
https://doi.org/10.1007/s10796-020-10083-8

Robust Android Malware Detection System Against Adversarial
Attacks Using Q-Learning

Hemant Rathore1 · Sanjay K. Sahay1 · Piyush Nikam1 ·Mohit Sewak1

Accepted: 22 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Since the inception of Andoroid OS, smartphones sales have been growing exponentially, and today it enjoys the monopoly
in the smartphone marketplace. The widespread adoption of Android smartphones has drawn the attention of malware
designers, which threatens the Android ecosystem. The current state-of-the-art Android malware detection systems are
based on machine learning and deep learning models. Despite having superior performance, these models are susceptible to
adversarial attack. Therefore in this paper, we developed eight Android malware detection models based on machine learning
and deep neural network and investigated their robustness against the adversarial attacks. For the purpose, we created new
variants of malware using Reinforcement Learning, which will be misclassified as benign by the existing Android malware
detection models. We propose two novel attack strategies, namely single policy attack and multiple policy attack using
reinforcement learning for white-box and grey-box scenario respectively. Putting ourselves in adversary’ shoes, we designed
adversarial attacks on the detection models with the goal of maximising fooling rate, while making minimum modifications
to the Android application and ensuring that the app’s functionality and behaviour does not change. We achieved an average
fooling rate of 44.21% and 53.20% across all the eight detection models with maximum five modifications using a single
policy attack and multiple policy attack, respectively. The highest fooling rate of 86.09% with five changes was attained
against the decision tree based model using the multiple policy approach. Finally, we propose an adversarial defence
strategy which reduces the average fooling rate by threefold to 15.22% against a single policy attack, thereby increasing
the robustness of the detection models i.e. the proposed model can effectively detect variants (metamorphic) of malware.
The experimental analysis shows that our proposed Android malware detection system using reinforcement learning is more
robust against adversarial attacks.

Keywords Adversarial learning · Android · Malware detection · Machine learning · Reinforcement learning · Static analysis

1 Introduction

Android smartphones have evolved tremendously in the
last decade, and today have reached more than half of

� Hemant Rathore
hemantr@goa.bits-pilani.ac.in

Sanjay K. Sahay
ssahay@goa.bits-pilani.ac.in

Piyush Nikam
h20180057@goa.bits-pilani.ac.in

Mohit Sewak
p20150023@goa.bits-pilani.ac.in

1 Department of CS & IS, Goa Campus, BITS Pilani, India

the world’s population (Simon Kemp (Hootsuite) 2018).
Annual Android smartphone sales are expected to reach
1.32 billion in 2020 (O’Dea 2020). The broad acceptance
of Android is due to its open-source nature, robust
development framework, multiple app marketplaces, large
app stores, etc (Tam et al. 2017). Growth of Android OS is
also fueled by recent development of 4G and 5G internet
technologies. Internet is currently the primary attack vector
used by malware designers to attack the Android ecosystem
(Ye et al. 2017).

Malware (Malicious Software) is any software program
designed and developed with an evil intent against any target
(Ye et al. 2017; Faruki et al. 2014). Malware is not new
to the computing environment. The first malware Creeper1

was a self-replicating program written by Bob Thomas in

1https://enterprise.comodo.com/malware-description.php

/ Published online: 15 November 2020

Information Systems Frontiers (2021) 23:867–882

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10083-8&domain=pdf
mailto: hemantr@goa.bits-pilani.ac.in
mailto: ssahay@goa.bits-pilani.ac.in
mailto: h20180057@goa.bits-pilani.ac.in
mailto: p20150023@goa.bits-pilani.ac.in
https://enterprise.comodo.com/malware-description.php

1971 for the TENEX operating system (Ye et al. 2017). On
the other hand, the first malware on the Android platform
was a trojan named Trojan-SMS.AndroidOS.FakePlayer.a2

detected in August 2010 which sends SMS messages
to premium-rate numbers without the user’s knowledge
(Ye et al. 2017). A report by AV-Test suggests detection
of 65.26 million malware on the Android ecosystem in
2011. Since then, there has been an exponential growth of
malicious applications with a current estimate of 1049.7
million for 2020 (AVTEST 2019). According to GDATA
antivirus report, more than 10,000 new malicious apps
are detected every day and also malware designers are
uploading an infected Android app every eight seconds
(G DATA CyberDefense AG 2019). ISTR by Symantec
reported a 33% increase in mobile ransomware with one
out of every thirty-six mobile devices had the high-risk app
installed on it (Symantec 2019).

The primary defence against any malware attack is
provided by the anti-malware research community and
the anti-virus industry (Bitdefender, Kaspersky, McAfee,
Symantec, Windows Defender etc)3. Currently, most of the
anti-viruses work on the signature, heuristic and behaviour-
based detection engines (Ye et al. 2017; Sahay et al. 2020;
Tam et al. 2017). These mechanisms are excessively human
dependent, time-consuming and not scalable and thus
cannot detect next-generation polymorphic/metamorphic
malware (Ye et al. 2017; Tam et al. 2017). Recently machine
learning and deep learning have shown promising results in
various domains like image recognition, natural language
processing, recommendation systems etc. Thus, the anti-
malware research community have also explored malware
detection using machine learning and achieved promising
results (Ye et al. 2017; Tam et al. 2017; Rathore et al. 2018;
Faruki et al. 2014).

Classification models based on machine learning and
deep learning are susceptible to adversarial attacks.
Goodfellow et al. in 2015 performed an adversarial attack
on an image classification model. They showed that small
but intentionally worst-case perturbations could result in
the classification model misclassifying the test image.
Also, sometimes these misclassifications are achieved with
higher confidence (Goodfellow et al. 2014). Earlier, non-
linearity and overfitting were used to define the robustness
of classification models which is not the case today
(Goodfellow et al. 2014). This fact can be exploited by
malware designers to perform targeted and non-targeted
attacks using adversarial learning.

Reinforcement learning (RL) can be used to generate
intentional perturbations which can be visualized as a min-
max game where a reinforcement learning agent determines

2https://www.f-secure.com/v-descs/trojan android fakeplayer.shtml
3https://attackevals.mitre.org/

a sequence of actions to maximize the return based on the
reward function (Fonteneau et al. 2010). Adversarial attacks
are highly dependent on the attacker’s knowledge about the
malware detection system. This knowledge can consist of
information about the training dataset, features information,
model architecture, and classification algorithm used to
construct the models (Papernot et al. 2016; Serban et al.
2018). If the adversary has complete knowledge about the
malware detection system, then it is known as a white-
box scenario (Serban et al. 2018). On the other hand, if
the adversary attacks without any prior knowledge about
the system, then it is called as black-box scenario (Serban
et al. 2018). However, the above cases are two extreme
ends of the curve for any real-world scenario. Thus we
started with white-box attack setting on malware detection
models. Later, we also performed a grey-box attack where
an adversary has limited knowledge about the malware
detection system, which does not include any information
about the model’s architecture or classification algorithm.

Therefore in this paper, we proposed a novel adversarial
attack for the white-box scenario, namely single-policy
attack as it crafts perturbations governed by a single policy
extracted from a Q-table. The optimal policy governs the
modification attack, where the feature vector extracted
from a malicious Android application is modified to be
misclassified as benign by different Android malware
detection models built using classical, ensemble and deep
learning algorithms. The goal of the optimal policy is to
modify the maximum number of malicious applications
and generate new variants which are misclassified by
detection models. Also, modifications are minimized in
each application to reduce the overall cost of the attack.
These modifications are syntactically possible and do not
disrupt the behavioural or functional aspect of the Android
applications. We also proposed a multi-policy attack for
the grey-box scenario, which consists of a set of optimal
policies extracted from many Q-tables and used parallelly
for adversarial attacks. To the best of our knowledge, this is
the first investigation of adversarial attacks on the grey-box
scenario in the area of malware detection.

