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Abstract
Deviations and variations are the norm rather than the exception in medical diagnosis and treatment processes. Physicians must
leverage their knowledge and experience to choose an appropriate variation for each patient. However, this knowledge and experience
is often tacit. Process modeling offers a way to convert tacit to explicit knowledge. Many process mining techniques have been
developed due to the difficulty of doing this manually, yet, they often neglect the decisions themselves, and these proposed techniques
are just one piece of a comprehensive process discovery method. In this paper, we use the Action Design Research methodology to
develop a method for process and decision discovery of medical diagnosis and treatment processes. The method was iteratively
improved and validated by applying it to a practical setting, which was the emergency medicine department of a hospital. An analysis
of the resulting model shows that previously tacit knowledge was successfully made explicit.

Keywords Process discovery . Process mining . Decisionmining . Knowledge extraction . Healthcare . Knowledge-intensive

1 Introduction

Within the Information Systems domain it is generally accept-
ed that a process-oriented approach centered around process
modeling results in efficiency gains, efficacy gains and/or cost
reduction (Dijkman et al. 2016). Typical examples are appli-
cations in sectors such as manufacturing (Hertz et al. 2001),
sales (Kim and Suh 2011) and software development
(Krishnan et al. 1999). However, the healthcare sector is one
the exceptions (Lenz and Reichert 2007; Palvia et al. 2012).
This is surprising because some of the main concerns trending

in eHealth are very similar to those of these other sectors,
namely, cost reduction, efficiency and patient orientation
(Payton et al. 2011). Healthcare processes can be subdivided
in two groups of processes: medical diagnosis/treatment pro-
cesses and organizational/administrative processes (Lenz and
Reichert 2007). The slow adoption of process modeling in
healthcare is primarily manifested for the medical diagnosis
and treatment processes. These processes typically represent
the extreme end of the complexity spectrum for processes,
hypercomplexity (Klein and Young 2015), and can be char-
acterized as dynamic, multi-disciplinary, loosely framed,
human-centric and knowledge-intensive processes (Mertens
et al. 2017; Rebuge and Ferreira 2012). Loosely framed pro-
cesses have an average to large set of possible activities that
can be executed in many different sequences (Di Ciccio et al.
2015a), leading to situations where deviations and variations
are the norm rather than the exception (Mardini and Ras
2020). The knowledge workers participating in the execution
of a process (i.e., physicians and other healthcare personnel)
use cognitive processes to decide which activities to perform
and when they are to be performed (Greenes et al. 2018). To
make these decisions, they often leverage what is called tacit
knowledge, meaning that they have an implicit idea of the
appropriate actions to perform when certain conditions apply
(Lenz and Reichert 2007). This idea might be partially based
on explicit knowledge (e.g., medical or hospital guidelines)
but experience usually factors in heavily. This kind of tacit
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knowledge is also collective in the sense that it often cannot be
traced back to just one individual, but rather is (unevenly)
spread across organizational units of knowledge workers that
share the same or similar experiences (Kimble et al. 2016).

“To make medical knowledge broadly available, medi-
cal experts need to externalize their tacit knowledge.
Thus, improving healthcare processes has a lot to do
with stimulating and managing the knowledge conver-
sion processes.” (Lenz & Reichert, 2007, p. 44)

Modeling these processes can be beneficial in many ways. A
process model can serve as a means to document the process
(which increases transparency for all stakeholders), to com-
municate changes explicitly, educate students and new pro-
cess actors, to offer passive process support (i.e., using the
model as a roadmap during execution) and as a foundation
for active process support and monitoring (e.g., in process
engines) and all sorts of management and analysis techniques
(e.g., bottlenecks, process improvement…). Process modeling
in healthcare has traditionally focused on clinical pathways
(CPs) (a.k.a. clinical guidelines, critical pathways, integrated
care pathways or care maps) (De Bleser et al. 2006; Campbell
et al. 1998; Combi et al. 2015; Heß et al. 2015; Huang et al.
2014; Kamsu-Foguem et al. 2014; Lawal et al. 2016; Rotter
et al. 2010; Zhang et al. 2015). Although the exact definition
of what they entail can vary from paper to paper (Vanhaecht
et al. 2006), the general consensus seems to be that they are
best practice schedules of medical and nursing procedures for
the treatment of patients with a specific pathology (e.g., breast
cancer). CPs can be considered process models, but they have
serious drawbacks. CPs are the result of Evidence Based
Medicine, which averages global evidence gathered from ex-
ogenous populations that may not always be relevant to local
circumstances (Hay et al. 2008). Therefore, CPs can be great
general guidelines, but real-life situations are typically more
complex. Second, comorbidities and practical limitations
(e.g., resource availability) can prevent CPs from being im-
plemented as-is. Third, the real process also comprises more
than just the treatment of patients, as steps like arriving at a
diagnosis and other practicalities should to be considered as
well. A CP is therefore a form of high-level model of one
idealized process variation. To unlock the full aforementioned
benefits, a more complete view on the real processes is needed
that encapsulates all possible care episodes within a certain
real-life management scope (e.g., department). Of course,
CPs and other medical guidelines can subsequently be used
to verify whether such model of the real process follows the
medical best practices as closely as possible.

