular, mappings are exploited to produce predicates
that take schema heterogeneity into consideration;
for instance, a selection predicate on a feature f is
translated to a disjunction of selection predicates on the
attributes of attr(f) that appear in the schemas of the
collection.

• Predicate push-down is employed to apply selection
predicates as close to the source as possible.

• Column pruning is employed to project from each
collection the attributes corresponding to features that
are relevant for the query.

• Whenever there is a need for joining (or merging)
more than two collections (or entity views), a minimum
selectivity heuristics (Steinbrunn et al., 1997) is
adopted to determine the order of these join/merge
operations. The basic idea is to start from the collection
with the lowest cardinality and progressively merge
it with collections with increasing cardinality. To
estimate cardinalities we take into consideration the
selection predicates and the statistics collected from the
databases. The literature on such topics is very broad.
The accuracy of the estimate strictly depends on the
collected information and the assumptions made on data
distribution. Following several query cost models, in
this paper we assume uniformity of attribute values,
attribute value independence, and join containment.

6 Query Planning

The multistore supports the formulation of GPSJ queries,
consisting of a group-by set (i.e., the features used to carry
out an aggregation), one or more numerical features to
be aggregated by some function (e.g., sum, average), and
(possibly) some selection predicates.8

Definition 12 (Query) A GPSJ query q is a triple as q =
(qπ , qγ , qσ), where: qπ specifies the optional set of features
to be projected; qγ specifies optional aggregations as a set

8Joins are implicitly defined, depending on the features selected in the
group-by set, aggregation, and selection. Though this limits joins to the
relationships discovered between entities in the dataspace, we remark
that the pay-as-you-go approach enables user to refine the dataspace at
any time.

of pairs (f, op), where f is a numerical feature and op is an
aggregation function (e.g., max()); qσ is an optional set of
conjunctive (∧) selection predicates in the form of triplets
(f, ω, v), where f is a feature, ω ∈ {=, >, <,
=, ≥, ≤}
and v is a value. At least one amongst qπ and qγ must be
defined.

It is not mandatory that all the three sets qπ , qγ and qσ

are present, thus our definition also covers simple selection
queries and join queries.

Example 9 Let q be the query that computes, for each
customer, the average price of 2020 orders. The group-
by set of q is qπ = {f11}; the aggregation set is qγ =
{(f9, avg)} and the selection predicate set is qσ = {(f10, ≥,

“2020/01/01”)}.

Building the plan of a query first requires identifying
the entities that need to be accessed, which are not limited
to those containing the features selected in the query. For
instance, computing the average price for each customer
requires to access not only Ecu and Eol but also Eor , even if
no feature belonging to Eor is mentioned in the query. Thus,
we define the query graph as a conceptual view of the query
on the dataspace.

Definition 13 (Query graph) The query graph QGq is an
acyclic subgraph of D (i.e., QGq = (Eq ⊆ E, Lq ⊆ L))
such that:

(i) QGq is minimally connected;
(ii) Eq ⊇ attr(q);

(iii) ∃ E∗ = f act (QGq) : f eat (E∗) ⊇ f eat (qγ).

Condition (i) ensures that no unnecessary entity is
accessed. Condition (ii) ensures that all attributes belonging
to the features involved in the query are covered by the
entities in Eq . Condition (iii) entails the compliance of query
q with the GPSJ semantics, that is, there exists an entity
representing the events at the finest level of granularity (i.e.,
there is a single fact E∗ and the features in qγ belong
to f eat (E∗)). Many subgraphs could exist for a given
query since more (many/one)-to-one paths could exist, each
associated with different semantics (e.g., an entity of sales
could be associated with an entity of dates through the
mappings on both date of sale and date of shipping); in this
case, we rely on user interaction to identify the adequate
subgraph. If no subgraph exists, the query is not answerable.

6.1 Enumeration of Query Plans

QGq is the starting point to define the query plan, which
can be defined in terms of entity view operations.

1938

Information Systems Frontiers (2023) 25:1925–1951

Definition 14 (Query plan) A query plan P is a rooted
tree of entity view operations, where (i) the root is a GEV
join operation (�̂�), (ii) the root is preceded by one or more
GEV creation operations (�̂), and (iii) each of the latter is
preceded by one or more (parallel) LEV creation operations
(π̂). The root is possibly extended with an NRA aggregation
operation (γ).

Example 10 Figure 11 shows a sample plan for a query that
computes, for each gender, the average quantities bought
for products of brand “BrandABC”; operators’ predicates
are omitted for space reasons. In the upper part, two
LEV creation operations compute an entity view in NeR
with customers, orders, and order lines records from the
collection in the document-based database (i.e., C5) and the
tables in the relational one (i.e., C1 to C3), respectively; in
particular, the latter is the one hiding the most complexity,
as multiple join and nest operations are required to compute
the NeR representation. The two LEVs are then merged

in a GEV creation operation, that returns a cleansed FlR
representation of the same data and projects the only
features required by subsequent operations. Similarly in the
lower part, two other LEV creation operations compute
an entity view in NoR with product records from C6 and
C4, respectively. The subsequent GEV creation operation
merges the products and applies the filter on the reconciled
records. Ultimately, the GEV join operation combines the
produced GEVs, while the aggregation operation computes
the final result.

Several query plans can be devised for the same query.
For readability purposes, the full enumeration process
is detailed in the Appendix. The factors that determine
the number of alternative query plans and that drive the
enumeration process are summarized below.

#1 LEV creation. As discussed in Section 5.2.2, a GEV
creation consists in left-deep trees of merge operations
involving all LEVs with the same collection graph.

Fig. 11 Example of a full query plan. Data flows are represented by full arcs while dotted lines link collections and EV to sample data

1939

Information Systems Frontiers (2023) 25:1925–1951

Thus, different plans can be defined by choosing
different schema representations to create the LEVs of
a given GEV. Let χ a GEV with CGχ = (Eχ , Lχ).

• If |Eχ | = 1, then LEVs are created in NoR (by
definition, only NoR supports a single entity in
Eχ).

• If |Eχ | > 1, then LEVs can be created either
in FlR or NeR, depending on the assumptions
from Section 5.2: FlR is possible only if
 ∃E ∈
Eχ : φ(E) = true (because the merge operation
requires EVs in NoR or NeR); NeR is possible only
if there is a single path of -to-one relationships in
u (which is a structural requirement for the NeR
pattern).

#2 GEV creation. A query plan may include several
alternative combinations of GEVs. These combinations
can be found by partitioning QGq = (Eq, Lq) into
one or more subgraphs and creating a GEV for each
subgraph. The number of possible combinations is
2|Lq |. Fortunately, not all combinations are feasible: by
definition, a GEV creation requires all corresponding
LEVs to share the same collection graph, which is not
always possible (see Example 11).