In summary, we have made the following contributions
through this paper for the development of the robust
Android malware detection system against adversarial
attacks:

– We proposed two novel adversarial attacks on Android
malware detection system followed by a defence
mechanism to improve the overall robustness of the
detection models.

– We designed a single-policy adversarial attack for the
white-box scenario, which achieved an average fooling
rate of 44.28% with a maximum of five modifications
across eight diverse set of detection models.

868 Inf Syst Front (2021) 23:867–882

https://www.f-secure.com/v-descs/trojan_android_fakeplayer.shtml
https://attackevals.mitre.org/

– We also devised a multi-policy attack for the grey-box
scenario, which obtained an average fooling rate of
53.20% with a maximum of five modifications across
the same eight detection models.

– Finally, we proposed a defence mechanism which
reduces average fooling rate by threefold and twofold
against single policy and multiple policy attack
respectively to improve the overall robustness of the
Android malware detection system.

The remainder of the paper is organized as follows:
Section 2 starts with a brief discussion on problem
definition and proposes an architecture to construct a robust
Android malware detection system. Further in the section,
the design of adversarial attacks on malware detection
models is explained, followed by defence strategies.
Section 3 discusses the experimental evaluation, which
contains details of the experimental setup like classification
algorithms, dataset, feature evaluation, and performance
metrics. Later, experimental results of adversarial attacks
using the single policy and multiple policy attack are
explained followed by results using defence strategy.
Section 4 contains the related work in the domain. Finally,
Section 5 concludes the paper and presents the future
direction of work.

2 ProblemOverview and Proposed
Architecture

In this section, we will first explain the problem definition
in Section 2.1. Section 2.2 will introduce the proposed
architecture for the construction of a robust Android
malware detection system against adversarial attacks.
Also, Fig. 1 briefly explains different components of the
proposed architecture. Later, Section 2.3 will explain the

development of the adversarial attack strategy followed by
a discussion on the adversarial attacks (Section 2.4) and
defence (Section 2.5) on Android malware detection system.

2.1 Problem Definition

To design a system against adversarial attack on the Android
malware detection system, let us consider the dataset:

D = {(xi, yi)} ∈ (X, Y) (1)

where D consists of m malicious and b benign apps (|b| ≈
|m|). Here X and Y represents a set of Android applications
and their corresponding class label (malware or benign).
If an application is benign, then yi is set to 0 otherwise
1. xi and yi represents the ith Android application, and
its class label respectively. Using the dataset D different
classification algorithms can be trained to build an effective,
efficient and robust Android malware detection model.

In the malware evasion attack, the goal is to modify the
maximum number of malicious applications xi such that
they are misclassified as benign by the Android malware
detection model. The proposed modifications in the set of
malicous applications:

M = {(xi, yi)}, ∀ yi ∈ M, yi = 1 (2)

should be syntactically possible to integrate with the ith

application. Also, these modifications should be possible
to incorporate in the Android application without any
behavioural or functional changes in the application.
Another goal should be to minimize the modifications in
xi to reduce the overall cost of evasion attack. Let us
assume a large number of misclassified malicious samples
M ′ are successfully constructed from M using evasion
attack. An adversary can use these M ′ malicious Android
applications to fool the detection models and reduce
the overall accuracy of any real-world Android malware

Fig. 1 Overview of the proposed architecture for adversarial attack and defence

869Inf Syst Front (2021) 23:867–882

detection model. However, these M ′ samples can also be
used by the defender to prepare a defence against evasion
attacks.

2.2 Architecture Overview of the ProposedMethod

Figure 1 illustrates the proposed approach to construct
a robust Android malware detection system. Firstly,
Android applications (malware and benign) were gathered
from various authentic sources. These applications were
decompiled using an open-source tool. Then a parser was
developed to scan through each decompiled application
and construct the feature vector. We extracted Android
permissions from all the downloaded applications and
populated them in the feature vector. Since the feature
vector suffers from the curse of dimensionality thus we
performed a detailed analysis of the permission vector
using different feature engineering techniques. Then we
used different classification algorithms to construct eight
distinct malware detection models and used them as the
baseline. In the next phase, we designed adversarial attack
strategies on the baseline detection models using RL.
The idea is to modify the malicious Android application
such that the detection model(s) misclassifies it as benign.
RL agents were allowed to interact with the environment
consisting of the malicious applications and detection
models. Learnings from these interactions were used to
define an optimal policy for the adversarial attacks. These
attack strategies could be used by malware designers
or adversaries to successfully modify malicious Android
applications and force any real-time antivirus to misclassify
them as benign. As an anti-malware designer, we should
be able to defend against these type of attacks, and thus
we propose the defence strategy. Our analysis shows that
the defence strategy improved the robustness of existing
malware detection models and reduced the chance of zero-
day attacks.

2.3 Development of Adversarial Attack Strategy

Reinforcement Learning has gained tremendous interest
in the past few years due to its ability to perform
particular tasks without specifying explicit steps (Luong
et al. 2019). The agent is trained based on rewards and
penalties to perform a given task. The trial and error
learning methodology of an RL agent consists of two
main strategies. The first strategy is to find the optimal
action in action-space in the given environment (Kaelbling
et al. 1996). The second strategy is to estimate the utility
of the actions using dynamic programming & statistical
learning and then to choose the optimal action (Kaelbling
et al. 1996). Another area in Machine Learning (ML)
that has gained interest recently is adversarial learning

where the ML models are trained by intentionally injecting
adversarial samples. In this, Goodfellow et al. demonstrated
that adversarially trained models show greater robustness
against the adversarial attacks (Goodfellow et al. 2014).

To simulate an attack using RL on Android malware
detection models, we defined an environment, set of states,
and set of possible actions. The RL simulation environment
can be formalized using the Markov Decision Process
(MDP), which is a mathematical framework for modelling
the decision-making process. It consists of a finite set of
malware detection models C (C = {c1, c2....cM}), a finite
set of states S (S = {s1, s2....sN }), a finite set of actions
A (A = {a1, a2....ak}), a reward function R and a policy
π . The proposed environment consists of Android malware
detection models along with the application permission
vectors as states. The permissions extracted from the
Android applications are used to define the finite set of
possible states. A set of models C consists of malware
detection models, and the set of actions A is defined with the
help of permissions P (P = {p1, p2....pk}). The notations
and symbols used in the proposed work are mentioned in
Table 1.

During the training phase, the agent starts interacting
with the environment which is starting from state s0 and
performs transitions with the help of actions that are
governed by an optimal policy π∗ to finally reach the
goal state sg . The collection of these transitions taken over
discrete time steps constitutes an episode et . The resultant
value of an episode et depends on the actions taken at every
time step and is defined by the state-value function given as:

V π(s) = Eπ [rt+1 + γ ∗ rt+2 + ...|st = s] (3)

The state-value function is used to define the expected
value obtained starting at state s and following the policy π

with a discount factor γ ∈ [0, 1) for successive transitions.
Eπ [] represents the expectation over reward obtained
using policy π . At any step, the state st is represented by
a permission vector and action at is represented by the
modified permission Pi (i ∈ [0, size of permission set]).

