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Abstract
The proliferation of rumors on social media has become a major concern due to its ability to create a devastating impact. 
Manually assessing the veracity of social media messages is a very time-consuming task that can be much helped by 
machine learning. Most message veracity verification methods only exploit textual contents and metadata. Very few take 
both textual and visual contents, and more particularly images, into account. Moreover, prior works have used many classi-
cal machine learning models to detect rumors. However, although recent studies have proven the effectiveness of ensemble 
machine learning approaches, such models have seldom been applied. Thus, in this paper, we propose a set of advanced 
image features that are inspired from the field of image quality assessment, and introduce the Multimodal fusiON framework 
to assess message veracIty in social neTwORks (MONITOR), which exploits all message features by exploring various 
machine learning models. Moreover, we demonstrate the effectiveness of ensemble learning algorithms for rumor detection 
by using five metalearning models. Eventually, we conduct extensive experiments on two real-world datasets. Results show 
that MONITOR outperforms state-of-the-art machine learning baselines and that ensemble models significantly increase 
MONITOR’s performance.
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1  Introduction

After more than two decades of existence, social media plat-
forms have attracted a large number of users. They enable 
the diffusion of information in real-time, albeit regardless 
of its credibility, for two main reasons. First, there is a lack 
of a means to verify the veracity of contents transiting on 

social media. Second, users often publish messages without 
verifying information validity and reliability. Consequently, 
social networks, and particularly microblogging platforms, 
are a fertile ground for spreading rumors.

Widespread rumors can pose a threat to the credibility of 
social media and cause harmful consequences in real life. 
Thus, the automatic assessment of information credibility 
on microblogs that we focus on is crucial to provide decision 
support to, e.g., fact checkers. This task requires to verify 
the truthfulness of messages related to a particular event 
and return a binary decision stating whether the message 
is authentic.

In the literature, most automatic rumor detection 
approaches address the task as a classification problem. They 
generally extract features from two aspects of messages: tex-
tual content (Pérez-Rosas et al. 2018) and social context (Wu 
and Liu 2018). However, the multimedia content of mes-
sages, particularly images that present a significant set of 
features, are little exploited.

In this paper, we second the hypothesis that the use of 
image properties is important in rumor verification. Images 
indeed play a crucial role in the news diffusion process. For 
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example, in the dataset collected by Jin et al. (2017), the 
average number of messages with an attached image is more 
than eleven times that of plain text messages.

Figure 1 shows two sample rumors posted on Twit-
ter. In Fig. 1a, it is hard to assess veracity from the text, 
but the likely-manipulated image hints at a rumor. In 
Fig. 1b, it is hard to assess veracity from both the text 
or the image because the image has been taken out of its 
original context.

Furthermore, most of the literature focuses on features to 
train a wide range of machine learning (Volkova and Jang 
2018) and deep learning (Wang et al. 2018) methods. How-
ever, although recent studies demonstrate the effectiveness 
of ensemble learning (Gutierrez-Espinoza et al. 2020), such 
models are not applied for rumor detection.

Based on the above observations, we aim to lever-
age all the modalities of microblog messages for veri-
fying rumors, that is, features extracted from the tex-
tual and social context content of messages, and up to 
now unused visual and statistical features derived from 
images. Consequently, all types of features must be fused 
to allow a supervised machine learning classifier to eval-
uate the credibility of messages. Moreover, motivated 
by the recent research on ensemble learning to classi-
fication problems (Pang et al. 2016), we design various 
metalearning models to investigate the performance of 
ensemble learning for rumor classification.

Our contribution is threefold. First, we propose the 
use of a set of image features inspired from the field of 
Image Quality Assessment (IQA) and we show that they 
contribute very effectively to the verification of message 
veracity. These metrics estimate the rate of noise and 
quantify the amount of visual degradation of any type 
in an image. They are proven to be good indicators for 
detecting fake images, even those generated by advanced 
techniques such as Generative Adversarial Networks 

(GANs) (Goodfellow et  al. 2014). To the best of our 
knowledge, we are the first to systematically exploit this 
type of image features to check the veracity of microblog 
posts.

Second, we detail the Multimodal fusiON framework 
to assess message veracIty in social neTwORks (MONI-
TOR) (Azri et al. 2021), which exploits all types of message 
features and leverages four machine learning models that 
provide explainability and interpretability about the taken 
decisions.

Third, we demonstrate the benefit of ensemble learn-
ing, by developing five metalearning models (soft and 
weighted average voting, stacking, blending, and super 
learner ensemble) that exploit the above four machine 
learning models, and we compare their performance with 
MONITOR’s. To the best of our knowledge, we are the 
first to apply metalearning models for tackling the rumor 
detection task.

