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Abstract
One of the core challenges in digital marketing is that the business conditions continuously change, which impacts the recep-
tion of campaigns. A winning campaign strategy can become unfavored over time, while an old strategy can gain new traction. 
In data driven digital marketing and web analytics, A/B testing is the prevalent method of comparing digital campaigns, 
choosing the winning ad, and deciding targeting strategy. A/B testing is suitable when testing variations on similar solutions 
and having one or more metrics that are clear indicators of success or failure. However, when faced with a complex problem 
or working on future topics, A/B testing fails to deliver and achieving long-term impact from experimentation is demand-
ing and resource intensive. This study proposes a reinforcement learning based model and demonstrates its application to 
digital marketing campaigns. We argue and validate with actual-world data that reinforcement learning can help overcome 
some of the critical challenges that A/B testing, and popular Machine Learning methods currently used in digital market-
ing campaigns face. We demonstrate the effectiveness of the proposed technique on real actual data for a digital marketing 
campaign collected from a firm.

Keywords  Digital marketing · Computational advertising · Reinforcement learning · Upper confidence bound (UCB) 
algorithm · Big data analytics · Machine learning · Marketing analytics

1  Introduction

In the ever-changing landscape of Digital Marketing (DM), 
it can be hard to examine what works truly and, more impor-
tantly, what does not (Barone et al., 2007). As said by John 
Wanamaker – “Half the money I spend on advertising is 
wasted. The trouble is that I don’t know which half.”(Kohavi 
& Thomke, 2017). Every firm aspires and competes to be 
fully digital with limited marketing spend and stringent 

deadlines to realize the tangible dollar impact. Therefore, 
it is imperative to shift from a conventional test and target 
strategy to an algorithmic approach which is scalable and 
has higher reliability in terms of replicability of outcome 
(Boone & Roehm, 2002; Gordini & Veglio, 2017). Never 
have marketers had access to more customer data but lev-
eraging upon this data is extremely challenging computa-
tionally. For example, user profiles can go beyond primary 
name and demographic data to include device preferences, 
social posts, browsing and content history, hobbies, inter-
ests, and much more. In theory, marketers should have a 
near-perfect understanding of their customer’s needs, which 
customers to target, and the best ways to engage with them 
(Davenport et al., 2011). Artificial Intelligence (AI) is often 
used to tackle DM’s complex data driven challenges in DM 
through different applications like chatbots and marketing 
automation (Erevelles et al., 2016; Kar & Kushwaha, 2021; 
Kushwaha & Kar, 2021). Reviews of AI applications in 
DM indicates that big data analytics is extensively used for 
optimizing marketing outcomes in DM projects (Kushwaha 
et al., 2021; Verma et al., 2021). Lately, the DM industry has 
been employing AI to boost customer engagement through 
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personalization and marketing journeys (Choi et al., 2020; 
Goldfarb & Tucker, 2011). AI has been an essential tool for 
marketers to capture campaign data and turn it into expe-
riences that maximize consumer happiness and company 
profits (Du et al., 2021; Netzer et al., 2008). For example, 
combining AI with natural language processing, firms 
increase brand engagement and content consumption via 
algorithms that automatically analyze a brand’s content 
assets (Kushwaha & Kar, 2021). In the industry 4.0 era, all 
functional activities including marketing need to leverage 
AI for enhancing outcome quality and impacts (Huber et al., 
2022).

However, when dealing with advertisement optimiza-
tion. Digital marketers often resort to randomized trials, the 
default option to determine whether potential improvements 
of an alternative method (e.g., website design for a tech 
company or medication in clinical trials for pharmaceutical 
companies) are significant compared to a well-established 
default. It is often colloquially referred to as A/B testing or 
A/B/n testing for several alternatives in the applied domain. 
The standard practice is to divert a small amount of the traf-
fic or patients to the alternative and control. If an option 
appears to be significantly better, it is implemented; other-
wise, the default setting is maintained. For example, in Web 
Analytics and DM, A/B testing is the prevalent method of 
comparing digital campaigns, choosing the winning adver-
tisement, and deciding targeting strategy (Gallo, 2017; Senz, 
2021). Though the designing and implementation of A/B 
testing are simple, however this hypothesis based classical 
approach has few limitations, as highlighted multiple times 
in existing literature:

•	 Meager conversion rate: Digital advertisements have 
meager conversion rates. Our case study has a subtle 
0.2% difference between the worst and best-performing 
advertisements. However, at scale, this difference can 
have a significant impact. The problem with A/B/n test-
ing is that it’s inefficient at finding these differences 
(Ascarza, 2021). It treats all the advertisements equally, 
and one may need to run each advertisements tens of 
thousands of times until it can be discovered at a reliable 
confidence level.

•	 No memory: Many people think that one can get away 
with a single A/B test. One should be continuously test-
ing to optimize your marketing and advertising creativity 
for your audience. Knowledge gained is not linked, and 
every test is an independent test every time. A previous 
knowledge (prior probability) generally strengthens the 
confidence of posterior probability and hence the deci-
sion-making process (Bojinov et al., 2021).

•	 Time and resource-heavy: The traditional approaches are 
a two-step process. Through a test campaign, it explores 
the opportunities, and then based on the comparative 

analysis, it exploits the winning digital advertisement or 
creative to reap the $ benefit (Fabijan et al., 2018; Kohavi 
& Longbotham, 2017). As a result, it makes the whole 
test very slow and expensive.

•	 No Self Learning or guiding principle: There is no self-
learning and feedback system to update outcomes con-
tinually. One cannot be sure; just because creative-X per-
formed better over creative-Y one year ago does not mean 
it will still perform better now (Bojinov et al., 2021).

•	 A/B/n only works for specific goals: It is ideal if we want 
to solve one dilemma; for example, which product page 
gives me the best result? However, pure A/B/n testing 
won’t provide those answers if the goal is less easy to 
measure.