Table 1 Notation and symbols used in the paper

Name Description

C set of Android malware detection models

S set of states representing permission vector extracted

from malicious and benign Android application

A set of actions

R reward function

π mapping from states to actions

870 Inf Syst Front (2021) 23:867–882

Similar to state-value function, the action-value function is
defined as:

Qπ(s, a) = Eπ [Rπ |s + t = s, at = a] (4)

which determines the expected value obtained by taking
action at from state st following the policy π for all the
successive transitions. In the proposed work, action-value
function represents the likelihood of modifying permission
pi in the given feature vector to maximize the probability
of misclassifying the malicious application as benign while
minimizing the modification cost. The modification cost
signifies the number of permissions modified to reach the
goal state sg from s0. A state st is marked as sg once the
benign probability of the samples exceeds 0.5 as discussed
in following equation:

P(xi) =
{

st , Pb > 0.5 (classified as benign)

sg, Pb ≤ 0.5 (classified as malware)
(5)

The reward of an agent is governed using the reward
function:

r = w1 ∗ Pb − w2 ∗ Nm + w3 ∗ Sg (6)

where Pb is the benign probability, Nm is the number of
modifications, and Sg represents status of the goal state. w1,
w2, and w3 are weights associated with Pb, Nm, and Sg ,
respectively.

Based on the reward function, the agent is rewarded
to increase the benignness of the malicious sample and
to reach the goal state sg . Also, it is penalized for every
modification to reach the goal state. Finally, the optimal
policy:

π∗ = argmaxπV π(s), ∀s ∈ S (7)

is calculated based on an agent’s interaction with the
environment ε over several million episodes. The starting
state s0 of an episode et = (st , at , rt , st+1) is selected
randomly. An episode et is terminated once the agent
reaches the goal state sg which in our case is to modify the
malware sample to be misclassified as benign. The agent-
environment interactions are stored in a memory D called
replay buffer. A Q-table (Table 2) is created once the size of
the replay buffer is large enough to obtain a policy that is
close to an optimal policy π∗.

Table 2 Sample Q-table

P0 P1 Pn

0 0

....

....

1 1

The row of the Q-table represents the states, i.e. the
application permission vector and columns represent the
Android permission Pi to be modified. The Q-table contains
n + 1 columns where the entries in ith column correspond
to the expected value to be obtained after modifying the ith

permission. The highest value in 0th column denotes that the
sample is benign and no further modification is necessary.
The agent is allowed to modify one permission per time
step. An interaction represents a transition from one state
st to st+1 by performing an action at taken according to
π∗. The reward function is created in a way to maximize
the chance of modifying a malware application to be
misclassified as benign with the least number of alterations.
Monte-Carlo Every-Visit approach (Sutton and Barto 2018)
is used to populate the values of the Q-table. Once the Q-
table is constructed, it is used to extract the optimal policy
π∗ to modify the permission vector. A policy π could be
visualized as a lookup table consisting of an optimal action
a∗
t at every given state. These actions maximize the reward

of an agent and the probability to reach the goal state.

2.4 Adversarial Attack on Android Malware
DetectionModel

Figure 2 depicts the eight-step process-flow of the adver-
sarial attack strategy on the Android malware detection
models. The agent starts by resetting the environment ε and
fetching the permission vector from the database which is
then sends to the agent. After receiving the feature vector,
the agent manipulates the permission Pi of the malicious
sample based on the current optimal policy (π∗). Multi-
ple agents can be used during adversarial attack to simulate
multi-policy attack scenario. The agent returns the modi-
fied vector to the environment which further passes it to the
Android malware detection model and triggers the model’s
predict function. The detection model performs classifica-
tion and returns the benign probability to the environment.
This benign probability is used to calculate the reward
rt using the reward function. The environment sends this
reward and the next state st+1 to the agent. If the benign
probability is greater than 0.5, the process is terminated
as the sample is benign. It also suggests that the agent is
successfully able to modify the malicious application to
be misclassified as benign by the detection model. If the
benign probability is less than or equal to 0.5 it suggest that
the sample is still malicious, and a few more modifications
are required to convert it to a form that is misclassified as
benign. This iterative process supported by reward function
helps the agent to reach the goal state.

White-Box Attack Scenario: As discussed in Section 1, an
adversary can attack an Android malware detection system
in two different scenarios. In a white-box attack scenario,

871Inf Syst Front (2021) 23:867–882

Fig. 2 Adversarial attack on Android Malware Detection system

we assume that the adversary has complete knowledge
about the dataset, feature information, model architecture

and the classification algorithm. For a white-box scenario,
we designed a Single Policy Attack (SPA) using a single

872 Inf Syst Front (2021) 23:867–882

Q-table where only one optimal policy π∗ is used to
modify the permission vector of a given malware sample.
The permission modification process continues until the
malicious sample is misclassified as benign by the detection
model. The limitation of this approach is that it assumes that
adversary’s has complete knowledge about the detection
system, which is partially incorrect for any real-world
scenario.

Grey-Box Attack Scenario: In this scenario, we assume that
the adversary has only limited knowledge which does
not include any information about model architecture and
classification algorithm used to build the detection model.
Thus for grey-box setting, we designed a Multiple Policy
Attack (MPA) using many Q-tables consisting of a set of
optimal policies π∗

i ∈ ∏
(set of optimal policies) in contrast

to the single policy in SPA. The set of optimal policies
is obtained from different Q-tables created using a set of
replay buffers storing environment-agent interaction of a
set of agents. These policies are parallelly used to modify
the malware sample. The modification process terminates
as soon as the sample is misclassified as benign using any
of the optimal policy π∗. These benign-looking samples are
added to a set of new malware samples obtained during
the SPA and MPA. Attacks using multiple Q-tables help
in formalizing grey-box attack scenarios where adversaries
can perform successful attacks even without complete
knowledge of the Android malware detection system.

The Algorithm 1 describes the MPA strategy against
malware detection models. It accepts X, Y , M , & C as
input which represent malicious and benign data, class
labels, set of malware samples, and set of malware
detection models respectively. The algorithm produces the
following outputs: the modified malicious samples (M ′)
which are misclassified as benign, the number of modified
permissions (Nc) and ID of the malware detection model.
After necessary initializations, the first loop chooses a
malware sample d ∈ M from the database, and the second
loop selects the detection model c ∈ C. The third loop
depicts an agent with multiple optimal policies obtained
from multiple Q-table. The permission vector is extracted
using Fext (extraction function) and is vectorized as state s.
Given a malicious sample s, an optimal action a∗

t is chosen
using the optimal policy π∗. A modification function Fm is
used to modify specific permission using the optimal action.
The modified state smodif ied is used to trigger the predict
function of the malware detection model Cp which returns
the benign probability. The attack procedure is terminated as
soon as the benign probability > 0.5 is achieved. Finally, the
malware sample is successfully modified to be misclassified
as benign, and the tuple (sg, nc, c) is added to the database

where sg represents the new malware sample (goal state), nc

represents the number of steps taken to convert the sample,
and c represents the ID of malware detection model.