Modeling healthcare processes manually, for example by
way of interviewing the participants, can be a tedious task due
to their intrinsic complexity and the extensive medical knowl-
edge involved. This often leads to a model that paints an

idealized picture of the process that overly simplifies reality
(Antunes et al. 2020). Meanwhile, hospital information sys-
tems already record a lot of data about these processes for the
sake of documentation (Bygstad et al. 2020). The sheer
amount of data in these systems makes manual analysis unre-
alistic. Consequently, there has been an increased interest into
process mining techniques that can automate the discovery of
healthcare process models from such data sources (Abo-
Hamad 2017; Andersen and Broberg 2017; Baker et al.
2017; Basole et al. 2015; Duma and Aringhieri 2020;
Funkner et al. 2017; Helm and Paster 2015; Huang et al.
2016; Kovalchuk et al. 2018; Orellana Garcia et al. 2015;
Rojas et al. 2019; Wang et al. 2017) and recent literature
reviews indicate that it is still trending upwards (Ghasemi
and Amyot 2016; Kurniati et al. 2016; Rojas et al. 2015,
2016). However, the existing work is almost exclusively fo-
cused on techniques that result in either imperative process
models or CPs. The introduction of new process modeling
languages based on the declarative paradigm (Hildebrandt
et al. 2012; Pesic 2008) opens up new research avenues
(Cognini et al. 2018). Declarative languages are better suited
to represent loosely framed processes because they can model
the rules describing the process variations instead of having to
exhaustively enumerate all variations as imperative tech-
niques do. The knowledge-intensive side of the processes
can be supported by integrating a knowledge perspective
into the declarative process modeling languages (Burattin
et al. 2016; Kluza and Nalepa 2019; Mertens et al. 2017;
Santoro et al. 2019; Schönig et al. 2016). This allows for the
decision logic of the process to be modeled and makes the
resulting group of languages a natural fit for loosely framed
knowledge-intensive healthcare processes. Declarative pro-
cess mining techniques have been applied before on
healthcare processes, but not on the complete medical care
process (e.g., only the treatment of already diagnosed breast
cancer patients) (Maggi et al. 2013) and without considering
the decision logic that governs the process (Burattin et al.
2015; Rovani et al. 2015).

From a methodological perspective, methods for the appli-
cation of data mining have been developed and are widely
used (Mariscal et al. 2010; Shearer 2000). However, these
are too high-level and provide little guidance for process min-
ing specific activities (van der Aalst 2011). Therefore,
methods were developed specifically for the process mining
subdomain (van Eck et al. 2015; Rebuge and Ferreira 2012;
Rojas et al. 2019). These provide a good foundation for typical
process mining applications but are geared towards imperative
process mining techniques and ignore data and decision
aspects of the process. The method of Rebuge and Ferreira
(2012) is positioned to target healthcare processes, but the use
of imperative process mining techniques means that they have
to resort to clustering techniques in an effort to filter out some
behavior and isolate smaller parts of the process. (Rebuge and
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Ferreira 2012) also represent the method as a straightforward
linear approach, which is unrealistic in the context of real-life
applications on loosely framed processes.

This paper reports on an Action Design Research cycle
that is part of a Design Science project to develop a
process-oriented system that manages and supports loose-
ly framed knowledge-intensive processes (Mertens et al.
2017, 2018; Mertens, Gailly, and Poels 2019a; Mertens,
Gailly, Van Sassenbroeck, et al. 2019b). The research
artifact presented in this paper is a method for process
and decision discovery of loosely framed knowledge-
intensive processes. This method consists of the prepara-
tion of process data to serve as input for a decision-aware
declarative process mining tool called DeciClareMiner
(Mertens et al. 2018), the actual use of this tool and the
feedback loops that are necessary to obtain a satisfactory
model of a given process. The method was iteratively
improved and validated by applying it to a real-life case
of an emergency care process.

The remainder of this paper is structured as follows.
Section 2 presents our research methodology. This is followed
by a brief overview of the modeling language DeciClare and
the corresponding process mining tool DeciClareMiner in sec-
tion 3. Section 4 describes the method for process and decision
discovery of loosely framed knowledge-intensive processes.
The method application is summarized in section 5. And fi-
nally, section 6 concludes the paper and presents directions for
future research.