Stemming from the limitations of A/B/n testing above as 
indicated in existing literature, in this study, we are guided 
by the following research question(s):

RQ1. How can we use AI algorithms to better optimize 
our digital marketing campaign?
RQ2: How can we use AI algorithms adapt to changing 
patterns of customer preferences to better optimize our 
digital marketing campaign?

This study is structured into 6 sections. Section 2 summa-
rizes the relevant literature. In the third section, we describe 
our methodology to overcome the limitations of A/B/n test-
ing. Section 4, describes the data used for our experiments, 
followed by results with randomized trials. In Section 5, we 
discuss our findings, directions for further research, and the 
limitations of our study. Finally, we conclude the study in 
Section 6.

2 � Background Literature

Since we aim to use RL for optimizing DM campaigns, we 
will first analyses studies from DM literature on advertise-
ments optimization and then review related literature from 
the RL and its use in Marketing.

2.1 � The Role of AI in DM

DM conceptualizes marketing on electronic platforms 
through any technological device (American Marketing 
Association, 2021). With newspaper circulations in 2018 
falling to their lowest level since 1940, the decline of the 
newspaper industry also increased the customer affinity for 
online advertisement and marketing. There are currently 
several literature reviews related to DM and its benefits for 
organization. For example, Lamberton & Stephen, 2016; and 
Luo et al., 2013; offer elaborated reviews of social media 
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literature in marketing. Recent works also investigate more 
specific aspects of digital and interactive marketing, for 
example, its use in Business-to-Business strategy (B2B) 
(Pandey et al., 2020), its application and relevance to mar-
keting analytics (Iacobucci et al., 2019), how it relates to 
DM communication (Kim et al., 2021).

The future of DM also depends on the ability of market-
ing professionals in applying AI techniques to effectively 
implement DM strategies (Ruiz-Real et al., 2021). AI tech-
niques can bring out hidden business intelligence from the 
given consumer data which streamlines complex market-
ing problems. It is found that 90% of the sales professional 
expected a substantial impact of AI on sales marketing (Nad-
karni & Prügl, 2021). The use of AI has improved the quality 
of DM initiatives (Ruiz-Real et al., 2021). AI based market-
ing models can mine hidden signals from buying patterns of 
the targeted customers leading to promotions teams driving 
computational benefits to businesses (Saura, 2021) and con-
sequently assure increased productivity and a better under-
standing of customers segments. Computational marketing 
strategies based on AI can streamline the market, optimizing 
both the business profit and satisfaction of user experience. 
In social media communications in DM, AI has been exten-
sively used for preserving sanctity of communications and 
reducing spam (Aswani et al., 2018) and further AI applica-
tions for DM campaigns need to demonstrate responsibil-
ity surrounding ethical concerns (Liu et al., 2021). Despite 
enhanced DM strategies in place, their efficiencies are to 
be improved using contemporary technologies such as AI 
to understand emotions, behavior, respond to human cus-
tomer’s queries (S.-S. Chen et al., 2021; S.-Y. Chen et al., 
2021), traceability of actions (Jain et al., 2021) and provide 
competitive edge (Miklosik et al., 2019).

One aspect of DM which may significantly benefit from 
the AI techniques is the design, delivery, and optimization 
of ads to prospective customers. Solutions for optimizing the 
delivery of ads have been proposed since the early days of 
digital advertising, for example (Karuga et al., 2001). More 
recently, AI based techniques have been used to remove inef-
fective ads (Wang & Hong, 2019), optimal delivery of banner 
ads (Obal & Lv, 2017), optimize exposure of ads (Stourm & 
Bax, 2017), drafting better text ads in the case of epidemic 
response by public health authorities (Youngmann et al., 
2021). However, in most cases A/B split testing is the de 
facto for optimization and selection of ads/websites/landing 
pages that perform better (Javanmard & Montanari, 2018). 
Under this technique, one sends roughly 50% of the traffic 
to the control and 50% to variation or significant amount of 
data over which estimation could be done. The test is run 
until it is valid, and then the decision is made to implement 
the winning variation (Gallo, 2017). Post the selection of 
winner, all users are sent to the more successful version of 
the site (Gallo, 2017) entering a period of pure exploitation.

2.1.1 � Limitations of Current Approaches – A/B/n Testing

With A/B/n the objective is to allocate more traffic to a 
better performing digital asset (website/ad/landing page). 
However, A/B/n testing frameworks have the following 
three limitations. First, typically it splits the traffic uni-
formly over alternatives. Adaptive techniques should help 
to detect better options faster (Basse & Airoldi, 2018; 
Javanmard & Montanari, 2018) more so because the lack 
of sufficient evidence or a minor improvement of the met-
ric may make it undesirable from a practical or financial 
perspective to replace the default. Second, companies often 
wish to monitor an ongoing A/B test continuously. Based 
on the performance, they may adjust their termination cri-
teria as time progresses and possibly terminate earlier or 
later than initially intended. However, this practice may 
result in many more wrong conclusions if not adequately 
accounted for. It also results in, as one of the reasons, for 
the lack of reproducibility of marketing results (Basse & 
Airoldi, 2018; Javanmard & Montanari, 2018). Third, the 
opportunity cost for Short term campaigns and promotion 
is very high for the A/B test. For example, if you’re run-
ning tests on an eCommerce site for Black Friday, an A/B 
test isn’t that practical—you might only be confident in the 
result at the end of the day (Bojinov et al., 2021).

2.2 � RL as a Substitute to A/B/n Testing

RL differs from the more widely studied problem of 
supervised learning in AI (Botvinick et al., 2019; Sut-
ton & Barto, 2018). The most important difference is that 
there is no presentation of input/output pairs. Instead, after 
choosing an action, the agent is told the immediate reward 
and the subsequent state but is not told which action would 
have been in its best long-term interests (Jang et al., 2019). 
It is necessary for the agent to gather useful experience 
about the possible system states, actions, transitions, and 
rewards actively to act optimally. Another difference from 
supervised learning is that on-line performance is impor-
tant: the evaluation of the system is often concurrent with 
learning.