2.5 Defence Strategy Against Adversarial Attacks

While evaluating the performance of the Android malware
detection models with SPA and MPA, we found many
new variants of malicious samples that are misclassified as
benign. These adversarial malicious samples can be used
by cyber-criminals to bypass the malware detectors to com-
promise the Android OS and steal sensitive information.
Kurakin et al. proposed that injecting adversarial sam-
ples while retraining the existing detection models signifi-
cantly improved the robustness against known and zero-day
attacks (Kurakin et al. 2016). Chinavle et al. used mutual

873Inf Syst Front (2021) 23:867–882

aggregation based dynamic adversarial retraining against
adversarial attack on spam detection models (Chinavle et al.
2009). Ji et al. in DEEPARMOUR also found that adver-
sarial retraining help in improving the robustness of the
detection models based on random forest, multi-layer per-
ceptron and structure2vec (Ji et al. 2019). As a proactive
strategy, in the proposed work, we retrained the existing
detection models with these newly discovered variants of
malicious samples. After completing the retraining process,
the detection models are put into a test against both SPA and
MPA.

Figure 3 shows the proposed defence strategy against
adversarial attacks. Initially, we split the dataset into a train
set (used for training the malware detection models) and
test set (used to evaluate the performance of the detection
model). During the adversarial attack, a large number of
malicious samples fooled the detection model(s) and are
misclassified as benign. These new variants of malicious
samples with the corrected label are used to retrain all
the detection models. The newly developed models are
again subjected to SPA and MPA, and the performance is
re-evaluated.

3 Experimental Evaluation

In this section, we discuss the experimental setup and results
obtained from the SPA and MPA strategies on various
malware detection models followed by the defence strategy
results under different scenarios.

3.1 Experimental Setup

In the following sub-section, we first explain the set
of classification algorithms used for the experiments

followed by a description of the dataset and performance
metrics.

3.1.1 Classification Algorithms

We use a diverse set of classification algorithms to validate
the proposed approach. The set contains traditional machine
learning algorithms (Logistic Regression (LR), Linear Sup-
port Vector Machine (SVM), Decision Tree (DT)), bag-
ging algorithms (Random Forest (RF), ExtraTreesClassifier
(ET)), boosting algorithms (Adaptive Boosting (AB), Gra-
dient Boosting (GB)) and Deep Learning (Deep Neural
Network (DNN)). We use k-fold validation for better gener-
alization with the value of k set to 5 for all the experiments.
The SVM model is trained using the linear kernel, squared
hinge as the loss function and l2 as the norm for the penalty.
Since the dataset contains almost an equal number of mali-
cious and benign samples, so the class weight is set to
balanced. The DT based models are constructed using Gini
impurity criteria with no limitation on the maximum depth
of the tree and the minimum number of samples required
at the leaf node. In LR models, we use lbfgs solver with l2
as the penalty norm. Again the class weight is set to bal-
anced since the dataset contains equal number of malware
and benign Android apps. RF models contained forest of
100 trees with Gini impurity as splitting criteria. Again there
is no limitation on the maximum depth and minimum sam-
ples for each decision tree in the forest. AB models use
DT based boosting with SAMME.R as the boosting algo-
rithm. The number of trees in AB is set to 100. Again GB
models are based on tree-based boosting with deviance as
the loss function, and friedman mean square error as the
split criteria. The number of trees at each boosting stage is
set to 100 while max depth of each tree is set to three for
better generalization and to avoid overfitting. ET uses 10

Fig. 3 Defence against
adversarial attacks

874 Inf Syst Front (2021) 23:867–882

randomized DTs with Gini impurity as the split criteria. In
each DT, the maximum depth and minimum samples to split
is set to 0 and 2 respectively for better predictive accuracy
and to control overfitting. The DNN model is a single-layer
perceptron with one hidden layer containing 100 neurons.
It uses ReLU as the activation function with a batch size
of 200. The model is trained using Adam weight optimizer
with a constant learning rate. We use all the above clas-
sification algorithms for building eight different malware
detection models. In the adversarial attack phase, each of
these models is attacked using different policies. Finally
using the defence strategy, each of the models is made more
robust against adversarial attacks.

3.1.2 Dataset

We have conducted all the experiments using the dataset of
Android applications containing both malware and benign
samples, as detailed below:

Malware Dataset Arp et al. downloaded 123,453 Android
applications from Google Play store (LLC 2010) & other
third party alternative app distributors and found many mali-
cious apps among them (Arp et al. 2014). They collected all
the malware applications and named it the Drebin Dataset
which contains 5,569 malware samples from more than 20
malware families like FakeInstaller, DroidKungFu, Plank-
ton, Opfake, GingerMaster, BaseBridge, Iconosys, Kmin
etc. Drebin also contains all the samples from the Android
Malware Genome Project (Zhou and Jiang 2012). This
benchmark Drebin dataset (Arp et al. 2014) has been used
by many researchers for developing Android malware detec-
tion system (Ye et al. 2017; Faruki et al. 2014; Tam et al.
2017).

Benign Dataset Google Play Store (LLC 2010) is the
official app store for distributing applications for the
Android operating system. We downloaded 8500 apps from
the Play Store. In the past, many Android applications
posted on the Google Play Store were found to be malicious
and were taken out from the platform by Google. Thus
we scan all the downloaded applications using VirusTotal
(Hispasec Sistemas 2019) (which is a subsidiary of Google
which aggregate the results from more than 50 antivirus
engines). We labelled an Android application as benign if
none of the antivirus engines from VirusTotal declare it as
malicious. Finally, we remove the malicious samples from
the dataset and labelled all the remaining apps (5, 721) as
benign.

3.1.3 Feature Extraction

Android is a mobile operating system built on the modi-
fied Linux kernel. Its security architecture is designed with

the Android permission system built in the centre to
protect the privacy of the user. An app must request per-
mission from the Android system to access data (call
log, SMS etc.) or system resource (WiFi, Bluetooth etc.).
We use Android permissions to build our baseline, attack
and defence models. We perform feature extraction of
Android permissions using Apktool (Wiśniewski and Tum-
bleson 2020) by decompiling all the applications and
then analyzing AndroidManifest.xml file. We develop a
parser to prepare a master permission list containing all
the 197 Android permissions. This list is validated with
both the official Android documentation and Android Stu-
dio compiler. Another parser is developed to scan through
each application and populate the feature vector based
on requested permission by that application. We execute
the parser on the complete dataset containing both mali-
cious and benign samples. The final malware and benign
feature vectors is 5, 560 × 197 and 5, 721 × 197, respec-
tively, where a row represents an Android application, and
column denotes permission. An important point to note
here is modifying the Android permissions in an appli-
cation does not disturb the syntactical, behavioural and
functional properties of the application. Thus the appli-
cations can be successfully recompiled with the modified
permissions.

3.1.4 Performance Metrics

We use the following performance metrics collected
from different malware detection models to evaluate the
experimental results:

– True Positive (TP) is the outcome when predicted,
and the actual value is True. It signifies that malware
prediction by the detection model is correct.

– False Positive (FP) indicates a classification error when
the predicted value is True, but the actual value is
False. It signifies that the detection model has wrongly
classified the benign sample as malicious.

– True Negative (TN) is the outcome when predicted, and
the actual value is False. It also signifies that benign
prediction by detection model is correct.

– False Negative (FN) indicates a classification error
when the predicted value is False, but the actual value is
True. It signifies that the detection model has wrongly
classified the malware sample as benign.

– Accuracy (Acc.) is the ratio of correct predictions and
the total number of the predictions. It denotes the
number of malicious samples classified as malware and
benign samples as benign, divided by the total number
of predictions. A higher value of accuracy signifies that
malware detection is correctly predicting the labels with
high confidence.