2 Research Methodology

Action Design Research (ADR) (Sein et al. 2011) is a specific
type of Design Science Research (Hevner et al. 2004). While
typical Design Science Research focusses solely on the design
of research artifacts that explicitly provide theoretical contri-
butions to the academic knowledge base, ADR simultaneous-
ly tries to solve a practical problem (Sein et al. 2011). The
practical problem serves as a proving ground for the proposed
artifact and a source for immediate feedback related to its
application. Based on this feedback, the design artifact is iter-
atively improved. In this paper, the research artifact and prac-
tical problem are, respectively, the method for process and
decision discovery of loosely framed knowledge-intensive
processes and the creation of a process and decision model
of a real-life emergency care process.

An ADR-cycle consists of four stages:

Stage 1: Problem formulation
Stage 2: Building, intervention and evaluation
Stage 3: Reflection and learning
Stage 4: Formalization of learning

The previous section discussed the problem statement: the
lack of a process mining method for declarative process and
decision mining techniques. Therefore, the research artifact of
this paper is a method for process and decision discovery of
loosely framed knowledge-intensive processes. This method
should consist of the preparation of process data to serve as
input for a decision-aware declarative process mining tool, the
actual use of this tool and the feedback loops that are neces-
sary to obtain a satisfactory model of a given process.

For the second stage, we have performed an IT-dominant
building, intervention and evaluation stage, which is suited for
innovative technological design. This stage consists of build-
ing of the IT-artifact (i.e., the envisioned method), an inter-
vention in a target organization (i.e., an emergency medicine
department), and an evaluation. We started from the existing
methods (van Eck et al. 2015; Rebuge and Ferreira 2012) to
identify relevant steps in a process mining project. These ac-
tivities were subsequently evaluated for their applicability to a
declarative setting. As the artifact is still in preliminary devel-
opment, we have limited the repeated intervention steps to
light-weight interventions in a limited organizational context
(Sein et al. 2011).

The research artifact was evaluated after each execution of
the second stage. The evaluation was performed by the re-
searchers in close cooperation with the head of the emergency
medicine department of the hospital. It consisted of two parts,
each of which highlighted a different use case of the artifact.
The head of the emergency medicine department took on the
role of the domain expert, who could identify problems with
the application of the research artifact which, in turn, were
traced back to the research artifact itself by the researchers.
A discussion of the results of the evaluation followed.
Potential changes to the research artifact in the context of the
practical application were proposed in the first half of these
discussions, which corresponds to the reflection and learning
stage of the ADR-cycle (i.e., stage 3). The proposed changes
were then discussed in the more general context of process
and decision mining projects for loosely framed knowledge-
intensive processes in the second half of these discussions,
which corresponds to the formalization of learning stage of
the ADR-cycle (i.e., stage 4). Finally, the resulting changes
were implemented to end each iteration of the ADR-cycle. A
new iteration was initiated if significant changes were made to
the artifact during the previous iteration.

3 Background

DeciClare (Mertens et al. 2017) is the language we used in the
project for process modeling. While many currently available
process modeling languages focus solely on the explicit se-
quencing of the activities of processes (i.e., the control flow of
the process activities), DeciClare offers integrated functional,
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control-flow and data perspectives. This makes it possible to
model the decision logic that governs the sequencing of activ-
ities (e.g., activity Y must be executed because activity X was
executed and data attribute ‘d’ has value 19). The decision
logic is typically tacit knowledge in many loosely framed
knowledge-intensive processes (Wyatt 2001), which heavily
influences the information needs of the knowledge workers as
well as the process execution itself (Stefanelli 2004). By
modeling or mining this decision logic, the tacit knowledge
is transformed into explicit knowledge that can be used, man-
aged, analyzed and reused. In addition, DeciClare is fully
declarative modeling language that also includes hierarchical
activity modeling and a resource perspective.

Previously in this project, we developed a tool that is able
to (semi-)automatically and efficiently mine declarative pro-
cess and decision logic models of loosely framed, human-
centric and knowledge-intensive processes: DeciClareMiner
(Mertens et al. 2018). The underlying algorithm consists of
two phases. In the first phase it mines decision-independent
constraints (Table 1 for explanations of the used process
mining/modeling terminology) using a search strategy in-
spired by the Apriori association rule mining algorithm
(Agrawal and Srikant 1994). The search strategy is complete,
which means that all decision-independent constraints that fit
the given parameters are guaranteed to be found. The second
phase uses a heuristic belonging to the class of genetic algo-
rithms to link seed constraints with activation decisions in
order to find decision-dependent constraints. Support for the
automatic discovery of a resource perspective is still under
development for DeciClareMiner (nor is it available in any
of the other declarative process mining tools), so this paper
will focus mostly on the other perspectives.