Some aspects of RL are closely related to search and 
planning issues in AI (Gershman & Daw, 2017; Gupta et al., 
2020) and therefore modes well with its use for optimizing 
DM campaigns. AI search algorithms generate a satisfactory 
trajectory through a graph of states. Planning operates simi-
larly, but typically within a construct with more complexity 
than a graph, in which states are represented by compositions 
of logical expressions instead of atomic symbols. These AI 
algorithms are less general than the reinforcement-learning 
methods, in that they require a predefined model of state 
transitions, and with a few exceptions assume determinism. 
On the other hand, RL, at least in the kind of discrete cases 
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for which theory has been developed, assumes that the entire 
state space can be enumerated and stored in memory - an 
assumption to which conventional search algorithms are not 
tied (Sutton & Barto, 2018). Broadly there are two main 
branching points in an RL algorithm – whether the agent 
has access to (or learns) a model of the environment and 
second being what to learn. Based on these two questions, 
the below Fig. 1 shows a taxonomy of algorithms in modern 
RL (Lillicrap et al., 2015; Mnih et al., 2016; Fujimoto et al., 
2018; Haarnoja et al., 2018).

RL algorithms are generally classified into two cat-
egories: model-free RL (MFRL) and model based RL 
(MBRL). One way to understand the difference between 
the two is using the idea of Habit and Goal-directed 
behavior. While Habits are triggered by stimuli and then 
performed almost automatically, Goal-directed behavior 
is more purposeful, that is, controlled by knowledge of 
the value of goals (Sutton & Barto, 2018). In MFRL, the 
algorithm estimates the optimal policy without using or 
estimating the dynamics (transition and reward functions) 
of the environment whereas, as MBRL algorithm uses the 
transition function (and the reward function) in order to 
estimate the optimal policy.

We may broadly categorize Model-free algorithms into 
two. Value-based methods such as Q Learning and policy-
based methods. While policy-based methods directly try to 
maximize the expected return by taking small steps in the 
direction of the policy gradient, Q learning approach tries 
to learn a Q-function that satisfies the Bellman (Optimality) 
Equation (Rathore et al., 2021). In addition, policies may be 

deterministic or stochastic. Deterministic policy maps state 
to action without uncertainty. Stochastic policy outputs a 
probability distribution over actions in each state. This pro-
cess is called the Partially Observable Markov Decision Pro-
cess (POMDP). Policy Optimization can be further studied 
under categories like Policy gradient (PG), Asynchronous 
Advantage Actor-Critic (A3C); Trust Region Policy Opti-
mization (TRPO), and Proximal Policy Optimization (PPO), 
each differing based on the stability of the Actor training by 
limiting the policy update at each training step. Q-learning 
learns the action-value function: how good to act at a par-
ticular state. Q -learning can be further sub-divided (not 
limited to) into Deep Q-neural network (DQN), C51, Distri-
butional Reinforcement Learning with Quantile Regression 
(QR-DQN), Hindsight Experience Replay (HER).

Model-based RL asks the questions of the form ““what 
will happen if I do x?” to choose the best x”.1 Thus, model 
based RL tries to predict the environment to choose the 
optimal actions (Singh et al., 2022). They can be further 
subdivided into two approaches -Learn the model and 
Learn given the given model. A base policy is run to 
learn the model, like a random or any educated policy, 
while the trajectory is observed. Then, the model is fitted 
using the sampled data. However, these models may suffer 
from a bias problem (S.-S. Chen et al., 2021; S.-Y. Chen 
et al., 2021). They are further divided into world models, 

Fig. 1   Select taxonomy of dominant algorithms in Modern RL (combining Lillicrap et al., 2015; Mnih et al., 2016; Fujimoto et al., 2018; Haar-
noja et al., 2018)

1  https://​bair.​berke​ley.​edu/​blog/​2019/​12/​12/​mbpo/#​fn:​naming-​conve​
ntions
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Imagination-augmented agents (I2A), Model-Based Pri-
ors for Model-Free Reinforcement Learning (MBMF), and 
Model-Based Value Expansion (MBVE). These models 
bridge the gap between model based RL and model free 
RL algorithms.

In the RL approach, instead of two distinct periods of 
pure exploration and exploitation, the test is adaptive and 
simultaneously includes exploration and exploitation. The 
essence, the difference between the two approaches is how 
they deal with the explore-exploit dilemma. RL is the prob-
lem an agent faces that must learn behavior through trial-
and-error interactions with a dynamic environment (Sutton 
& Barto, 2018) as shown in Fig. 2.

The agent is the learner who interacts with the environ-
ment, making decisions according to its observations made 
from it. The environment is every external condition that the 
agent cannot modify (Sutton & Barto, 2018). The task of the 
learning agent is to optimize a specific objective function, 
which is carried out using only information from the state of 
the environment, that is, without any external advisor (Mer-
ckling et al., 2022). The task of the learning agent can be 
accomplished by modeling the system as a Markov Decision 
Process (MDP). Table 1 defines the important terms associ-
ated with RL.

The long-term reward represented by the mathematical 
expression (1) is the objective function that the agent is 
interested in maximizing by taking the right actions (Sutton 
& Barto, 2018).

Where γ is the discount-rate which ranges between 0 and 
1. It determines the present value of future rewards?

The agent’s goal is to maximize Rt by means of an opti-
mal policy. Action-value function are used to estimate the 
expected Rtas the result of an action atfrom a state st rep-
resented by the formula (Vincent, 2018; Sutton & Barto, 
2018):

Where Qπ(s, a) is the expected Rt at starting state s and 
action a following policy π(s, a). The optimal policy can be 
represented now as (Sutton & Barto, 2018):

Where A is set of possible actions and Optimal policies 
also has the same optimal value function

One can note that the above eq. (4) is a deterministic 
policy where we have a given fixed state and only one action 
can be taken. However, one can have stochastically defined 
policies as well, where actions are taken according to their 
probabilities (Oh et al., 2017; Sutton & Barto, 2018). In both 
cases the optimal policy is always deterministic in single-
agent MDPs and stationary in infinite horizon problems.