875Inf Syst Front (2021) 23:867–882

Acc. = T P + T N

T P + T N + FP + FN
(8)

– Fooling Rate (FR) is the fraction of malicious samples
misclassified as benign during the adversarial attack
(M ′) over the total number of malicious samples (M).

FR = M ′

M
× 100 (9)

3.2 Experimental Results

In this section, we will report the experimental evaluation
of various proposed attacks and defence strategies under
different scenarios.

3.2.1 Feature Engineering

As discussed in the previous Section 3.1.3, our dataset con-
sists of 197 features, each depicting individual permission
that an application has requested during the installation.
The datasets which contain a large feature vector will suffer
from the curse of dimensionality and will have the follow-
ing issue: (I) Higher training time and risk of overfitting in
classification/detection models (II) Higher training time and
large Q-table size of the RL agent. A Q-table with 197 fea-
tures will have 2197 states and 198 actions, which finally
leads to 2197 × 198 Q-table entries. It also makes the goal
of extracting an optimal policy infeasible. To overcome this
limitation, we perform feature selection to reduce the size
of the feature vector, further substantially reducing the size
of the Q-table (Table 3).

Table 4 shows the accuracy of various malware
detection models constructed using different classification
algorithms. When all the 197 permission features are
considered for model construction, the highest accuracy of
93.81% is achieved by RF followed by DT (91.74%) and ET
(91.65%). SVM based model received the lowest accuracy

Table 4 Accuracy of detection models after feature reduction

Accuracy

Classification Top 5 Top 10 Top 15 All 197

model features features features features

LR 75.98 77.57 81.09 86.62

SVM 70.35 76.93 80.03 85.42

DT 76.19 80.45 85.23 91.74

RF 76.59 80.95 85.39 93.81

AB 75.94 77.57 80.03 85.76

GB 76.19 80.42 85.02 91.65

ET 76.19 80.45 83.87 88.09

DNN 76.47 78.81 82.72 88.48

of 85.42% for the same. However, the current feature
vector suffers from the curse of dimensionality for both
constructing the malware detection model and the Q-table.
To overcome this limitation, we perform feature selection
using feature importance to reduce the size of the feature
vector for malware detection model. It also substantially
reduces the size of Q-table. Building the RF model with
top 10 (Table 3) features from feature importance achieved
the highest accuracy of 80.45%, and also the Q-table will
consist of only 11,264 entries. However, increasing the
attributes to top 15 features will increase the accuracy of
the random forest model by a slight margin of 5% but with
a substantial increase in Q-table size with 5,242,88 entries.
Further selecting top 20 and 25 features will increase the
Q-table entries to 22,020,096 and 872,415,232 respectively.
It is also observed that training the RL agent with a more
generalized detection model helps in finding better optimal
policy.

3.2.2 Single-Policy Attack on Malware Detection Models

In SPA, an agent uses the optimal policy π∗ to modify
the set of malware samples so that they are misclassified

Table 3 Top 10 Android
permission based on feature
importance

Rank Android Permission

1 android.permission.READ PHONE STATE

2 android.permission.READ SMS

3 android.permission.SEND SMS

4 android.permission.RECEIVE BOOT COMPLETED

5 android.permission.INSTALL PACKAGES

6 android.permission.WRITE SMS

7 android.permission.GET ACCOUNTS

8 android.permission.RECEIVE SMS

9 android.permission.ACCESS WIFI STATE

10 android.permission.ACCESS LOCATION EXTRA COMMANDS

876 Inf Syst Front (2021) 23:867–882

as benign. In order to evaluate the performance of our
RL agent, we attack eight different malware detection
models. Figure 4 shows the performance of the agent
created using a Single Q-table against different malware
detection models. In the plot, the vertical axis represents
eight malware detection models and horizontal axis
represents the percentage of malware samples successfully
modified using a SPA. The vertical axis also contains
baseline Android malware detection accuracy without any
attack. RF model achieved the highest baseline detection
accuracy of 93.81% followed by the DT model with
91.74%.

The cost of an adversarial attack is calculated based
on the number of permissions modified in the sample.
Thus one permission modification attack allows maximum
one permission to be modified using the optimal policy
π∗. Similarly, two permission modification attack allow a
maximum of two permission modifications using the same
policy and so on.

We started with one permission modification attack using
single Q-table on all the eight detection models. The highest
fooling rate of 39.19% was achieved against the DT based
Android malware detection model. It signifies that 1,959
out of 5,721 malware samples with only one permission
modification has fooled the DT detection model and are
misclassified as benign. The second highest fooling rate
with one permission modification attack is attained for ET
(31.07%). The lowest fooling rate with one permission
modification attack is obtained by GB (17.66%), which is
based on boosting mechanism. Using single policy for five
permission modification attack allows a maximum of five
permission modifications based on the optimal policy. The
highest fooling rate with five permission modifications is
achieved for the DT detection model (54.92%), followed by
the ET model (49.44%). SPA achieved an average fooling
rate of (44.21%) among eight detection models, which is
best in class.

3.2.3 Multi-Policy Attack on Malware Detection Models

RL agent’s performance is improved when there is a large
intersection between the features of the malware detection
model and the RL agent. To overcome this limitation, we
proposed a grey-box attack using several agents trained on
different detection models. The strategy of using several
detection models ensures a greater intersection of attributes
irrespective of the detection model. Thus in an attack
using multiple policies, an agent uses a set of optimal
policies � obtained from multiple Q-tables to modify
a malware sample to be misclassified as benign. Fig. 5
shows the different malware detection models and their
corresponding fooling rates. It is observed that the MPA
outperforms the SPA as it achieves a better fooling rate
against different malware detection models. The fooling rate
with a maximum of five permission modification against
the DT model is increased to 86.09%, which is a significant
improvement over the single policy attack (56.7%). A
similar increase in the fooling rate is observed for the
ET model (75.23%) and RF model (60.81%). The average
fooling rate is increased to (55%) for the eight Android
malware detection models. As per our knowledge this the
first investigation of the adversarial attacks on malware
detection models in the grey-box scenario.

As the fooling rate against every malware detection
model has improved, we can say that even with significant
changes in the malware detection model, MPA can still
attack with high accuracy. The multiple Q-table agents also
perform better in scenarios where retraining the agent is not
feasible, and the deployment can happen only once, as it is
more adaptive to changes in the malware detection model. In
the past, some researchers have proposed adversarial attacks
similar to SPA for white-box scenario on Android malware
detection models. Chen et al. designed three different
variants of adversarial attacks namely week case, strong
case and sophisticated case and modified the malicious

Fig. 4 Fooling rate achieved by SPA on different malware detection models

877Inf Syst Front (2021) 23:867–882

Fig. 5 Fooling rate achieved by MPA on different malware detection models

Android applications to be misclassified as benign. Suciu
et al. proposed an adversarial attack on detection models
based on convolutional neural network and modified the
executables with single step attacks. Although there is
limited work published for adversial attacks in a white-box
scenario. However, to the best of our knowledge, MPA is
the first investigation of the adversarial attacks for grey box
scenario.

3.2.4 Defence Against Single-Policy Attack

After successfully increasing the fooling rate using multiple
optimal policies obtained from multiple Q-tables, we design
the defence strategy for the attack against the malware
detection models. The above attack strategies demonstrated
that adversaries can target the existing deployed models
which acted as a motivating factor for developing defensive
mechanisms. In this Kurakin et al. proposed that injecting
adversarial samples while retraining the existing detection
models significantly improved the robustness against known
and zero-day attacks (Kurakin et al. 2016).