Eventually, we conduct extensive experiments two 
real-world datasets to show the effectiveness of our 
rumor detection approach. MONITOR indeed outper-
forms all state-of-the-art machine learning baselines with 
an accuracy and F1-score of up to 96% and 89% on the 
MediaEval benchmark (Boididou et al. 2015) and the 
FakeNewsNet dataset (Shu et al. 2018), respectively. Fur-
thermore, all metalearning algorithms notably increase 
MONITOR’s performance.

The remainder of this paper is organized as follows. 
In Section 2, we review all the research related to our 
problem. In Section 3, we detail MONITOR and espe-
cially its feature extraction and selection. In Section 4, 
we present and comment on the experimental results that 
we achieve with respect to state-of-the-art methods. In 
Section 5, we investigate and discuss the performance of 
ensemble models. Finally, in Section 6, we conclude this 
paper and outline future research.

Fig. 1   Two sample rumors 
posted on Twitter
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2 � Related Works

Related work can be divided into the following categories: 

1.	 non-image features and image features that are essential 
for checking the veracity of microblog posts,

2.	 background information regarding ensemble learning 
models and their usage for rumor classification.

2.1 � Non‑image Features

Studies in the literature present a wide range of non-
image features. These features may be divided into two 
subcategories, textual features and social context fea-
tures. To classify a message as fake or real, Castillo 
et al. (2011) capture prominent statistics in tweets, such 
as count of words, capitalized characters and punctua-
tion. Beyond these features, lexical words expressing 
specific semantics or sentiments are also counted. Many 
sentimental lexical features are proposed (Kwon et al. 
2013), which utilize a sentiment tool called the Linguis-
tic Inquiry and Word Count (LIWC) to count words in 
meaningful categories.

Other works exploit syntactic features, such as the num-
ber of keywords, the sentiment score or polarity of the sen-
tence. Features based on topic models are used to understand 
messages and their underlying relations within a corpus. Wu 
et al. (2015) train a Latent Dirichlet Allocation model (Blei 
et al. 2003) with a defined set of topic features to summarize 
semantics for detecting rumors.

The social context describes the propagating process 
of a rumor (Shu et al. 2018). Social network features are 
extracted by constructing specific networks, such as diffu-
sion (Kwon et al. 2013) or co-occurrence networks (Ruchan-
sky et al. 2017).

Recent approaches detect fake news based on temporal-
structure features. Kwon et al. (2017) studied the stability 
of features over time and found that, for rumor detection, 
linguistic and user features are suitable for early-stage, while 
structural and temporal features tend to have good perfor-
mance in the long-term stage.

2.2 � Image Features

Although images are widely shared on social networks, 
their potential for verifying the veracity of messages in 
microblogs is not sufficiently explored. Morris et al. (2012) 
assume that the user’s profile image has an important impact 
on information credibility. Images attached in messages bear 
very basic features. Wu et al. (2015) define a feature called 
“has multimedia” to mark whether the tweet has any pic-
ture, video or audio attached. Gupta et al. (2013) propose 

a classification model to identify fake images on Twitter 
during Hurricane Sandy. However, their work is still based 
on textual content features.

To automatically predict whether a tweet that shares 
multimedia content is fake or real, Boididou et al. (2015) 
propose the Verifying Multimedia Use (VMU) task. Textual 
and image forensics (Li et al. 2014) features are used as 
baseline features for this task. They conclude that Twitter 
media content is not amenable to image forensics and that 
forensics features do not lead to consistent VMU improve-
ment (Boididou et al. 2018).

2.3 � Ensemble Learning

Ensemble learning refers to the generation and combination 
of multiple inducers to solve a particular machine learning 
task. The intuitive explanation for the ensemble methodol-
ogy stems from human nature. Often, decision making by a 
group of individuals results in more accurate, useful or cor-
rect outcome than a decision made by any one member of 
the group. This is generally referred to as the wisdom of the 
crowd (Surowiecki 2005). Using ensemble learning, the per-
formance of poorly performing classifiers can be improved 
by creating, training and combining the output of multiple 
classifiers and thus result in a more robust classification. 
There are three main approaches for developing an ensemble 
learner (Zhang and Ma 2012):

•	 boosting uses homogeneous-base models trained sequen-
tially;

•	 bagging (Bootstrap AGGregatING) uses homogeneous-
base models trained in parallel;

•	 stacking uses mostly heterogeneous-base models trained 
in parallel and combined using a metamodel.

By averaging (or voting) the output produced by the pool 
of classifiers, ensemble methods provide better predictions 
and avoid overfitting. Another reason that contributes to 
the better performance of ensemble learning is its ability in 
escaping from local minimums. By using multiple models, 
the search space becomes wider and the chance for finding 
a better output becomes higher (Sagi and Rokach 2018).