3 � Methodology

We now describe the methodology we have developed for 
solving the problem of DM campaigns. There are two main 
strategies for solving reinforcement-learning problems. The 
first is to search in the space of behaviors to find one that 
performs well in the environment. This approach has been 
taken by work in genetic algorithms and genetic program-
ming, and some more novel search techniques (Schmidhu-
ber, 2015). The second is to use statistical techniques and 

(1)Rt =
∑∞

k=0
�krt+k+1

(2)Q�(s, a) = E�

[
Rt
|
|st = s, at = a

]

(3)�∗(s, a) = arg max
a�A

Q�(s, a)

(4)Q∗(s, a) ∶ Q∗(s, a) = max
�

Q�(s, a)

Fig. 2   The standard RL model. Where  at is the action taken by the 
agent at time t, st is the state of the environment at time t, and rt + 1 is 
the reward at time t + 1

Table 1   Terms and definitions SN Term Definition

1 State (St): A discrete set of environment states at time t.
2 Action (At): One of the set of agent actions taken at time t.
3 Policy (π (s, a)): Probability distribution over the actions in the state S.
4 Reward -Intermediate (rt + 1): Value returned by the environment to the agent 

depending on the action at time t + 1.
5 Reward – Long term (Rt): Sum of all the immediate rewards throughout a com-

plete decision process.
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dynamic programming methods to estimate the utility of tak-
ing actions in states of the world. In this paper we have taken 
the second set of techniques because they take advantages 
of the special structure of RL problems that are not avail-
able in optimization problems in general actions in states 
of the world (Bennett & Parrado-Hernández, 2006; Zhang 
et al., 2022). We first present the stationary UCB algorithm 
wherein the distribution of reward does not change in time 
followed by non-stationary case wherein the reward distribu-
tion of reward remains constant over epochs and changes at 
an unknown time. To handle impact of seasonality we also 
look at the sliding window UCB.

3.1 � Upper‑Confidence Bound (UCB) Algorithm – 
Stationary Case, the Distribution of Reward 
Does Not Change in Time

Exploring different actions after having already learned from 
the environment overtime, exploring different actions should 
be ideally limited to the best performing actions. The UCB 
algorithm enables this by not selecting a random action, but 
constantly changing the magnitude of exploration alongside 
learning more about the action results (Agrawal, 1995). In 
the beginning, UCB promotes exploration to know the best 
performing action and then continues selecting the best 
action. After choosing the best action several times, based 
on the confidence in known actions, UCB promotes explo-
ration again. If a different action performs better than the 
previous best action, then the new best action is promoted 
(Liu et al., 2020). So UCB starts by exploring the actions 
that have been tried the least amount of times and then learns 
the best rewarding action to exploit it until the point at which 
other actions end up being not chosen for a long time (Auer 
et al., 2002).

For our current marketing problem, choosing an adver-
tisement can be considered as performing an action. Let 
Qd(t) be the estimated value of advertisement d at time-step 
t. The advertisement chosen by UCB at time-step t will be:

Where, Nd(t) is the number of times advertisement d has 
been selected up till time step t.

The first part of the equation Qd(t) is essentially the 
exploitation term. UCB selects the best rewarding adver-
tisement until uncertainty rises too high. Up till time step 
t, if the estimated reward of advertisement d is highest then 
it will be promoted. UCB equation conveniently allows us 
to understand and manipulate the level of exploration. The 
parameter u is the uncertainty level of rewards that allows 
control and manipulation of exploration. High uncertainty 
in the estimated reward of ads results in low confidence. 

(5)Dt = arg max
d

�

Qd(t) + u
√
�

log t

Nd(t)

��

This results in increasing quantum of exploration term. 
One more variable affects the exploration term – number 
of times an advertisement has been selected. If an adver-
tisement is selected for a small number of times or never, 
then the exploration term is large. As we constantly perform 
more and more actions, we get a better understanding of the 
expected rewards from certain ads. This results in increasing 
value of Nd(t) and thus the overall sum in the UCB equation 
decreases. So, it is less likely that this advertisement will 
be explored. As the number of actions becomes very large, 
UCB relies more and more on exploiting the best reward-
ing ad.

UCB methods are deterministic policies extended to a 
non-parametric context. They consist in playing during the 
t-th round the arm i that maximizes the upper bound of a 
confidence interval for expected reward μ(i), which is con-
structed from the past observed rewards. The most popular, 
called UCB-1,2 relies on the upper-bound:

Where  xt(i) = (Nt(i))
−1∑t

s=1
xs(i) ∦{ls=i}   denotes the 

empirical mean, and ct(ⅈ) is a padding function.

xt(i) + ct(i)

2  UCB-1 belongs to the family of “follow the perturbed leader” 
algorithms and has proven to retain the optimal logarithmic rate (but 
with suboptimal constant). A finite-time analysis of this algorithm 
has been given in Auer et al. (2002); Auer et al. (2002); Auer et al. 
(2002/03). Other types of padding functions are considered in Audib-
ert et al. (2007).