#3 LEV allocation. Each LEV creation operation can be
executed either directly by the middleware or pushed
down to the database storing the respective data;
Section 7 will show that both options can be efficient,
depending on several factors. As the computation of
each LEV is independent of the others, the number of
possibilities is 2y , where y is the number of LEVs to
be created.

Example 11 The boxes in Fig. 12 correspond to all possible
query plans for the query graph on the left. For a given
box, each subgraph corresponds to a GEV, where the
coloring scheme defines its collection graph. Horizontally,
the plans differ on the way the query graph is partitioned
into GEVs (#2); vertically, the plans differ on the schema
representation for the given GEVs (#1); factor (#3) is not
shown in the figure. Plans with an orange background are
unfeasibile: as shown in Fig. 3, there is no collection in the
document-based database described by Epr and there is no
collection in the wide-column database described by Eol .
This makes it impossible to create a LEV χ such that Eχ ⊆
{Epr, Eol} on either database — which is a requirement to
create the corresponding GEV.

7 Cost Model

Enumerating all the feasible query plans is useless if we are
not able to identify the one determining the lowest execution
time. Identifying the most efficient among the high number
of plans obtainable for a single query q is particularly
challenging in a multistore due to:

• DBMSes heterogeneity. In a multistore, several DBM-
Ses coexist each with its own data model and capabili-
ties. A multistore cost model must cover all the different
DBMSes.

• DBMS variability. In a big data and pay-as-you-go
context, variability is the norm. New databases may
be added and DBMS resources (e.g., number of CPU
cores, amount of RAM) could change along time.

Fig. 12 A query graph (left) and
all the possible plans, shown
with the corresponding
combinations of GEVs (right).
Unfeasible plans are in orange;
recall that bold circles
correspond to fact entities

1940

Information Systems Frontiers (2023) 25:1925–1951

In Forresi et al. (2021), we relied on existing literature
to model the cost of each NRA operation on each engine in
terms of read and written disk pages. While this worked well
on the simple example considered by Forresi et al. (2021),
(i) it did not consider the amount of resources assigned to
each engine, (ii) it made simplistic assumptions about the
parallelization of the computation in a distributed engine,
(iii) it considered execution costs related to disk I/O only,
(iv) it required an advanced knowledge about the internal
details of each engine and related algorithms that reduces its
extensibility.

In this paper, we overcome these limitations by proposing
a self-learning cost model, which implicitly captures the
aforementioned aspects without requiring explicit and
complex modeling of execution costs. Inspired by Golfarelli
et al. (2019), the cost model is composed by a set of multi-
regression models H = {h0(), ..., hn()}, one for each of
the n execution engines composing the multistore including
the middleware denoted by h0(). The query plan P is
partitioned in a set subplans SP , each corresponding to
the execution of an entity view operation on an engine
(including the middleware). A multi-regression model
heng(P ′)(P ′) estimates the execution time for the subplan
P ′ on the corresponding engine eng(P ′) based on a plan
profile. The list of the features composing the profiles is
reported in Table 3; for each feature, the domain and the
supported engines are indicated (e.g., the number of join
operations is not captured on wide-column engines since
they do not support this operation). Some of these features
are directly obtained from the plan (e.g., number of unnest
operations embedded in a π̂ or �̂ operation), while others
also require basic statistics on the local databases (e.g.,

the collections’ cardinalities and attributes’ histograms to
compute selectivity and aggregation rate, the presence of
indexes to infer whether the engine will be able to exploit
them). The execution time for P is estimated by composing
the execution time of its subplans SP as follows:

T ime(P) =
∑

P ′∈SP |eng(P ′)=0

h0(P
′)

+ max
i∈[1,n]

∑

P ′∈SP |eng(P ′)=i

hi(P
′)

The assumption in taking the maximum execution time
of a single engine is that computations on the local
databases are carried out concurrently (indeed, all subplans
are launched at the same time from the middleware
and are assumed to be executed sequentially within each
engine). Thus, the cost model explicitly codes inter-engine
parallelism by considering only the slowest engine as
the one contributing to the plan duration. Conversely, we
assume that the computation on the middleware requires all
local computations to be completed first; this is a worst-case
simplification, as – depending on the actual plan – the global
computation could be started to process the results of the
first local computation. Noticeably, intra-engine parallelism
generated by multi-core execution is transparently captured
by the regression models.

Figure 13 reports, for the multistore used in our tests,
an excerpt of regression tree for the middleware (i.e.
Spark) showing the most important features determining the
execution time. The full regression tree includes 98 leaves
arranged in 5 levels. Each leaf estimates the execution time
limitedly to the portion of the feature space defined by the
split nodes. We remind that the advantage of local regression

Table 3 The features of the regression models; the engine’s legend is R=Relational, D=Document-based, W=Wide-column, K=Key-value,
M=Middleware

Profile Feature Domain Engine supp.

Entity view operation {π̂ , �̂, �̂�} R D W K M

Source schema representation {NeR, NoR, FlR} R D W K M

Target schema representation {NeR, NoR, FlR} R D W K M

Number of records N R D W K M

Selectivity [0, 1] R D W K M

Aggregation rate [0, 1] R D - - M

Number of unnest operations N R D - - M

Number of join operations N R D - - M

Number of union operations N - - - - M

Number of merge operations N - - - - M

Number of selections exploiting indexes or source partitioning N R D W K M

Number of selections not exploiting indexes or source partitioning N R D W K M

Number of nested selections exploiting indexes N R D - - M

Number of nested selections not exploiting indexes N R D - - M

Number of aggregations (nest, group by) N R D - - M

1941

Information Systems Frontiers (2023) 25:1925–1951

Fig. 13 An excerpt of the
regression tree defining the cost
model for the middleware engine

approaches (Baldacci et al. 2016; Loader, 2006) is that they
enable the fitting of complex feature spaces without using
global regression functions that are implicitly difficult to
tune. To reach this goal, several simple regression functions,
each modeling a small part of the data space, are combined
to create a complex model.

Models’ training consists in capturing, for each execution
engine, the execution times of each entity view operation
from a wide set of queries, manually defined by varying
(i) the number of involved entities, (ii) the selectivity of
the selection predicates, and (iii) the strength of the final
aggregation (further details in Section 8.3). Entity view
operations are executed in random order and repeated 5
times to smooth occasional outliers. Query profiles are then
created and eventually pre-processed: binning is applied to
features with a wide range of values (i.e., “Selectivity”,
“Aggregation rate”, and “Number of records”); one-hot
encoding is used to convert categorical features to numbers;
features with a low range of values are not modified (i.e.,
all “Number of operation” features). Finally, the regression
induction algorithm proposed is fed with the training sets to
create the regression models.