Recently ensemble learning methods have shown good 
performance in various applications, including solar irradi-
ance prediction (Lee et al. 2020), slope stability analysis 
(Pham et al. 2021), natural language processing (Sangam-
nerkar et al. 2020), malware detection (Gupta and Rani 
2020), COVID-19 detection (Singh et al. 2021), movie suc-
cess detection (Lee et al. 2018) and blood donors detection 
(Kauten et al. 2021). Compared to other applications, rumor 
classification using ensemble learning techniques has been 
very little studied.
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Kaur et al. (2020) propose a multilevel voting model for 
the fake news detection task. The study concludes that the 
proposed model outperforms both individual machine learn-
ing and ensemble learning models. To address the multiclass 
fake news detection problem, Kaliyar et al. (2019) use gra-
dient boosting ensemble techniques and compare their per-
formance with several individual machine learning models. 
Results demonstrate the effectiveness of the ensemble frame-
work compared to existing benchmark performance. Finally, 
Al-Ash et al. (2019) find that the bagging approach pro-
vides superior performance than Support Vector Machines 
(SVMs), Multinomial Naïve Bayes (MNB) and Random 
Forest to detect fake news.

3 � MONITOR

Microblog messages contain rich multimodal resources, 
such as text contents, surrounding social context and 
attached images. Our focus is to leverage this multimodal 
information to determine whether a message is true or 
false. Based on this idea, we propose a framework for 
verifying the veracity of messages. MONITOR’s detailed 
description is presented in this section.

3.1 � Multimodal Fusion Overview

Figure 2 shows a general overview of MONITOR, which 
works in two main stages. First, we extract several fea-
tures from the message’s text and the social context. 
Then, we apply a feature selection algorithm to iden-
tify relevant features, which form a first set of textual 

features. From the attached image, we derive statistics 
and efficient visual features inspired from the IQA field, 
which form a second set of image features. Second, we 
train a model by concatenating and normalizing the 
textual and image features sets to form a fusion vector. 
Several machine learning classifiers may learn from the 
fusion vector to distinguish the veracity of the message, 
i.e., real or fake.

3.2 � Feature Extraction and Selection

To better extract features, we reviewed the best practices fol-
lowed by information professionals, e.g., journalists, in veri-
fying content generated by social network users. We based 
our thinking on relevant data from journalistic studies (Mar-
tin and Comm 2014) and the Verification Handbook (Silver-
man 2014). We define a set of features that are important 
to extract discriminating characteristics of rumors. These 
features are mainly derived from three principal aspects of 
news information: content, social context and visual content. 
The feature selection process is only applied to content and 
social context features sets to remove the irrelevant features 
that can negatively impact performance. Because our focus 
is the visual features set, we retain all these features in the 
learning process.

3.2.1 � Message Content Features

Content features are extracted from the message’s text. We 
extract characteristics such as the length of a tweet and the 
number of words. We also include statistics such as the num-
ber of exclamation and question marks, as well as binary 

Fig. 2   Overview of MONITOR
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features indicating the existence or not of emoticons. Fur-
thermore, other features are extracted from the linguistics of 
a text, including the number of positive and negative senti-
ment words. Additional binary features indicate whether the 
text contains personal pronouns.

We also calculate a readability score for each message 
using the Flesch Reading Ease method (Kincaid et al. 1975). 
The higher this score is, the easier the text is to read. Other 
features are extracted from the informative content provided 
by the specific communication style of the Twitter platform, 
such as the number of retweets, mentions (@), hashtags (#) 
and URLs.

3.2.2 � Social Context Features

The social context reflects the relationships between differ-
ent users. Therefore, social context features are extracted 
from the behavior of users and the propagation network. We 
capture several features from the users’ profiles, such as the 
number of followers and friends, the number of tweets the 
user has authored, the number of tweets the user has liked 
and whether the user is verified by the social media. We also 
extract features from the propagation tree that can be built 
from tweets and retweets, such as the depth of the retweet 
tree. Tables 1 and 2 describe the sets of content features and 
social context features extracted from each message.

To improve the performance of MONITOR, we apply 
a feature selection algorithm on the feature sets listed in 

Tables 1 and 2. The details of the feature selection process 
are discussed in Section 4.

3.2.3 � Image Features

To differentiate between false and real images in messages, 
we propose to exploit visual content features and visual sta-
tistical features that are extracted from the joined images.

Visual Content Features  Usually, a news consumer decides 
the image veracity based on his subjective perception, but 
how do we quantitatively represent the human perception 
of the quality of an image? The quality of an image means 
the amount of visual degradations of all types present in 
an image, such as noise, blocking artifacts, blurring, fading 
and so on.

The IQA field aims to quantify human perception of 
image quality by providing an objective score of image 
degradations based on computational models (Maître 2017). 
Such degradations are introduced during different process-
ing stages, such as image acquisition, compression, storage, 
transmission and decompression. Inspired by the potential 
relevance of IQA metrics in our context, we use these met-
rics in an original way, for a purpose different from what 
they were created for. More precisely, we hypothesize that 
the quantitative evaluation of the quality of an image can be 
useful for veracity detection.