Algorithm 1 UCB-1 (Garivier and Moulines, 2011)

for t from 1 to K, play arm = t.

for t from K + 1 to T, play arm

3.2 � Upper‑Confidence Bound (UCB) Algorithm 
– Non‑Stationary Case, the Distribution 
of Reward Remains Constant over Epochs 
and Changes at Unknown Time

The stationary formulation of the Multi Armed Bandit Prob-
lem addresses the challenges of exploration versus exploi-
tation intuitively (Auer et al., 2002; Garivier & Moulines, 
2011). However, it may fail to model an evolving environ-
ment where the reward distributions change in time. Lai 
et al. (2010) discusses the cognitive medium radio access 
problem, where a multi-channel system wants to exploit 
an empty channel. To model such situations where the 
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distribution of regards may change in time, we would need 
to consider non-stationary MAB problems. The upper con-
fidence bound policies have been known to be rate optimal 
for linear search space (Agrawal, 1995; Auer et al., 2002). 
However, it becomes challenging in situation where the 
distribution of rewards remains constant over epochs and 
change at unknown time instants. Therefore, an upper-bound 
for the expected regret by upper-bounding the expectation 
of the number of times a suboptimal arm is played would 
be required. Discounted UCB and Sliding window UCB are 
used to this cause.

In the marketing campaign, the distributions of the 
rewards undergo abrupt changes due to seasonal (special 
event) effects. We derive a lower bound for the regret of any 
policy and analyze two algorithms: The Discounted UCB 
(Upper Confidence Bound) proposed by Kocsis and Sze-
pesvári (2006) and the Sliding Window UCB Proposed by 
Garivier and Moulines (2008). We find that they are almost 
rate-optimal, as their regret almost matches a lower bound.

3.2.1 � Discounted Upper Confidence Bound (D‑UCB)

In the family of UCB policies many researchers including 
Kleinberg et al. (2008) and Kocsis and Szepesvári (2006) 
have proposed adding discount factor γ ∈ (0, 1) to the poli-
cies. One may make a note that when γ = 1, discounted UCB 
will be UCB. To estimate the instantaneous expected reward, 
the D-UCB policy averages past rewards with a discount 
factor giving more weight to recent observations.

3.4 � Dataset and UCB Implementation

To empirically show the effectiveness of RL in the DM, we 
conducted the experiment using UCB algorithm for digi-
tal campaign at a startup firm yourfirstad.com. Yourfirstad 
designs and places ads to get traffic for advertisers. Tradi-
tionally they have been using A/B/n testing for optimizing 
display of ads. To compare the performance of the A/B/n 
testing approach with the proposed RL approach we com-
pare the clicks the ads are able to get in the two cases. We 
compare the results of our model for an advertiser which 
had six different creatives rotated almost equally between 
January 2019 and May 2019 with approximately 10,000 
impressions.

In the RL implementation in June 2019, different crea-
tives were served each time a customer visited the webpage 
during a period of one month. We ran this experiment for 
a total of 10,000 rounds (to ensure comparability), that is, 
each time a customer connects to this web page, it counts as 
a round n. In each round, the version gets a reward, 1 if the 
customer clicks on the ad, 0 if it does not click. Further, to 
evaluate the UCM algorithm with sliding window and dis-
counted rewards, we tested this algorithm on another 10,500 
customers from 1st July 2019 – 31st July 2019. Figure 2 
explicates the visual implementation of RL Algorithm.

1.	 At each round n, we have two values for a given adver-
tisement

•	 Nd(n) - the number of times advertisement d was selected 
up to round n.

•	 Rd(n) - the sum of rewards for advertisement d up to 
round n

2.	 Then we compute the average reward for advertisement 
d as:

Where d = one of the 6 ads; N = total number of iterations; 
n = Nth iteration at time t.

3.	 We also compute the upper bound as follows:

(6)rd(n) = Rd(n)∕Nd(n)

3  The focus of this paper is on an abruptly changing environment, but 
it is believed that the theoretical tools developed to handle the non-
stationarity can be applied in different context.

Algorithm 2 Discounted UCB (Garivier and Moulines, 2011)

for t from 1 to K, play arm = t.

for t from K + 1 to T, play arm

3.3 � Sliding Window UCB

Garivier and Moulines (2011) proposes a more abrupt vari-
ant of UCB where averages are computed on a fixed-size 
horizon. At time t, instead of averaging the rewards over 
the whole past with a discount factor, sliding window UCB 
relies on a local empirical average of the observed rewards, 
using only the τ last plays. Specifically, this algorithm con-
structs an UCB for the instantaneous expected reward.3

Algorithm 3 Sliding-Window UCB (Garivier and Moulines, 2011)

for t from 1 to K, play arm = t.

for t from K + 1 to T, play arm
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Where E constitutes the exploration term of the upper 
bound.

After every round, the upper bound is calculated for every 
ad. The advertisement with the highest upper bound is chosen. 
For the sliding window UCB simulations, N is restricted to the 
last w rounds or time steps. This directly affects the average 
reward r as well as the exploration term E. Consequently, this 
affects the upper bound U of every advertisement at every 
time step. Table 2 captures the key aspects of the RL-based 
implementation, and Fig. 3 represents the Schematic approach 
to RL algorithm implementation on the platform.

(7)Ud(n) = rd(n) + Ed(n)
4 � Results

We first present results with randomized trials where no 
strategy is used, followed by the UCB algorithm. Then 
we look at the results with special treatment of the UCB 
algorithm in terms of sliding window and discounted 
rewards. We then demonstrate the influence of seasonal-
ity on advertisement selection and how our approach can 
still work by taking care of it. Finally, we explain how 
sliding window UCB performs better than UCB when 
looking at timestamp-based advertisement selections. 
Finally, we do a Comparison of methods performance 
across all datasets.

Table 2   Key characteristics of data and simulation

a For the 30 episodes are associated with different learning rates for episodes. Starting from large values and then gradually decreasing the learn-
ing rate for more exploitation

Parameter A/B Testing RL Implementation:
Simple UCB

RL Implementation
UCB with sliding window & 
discounted rewards

Number of Customers (Rounds) 10,000 10,000 10,500
Versions of Ads 6 6 6
Rewards (Positive/Negative) NA 1/0 1/0
Number of Episodesa NA 30 30
Date range for campaign Jan 1st, 2019 to June 30th 

2019
June 1, 2019 – June 30, 2019 July 1, 2019 – 31st July 2019

Sliding window size NA NA 100

Fig. 3   Schematic representation of RL algorithm implementation on the platform
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4.1 � Comparing RL Based AI Implementation (UCB 
Algorithm) and A/B/n Optimization

Figure 4 and Table 3 show the results of not using any strat-
egy, thereby using randomized trials (A/B/n testing). All the 
ads were selected a relatively similar number of times. The 
variance in the count of selection of ads is low. However, 
the results do not help us in discovering the best ads. The 
standard deviation of the results is 43.34.