Models’ drift (typically due to the variation in the amount
of engine resources) is detected when the absolute relative
error on the estimate becomes higher than a given threshold.
The training queries for the drifted engine are re-executed
and the corresponding regression tree is rebuilt. Similarly,
if a new database is added to the multistore, a new set of
queries must be devised and an additional regression tree
must be trained.

8 Experiments

8.1 Prototype

The reference architecture is a two-rack big data cluster of
18 Ubuntu machines with a minimum configuration of i7

8-core CPU @3.2GHz, 32GB RAM, and 6TB hard disk
drives. Each machine runs the Cloudera Distribution for
Apache Hadoop (CDH) 6.2.0. The multistore implementa-
tion relies on PostgreSQL,MongoDB, Cassandra, and Redis
as relational, document-based, wide-column, and key-value
databases, respectively. PostgreSQL is installed on a single
machine, while NoSQL stores are distributed across 5
machines. The middleware (including the query planner,
the cost model, and the execution framework) is imple-
mented as an Apache Spark application; Spark is one of the
most used open-source execution frameworks for Apache
Hadoop clusters, providing connectors to most databases
(including those in our multistore). The Spark application
runs with 4 executors, each with 4 CPU cores and 8GB
RAM.

The user interacts with the multistore through a set of
REST APIs to visualize and maintain the dataspace and to
submit GPSJ queries. Plain Scala is used to generate the
regression models for each execution engine (by relying
on Weka libraries), as well as to build the query graph
(by relying on the Graph for Scala library) and to generate
the execution plans in sub-second time (Forresi et al.,
2021). Queries are formulated by relying on the SQL APIs
exposed by Spark’s DataFrame abstraction in two steps:
(i) a DataFrame is initialized for each subplan assigned to
a local database by making a custom call to the database
systems’ APIs, thus overcoming the current limitations
of Spark that prevent the push-down of a custom set of
operations (Delaney & Li, 2017); (ii) the subplans assigned
to the middleware are formulated through the SQL APIs,
where User Defined Functions (UDFs) have been defined to
implement the NRA extensions.

8.2 Multistore Benchmarks

The multistore in Fig. 3 is a variation of the multi-model
benchmark Unibench (Zhang et al., 2018), which has been
extended to inject schema heterogeneity and introduce

1942

Information Systems Frontiers (2023) 25:1925–1951

overlapping records in different databases. Since the choice
of the best query plan is determined by several factors (see
Section 7), different benchmarks of the same multistore
have been generated. In particular, the benchmarks vary on
the following parameters.

• Overlap: the presence/absence of overlap for different
entities determines different workloads with different
execution plans; as the preliminary results by Forresi
et al. (2021) had shown, FlR is favored in absence
of overlap, while NeR is favored in its presence. The
overlap parameter defines, for each benchmark, the set
of entities Eφ for which data fusion activities must be
carried out (i.e., ∀ E ∈ Eφ it is φ(E) = true). The
overlap rate is set to 60% for Epr , and to 20% for both
Eor and Ecu.

• Data skewness: the convenience of pushing-down
computations to local databases is partly determined by
the amount of the data that must be processed by each
database. Thus, different benchmarks are created with
an unbalanced distribution of records, so as to put more
pressure (i.e., more data) on different databases. Given
the query expressiveness limitations of Cassandra and
Redis (where no significant operations can be pushed-
down), this variation is applied on MongoDB and
PostgreSQL. Data skewness is determined by features
f10 and f14, so as to enable the formulation of query
predicates that select different amounts of data from
either database.

The summary of the generated versions is shown in
Table 4. Remarkably, the main goal of the paper is not
to prove the scalability of the multistore (which is already
addressed by Forresi et al. (2021)) but rather to evaluate the
performance of the different execution plans in reasonable
times. Nonetheless, all multistores are deployed with a scale
factors 1, 10, and 100 to consider scalability as well. Scale
factor 1 determines a total of 300K order lines relative

Table 4 Generated multistore benchmarks with different entity
overlapping settings and different data skewness

Multistore benchmark Overlap Data skewness

MS1 Eφ = {Epr , Ecu} R

MS2 Eφ = {Epr , Eol, Eor , Ecu} R

MS3 Eφ = {Epr } R

MS4 Eφ = {Epr , Ecu} D

MS5 Eφ = {Epr , Eol, Eor , Ecu} D

MS6 Eφ = {Epr } D

If data skewness is R, 90% of the customer, order, and orderline records
are stored on PostgreSQL, and the remainder on MongoDB; it is the
opposite when data skewness is D

to 10K customers and 10K products, which offers a good
trade-off between a sufficient cardinality and non-excessive
execution times for the experimental evaluation. The data
used to populate the collections in the different databases is
available at https://big.csr.unibo.it/multistore.

8.3 Cost Model Evaluation

The tests in this section are aimed at assessing the quality of
the cost model in choosing the query plan for a given query.
Given the expressiveness of GPSJ queries (Golfarelli et al.,
1998), the workload has been devised by varying the queries
in terms of selectivity, group-by strengths, and number of
entities involved in the query.9

• The group-by set is either absent (i.e., only a simple
projection is carried out, without aggregation), weak
(i.e., it involves features with high cardinality, resulting
in several groups), or strong (i.e., it involves features
with low cardinality, resulting in few groups).

• The selection predicate is either absent, weak (i.e., its
selectivity is low; for instance, a filter on a year of data),
or strong (i.e., its selectivity is high; for instance, a filter
on a given date).

• The number of entities involved in the query varies from
1 to all 5 of them.

By varying these components, we obtain 54 queries, 48
of which are used to train the cost model and the remaining
ones for testing. Details about all queries are available at
available at https://big.csr.unibo.it/multistore. Overall, the
estimated execution times differ from the actual ones for
9.4% on average; this is sufficient to correctly estimate the
best execution plan for a query.

Figure 14 shows the average number of plans generated
by the cost model with increasing number of entities
involved in the query. As discussed in Section 6.1, the
enumeration of query plans is subject to exponential factors
that translate into an increasing (but non-exponential)
numbers of plans generated as more entities are queried.
Nonetheless, their enumeration does not have a great impact
on performance: besides the time required for the query
graph generation and partitioning (75ms), the generation
and cost estimation of a single plan accounts for ˜2ms.
Overall, the cost model always runs in sub-second times,
with an average of 210ms.

The effectiveness of the cost model is measured against
5 selected baseline strategies:

9Producing representative analytical workloads is still a research
challenge to this day (Lu & Holubová, 2019). Nonetheless, several
proposals in the related literature adopt criteria similar to ours in the
definition of representative workloads (Golfarelli & Saltarelli, 2003;
Darmont et al., 2005; O’Neil et al., 2009; Bimonte et al., 2021).