IQA is mainly divided into two areas of research: full-
reference evaluation and no-reference evaluation. Full-
reference algorithms compare the input image against a 
pristine reference image with no distortion. In no-reference 
algorithms, the only input is the image whose quality is to 
be measured. In our case, we do not have the original ver-
sion of the posted image. Therefore, the approach that is 
fitting to our context is no-reference evaluation. We use 
three no-reference algorithms that have been demonstrated 
to be highly efficient: the Blind/Referenceless Image Spatial 
Quality Evaluator (BRISQUE) by Mittal et al. (2011), the 
Naturalness Image Quality Evaluator (NIQE) by Mittal et al. 
(2012) and the Perception based Image Quality Evaluator 
(PIQE) by Venkatanath et al. (2015).

For example, Fig. 3 displays the BRISQUE score com-
puted for a natural image and its distorted versions (com-
pression, noise and blurring distortions). The BRISQUE 
score is a non-negative scalar in the range [1, 100]. Lower 
values of the score reflect a better perceptual image quality.

No-reference IQA metrics are also good indicators for 
other types of image modifications, such as GAN-generated 
images. These techniques allow modifying the context and 
semantics of images in a very realistic way. Unlike many 
image analysis tasks, where both reference and reconstructed 
images are available, images generated by GANs may not 

Table 1   Content features Description

# of chars, words
# of (?), (!) mark
# of uppercase chars
# of positive, negative words
# of mentions, hashtags, URLs
# of happy, sad mood emoticon
# of 1st, 2nd, 3rd order pronoun
Readability score

Table 2   Social context features

Description

# of followers, friends, posts
Friends/followers ratio, times listed
# of retweets, likes
The user shares a homepage URL
The user has a profile image
The user has a verified account
# of tweets the user has liked
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have any reference image. This is the main reason for using 
no-reference IQA for evaluating this type of fake images. 
Figure 4 displays the BRISQUE score computed for real and 
fake images generated by image-to-image translation based 
on GANs (Zhu et al. 2017).

Statistical Features  From attached images, we define four 
statistical features from two aspects.

•	 Number of images: A user can post one, several or no 
images. To denote this feature, we count the total number 
of images in a rumor event and the ratio of posts contain-
ing more then one image.

•	 Spreading of images: During an event, some images are 
very replied and generate more comments than others. 
The ratio of such images is calculated to indicate this 
feature. Table 3 illustrates the description of our visual 
and statistical features. We use all of these features in the 
learning process.

3.3 � Model Training

So far, we have obtained a first set of relevant textual fea-
tures through a feature selection process. We have also 
a second set of image features composed of statistical 
and visual features. These two sets of features are scaled, 
normalized and concatenated to form the multimodal 
representation of a given message, which is learned by 
a supervised classifier. Several learning algorithms can 
be implemented fore message veracity classification. We 
investigate the algorithms that provide the best perfor-
mance in Section 4.

4 � Regular Machine Learning Experiments

In this section, we conduct extensive experiments on two 
public datasets. First, we present statistics about the datasets 
we use. Then, we describe the experimental settings: a brief 
review of state-of-the-art features for news verification and 
a selection of the best of these textual features as baselines. 

Fig. 3   BRISQUE score com-
puted for a natural image and its 
distorted versions

Fig. 4   BRISQUE score com-
puted for real and fake GANs 
images

Table 3   Description of image features

Type Feature Description

Visual BRISQUE BRISQUE score of a given image
PIQE PIQE score of a given image

features NIQE NIQE score of a given image
Statistical Count_Img Number of all images in a news event

Ratio_Img1 Ratio of the multi-image tweets in all tweets
features Ratio_Img2 Ratio of image number to tweet number

Ratio_Img3 Ratio of the most widespread image in all 
distinct images

Table 4   MediaEval and FakeNewsNet statistics

Dataset Set Tweets Images

Real Fake

MediaEval Training set 5,008 6,841 361
Testing set 1,217 717 50

FakeNewsNet Training set 25,673 19,422 47,870
Testing set 6,466 4,808 11,968
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Finally, we present experimental results and analyze the fea-
tures to achieve insights with MONITOR.

4.1 � Datasets

To evaluate MONITOR’s performance, we conduct experi-
ments on two well-established public datasets for rumor 
detection. The detailed statistics of these two datasets are 
listed in Table 4.

4.1.1 � MediaEval

MediaEval (Boididou et al. 2015) is collected from Twit-
ter and includes all three characteristics: text, social 
context and images. It is designed for message-level 
verification. The dataset has two parts: a development 
set containing about 9,000 rumor and 6,000 non-rumor 
tweets from 17 rumor-related events; a test set contain-
ing about 2,000 tweets from another batch of 35 rumor-
related events. We remove tweets without any text nor 
image, thus obtaining a final dataset including 411 dis-
tinct images associated with 6,225 real and 7,558 fake 
tweets, respectively.