From the statistics, the best advertisement was automati-
cally selected 16.6% of the time. Out of a possible pool of 6 
ads, this percentage is not far from the mean. So, conducting 
a randomized trial would generate rewards equivalent to the 
sum of the weighted mean of the rewards from all six ads. 
Clearly, there is a significant amount of loss in not choos-
ing the best rewarding advertisement more frequently. Even 
if we stop midway, and then run only the best performing 

advertisement (Ad 2) the total number of clicks (projected at 
the same click through rate) would be 1710 clicks.

Comparing the performance with UCB algorithm clearly 
prefers advertisement 2, as shown in Table 4 below. The total 
reward achieved with the UCB algorithm is 2028 compared 
to 1288 achieved without any strategy (Refer Table 3).

The best performing advertisement 2 accounts for 94.1% 
of comprehensive selections of all ads. Initial intuition 
suggests that advertisement 2 must have a higher mean of 
reward than any other ad which reflects in the distribution 
of ad exposures as seen in Fig. 5.

Further, it would be interesting to explore the impact of 
the uncertainty level coefficient on the number of clicks on 
campaigns. Table 5 illustrates the counts of selection of ads 
for different settings of the parameter – uncertainty level 
coefficient. The performance of the UCB algorithm was 
checked for several levels of uncertainty. As we increase 

Fig. 4   Total number of clicks 
attained with randomized trial: 
1288

Table 3   Randomized Trials for first 5000 (Jan -May)

Ad Count of 
selection

Percentage 
count

Reward generated by 
Ad (10,000 runs)

Reward for 
first 5000 runs

Ad 0 1674 16.7% 172 83
Ad 1 1636 16.4% 252 127
Ad 2 1661 16.6% 353 173
Ad 3 1687 16.9% 184 95
Ad 4 1734 17.3% 224 113
Ad 5 1608 16.1% 103 57
Total 1288 684

Table 4   Trials with UCB

Count of selection Percentage count Reward generated 
by Ad

Ad 0 98 1.0% 9
Ad 1 190 1.9% 28
Ad 2 9409 94.1% 1962
Ad 3 122 1.2% 14
Ad 4 98 1.0% 9
Ad 5 83 0.8% 6
Total 2028
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the value of the uncertainty coefficient, the level of explora-
tion increases. From the table, we see that the proportion 
selection of ads other than advertisement 2 increases with 
increasing uncertainty level above 1. Our experiment shows 
this trend continuing for higher values of uncertainty coeffi-
cient. As the level of exploration increases beyond the uncer-
tainty coefficient of 1, advertisement 2 is selected fewer and 
fewer times. We also see the total reward also decreases after 
the uncertainty coefficient increases beyond 1.

The results are more interesting when the value of the 
uncertainty coefficient is below 1. While moving from the 
uncertainty coefficient of 1 to 0.5, the exploration decreases 
further, resulting in a very high selection of advertisement 
2. The highest reward with 2056 clicks was attained at an 
uncertainty coefficient of 0.5. For an uncertainty coefficient 
of 0.1, theoretically, the exploration level decreases. How-
ever, we also see that advertisement 3 was selected more 
than any other uncertainty level. It is due to variation in 
the expected value of reward from advertisement 2. Due to 

a deficient level of exploration, the UCB algorithm selects 
advertisement 3 many times because the expected reward 
from advertisement 3 was higher than that of advertise-
ment 2 for a few observations. But since the exploration is 
low, the algorithm could not promote advertisement 2 over 
advertisement 3, which indicates the importance of exploi-
tation – exploration trade-off. From our results, we clearly 
understand that the best total reward is achieved between the 
uncertainty level of 0.1 and 1.

4.2 � Sliding Window UCB – Adapting RL Based 
AI Implementation to Changes in Consumer 
Patterns

The implementation of a non-stationary UCB algorithm was 
done to an extended dataset with 10,500 more-time steps. 
So, the final comprehensive dataset consisted of 20,500-
time steps. For experimental purposes, we considered a 
sliding window size of 100-time steps. Therefore, the input 

Fig. 5   Number of clicks 
attained with UCB algorithm: 
2028

Table 5   Level of uncertainty vs 
Rewards for each Advertisement

Uncertainty Level 0.1 0.5 1 2 3

Ad 0 8 0.1% 37 0.4% 98 1.0% 146 1.5% 228 2.3%
Ad 1 8 0.1% 175 1.8% 190 1.9% 359 3.6% 529 5.3%
Ad 2 8230 82.3% 9628 96.3% 9409 94.1% 8747 87.5% 8287 82.9%
Ad 3 1730 17.3% 32 0.3% 122 1.2% 296 3.0% 430 4.3%
Ad 4 8 0.1% 91 0.9% 98 1.0% 320 3.2% 326 3.3%
Ad 5 16 0.2% 37 0.4% 83 0.8% 132 1.3% 200 2.0%
Reward 1947 2056 2028 1964 1944
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parameters will be based on the calculations of only 100 
latest time steps of historical data at every time step. The 
chart below in Fig. 7 shows the result of using a non-station-
ary UCB algorithm. The total reward generated from this 
simulation was 2944. The uncertainty level coefficient was 
maintained at 1. Thus, we see a somewhat ambiguous dis-
tribution of advertisement selection. It is not clear whether 
the advertisement selection is optimum or not from the chart. 