1943

https://big.csr.unibo.it/multistore
https://big.csr.unibo.it/multistore

Information Systems Frontiers (2023) 25:1925–1951

Fig. 14 Average number of enumerated plans with increasing number
of queried entities

• RCL corresponds to the hypothetical oracle that always
chooses the optimal plan;

• PRV corresponds to our previous multistore implemen-
tation (Forresi et al., 2021), where LEVs were always
created in NoR and the computation was not pushed
down to the databases;

• NOB, NEB, and FLB adopt a simple strategy to
choose the plan that maximizes both computation push-
down and the creation of LEVs in a given schema
representation (respectively NoR, NeR, and FlR).

OPT refers to the optimized multistore discussed in this
paper. Table 5 indicates the average time increase between
the execution time of the plan chosen by each strategy
and the one of the optimal plan (RCL is not included
here, as the time increase would obviously be 0). The
data shows that OPT outperforms every other baseline,
consistently throughout all benchmarks. More in detail,
Fig. 15 separately compares OPT with every baseline to
determine how many times OPT chooses a plan that is better
than the one chosen by the compared baseline. Again, OPT
emerges as a clear winner against all baselines, especially
proving a big step forward with respect to Forresi et al.
(2021); the bars of FLB and NEB do not reach 100% due

Fig. 15 Pair-wise comparison between plan selection strategies

to the impossibility to create LEVs in FlR or NeR in some
queries (e.g., those involving a single entity) or benchmarks
(as FlR is incompatible with the merge operation).

The percentage of ties between OPT and RCL (i.e.,
25.9%) indicates there is room for improvement. However,
further investigation reveals that OPT mostly returns sub-
optimal plans when the optimal one is missed. This is
confirmed in Fig. 16, which shows, for each strategy, the
percentage of times that the chosen plan is among the top-K
most efficient ones; it is observable here how OPT reaches
a high accuracy more quickly than other baselines.

Figure 17 shows how the overhead of OPT and the
baselines increases with the increase in scale factor.
Noticeably, overheads tend to be higher at higher scale
factors; this is mainly due to a performance degradation on
the RDBMS. Remarkably, though OPT is affected by such
increase, it improves its advantage over all baselines.

Finally, Fig. 18 reports the average overhead of OPT
with respect to different levels of training completeness, i.e.,
by progressively depriving the cost model of the collected
training data. Essentially, this corresponds to testing the
accuracy of the cost model with queries that are increasingly
more distant from the training queries. The reported values
are averaged from 5 experiments where different random
samples of data are removed. The experiment shows that

Table 5 Average overhead of
the chosen plan with respect to
the optimal one

OPT PRV NOB NEB FLB

MS1 21.4% 48.1% 143.5% 84.2% –

MS2 19.6% 39.4% 131.9% 85.5% –

MS3 7.7% 59.1% 192.0% 120.1% 113.6%

MS4 49.0% 122.1% 202.6% 114.3% –

MS5 20.7% 27.7% 176.6% 141.7% –

MS6 6.4% 53.1% 365.2% 171.2% 176.5%

AVG 20.8% 58.3% 202.0% 119.5% 145.1%

1944

Information Systems Frontiers (2023) 25:1925–1951

Fig. 16 Percentage of plan chosen among the top-K for every plan
selection strategy

OPT is able to rapidly converge to a low overhead and that it
is able to provide good effectiveness even when the training
data is very limited.

8.4 Query Plans Evaluation

The tests in this section analyze the factors that impact
on query performance. For this purpose we collected the
execution times of every possible execution plan generated
by the query planner in the same set of queries from
Section 8.3.

Figure 19a shows the average execution time decrease
(in %) by varying the percentage of operations pushed
down to MongoDB (D) and PostgreSQL (R). The decrease
is measured against the execution time in absence of
push-down. Given a plan P , let SPD and SPR be the
set of subplans corresponding to LEV creation operations
where the data is taken from the document-based and
the relational database, respectively; also, let nra() be a
function that returns the number of NRA operations in
a given subplan. Then, the x and y coordinates of P in
Fig. 19a respectively correspond to nra({P ′∈SPR : eng(P ′)=R})

nra(SPR)

Fig. 17 Overhead increase with increasing scale factors

Fig. 18 Average overhead with different levels of training
completeness

and nra({P ′∈SPD : eng(P ′)=D})
nra(SPD)

. Figure 19b shows the average
execution time (in seconds) at different amounts of data (in
MB) transferred from the local database (MongoDB above,
PostgreSQL below) to Spark. A thorough evaluation of the
single execution plans allowed us to obtain the following
findings.

• Push-down on MongoDB emerges as a generally
convenient solution. The main reason is found in (i)
reducing the amount of data moved from MongoDB
to Spark, and (ii) Spark operating less efficiently on
nested data. First, applying filters at the middleware
level implies transferring a (potentially) large amount
of data that will be discarded later; this is particularly
true in the application of filters to nested attributes, as
pushing down this operation accounts for an average
time decrease of 33%. Figure 19b shows that there
is a correlation between the amount of moved data
and the execution time. Additionally, we observe that
MongoDB is much faster than Spark in handling unnest
operations (required to compute LEVs in NoR or
FlR from the nested collection C5) and in projecting
features out of nested attributes. The latter is especially
observable in plans where the computation pushed
down to MongoDB is minimum (because computing
the LEV in NeR from C5 for Ecu, Eor , and Eol requires
no extra computation besides the projection of features
from attributes), yet there is an average 24% decrease
with respect to carrying out the same operations on
Spark.

• No clear trend emerges on PostgreSQL. On the one
hand, the push-down of computation implies less data
movement and a better exploitation of indexes and
statistics; on the other, Spark is a more powerful
engine and is able to exploit operation pipelining to
minimize the amount of data shuffling. Differently from
MongoDB, Fig. 19b shows that execution times are
not directly correlated to the amount of moved data.

1945

Information Systems Frontiers (2023) 25:1925–1951

Fig. 19 On the left, the average execution time decrease (in %) at dif-
ferent percentages of operations pushed down to PostgreSQL (R) and
MongoDB (D); the decrease is measured against the execution time in
absence of push-down (i.e., the bottom-left corner, measuring 0%). On

the right, the average execution time (in seconds) at different amounts
of data (in MB) transferred from the local database (MongoDB above,
PostgreSQL below) to Spark

Interestingly, we have observed a performance decrease
in query plans with LEVs on relational data where a
large amount of operations is split between the database
and the middleware (however, this is not reflected in the
figure due to the averaging with other query plans).