4.1.2 � FakeNewsNet

FakeNewsNet (Shu et al. 2018) is one of the most compre-
hensive fake news detection benchmark. Fake and real news 
articles are collected from the fact-checking websites Politi-
Fact and GossipCop. Since we are particularly interested 
in images in this work, we extract and exploit the image 
information of all tweets. To keep the dataset balanced, we 
randomly choose 2,566 real and 2,587 fake news events. 
After removing tweets without images, we obtain 56,369 
tweets and 59,838 images.

4.2 � Experimental Settings

4.2.1 � Baseline Features

We compare the effectiveness of our feature set with the best 
textual features from the literature. First, we adopt the 15 
best features extracted by Castillo et al. (2011) to analyze the 
information credibility of news propagated through Twitter. 
We also collect a total of 40 additional textual features from 
the literature (Gupta et al. 2013, 2012; Kwon et al. 2013; 
Wu et al. 2015), which are extracted from text content, user 
information and propagation properties (Table 5).

4.2.2 � Feature Sets

The features labeled Textual are the best features selected 
among message content and social context features (Tables 1 

and 2). We select them with the information gain ratio 
method (Karegowda et al. 2010), which helps select a sub-
set of 15 relevant textual features with an information gain 
larger than zero (Table 6).

The features labeled Image are all the image features 
listed in Table 3. The features labeled MONITOR are the 
feature set that we propose, consisting of the fusion of tex-
tual and image feature sets. The features labeled Castillo 

Table 5   Features from the literature

Feature

Fraction of (?), (!) Mark, # of messages
Average # of words, char lengths
Fraction of 1st, 2nd, 3rd pronouns
Fraction of URLs, @, #
Count of distinct URLs, @, #
Fraction of popular URLs, @, #
The tweet includes pictures
Average sentiment score
Fraction of positive and negative tweets
# of distinct people, loc, org
Fraction of people, loc, org
Fraction of popular people, loc, org
# of Users, fraction of popular users
# of followers, followees, posted tweets
The user has a Facebook link
Fraction of verified users, org
# of comments on the original message
Time between original message and repost

Table 6   Best textual features selected

MediaEval FakeNewsNet

Tweet_Length Tweet_Length
Num_Negwords Num_Words
Num_Mentions Num_Questmark
Num_URLs Num_Upperchars
Num_Words Num_Exclmark
Num_Upperchars Num_Hashtags
Num_Hashtags Num_Negwords
Num_Exclmark Num_Poswords
Num_Thirdpron Num_Followers
Times_Listed Num_Friends
Num_Tweets Num_Favorites
Num_Friends Times_Listed
Num_Retweets Num_Likes
Has_Url Num_Retweets
Num_Followers Num_Tweets
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are the above-mentioned best 15 textual features. Eventu-
ally, the features labeled Wu are the 40 textual features 
identified in literature.

4.2.3 � Model Construction

We cannot know beforehand what model will be good 
for our problem or what configuration to use. By ana-
lyzing both datasets, we found that classes are partially 
linearly separable in some dimensions. Thus, we evaluate 
a mix of simple linear and non-linear algorithms. The 
best result are achieved by four supervised classification 
algorithms: Classification and Regression Trees (CART), 
k-Nearest Neighbors (KNN), Support Vector Machines 

(SVMs) and Random Forest (RF). Then, we optimize the 
hyper-parameters of each model (Table 7) by testing mul-
tiple settings using the GridSearchCV function from the 
Python Scikit-Learn library (Pedregosa et al. 2011). Sub-
sequently, we perform training and validation for each 
model through a 5-fold cross-validation to obtain stable 
out-sample results. To implement the models, we again 
use scikit-learn. Note that, for MediaEval, we retain the 
same data split scheme. For FakeNewsNet, we randomly 
divide data into training and testing subsets with the ratio 
0.8:0.2. Table 8 present the results of our experiments.

4.3 � Classification Results

From the classification results recorded in Table 8, we can 
make the following observations.

4.3.1 � Performance Comparison

With MONITOR, using both image and textual feature 
allows all classification algorithms to achieve better perfor-
mance than baselines. Among the four classification models, 
RF generates the best accuracy: 96.2% on MediaEval and 
88.9% on FakeNewsNet, performing 26% and 18% better 
than Castillo and 24% and 15% than Wu, still on MediaEval 
and FakeNewsNet, respectively.