Sections 3.2.2 and 3.2.3 shows that malware detection
models are vulnerable to adversarial attacks. Also, as
discussed in Section 2.5 that the process of injecting
adversarial samples while retraining improves the security.
Based on the Fig. 5, it is observed that during an adversarial
attack the RL agent modifies a substantial number of
samples to be misclassified as benign. These benign-looking
samples are stored and will be used to retrain the models
to evaluate the model’s resilience against the zero-day
attacks. The process consists of creating the training set
with benign samples and selecting a percentage of new
and old malware samples in order to have a class balanced
dataset using random oversampling. Figure 6 shows the
performance of the agent using the SPA against different
malware detection models after retraining. In the figure, the
vertical axis represents eight malware detection models and

their corresponding baseline detection accuracy without any
attack. Also, the horizontal axis represents the percentage
of malware samples successfully modified using the SPA
after retraining. It is observed that there is a slight drop
in the model accuracy after retraining with new malware
samples, but this is negligible compared to the increase in
the robustness. From the figure, we can observe that the RF
model achieves the highest baseline detection accuracy of
93.74%, which is slightly lower compared to before training
accuracy of 93.81%. The baseline accuracy of the DT model
also reduces from 91.74% to 91.51%.

The Fig. 6 shows a significant decrease in the fooling
rate after retraining of detection models with correct labels.
Comparing the retrained DT model with the original DT
model, there is a considerable reduction in fooling rate
from 55.46% to 24.46%. It is a substantial improvement
which could be further increased by continuous retraining
on new malware samples. Also, the fooling rates after
retraining of ET and RF were reduced to 23.55% and
13.30% from earlier 49.44% and 43.35% respectively. The
average fooling rate across all the eight detection models
is reduced to one third from 44.21% to 15.22%, which is
a significant improvement. The drop in fooling rate also
shows the limitation of single policy agents that they are not
immune to changes in the malware detection system.

3.2.5 Defence Against Multi-Policy Attack

We are following a similar retraining strategy for defense
against the attack using MPA on Android malware detection
system. The malware samples used for retraining are
obtained from MPA but with correct labels. As the RL
agent using multiple policies modifies a higher percentage
of samples compared to the agent using a single policy,
we observe a higher drop in the baseline accuracies
mentioned on the vertical axis in Fig. 7. From the figure,
we can observe that the RF model achieved the highest

878 Inf Syst Front (2021) 23:867–882

Fig. 6 Fooling rate achieved by SPA after the adversarial defence of detection models

baseline detection accuracy of 91.25%, which is slightly
lower compared to before retraining accuracy of 93.81%.
The horizontal axis represents the percentage of malware
samples successfully modified using MPA after retraining.

Figure 7 shows a significant decrease in the fooling rate
using RL agents with multiple policies. There is a reduction
of 60.73% in the fooling rate of DT from the retraining
after MPA compared to SPA. The average fooling rate after
retraining using multiple policy attack is 29.44%, which is
approx half before the retraining. In general, the fooling rate
can be further reduced by continuous retraining using new
malware samples. However, the fooling rate achieved using
multiple policy agents still outperforms single policy agent’s
fooling rate. The presence of higher fooling rate even after
adversarial training shows that multiple policy agents are
more immune to changes in the malware detection system.
Due to this fact they are preferred in scenarios where the
malware detection models change frequently.

The Figs. 6 and 7 shows a drastic decrease in the fooling
rate after one iteration of adversarial retraining. It also
shows that the performance of the retrained models is nearly
indistinguishable from baseline, whereas the robustness is
drastically improved. While this experiment might have
a few limitations, it provides evidence that this defense
strategy could be used to improve robustness of the existing
malware detection systems.

4 RelatedWork

Malware analysis and detection is a rat race between
malware designers and the anti-malware community.
Currently, anti-viruses mostly works on signature-based
detection engines (Ye et al. 2017; Tam et al. 2017;
Faruki et al. 2014). A signature is a unique value which
indicates the presence of malicious code in the test
application (Ye et al. 2017; Sharma and Sahay 2014).
These signatures are stored in the anti-virus database

and compared with the test application during anti-virus
scanning. If any signature from the database matches the
test application, then it is declared as malicious otherwise
not (Ye et al. 2017). The signature-based mechanism
is vastly human-driven, time-consuming and does not
provide security against zero-day attacks (Ye et al. 2017).
Heuristic and behaviour-based detection mechanisms often
complement the signature engines (Ye et al. 2017; Tam et al.
2017). In heuristic-based detection, rules are developed
to separate malicious and benign applications. Typically
domain experts draft these rules which can also detect zero-
day attacks. Developing generic rules to detect malware
samples is again human-driven, error-prone and often hard
to achieve without increasing the false positive rate (Ye et al.
2017). Behaviour-based detection mechanism check for
run-time triggers that can capture properties of the malware
applications. These signature, heuristic, and behaviour
based mechanisms are vastly human dependent, time-
consuming and not scalable and thus cannot detect next-
generation polymorphic/metamorphic malware (Ye et al.
2017).

During the past few years, the anti-malware research
community has investigated the development of Android
malware detection systems based on machine learning
and deep learning which has shown promising results.
Developing these solutions is a two-step process: 1) Feature
Engineering, and 2) Classification/Clustering. In the first
phase of feature engineering, extraction of features are
performed using static, dynamic or hybrid analysis (Ye et al.
2017; Tam et al. 2017). If the features are extracted without
executing an Android application, then it is known as static
analysis. In this, Arp et al. in 2014 extracted roughly
545,000 features by static analysis from the Android
applications and constructed Android malware detection
model using support vector machine (Arp et al. 2014). On
the other hand, when features are extracted by executing
an Android application inside a sandbox or controlled
environment, then it is called dynamic analysis. Dash et al.

879Inf Syst Front (2021) 23:867–882

Fig. 7 Fooling rate achieved by MPA after the adversarial defence of detection models

in DroidScribe extracted features like network addresses,
file access, binder methods etc. and proposed a malware
detection model using support vector machine (Dash et al.
2016). In the hybrid analysis, features extracted using
both static and dynamic analysis are combined to develop
the malware detection models. SAMADroid proposed
by Arshad et al. used six static features (permission,
intent etc.), one dynamic feature (system call) and four
classification algorithms (support vector machine, decision
tree, etc.) to construct the malware detection system (Arshad
et al. 2018).

In the second phase of Classification/Clustering, various
machine learning and deep learning algorithms can be used
to construct the classification models. Wu et al. proposed
Droidmat which extracted permissions, intents, API calls
etc. from Android applications. They performed feature
reduction using single value decomposition followed by
building Android malware detection model based on the
k-nearest neighbors algorithm and achieved an accuracy
of 97.87% (Wu et al. 2012). Droid-Sec by Yuan et al.
extracted more than 200 features from Android apps and
constructed malware detection models using SVM, LR,
DNN etc. They achieved the highest detection accuracy
of 96.5% with DNN based model (Yuan et al. 2014).
Yerima et al. constructed a malware detection model based
on the Bayesian approach and attained an accuracy of
92.1% (Yerima et al. 2013). Lindorfer et al. in ANDRUBIS
downloaded more than 1,000,000 apps and found that
malicious applications tend to request more permissions
than benign applications (Lindorfer et al. 2014). Sewak
et al. used deep learning based autoencoders and deep
neural network for developing malware detection models
and achieved an accuracy of 99.21% (Sewak et al. 2018).
Rathore et al. proposed Android malware models based
on clustering and classification and achieved the highest
accuracy of 95.82% with random forest (Rathore et al.
2018). Appice et al. proposed MuViDA, which collected

features like permission, intent, API calls from Android
applications. They developed additional features with
clustering and classification algorithms and achieved the
highest AUC of 96.6% (Appice et al. 2020).