The results in Fig. 19a depend on the resources available
to each execution engine. In Fig. 20 we measure this

Fig. 20 Average execution time increase with fewer resources
assigned to PostgreSQL or MongoDB

dependency by reducing the amount of resources to the local
databases: in particular, we move PostgreSQL to a single-
core (versus the original 8-core) machine and we consider
a non-sharded implementation of MongoDB’s collections
(versus the sharding on 5 machines). The results show,
for each database, the average time increase (in %) when
running the same sets of plans on the less-powerful version
of such database. As expected, pushing computation down
becomes a less-favorable choice. Notice that execution
times increase even at 0% of computation push-down; that is
because data still needs to be read from the database (which
is obviously slower in the less-powerful version).

A final consideration concerns the usage of differ-
ent schema representations in LEV creation operations.
Interestingly, in 86% of the queries executed on benchmarks
with most data on the document-based database (i.e., MS4
to MS6), the best query plan mostly relies on NeR to create
LEVs. In the other benchmarks, the schema representation
most adopted by the best query plan also depends on the
level of overlap: in case of medium/high overlap (i.e., MS2
and MS3), NeR is chosen for 87% of the queries; in case of
low overlap (i.e., MS1), NoR and FlR are chosen for 75% of
the queries. These results are consistent with previous find-
ings (Forresi et al., 2021) stating that (i) the need to solve
record overlapping influences the choice of the schema

1946

Information Systems Frontiers (2023) 25:1925–1951

representation, and (ii) preserving the original modeling of
data usually translates to faster executions. Ultimately, the
absence of a clear winner is a further validation of the need
of a cost model to choose an efficient execution plan.

9 Conclusions

In this work, we have proposed a cost-based optimization of
execution plans in a multistore by devising and evaluating
different strategies to carry out joins and data fusion
in presence of data replication. The execution plans are
generated in terms of a multistore algebra extended from
NRA and are based on different schema representations,
so as to possibly take advantage of the original modeling
of the data in the local databases. Experiments have
been carried out on different multistore benchmarks to
investigate the factors that drive the performance of different
execution plans, demonstrating that the variety of these
factors motivates the evaluation of alternative plans. The
plan to execute for a given query is chosen by a black-box
self-learning cost model; the effectiveness of the latter is
shown by the experiments, which demonstrate the success
in optimizing query executions with respect to Forresi et al.
(2021).

Future work is planned to take several paths. First, we
plan to evolve the multistore into a more complex data
platform extending functionalities from simple querying to
data search and profiling, provenance investigation, and
orchestration of application pipelines (Francia et al., 2021).
On the other hand, the efficiency of our multistore system
can be further improved by considering the addition of
data aggregation push-down to the local databases. This
translates to the creation of new execution plans that
need to be evaluated by the cost model as well. In this
direction, the findings of this paper concerning the factors
that drive execution plans’ performance can serve as a basis
to define rules or heuristics that reduce the number of
generated execution plans. Finally, we plan to complete the
multistore’s functionalities by adding support to the graph
data model.

Appendix: Query Plan Algorithms

This section details the algorithms that are used to create
query plans. In these algorithms, functions addEvOp,
addUnOp, and addBinOp return a plan that extends the
one given in input with the EV (or NRA) operation specified
in the same input. Also, function graph(P) returns the
collection graph of the collection returned by P .

A.1 Query Plan Enumeration

Algorithm 1 details the procedure to define query plans.
A query plan is defined for every feasible partitioning U

of the query graph QGq (Lines 3 to 30); a GEV is defined
for every partition u (Lines 5 to 23); a LEV is defined
for every database containing records of the entities in Eu

(Lines 7 to 18). In Lines 9 to 14 the parameter for the
LEV creation operation are retrieved and used in Line 15
to define such operation; in particular, Line 13 selects the
entities of the LEV for which there is no record overlap (i.e.,
φ(E) = f alse), so as to push-down to the π̂ operation the
selection predicates on features of such entities (Line 14).
Once PLEV s is created as the set of all plans to produce
the LEVs of a given GEV, the GEV creation operation is
defined (Lines 9 to 14); symmetrically, Line19 selects the
entities of the GEV for which there is record overlap (i.e.,
φ(E) = true), so as to apply the selection predicates on
features of such entities (Line 20) to the �̂ operation. Finally,

Algorithm 1 planGeneration(q, QGq)

1947

Information Systems Frontiers (2023) 25:1925–1951

the GEV join is defined (Line 24), possibly followed by the
final aggregation operation, if specified in the query (Lines
25 to 27).

The algorithm omits the choice of the execution engine
for each LEV: given a logical plan P with n LEVs,
2n physical plans are generated with all combinations of
assigning, to each π̂ operation, either the middleware or the
local database.
A.2 From EV Operations to NRA Operations

Algorithms 2 to 5 detail how each EV operator defined in
Algorithm 1 is translated into a plan of NRA operations.

Algorithm 2 gevJoinToNra(PX, QGq

First of all, Algorithm 2 details the translation of a
GEV join �̂� (X). The plans PX corresponding to the
GEV creations are sorted based on a minimum selectivity
heuristics (Line 1). Based on such ordering, a left-deep
tree of join operations is defined (Lines 2 to 8); here, the
getLink() function (Line 6) returns the link in QGq in
the middle between CGP and CGP ′ , so as to identify the
feature to use in the join predicate between the results of P

and P ′.
Remarkably, left-deep trees offer limited inter-

operator parallelism capabilities than other forms of trees
(?DBLP:reference/db/2018). However, the choice
of focusing on left-deep trees only is supported by the
following considerations. On the one hand, inter-operator
parallelism is often limited by several factors, including
the larger data footprint required (which may oversub-
scribe memory bandwidth or induce more spills to disk,
i.e., resources that are often under pressure in big data
scenarios), the brevity of relational pipelines (which is
typical of GPSJ queries), and the presence of block-
ing operators and/or dependencies between operators
(?DBLP:reference/db/2018). On the other hand,
left-deep trees offer a smaller search space (Dong & Liang,
2007), exploit the cost-reducing pipelining technique on
each join operation (Steinbrunn et al., 1997), and allow us
to maintain compatibility with our previous work where

left-deep trees had been used (Forresi et al., 2021; Forresi
et al., 2021).

Algorithm 3 gevCreationToNra(PX, pX)

Algorithm 3 details the translation of a GEV creation
�̂ (X, pX). Similarily to Algorithm 2, the plans PX

corresponding to the LEV creations are sorted based on a
minimum selectivity heuristics (Line 1) and, based on such
ordering, a left-deep tree of merge operations is defined
(Lines 2 to 6). At Line 8, the plan is possibly extended with
the selection operation, if specified. Finally, a sequence of
unnest operations is possibly added to return the result in
FlR, independently of its original representation Lines 10 to
14).