Compared to the 15 “best” textual feature set, RF 
improves the accuracy by more than 22% and 10% with 

Table 7   Hyper-parameters configuration space

Model Main hyper-parameters Type Search space

CART​ max_depth Discrete [1,21]
criterion Categorical [‘gini’,‘entropy’]

KNN n_neighbors Discrete [1,21]
SVM C Discrete [0.1,2.0]

� (RBF kernel) Discrete [0.1,1.0]
Kernel Categorical [‘linear’, ‘poly’, 

‘rbf’,‘sigmoid’]
RF n_estimators Discrete [10,500]

max_depth Discrete [3,20]

Table 8   Performance of 
individual machine learning 
models. Bold entries indicates 
the best performance achieved 
for each evaluation metric

Model Features MediaEval FakeNewsNet

Acc Prec Rec F
1

Acc Prec Rec F
1

CART​ Textual 0.673 0.672 0.771 0.718 0.699 0.647 0.652 0.65
Image 0.632 0.701 0.639 0.668 0.647 0.595 0.533 0.563
MONITOR 0.746 0.715 0.897 0.796 0.704 0.623 0.716 0.667
Castillo 0.643 0.711 0.648 0.678 0.683 0.674 0.491 0.569
Wu 0.65 0.709 0.715 0.711 0.694 0.663 0.593 0.627

KNN Textual 0.707 0.704 0.777 0.739 0.698 0.67 0.599 0.633
Image 0.608 0.607 0.734 0.665 0.647 0.595 0.533 0.563
MONITOR 0.791 0.792 0.843 0.817 0.758 0.734 0.746 0.740
Castillo 0.652 0.698 0.665 0.681 0.681 0.651 0.566 0.606
Wu 0.668 0.71 0.678 0.693 0.694 0.663 0.593 0.627

SVM Textual 0.74 0.729 0.834 0.779 0.658 0.657 0.44 0.528
Image 0.693 0.69 0.775 0.73 0.595 0.618 0.125 0.208
MONITOR 0.794 0.767 0.881 0.82 0.771 0.743 0.742 0.743
Castillo 0.702 0.761 0.716 0.737 0.629 0.687 0.259 0.377
Wu 0.725 0.763 0.73 0.746 0.642 0.625 0.394 0.484

RF Textual 0.747 0.717 0.879 0.789 0.778 0.726 0.768 0.747
Image 0.652 0.646 0.771 0.703 0.652 0.646 0.771 0.703
MONITOR 0.962 0.965 0.966 0.965 0.889 0.914 0.864 0.889
Castillo 0.702 0.727 0.723 0.725 0.714 0.669 0.67 0.67
Wu 0.728 0.752 0.748 0.75 0.736 0.699 0.682 0.691
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image features only. Similarly, the other three algorithms 
achieve

While image features play a crucial role in rumor verifica-
tion, we must not ignore the effectiveness of textual features. 
The role of image and textual features is complementary. 
When the two sets of features are combined, performance is 
significantly boosted.

4.3.2 � Illustration by Example

To more clearly show the complementarity between text 
and images, we compare the results achieved with MON-
ITOR and single modality approaches (text only or image 
only). Fake rumor messages from Fig. 1 (Section 1) are 
correctly detected as false by MONITOR, while using 
either only textual or only image modalities yields a true 
result.

In the tweet from Fig.  1a, the text content solely 
describes the attached image without giving any signs 
about the veracity of the tweet. This is why the textual 
modality identifies this tweet as real. It is the attached 
image that looks quite suspicious. By combining textual 
and image contents, MONITOR can identify the verac-
ity of the tweet with a high score, exploiting some clues 
from the image to get the right classification.

The tweet from Fig. 1b is an example of rumor correctly clas-
sified by MONITOR, but incorrectly classified when only using 
the visual modality. The image seems normal and its complex 
semantics are very difficult to capture by the image modality. 
However, the words with strong emotions in the text indicate 
that it might be a suspicious message. By combining the textual 

and image modalities, MONITOR can classify the tweet with a 
high confidence score.

4.4 � Feature Analysis

The advantage of our approach is that we can achieve 
some elements of interpretability. To this aim, we con-
duct an analysis to illustrate the importance of each fea-
ture set. We depict the first most 15 important features 
achieved by RF in Fig. 5, which shows that, for both 
datasets, visual characteristics are in the top-five fea-
tures. The remaining features are a mix of text content 
and social context features. These results validate the 
effectiveness of the IQA image features, as well as the 
the importance of fusing several modalities in the pro-
cess of rumor verification.

Eventually, to illustrate the discriminating capacity of these 
features, we deploy box plots for each of the 15 top variables 
on both datasets. Figure 6 shows that several features exhibit 
a significant difference between fake and real classes, which 
explains our good results.

4.5 � Early and Late Fusion

In our previous experiments, we fuse visual and textual 
modalities into a single multimodal vector before the learn-
ing and classification steps, in the so-called early fusion 
manner. Another way to merge features is late fusion.