With the rise of machine learning models, evasion attacks
have gained popularity. One such attack is the mimicry
attack that had successfully reduced the detection model
accuracy by injecting beingness into malware samples to
misclassify them. DNN models are also susceptible to
such attacks, Grosse et al., Kolosnjaji et al. and others
demonstrated this by successfully misleading a neural
network using carefully crafted samples (Paudice et al.
2018). Their idea involved using a genetic algorithm to
add perturbations in the malware file to evade the detection
system. AL can also be used to perform grey-box attacks.
Battista Biggio showed that even with limited knowledge of
the target system, classification algorithms can be evaded
with very high probability (Biggio et al. 2013). With
the rise of adversarial attacks, adversarial learning has
also gained popularity among different machine learning
domains like computer vision, spam detection etc. Ian
J. Goodfellow (Goodfellow et al. 2014), Florian Tramer
(Tramèr et al. 2017), and Aleksander Madry (Madry et al.
2017) have shown the advantage of using adversarial
learning to improve the robustness of neural network
models. Adversarial learning also improves resilience
against a single step attack as shown by Alexey Kurakin
(Kurakin et al. 2016). Based on above discussions, it can
be inferred that using AL can improve the robustness of
existing models.

5 Discussion and Conclusion

Today smartphones and Android OS have become an
integral part of our society. Traditionally, Android malware
detection mechanisms like the signature based, heuristic

880 Inf Syst Front (2021) 23:867–882

based, behavioural based etc. are not able to cope up
against the current attacks developed by malware designers.
Thus recently, machine learning and deep learning based
malware detection models have attracted the interest of the
anti-malware community. However, these models perform
poorly against adversarial attacks which could threaten the
complete malware detection ecosystem.

To develop a robust Android malware detection system
against adversarial attacks, we first build eight different
malware detection models. The models are constructed
using a variety of classification techniques like traditional
algorithms (LR, SVM, and DT), bagging algorithms (RF,
ET), boosting algorithms (AB, GB) and DNN. The highest
malware detection accuracy is achieved using RF (93.81%),
followed by the DT model (91.94%). Also, all the other
detection models have attained more than 85% accuracy.
However, these models are susceptible to adversarial attacks
designed by the malware architects based on the knowledge
about the system. It can be visualized as a min-max
game where adversary wants to maximize the fooling rate
with minimum modifications and without any functional
or behavioural disturbance to the Android application. For
the purpose, we created new variants of malware using
RL, which will be misclassified as benign by the existing
Android malware detection models.

We also proposed a novel single policy attack for
the white-box setting where an adversary has complete
knowledge about the detection system. We design a
reinforcement agent which performs adversarial attack
using a policy obtained from a single Q-table. The attack
achieves an average fooling rate of 44.28% across all the
eight detection models with maximum five modifications.
The attack also achieves the highest fooling rate against
the DT model (54.92%) whereas the lowest fooling
rate is obtained for GB (37.77%) with similar setting.
Overall, the experimental result signifies that single policy
attack can successfully evade malware detection models
and accomplish high fooling rate even with limited
modifications.

We also develop a state-of-the-art adversarial attack, namely
multi-policy attack for grey-box setting where the attacker has
no knowledge about the model architecture and classification
algorithm. The multi-policy attack achieve the highest fooling
rate for DT model (86.09%) followed by ET model
(75.23%) with a maximum of five modifications. The
average fooling rate is increased to 53.20%, which is higher
than the single policy attack even with limited information.

Finally, we propose defense against adversarial attacks
based on the single policy and multi-policy attack strategies.
With adversarial retraining, the average fooling rate against
the single policy attack is reduced by threefold to 15.22%
and twofold for the multi-policy attack to 29.44% i.e. it can
now effectively detect variants (metamorphic) of malware.

The experimental analysis shows our proposed Android
malware detection system using reinforcement learning is
more robust against adversarial attacks.

In this work, we have used Android permission as
a feature and used Q-learning for designing adversarial
attacks on Android malware detection models. However,
many researchers have proposed malware detection models
built using features from static analysis (Intent, API calls,
etc.) and dynamic analysis (system calls). In future, we will
explore fooling Android malware detection models based
on other features. We are also planning to design adversarial
attack based on other reinforcement learning techniques
like deep q-learning, actor-critic algorithm, proximal policy
optimization etc.

References

Appice, A., Andresini, G., Malerba, D. (2020). Clustering-aided multi-
view classification: a case study on android malware detection.
Journal of Intelligent Information Systems, 1–26.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.,
Siemens, C. (2014). Drebin: effective and explainable detection of
android malware in your pocket. In Ndss, (Vol. 14 pp. 23–26).

Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu,
H. (2018). Samadroid: a novel 3-level hybrid malware detection
model for android operating system. IEEE Access, 6, 4321–4339.

AVTEST (2019). Malware. Available: https://www.av-test.org/en/
statistics/malware/. Last accessed: April 2020.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., Roli, F. (2013). Evasion attacks against
machine learning at test time. In Joint european conference on
machine learning and knowledge discovery in databases. Springer
(pp. 387–402).

Chinavle, D., Kolari, P., Oates, T., Finin, T. (2009). Ensembles in
adversarial classification for spam. In Proceedings of the 18th
ACM conference on information and knowledge management
(pp. 2015–2018).

Dash, S.K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder,
J., Cavallaro, L. (2016). Droidscribe: classifying android malware
based on runtime behavior. In 2016 IEEE Security and privacy
workshops (SPW). IEEE (pp. 252–261).

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S.,
Conti, M., Rajarajan, M. (2014). Android security: a survey of
issues, malware penetration, and defenses. IEEE Communications
Surveys & Tutorials, 17(2), 998–1022.

Fonteneau, R., Murphy, S.A., Wehenkel, L., Ernst, D. (2010). Towards
min max generalization in reinforcement learning. In International
conference on agents and artificial intelligence. Springer (pp. 61–
77).

G DATA CyberDefense AG (2019). Mobile malware report. Available:
https://www.gdatasoftware.com/news/2019/07/35228-mobile-mal
ware-report-no-let-up-with-android-malware. Last accessed:
April 2020.

Goodfellow, I.J., Shlens, J., Szegedy, C. (2014). Explaining and
harnessing adversarial examples. arXiv:1412.6572.

Hispasec Sistemas (2019). VirusTotal. Available: https://www.
virustotal.com/gui/home. Last accessed: April 2020.

Ji, Y., Bowman, B., Huang, H.H. (2019). Securing malware cognitive
systems against adversarial attacks. In 2019 IEEE international
conference on cognitive computing (ICCC). IEEE (pp. 1–9).

881Inf Syst Front (2021) 23:867–882

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware
http://arxiv.org/abs/1412.6572
https://www.virustotal.com/gui/home
https://www.virustotal.com/gui/home

Kaelbling, L.P., Littman, M.L., Moore, A.W. (1996). Reinforcement
learning: a survey. Journal of Artificial Intelligence Research, 4,
237–285.