We ran another simulation without the sliding window but 
with the same uncertainty level coefficient to evaluate the 
performance. Figure 6 shows the result with the stationary 
UCB algorithm.

First, we see an evident result pointing us to the two best 
advertisements. Advertisement 2 and advertisement 5 are the 
best advertisements. We already knew advertisement 2 was 
the best performing advertisement from our first simulation 

Fig. 6   Total number of click for 
non-stationary UCB

Fig. 7   Total number of click for 
non-stationary UCB
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runs for the first 10,000-time steps. So, advertisement 5 is 
the best for the next 10,500 steps. The total reward generated 
from this simulation was 4048. For the same uncertainty 
level coefficient (of value 1), the stationary UCB seems to 
outperform the non-stationary UCB algorithm with a sliding 
window of 100 (Fig. 7).

The charts in Fig. 8 show the results of simulation runs 
at different values of uncertainty level coefficient. We see 
clearer distributions as the uncertainty level decreases. The 
total rewards are also shown in every chart. Both the total 
reward and the advertisement selection distribution converges 
towards the results obtained from stationary UCB simulation 
at an uncertainty level of 1. For these non-stationary simula-
tions, decreasing the uncertainty level means decreasing the 
impact of the exploration part of our mathematical equation 
on the upper bound at every time step. So, reducing explora-
tion of the model by lowering the uncertainty value makes 
the model performance converge towards the stationary UCB 

results. This reiterates the argument that non-stationary UCB 
indirectly increases the exploration of the model.

4.2.1 � Advertisement Selection by Time Step

To understand the effect of using a sliding window, we need 
to look deeper at advertisement selection. Figures 9 and 10 
provide the complete picture of advertisement selection at 
every time step. Within the first ~2000-time steps (shaded 
in light yellow), we see a difference in advertisement selec-
tion between the two methods – UCB and SW-UCB.We 
see high exploration concentrated in the starting period. 
However, if we focus on the time steps from 10,000 to end 
(shaded in light red), we observe a significant difference in 
exploration without using a sliding window. With UCB, the 
only advertisement selected, after ~12,000-time steps, is 
advertisement 5. However, with SW-UCB, other advertise-
ments are also selected after ~12,000-time steps. The UCB 

u: 0.1

TR : 3836

u: 0.05 

TR: 4009

u: 0.5 

TR: 3280

Fig. 8   Total number of clicks for sliding window UCB
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method stops exploring after ~12,000-time steps, whereas 
SW-UCB continues exploration.

The reason for such a distinguished advertisement selec-
tion among the two methods builds a strong case for SW-
UCB. With the UCB method, the upper bound is highest for 
advertisement 5 after ~12,000-time steps because a large 
amount of history is being used to calculate upper bounds. In 
the case of SW-UCB, the upper bound is highest for adver-
tisement 5 for most time steps in that period. But the criti-
cal point to note is that, because the short history of data is 
used for upper bound calculation at any time step, the upper 
bound of other advertisements exceeds the upper bound of 
advertisement 5 several times. This behavior is critical in 
real-life marketing use cases. For example, one advertise-
ment could be the top performer for a long duration. But if 
certain events impact advertisement selection for the short 
term, then these effects will be lost within the UCB method. 
For example, let’s take a prevalent aspect of the seasonal-
ity effect. Capturing the impact of festivals is one example. 
Sales of certain goods may outperform sales of all other 
goods throughout the year. But during a short-term festival 
period, some other goods may take over the highest-grossing 
role. SW-UCB helps in capturing such effects, unlike UCB.

By introducing a small sliding window, which allows 
exploiting only the latest small amount of historical data, we 
indirectly introduce more exploration. If advertisement 2 has 
been performing well for several time steps, the stationary 
UCB keeps selecting advertisement 2 while exploring only 
a few times throughout the long term. In the case of non-
stationary UCB, if any other advertisement is selected 100 
consecutive times, the exploration part of the mathematical 
formula reaches infinity for all the other five advertisements 
even if the uncertainty level coefficient is set to the same 
value in the stationary algorithm. Hence, we experimentally 
prove that using a sliding window non-stationary algorithm 
indirectly implies higher exploration. To test this finding 
further, we ran more non-stationary UCB while lowering 
the value of the uncertainty level coefficient.

5 � Discussion

The use of AI for marketing decisions has been growing (S.-
S. Chen et al., 2021; S.-Y. Chen et al., 2021; Miklosik et al., 
2019) and is expected to revolutionize marketing (Huang & 
Rust, 2018; Huang & Rust, 2021; Rust, 2020) through better 

Fig. 9   Advertisement selection 
with time stamp using UCB
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personalization and targeting, real time optimization and 
automation, and better understanding of customer journeys 
(Ma & Sun, 2020). It is argued that AI has the potential 
to affect both, revenue and costs. While better marketing 
decisions like pricing promotions and recommendations are 
expected to increase revenue, AI based automation in cus-
tomer service is expected to lower costs (Davenport et al., 
2020). In our study, we explore an advertiser’s problem of 
maximizing clicks on the advertisement. More specifically, 
we used RL to optimize this marketing decision. Within 
the domain of RL, researchers have explored how this 
approach to optimize marketing decisions (Schwartz et al., 
2017) such as framing and framing dynamic pricing policy 
(Misra et al., 2019) but its applicability to ad optimization 
has been rather limited.

5.1 � Contributions to Literature

The current study extends literature in line with the edi-
torial directions for marketing management based on big 
data and ML methods (Chintagunta et al., 2016). In this 
study we propose a novel approach that addresses the above 

shortcomings of A/B or A/B/n testing and other prevail-
ing supervised approaches and attempts to contribute to the 
digital marketing literature through practical applications 
of AI algorithms (Chiusano et al., 2021; Choi et al., 2020). 
To overcome the above drawbacks of existing classical and 
AI approaches, we present a novel application of the Upper 
Confidence Bound (RL algorithm) and apply it to actual data 
collected at the firm for a DM campaign. Our study shows 
that the Reinforcement Learning (RL) approach has the fol-
lowing two advantages over existing approaches. First, the 
existing supervised learning approaches predict a class and 
are trained on the class, while the reinforcement algorithm 
learns from the reward/punishment and updates itself over 
time. Second, RL has a temporal dimension that looks at the 
past and current state. This approach helps to minimize the 
impact of external factors as the algorithm is getting updated 
in real-time with dynamic attribute lists.