This class of fusion scheme works at the decision level, 
by combining the prediction scores available for each 
modality. Late fusion starts with the extraction of unimodal 

Fig. 5   Random Forest feature 
importance
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features. In contrast to early fusion, where features are 
combined into a multimodal representation, late fusion 
approaches learn directly from unimodal features. The 
predicted probability scores are combined afterwards to 
yield a final detection score. Several methods help combine 
scores, such as averaging, voting or using another machine 
learning method to learn how to best combine predictions.

To apply late fusion, we train two Random Forest (RF) 
classifiers by learning separately the visual and textual fea-
tures (Fig. 7).

To obtain the final classification results, the predicted prob-
abilities of the both classifiers are combined with (1) equal 
weights, by assuming that the two models are equally skillful 
and make the same proportional contribution to the final predic-
tion; and (2) averaging the (optimized) weights by feeding the 
classifiers’ output to a logistic regression model.

Figure 8 shows that, for both datasets, the early fusion method 
and the two late fusion strategies, i.e., equal weight and opti-
mized weight, boost the prediction with different rates using 
separately two sets of features. Early fusion has the highest 

Fig. 6   Distribution of true and false classes for top-15 important features

Fig. 7   Late fusion scheme

Fig. 8   Performance of early and 
late fusion
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performance score, while for both late fusion techniques, equal 
weight is slightly more efficient than optimized weight.

Late fusion’s performance is lower than that of early 
fusion because, when we train two models separately on 
visual and textual features, some dependencies between 
features are lost. Practically, there are some correla-
tions between features, e.g., between BRISQUE and 
Num_Mention or between PIQE and Text_Length. The 
potential loss of correlation in the mixed feature space 
is a drawback of late fusion. Another disadvantage of 
late fusion is its cost in terms of learning effort, as every 
modality requires a separate supervised learning stage. 
Moreover, the combined representation requires an addi-
tional learning stage.

5 � Ensemble Learning Performance

Applied machine learning often involves fitting and eval-
uating models on a dataset. Given that we cannot know 
what model will perform best on the dataset beforehand, 
this may involve a lot of trial and error until we find a 
model that performs good enough. This is akin to mak-
ing a decision using the single expert we can find. A 
complementary approach is to prepare multiple, differ-
ent models, and then combine their predictions using an 
ensemble machine learning model.

Because ensemble learning strategies such as bagging 
and boosting typically involve a single machine learning 
algorithm (generally a decision tree), we use instead the 
stacking strategy (also called metalearning) that seeks for a 
diverse group of members by varying model types. Figure 9 
summarizes the key elements of a stacking ensemble:

•	 an unchanged training dataset;

•	 various machine learning algorithms (base models) for 
each ensemble member;

•	 a machine learning model (metamodel) to learn how to 
best combine predictions.

To measure the performance of ensemble learning models 
for rumor detection, we develop five metamodels as variants 
of the stacking strategy.

5.1 � Metamodels

5.1.1 � Voting Ensemble

We construct two voting models. The first one is a soft 
voting model called MONITOR

sv
 that sums the predic-

tions made by the classification models listed in Table 8 
and predicts the class label with the largest sum prob-
ability. The second model is a weighted average vot-
ing model called MONITOR

wav
 where model votes are 

proportional to model performance. The performance 
of each ensemble model on the training dataset will be 
used as the relative weighting of the model when making 
predictions. Performance is calculated using classifica-
tion accuracy as a ratio of correct predictions ranging 
between 0 and 1, with larger values meaning a better 
model and, in turn, more contribution to the prediction.

5.1.2 � Canonical Stacking Ensemble

Following Wolpert (1992)’s canonical stacking strategy 
(Fig. 8), we construct a model called MONITOR

st
 . Con-

cretely, we use three repeats of a stratified 10-fold cross-
validation on the four classification models to prepare 
the training dataset (predictions) with the logistic regres-
sion metamodel. Furthermore, we train the metamodel 
on the prepared dataset as well as the original training 
dataset using a 5-fold cross-validation. This aims to pro-
vide an additional context to the metamodel to better 
combine predictions.

5.1.3 � Blending Ensemble

Blending was the term commonly used for stacking ensem-
bles during the Netflix prize in 2009. The prize involved teams 
seeking movie recommendations that performed better than the 
native Netflix algorithm. A one million US dollar prize was 
awarded to the team achieving a 10% performance improvement.

In this stacking-type ensemble, base models are fit on the 
training dataset and the metamodel is trained on predictions 
made by each base model on the validation dataset. At the time 
we are writing this paper, Scikit-learn does not support blend-
ing. Thus, we implement a blending model called MONITOR

bld
 

using scikit-learn models.