Kurakin, A., Goodfellow, I., Bengio, S. (2016). Adversarial machine
learning at scale. arXiv:1611.01236.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio,
Y., Van Der Veen, V., Platzer, C. (2014). Andrubis–1,000,000
apps later: a view on current android malware behaviors. In
2014 third international workshop on building analysis datasets
and gathering experience returns for security (BADGERS). IEEE
(pp. 3–17).

LLC, G. (2010). Google play. Available: https://play.google.com/
store?hl=en. Last accessed: April 2020.

Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y.C.,
Kim, D.I. (2019). Applications of deep reinforcement learning in
communications and networking: a survey. IEEE Communications
Surveys & Tutorials, 21(4), 3133–3174.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A. (2017).
Towards deep learning models resistant to adversarial attacks.
arXiv:1706.06083.

O’Dea, S. (2020). Smartphones - statistics & facts. Available: https://
www.statista.com/topics/840/smartphones/. Last accessed: April
2020.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B.,
Swami, A. (2016). The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and
privacy (EuroS&P). IEEE (pp. 372–387).

Paudice, A., Muñoz-González, L., Lupu, E.C. (2018). Label sanitiza-
tion against label flipping poisoning attacks. In Joint European
conference on machine learning and knowledge discovery in
databases. Springer (pp. 5–15).

Rathore, H., Agarwal, S., Sahay, S.K., Sewak, M. (2018). Malware
detection using machine learning and deep learning. In Interna-
tional conference on big data analytics. Springer (pp. 402–411).

Rathore, H., Sahay, S.K., Chaturvedi, P., Sewak, M. (2018).
Android malicious application classification using clustering.
In International conference on intelligent systems design and
applications. Springer (pp. 659–667).

Sahay, S.K., Sharma, A., Rathore, H. (2020). Evolution of malware
and its detection techniques. In Information and communication
technology for sustainable development. Springer (pp. 139–150).

Serban, A.C., Poll, E., Visser, J. (2018). Adversarial examples-a
complete characterisation of the phenomenon. arXiv:1810.01185.

Sewak, M., Sahay, S.K., Rathore, H. (2018). Comparison of deep
learning and the classical machine learning algorithm for the
malware detection. In 2018 19th IEEE/ACIS international con-
ference on software engineering, artificial intelligence, network-
ing and parallel/distributed computing (SNPD). IEEE (pp. 293–
296).

Sharma, A., & Sahay, S.K. (2014). Evolution and detection of
polymorphic and metamorphic malwares: a survey. International
Journal of Computer Applications, 90(2).

Simon Kemp (Hootsuite) (2018). Global digital report. Available:
https://digitalreport.wearesocial.com/. Last accessed: April 2020.

Sutton, R.S., & Barto, A.G. (2018). Reinforcement learning: an
introduction. Cambridge: MIT Press.

Symantec (2019). Internet security threat report. Available: https://
www-west.symantec.com/content/dam/symantec/docs/reports/
istr-24-2019-en.pdf. Last accessed: April 2020.

Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.
(2017). The evolution of android malware and android analysis
techniques. ACM Computing Surveys (CSUR), 49(4), 1–41.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D.,
McDaniel, P. (2017). Ensemble adversarial training: attacks and
defenses. arXiv:1705.07204.

Wiśniewski, R., & Tumbleson, C. (2020). Apktool. Available: https://
ibotpeaches.github.io/Apktool/.

Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P. (2012). Droidmat:
android malware detection through manifest and api calls tracing.
In 2012 Seventh Asia joint conference on information security.
IEEE (pp. 62–69).

Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S. (2017). A survey on malware
detection using data mining techniques. ACM Computing Surveys
(CSUR), 50(3), 41.

Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I. (2013). A new
android malware detection approach using bayesian classification.
In 2013 IEEE 27th international conference on advanced
information networking and applications (AINA). IEEE (pp. 121–
128).

Yuan, Z., Lu, Y., Wang, Z., Xue, Y. (2014). Droid-sec: deep learning
in android malware detection. In Proceedings of the 2014 ACM
conference on SIGCOMM (pp. 371–372).

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: character-
ization and evolution. In 2012 IEEE symposium on security and
privacy. IEEE (pp. 95–109).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Hemant Rathore received his B.E. and M.E. in computer science from
RGTU, India and BITS Pilani, India in 2010 and 2013, respectively.
Currently, he is pursuing Ph.D. at Birla Institute of Technology and
Science, Pilani, K. K. Birla Goa Campus. He has three years of
industrial experience at Symantec, India. His current research interests
are malware analysis and detection, machine learning and network
security. He is also a member of the IEEE and ACM.

Sanjay K. Sahay is Associate Professor in the Department of
Computer Science and Information System in BITS, Pilani, K.K. Birla
Goa campus teaches and guides B.E, M.E. and PhD students on various
security-related courses and projects. He is also a Visiting Associate
of IUCAA, Pune. His research interests are Information Security,
Artificial Intelligence, Authentication, Data Mining and Gravitational
Waves. He served as a program committee member of various reputed
conferences and has been a reviewer for journals. He published more
than 50 scientific articles. Before joining BITS, Pilani, he continued
his research as a Project Scientist at IUCAA, Pune, India. In 2003-
2005 at Raman Research Institute, Bangalore, India, he worked as
Project Associate on the multi-wavelength astronomy project. In 2005
he worked as a Postdoctoral Fellow at Tel Aviv University.

Piyush Nikam received the B.Eng. degree in computer engineering
from Savitribai Phule Pune University, Maharashtra, India in 2016.
He is currently pursuing the Master’s degree in Birla Institute of
Technology and Science, Pilani (BITS Pilani), India. His research
interests include adversarial machine learning, reinforcement learning
and pervasive computing.

Mohit Sewak received his M.Tech. in Software Systems from BITS
Pilani and B.E. in Marine Engineering from Jadavpur university
in 2015 and 2003, respectively. Currently, he is serving as the
Principal Data Scientist in the Security and Compliance Research
team of Microsoft, India R&D, and is also pursuing part-time
Ph.D. at BITS Pilani. Mohit has more than 15 years of experience
in Research, Design and Development of Machine Learning and
Artificial Intelligence products in the industry. His current research
interests are security, compliance, and artificial intelligence.

882 Inf Syst Front (2021) 23:867–882

http://arxiv.org/abs/1611.01236
https://play.google.com/store?hl=en
https://play.google.com/store?hl=en
http://arxiv.org/abs/1706.06083
https://www.statista.com/topics/840/smartphones/
https://www.statista.com/topics/840/smartphones/
http://arxiv.org/abs/1810.01185
https://digitalreport.wearesocial.com/
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
http://arxiv.org/abs/1705.07204
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

	Robust Android Malware Detection System Against Adversarial Attacks Using Q-Learning
	Abstract
	Introduction
	Problem Overview and Proposed Architecture
	Problem Definition
	Architecture Overview of the Proposed Method
	Development of Adversarial Attack Strategy
	Adversarial Attack on Android Malware Detection Model
	White-Box Attack Scenario:
	Grey-Box Attack Scenario:

	Defence Strategy Against Adversarial Attacks

	Experimental Evaluation
	Experimental Setup
	Classification Algorithms
	Dataset
	Malware Dataset
	Benign Dataset

	Feature Extraction
	Performance Metrics

	Experimental Results
	Feature Engineering
	Single-Policy Attack on Malware Detection Models
	Multi-Policy Attack on Malware Detection Models
	Defence Against Single-Policy Attack
	Defence Against Multi-Policy Attack

	Related Work
	Discussion and Conclusion
	References