We benchmark the performance of the proposed AI based 
approach against the popular A/B/n testing approach and 
find that the rewards generated by RL are higher. If the 
A/B/n testing is performed a vast number of times, then 
there would be a significant loss of rewards in randomly 

Fig. 10   Advertisement selection 
with time stamp using SW-UCB
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promoting advertisements. Effective manipulation of explo-
ration and exploitation is the fundamental concept of RL and 
we find that high exploration, during the initial rounds, to 
learn reward expectations from every advertisement would 
result in a sub-optimal realization of rewards. However, after 
several epochs, the algorithm promotes the advertisements 
to provide better rewards, thereby increasing the dominance 
of exploitation. The strategy to promote the better rewarding 
advertisement, and at the same time, learning rewards from 
other advertisements with controlled exploration resulted 
in improved reward realization. Moreover, utilizing a tun-
ing parameter of uncertainty level helps determine the level 
of exploration required for a specific marketing case. The 
best results could be achieved by analyzing the impact of 
the uncertainty coefficient on the total reward. Usage of the 
above approach by the marketer can help navigate seasonal-
ity variations in the performance of an advertisement crea-
tive. In addition, the inclusion of new creatives and testing 
them does not become a cumbersome process. In achieving 
the above objectives, we further contribute in empirical gen-
eralizations in marketing in the digital age whereby sensing 
using smart technologies and adaptive change in marketing 
strategies are needed in literature (Hanssens, 2018).

5.2 � Practical Implications

Recent academic literature has suggested that although digi-
tal advertising markets are growing, market inefficiencies 
need further attention (Gordon et al., 2021). One such in 
efficiency concerns online ad measurement and it is sug-
gested that the chasm between marketing practitioners and 
academicians is around the issues of endogeneity (Rutz & 
Watson, 2019). Despite the prevalence of field experiments 
in Marketing, often presented as gold standards to create 
causal insights (Johnson et al., 2017), problems concerning 
A/B testing remain. Feit and Berman (2019) in their research 
reframe A/B tests as tools to manage the trade-off between 
the opportunity cost of the test and the potential losses asso-
ciated with deploying a suboptimal treatment to the entire 
population and propose an alternative that theoretically 
achieves the same performance as MAB implementation. 
They argue that MABs are hard to implement. Our study, 
shows that RL based MAB implementation can be achieved 
in practice. An RL approach has been adopted, which has 
been demonstrated to have better quality of outcome in terms 
of advertisement selection and advertisement distribution, 
concerning parameters like advertisement clicks.

Although the last decade was touted as the decade of 
‘data-rich’ digital marketing, made available to marketers 
based on unprecedented data on firm and customer behav-
ior (Sridhar & Fang, 2019), challenges with respect to pri-
vacy tensions as the product of firm–consumer interactions, 
facilitated by digital technologies (Quach et al., 2022) and 

the black boxed nature of AI algorithms such as neural net-
works (Rai, 2020) continue to linger. The inscrutability of 
such algorithms can affect users’ trust in the system, espe-
cially in contexts where the consequences are significant, 
and lead to the rejection of the systems (Rai, 2020). Our 
study provides an instance of dynamic and inexpensive AI 
that used minimal user information to avoid privacy issues. 
At every epoch, the algorithm updates the information 
stored about every advertisement. Historical information 
on advertisement selection and reward at every epoch is 
not required to be stored and used subsequently. There are 
numerous real-world cases where a real-time update of an 
AI model is highly crucial. In the majority of those cases, 
either there is no possibility of a fast update of the results 
for real-time decision making, or the model is too compu-
tationally expensive to deploy in production realistically. 
Another advantage of this approach is that the optimization 
and performance improvement can happen without taking 
into consideration micro level data such as user profile or 
advertisement characteristics. Further since this algorithm 
does not use any personal identifiers, it is therefore less 
amenable to be adversely affected in the wake of GDPR 
laws. Further an environment sensitive learning model and 
measurement of campaign outcomes can help organizations 
justify the deployment of financial and human resources 
more prudently into marketing activities (Votto et al., 2021).

6 � Conclusion

This paper provides a RL approach to the marketer’s deci-
sion of optimizing and selecting advertisements. The pro-
posed approach optimizes the delivery of most performing 
advertisements and is also tuned to handling seasonal vari-
ations or exploring newer creatives than the most frequently 
used A/B testing approach. Therefore, we feel the proposed 
approach is generic and would work for different catego-
ries of products or Industries. There are, however, some 
limitations to the study. Firstly, in this study we measure 
the performance of the advertisement only in terms of the 
number of clicks that the advertisement gets. While clicks 
are important more advanced measures like conversions or 
purchases may be used in future study as there may be trade-
offs between getting clicks and conversions. Secondly, the 
results obtained through the simulations are benchmarked 
against the currently used approach of A/B testing employed 
in the Industry. One possibility of extending this work could 
be using the deep Q network (Arulkumaran et al., 2017) that 
takes advertisement characteristics, user demographics, and 
history as attributes to build a more advanced RL model. 
Such a model could enhance capabilities by marrying the 
exploitation –exploration trade off with the predictability 
feature captured in the form of ad characteristics such as 
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text, color, size and user characteristics such as age, gender, 
and affinities. Finally, further studies may compare the per-
formance of the proposed approach to other approaches like 
boosting and decision trees, which may require substantially 
more data than the proposed approach.
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