Fig. 9   Stacking ensemble
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To implement our model, we need to split the dataset, first 
into training and test sets. Then, the training set is split again 
into two subsets used to train base models and the metamodel, 
respectively. We use a 50/50 split on the training and test sets 
and a 67/33 split on the train and validation sets (Fig. 10). Fur-
thermore, we choose logistic regression as a metamodel (the 
blender), for the same reasons we mentioned about canonical 
stacking. We summarise the key implementation steps of our 
model in Algorithm 1.

5.1.4 � Super Learner Ensemble

A super learner ensemble (Van der Laan et al. 2007) is a 
specific stacking configuration where all base models use 
the same k-fold splits of data, and a metamodel is fit on the 
out-of-fold predictions from each model. We summarize 
this procedure in Algorithm 2. Moreover, Fig. 11, which is 
reproduced from the original paper by Van der Laan et al. 

(2007), depicts its data flow. We use the MLENS Python 
library (Flennerhag 2017) to implement the super learner 
model called MONITOR

sl
 , where we split the training data 

into k = 10 folds. The number of base models is set to 
m = 4(i.e. KNN, CART, SVM and RF).

Table 9 summarizes the results achieved by the best indi-
vidual machine learning model (RF) and the five stacking 
algorithms.

5.2 � Result Analysis

Our comparative analysis of experimental results shows 
that all metalearning models are more efficient than the 
best individual machine learning model (RF), because by 
combining multiple models, the errors from a single base-
model are likely compensated by the other models. As a 
result, the overall prediction performance of the ensemble 
is better than that of any single base-model.

Moreover, for both datasets, the canonical stacking 
algorithm outperforms all models with 98.4% and 93.6% 
of accuracy on MediaEval and FakeNewsNet dataset, 
respectively. The stacking model indeed takes advan-
tages from the diversity of predictions made by contrib-
uting models. That is, all algorithms are skillful on the 
classification problem, but in different ways. Figures 12 
and  13 depicts the accuracy score box plot and the 

Fig. 10   Dataset splitting
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Fig. 11   Super learner ensemble data flow Van der Laan et al. (2007)

Table 9   Performance of 
MONITOR and stacking 
ensemble models. Bold 
entries indicates the best 
performance achieved for each 
evaluation metric

Model MediaEval FakeNewsNet

Acc Prec Rec F
1

Acc Prec Rec F
1

MONITOR 0.962 0.965 0.966 0.965 0.889 0.914 0.864 0.889
MONITORsv 0.966 0.955 0.976 0.965 0.897 0.911 0.873 0.892
MONITORwav 0.968 0.968 0.970 0.969 0.906 0.90 0.927 0.914
MONITOR

st
0.984 0.979 0.989 0.984 0.936 0.929 0.952 0.941

MONITOR
bld

0.973 0.975 0.971 0.973 0.915 0.909 0.932 0.921
MONITOR

sl
0.970 0.980 0.959 0.969 0.921 0.915 0.937 0.926

Fig. 12   Stacking ensemble 
model vs. standalone models on 
MediaEval
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Receiver Operating Curve (ROC) for the canonical stack-
ing ensemble model compared to the standalone machine 
learning algorithms (MONITOR-RF, CART, KNN and 
SVM) on MediaEval and FakeNewsNet, respectively.

Among the five ensemble models, the soft voting 
algorithm achieves the worst results, because it treats 
all models the same, i.e., all models contribute equally 
to the prediction. Although the canonical stacking algo-
rithm performs the best, the blending and super learner 
algorithms achieve scores that are very close to those of 
stacking and therefore turn to be useful too for rumor 
classification.

6 � Conclusion and Perspectives

To assess the veracity of messages posted on social net-
works, most of the existing techniques ignore visual con-
tents and use traditional machine learning models for 
classification, although ensemble approaches are con-
sidered the state-of-the-art solutions for many machine 
learning challenges. Thence, in this paper, to improve the 
performance of message verification, we propose a mul-
timodal fusion framework called MONITOR that uses 
features extracted from the textual content of messages, 
the social context and image features that have not been 
considered until now. We compare the performance of 
MONITOR with five metalearning ensemble models by 
combining four base-predictors (KNN, CART, SVM and 
RF). Extensive experiments conducted on the MediaEval 
benchmark and the FakeNewsNet dataset show that:

•	 the image features that we introduce play a key role in 
message veracity assessment;

•	 no single homogeneous feature set can generate the best 
results alone;

•	 all ensemble algorithms outperform the best single base-
model (RF), and canonical stacking achieves the best per-
formance on both datasets.

Our future research includes two directions. In the short 
term, we plan to experiment with other, larger datasets and 
vary the type, combination and number of base models in 
the ensemble. Second, we plan to compare MONITOR’s 
performance with a deep learning-based approach for rumor 
classification, deepMONITOR (Azri et al. 2021), with the 
aim of studying the tradeoff between classification accuracy, 
computing complexity and explainability.
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