Algorithm 4 details the translation of a LEV creation
operation π̂(Cχ , CGχ, Fχ , pχ). As a LEVmay be extracted
from several collections, the process is divided into steps:
a LEV is first defined for each collection C ∈ Cχ (Lines
3 to 8), then they are progressively put together to build
the final LEV (Lines 9 to 22). Depending on rep(CGχ),
the process follows different strategies. In case of FlR or
NoR, the collections are initially sorted (Line 2) based on
a minimum selectivity heuristics, and the single-collection
LEVs are put together via join operations. In case of NeR,
the collections are initially sorted from the finest to the
coarsest, and the joins between LEVs are followed by
nest operations to produce the nested structure (Lines 16
to 21).

The creation of single-collection LEVs is detailed in
Algorithm 5. At a high level, the algorithm is composed
of three steps: (i) application of selection predicates, (ii)
projection of relevant features, and (iii) remodeling of the
data to adapt the result to rep(CGχ).

Besides accessing the collection C (Line 2), the first
step immediately applies selection predicates to reduce the
number of records involved in the following operations

1948

Information Systems Frontiers (2023) 25:1925–1951

Algorithm 4 levCreationToNra(Cχ , CGχ , Fχ , pχ)

(Lines3 to 9). For each feature that needs a selection, we
build a disjunction of predicates that consider every schema
variation of such feature.

The second step takes into consideration schema
variation and column pruning. Its goal is to project only the
relevant attributes and to map them to features (by applying
the respective transcoding functions and renaming them to
the feature names, Lines 11 to 18). In particular, for each
feature f ∈ Fχ representing attributes in SC we project a
single attribute (named after rep(f)) that contains the only
non-null value among its schema variations (simplified in
Line 15 as a disjunction over each a ∈ A).

The third step consists of the NRA operations to adapt the
obtained collection to the representation specified in input,
i.e., rep(CGχ) (Lines 20 to 26). Three kinds of operations
are possibly applied.

• Unnest operations (Lines 20 to 26) are applied to flatten
collection records, thus moving the granularity from a
coarse entity to a finer one. For instance, this operation
is necessary to obtain Cj from Ci in Fig. 7.

• An aggregation operation (Lines 27 to 32) is applied
to coarsen the aggregation level of a collection. For
instance, this operation is necessary to keep only
customer and order records (i.e., Eor and Ecu) from Ck

Algorithm 5 createSingleCollLEV (C, CGχ, Fχ , pχ)

in Fig. 7, which results in “moving” the fact from Eol

to Eor .
• Nest operations (Lines 33 to 43) are applied to nest

collection records, thus moving the granularity from
a fine entity to a coarser one. For instance, this is
necessary to obtain Ci from Ck in Fig. 7.

Funding Open access funding provided by Alma Mater Studiorum -
Università di Bologna within the CRUI-CARE Agreement.

1949

Information Systems Frontiers (2023) 25:1925–1951

Declarations

Conflict of Interests All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials
discussed in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Agrawal, D., Chawla, S., Contreras-Rojas, B., & et al (2018). RHEEM:
enabling cross-platform data processing - may the big data be with
you! -. Proceedings of the VLDB Endowment, 11(11), 1414–1427.
https://doi.org/10.14778/3236187.3236195.

Atzeni, P., Bugiotti, F., & Rossi, L (2014). Uniform access to nosql sys-
tems. Information Systems, 43, 117–133. https://doi.org/10.1016/j.
is.2013.05.002.

Baldacci, L., Golfarelli, M., Lombardi, D., et al. (2016). Natural gas
consumption forecasting for anomaly detection. Expert Systems
with Applications, 62, 190–201. https://doi.org/10.1016/j.eswa.
2016.06.013.

Ben Hamadou, H., Gallinucci, E., & Golfarelli, M (2019). Answering
GPSJ queries in a polystore: a dataspace-based approach. In
Proceedings of conceptual modeling - 38th int. conf., ER 2019,
(Vol. 11788 pp. 189–203). Springer. https://doi.org/10.1007/978-
3-030-33223-5 16.

Bimonte, S., Gallinucci, E., Marcel, P., & et al (2021). Data variety,
come as you are in multi-model data warehouses. Information
Systems. https://doi.org/10.1016/j.is.2021.101734.

Bleiholder, J., & Naumann, F. (2005). Declarative data fusion - syntax,
semantics, and implementation. In Advances in databases and
information systems, 9th East European conference, ADBIS 2005,
Tallinn, Estonia, September 12-15, 2005, Proceedings, (Vol. 3631
pp. 58–73). Springer. https://doi.org/10.1007/11547686 5.

Bleiholder, J., & Naumann, F. (2008). Data fusion. ACM Com-
puting Surveys, 41(1), 1,1–1,41. https://doi.org/10.1145/1456650.
1456651.

Bonaque, R. et al. (2016). Mixed-instance querying: a lightweight inte-
gration architecture for data journalism. Proceedings of the VLDB
Endowment, 9(13), 1513–1516. https://doi.org/10.14778/300726
3.3007297.

Bondiombouy, C., & Valduriez, P. (2016). Query processing in multi-
store systems: an overview. International Journal of Cloud Com-
puting, 5(4), 309–346. https://doi.org/10.1504/IJCC.2016.10001
884.

Darmont, J., Boussaid, O., & Bentayeb, F (2005). DWEB: a data ware-
house engineering benchmark. In A.M. Tjoa, & J. Trujillo (Eds.)
Data warehousing and knowledge discovery, 7th international

conference, DaWaK 2005, Copenhagen, Denmark, August 22-26,
2005, proceedings, lecture notes in computer science, (Vol. 3589
pp. 85–94). Springer. https://doi.org/10.1007/11546849 9.

Delaney, I., & Li, J. (2017). Extending apache spark sql data
source apis with join push down. https://databricks.com/session/
extending-apache-spark-sql-data-source-apis-with-join-push-down,
[Online; accessed 10-Sep-2021].

Deshpande, A., & Hellerstein, J.M. (2002). Decoupled query
optimization for federated database systems. In R. Agrawal,
& K.R. Dittrich (Eds.) Proceedings of the 18th international
conference on data engineering, San Jose, CA, USA, February
26 - March 1, 2002 (pp. 716–727). IEEE Computer Society.
https://doi.org/10.1109/ICDE.2002.994788.

DiScala, M., & Abadi, D.J. (2016). Automatic generation of
normalized relational schemas from nested key-value data. In 2016
ACM SIGMOD Int. conf. on management of data (pp. 295–310).
ACM. https://doi.org/10.1145/2882903.2882924.

Dong, H., & Liang, Y. (2007). Genetic algorithms for large join
query optimization. In H. Lipson (Ed.) Genetic and evolu-
tionary computation conference, GECCO proceedings, Lon-
don, England, UK, July 7-11, 2007 (pp. 1211–1218). ACM.
https://doi.org/10.1145/1276958.1277193.

Duggan, J., Elmore, A.J., Stonebraker, M., & et al (2015). The
bigdawg polystore system. SIGMOD Record, 44(2), 11–16.
https://doi.org/10.1145/2814710.2814713.

Forresi, C., Francia, M., Gallinucci, E., & et al (2021). Optimizing
execution plans in a multistore. In Advances in databases and
information systems - 25th European conference, ADBIS 2021,
Tartu, Estonia, August 24-26, 2021, Proceedings (pp. 136–151).
Springer. https://doi.org/10.1007/978-3-030-82472-3 11.

Forresi, C., Gallinucci, E., Golfarelli, M., & et al (2021). A dataspace-
based framework for olap analyses in a high-variety multistore.
The VLDB Journal, 1–24. https://doi.org/10.1007/s00778-021-
00682-5.

Francia, M., Gallinucci, E., Golfarelli, M., & et al (2021). Making
data platforms smarter with MOSES. Future Generation Com-
puter Systems, 125, 299–313. https://doi.org/10.1007/s00778-021-
00682-5.

Franklin, M.J., Halevy, A.Y., & Maier, D (2005). From databases to
dataspaces: a new abstraction for information management. SIG-
MOD Record, 34(4), 27–33. https://doi.org/10.1007/s00778-021-
00682-5.

Gadepally, V., Chen, P., Duggan, J., & et al (2016). The bigdawg poly-
store system and architecture. In 2016 IEEE High performance
extreme computing conference, HPEC 2016, Waltham, MA, USA,
September 13-15, 2016 (pp. 1–6). https://doi.org/10.1109/HPEC.
2016.7761636.

Gallinucci, E., Golfarelli, M., & Rizzi, S (2019). Approximate OLAP
of document-oriented databases: a variety-aware approach. Infor-
mation Systems, 85, 114–130. https://doi.org/10.1016/j.is.2019.
02.004.

Gog, I., Schwarzkopf, M., Crooks, N., & et al (2015). Musketeer: all
for one, one for all in data processing systems. In L. Réveillère,
T. Harris, & M. Herlihy (Eds.) Proceedings of the tenth European
conference on computer systems, EuroSys 2015, Bordeaux,
France, April 21-24, 2015 (pp. 1–16). ACM. https://doi.org/10.
1145/2741948.2741968.

Golfarelli, M., Graziani, S., & Rizzi, S (2019). An active learning
approach to build adaptive cost models for web services. Data and
Knowledge Engineering, 119, 89–104. https://doi.org/10.1016/j.
datak.2019.01.001.

Golfarelli, M., Maio, D., & Rizzi, S (1998). The dimensional fact
model: a conceptual model for data warehouses. International
Journal of Cooperative Information Systems, 7(2-3), 215–247.
https://doi.org/10.1142/S0218843098000118.

1950

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14778/3236187.3236195
https://doi.org/10.1016/j.is.2013.05.002
https://doi.org/10.1016/j.is.2013.05.002
https://doi.org/10.1016/j.eswa.2016.06.013
https://doi.org/10.1016/j.eswa.2016.06.013
https://doi.org/10.1007/978-3-030-33223-5_16
https://doi.org/10.1007/978-3-030-33223-5_16
https://doi.org/10.1016/j.is.2021.101734
https://doi.org/10.1007/11547686_5
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.14778/3007263.3007297
https://doi.org/10.14778/3007263.3007297
https://doi.org/10.1504/IJCC.2016.10001884
https://doi.org/10.1504/IJCC.2016.10001884
https://doi.org/10.1007/11546849_9
https://databricks.com/session/extending-apache-spark-sql-data-source-a pis-with-join-push-down
https://databricks.com/session/extending-apache-spark-sql-data-source-a pis-with-join-push-down
https://doi.org/10.1109/ICDE.2002.994788
https://doi.org/10.1145/2882903.2882924
https://doi.org/10.1145/1276958.1277193
https://doi.org/10.1145/2814710.2814713
https://doi.org/10.1007/978-3-030-82472-3_11
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1016/j.is.2019.02.004
https://doi.org/10.1016/j.is.2019.02.004
https://doi.org/10.1145/2741948.2741968
https://doi.org/10.1145/2741948.2741968
https://doi.org/10.1016/j.datak.2019.01.001
https://doi.org/10.1016/j.datak.2019.01.001
https://doi.org/10.1142/S0218843098000118

Information Systems Frontiers (2023) 25:1925–1951

Golfarelli, M., & Rizzi, S. (2009). Data warehouse design:
modern principles and methodologies. McGraw-Hill, Inc.
https://doi.org/10.5555/1594749.

Golfarelli, M., & Saltarelli, E. (2003). The workload you have, the
workload you would like. In S. Rizzi, & I. Song (Eds.) DOLAP
2003, ACM Sixth international workshop on data warehousing
and OLAP, New Orleans, Louisiana, USA, November 7 Proceed-
ings (pp. 79–85). ACM. https://doi.org/10.1145/956060.956075.

Jeffery, S.R., Franklin, M.J., & Halevy, AY (2008). Pay-as-you-go user
feedback for dataspace systems. In 2008 ACM SIGMOD Int. conf.
on management of data (pp. 847–860). ACM. https://doi.org/10.
1007/978-3-319-13704-9 7.

Kaitoua, A., Rabl, T., Katsifodimos, A., & et al (2019). Muses:
distributed data migration system for polystores. In 35th IEEE
international conference on data engineering, ICDE 2019,
Macao, China, April 8-11, 2019 (pp. 1602–1605). IEEE.
https://doi.org/10.1109/ICDE.2019.00152.

Kolev, B. et al. (2016). Cloudmdsql: querying heterogeneous cloud
data stores with a common language. Distributed and Parallel
Databases, 34(4), 463–503. https://doi.org/10.1007/s10619-015-
7185-y.

Liu, L., & Özsu, M.T. (Eds.) (2018). Encyclopedia of database sys-
tems, 2nd edn. New York: Springer. https://doi.org/10.1007/978-1-
4614-8265-9.

Loader, C. (2006). Local regression and likelihood. Springer Science
& Business Media. https://doi.org/10.1007/b98858.

Lu, J., & Holubová, I. (2019). Multi-model databases: a new journey
to handle the variety of data. ACM Computing Surveys, 52(3),
55,1–55, 38. https://doi.org/10.1145/3323214.

Maccioni, A., & Torlone, R. (2018). Augmented access for querying
and exploring a polystore. In 34th IEEE Int. conf. on data
engineering, ICDE 2018 (pp. 77–88). IEEE Computer Society.
https://doi.org/10.1109/ICDE.2018.00017.

Mandreoli, F., & Montangero, M. (2019). Dealing with data hetero-
geneity in a data fusion perspective: models, methodologies, and
algorithms. In Data handling in science and technology, (Vol. 31
pp. 235–270). Elsevier. https://doi.org/10.1016/B978-0-444-639
84-4.00009-0.

Mazumdar, S., Seybold, D., Kritikos, K., et al. (2019). A survey
on data storage and placement methodologies for cloud-big data
ecosystem. Journal of Big Data, 6(1), 15. https://doi.org/10.1186/
s40537-019-0178-3.

O’Neil, P.E., O’Neil, E.J., Chen, X., & et al (2009). The star
schema benchmark and augmented fact table indexing. In
R.O. Nambiar, & M. Poess (Eds.) Performance evaluation and
benchmarking, first TPC technology conference, TPCTC 2009,
Lyon, France, August 24-28, 2009, Revised Selected Papers,
Lecture Notes in Computer Science, (Vol. 5895 pp. 237–252).
Springer. https://doi.org/10.1007/978-3-642-10424-4 17.

Rafique, A., Van Landuyt, D., Reniers, V., & et al (2017). Towards
an adaptive middleware for efficient multi-cloud data storage. In
Proceedings of the 4th workshop on crosscloud infrastructures &
platforms (pp. 1–6). https://doi.org/10.1145/3069383.3069387.

Sadalage, P.J., & Fowler, M. (2013). NoSQL distilled: a brief guide
to the emerging world of polyglot persistence. Pearson Education.
https://doi.org/10.5555/2381014.

Sellami, R., & Defude, B. (2018). Complex queries optimization
and evaluation over relational and nosql data stores in cloud
environments. IEEE Transactions on Big Data, 4(2), 217–230.
https://doi.org/10.1109/TBDATA.2017.2719054.

Singhal, R., Zhang, N., Nardi, L., & et al (2019). Polystore++:
accelerated polystore system for heterogeneous workloads. In 39th
IEEE International conference on distributed computing systems,
ICDCS 2019, Dallas, TX, USA, July 7-10, 2019 (pp. 1641–1651).
IEEE. https://doi.org/10.1109/ICDCS.2019.00163.

Steinbrunn, M., Moerkotte, G., & Kemper, A (1997). Heuristic and
randomized optimization for the join ordering problem. VLDB
Journal, 6(3), 191–208. https://doi.org/10.1007/s007780050040.

Subramanian, D.K., & Subramanian, K. (1998). Query optimization
in multidatabase systems. Distributed Parallel Databases, 6(2),
183–210. https://doi.org/10.1023/A:1008691331104.

Tan, R., Chirkova, R., Gadepally, V., et al. (2017). Enabling query
processing across heterogeneous data models: a survey. In 2017
IEEE Int. conf. on big data (pp. 3211–3220). IEEE Computer
Society. https://doi.org/10.1109/BigData.2017.8258302.

The myria big data management and analytics system and cloud
services (2017)

Zhang, C., Lu, J., Xu, P., & et al (2018). Unibench: a benchmark
for multi-model database management systems. In Performance
evaluation and benchmarking for the era of artificial intelligence -
10th TPC technology conference, TPCTC 2018, (Vol. 11135 pp. 7–
23). Springer. https://doi.org/10.1007/978-3-030-11404-6 2.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Chiara Forresi graduated cum laude in Computer Science and
Engineering in October 2020 at the University of Bologna. She is
currently a Ph.D. student in Data Science and Computation. Her main
research interests are about techniques and methodologies to support
data management and analysis in big data ecosystems.

Matteo Francia received his Ph.D. in Computer Science and
Engineering from the University of Bologna, Italy. He is an adjunct
professor and a post-doc research fellow at the University of Bologna.
His research focuses on advanced analytics and unconventional data,
with particular reference to IoT and spatio-temporal data.

Enrico Gallinucci is adjunct professor at the University of Bologna,
where he received his Ph.D. in Computer Science and Engineering
and teaches Business Intelligence and Big Data. His research interests
currently focus on big data analytics, NoSQL and multimodel
database systems, data democratization, and precision agriculture. He
is associate editor for the DKE journal.

Matteo Golfarelli is full professor at the University of Bologna.
He is author of over 130 publications in international journals and
conferences mainly in the areas of database systems and business
intelligence. His current research interests include Big Data Analytics,
Machine Learning, NoSQL. He is member of the steering committee
of DOLAP and associate editor for DKE and Electronics journals.
He is the coordinator of the International Master Degree in Digital
Transformation Management.

1951

https://doi.org/10.5555/1594749
https://doi.org/10.1145/956060.956075
https://doi.org/10.1007/978-3-319-13704-9_7
https://doi.org/10.1007/978-3-319-13704-9_7
https://doi.org/10.1109/ICDE.2019.00152
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/978-1-4614-8265-9
https://doi.org/10.1007/978-1-4614-8265-9
https://doi.org/10.1007/b98858
https://doi.org/10.1145/3323214
https://doi.org/10.1109/ICDE.2018.00017
https://doi.org/10.1016/B978-0-444-63984-4.00009-0
https://doi.org/10.1016/B978-0-444-63984-4.00009-0
https://doi.org/10.1186/s40537-019-0178-3
https://doi.org/10.1186/s40537-019-0178-3
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1145/3069383.3069387
https://doi.org/10.5555/2381014
https://doi.org/10.1109/TBDATA.2017.2719054
https://doi.org/10.1109/ICDCS.2019.00163
https://doi.org/10.1007/s007780050040
https://doi.org/10.1023/A:1008691331104
https://doi.org/10.1109/BigData.2017.8258302
https://doi.org/10.1007/978-3-030-11404-6_2

	Cost-based Optimization of Multistore Query Plans
	Abstract
	Introduction
	Multistore Overview
	Related Work
	Multistore Systems
	Multistore Optimization

	Multistore Formalization
	Basic Concepts
	Dataspace and Supporting Structures

	Multistore Algebra
	NRA and Data Fusion Operations
	Entity Views
	LEV Creation
	GEV Creation
	Join of GEVs
	Optimization of Entity View Operations

	Query Planning
	Enumeration of Query Plans

	Cost Model
	Experiments
	Prototype
	Multistore Benchmarks
	Cost Model Evaluation
	Query Plans Evaluation

	Conclusions
	Appendix : Query Plan Algorithms
	A.1 Query Plan Enumeration
	A.2 From EV Operations to NRA Operations
	References