4 A Method for Process and Decision
Discovery of Loosely Framed
Knowledge-Intensive Processes

We first created an initial method by combining elements
from the existing process mining methods (van Eck et al.
2015; Rebuge and Ferreira 2012) and adapting them to a de-
clarative process mining context (Fig. 1). Note that we did not
include a process analysis, improvement or support step (as in
PM2 of van Eck et al.). This is because we see these more as
separate usage scenarios of the results of process discovery
(i.e., the created event log and process model). Such usage
scenarios could be part of more general process mining meth-
od(ologie)s, but our focus was solely on a method for process
discovery (Dumas et al. 2018). The internal structure or lan-
guage (grey text) of the inputs and outputs (gold) as well as the
entity responsible for the execution (blue text) of each step
(green) have also been added. Optional activities are repre-
sented by transparent and dashed rectangles. During different

iterations of the ADR-cycle, several missing intermediate ac-
tivities and iteration loops were identified that were needed to
discover a satisfactory process and decision model. The result
is presented in Fig. 2. The remainder of this section describes
each separate step of the method and the intermediate activi-
ties they entail.

4.1 Extraction

The information system(s) (IS) of an organization contain(s)
the data needed to execute all processes in the organization.
Typically, it contains data related to many different processes.
The Information Technology (IT) department, that is respon-
sible for the IS, must first identify the data related to the target
process in close collaboration with the consultant and extract it
from the IS database(s). Of course, that is in the assumption
that the required data is being stored. Table 2 summarizes the
ideal data and the minimal data requirements to enable high-
quality results.

If the minimum requirements from Table 2 cannot be met,
there will be significant limitations to the results of the method
application. This will often be the case in real-life applications
with data sources that are process-unaware (i.e., systems that
are oblivious to the process context in which data processing
takes place) (Dumas et al. 2018). Typical issues include miss-
ing events and inaccurate timestamps (e.g., the stored
timestamp corresponds to when the data is entered in the sys-
tem but deviates from when the activity actually took place).
However, meaningful results can still be achieved when these
limitations are properly considered or mitigated. An increased
adoption of more process-aware information systems would
certainly be beneficial for process mining projects, as these
can provide the required data directly or will at least do a better
job at storing the required data (i.e., the ideal data from
Table 2).

4.2 Data Preprocessing

The use of a certain type of database management system
(DMBS) (e.g., a relational DBMS) imposes specific structural
limitations on how data is stored in the database (e.g., data
attributes must be single-valued in a relational DBMS). These
limitations should not hinder the subsequent steps of the pro-
posed method, and therefore, a conceptual model should to be
constructed that makes abstraction of any structural limita-
tions of the original database and other implementation-
related aspects (Fig. 3).

Aside from database limitations, a typical difficulty of a
method such as this one is that much of the data is stored as
plain text in the database. This data cannot be used without
introducing some additional structure. Text mining and
Natural Language Processing (Manning and Schütze 1999)
techniques can be used to transform the plain text to more
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Table 1 Explanations of key process mining and/or declarative modeling terminology

Event

An occurrent of something that happened during the execution of a process. We make a distinction 
between activity and data events. The former represents the start, end or failure of the execution of an 
activity by a process actor. The latter represents the moment when a certain data value was made 

available to the process actors. Resource events are outside of the scope of this project.

Trace

Each individual execution of the process as logged by the information system(s) of an organization. It 
consists of a sequence of activity events performed and the data events that were generated during the 
execution of the process instance. In healthcare, a trace aligns with what is called an episode of care for 
one patient.

Event log A collection of many traces relating to the execution of one specific process.

Declarative 
constraint

A limitation of the allowed behavior when executing a process. This can be both in a positive manner
(i.e., a certain activity or event is required to be executed at least a given number of times during a 
certain time span) and negative manner (i.e., a certain activity or event is prohibited to be executed 
during a certain time span). The types of constraints can be classified according to the perspective to be 

modeled: functional/control-flow, data and resource constraints. In this paper we will treat existence 
(e.g., aforementioned positive and negative examples) and relational constraints (i.e., Response(A, B) 
states that if A is executed, then B must to be executed somewhere in the future before the process 
execution ends) as reflecting the functional/control-flow perspective.

Data attribute The definition of some data property in the form of a name and a data type (e.g., the Boolean 

‘hasPaid?’).

Data value A specific value that a certain data attribute can have (e.g., TRUE).

(De)activation 
decision

A set of data values connected with logical operators (i.e., AND/OR) that represent a specific process 
context. For example, certain behavior might apply when the patient is diagnosed with hypothermia or 
when the patient is alcohol intoxicated and cold (written as [[hypothermia], [alcohol intoxication, cold]]

in DeciClare).

Decision-
independent 
constraint

A constraint that has a trivial (i.e., always true) activation decision. This means that there are no data 
conditions that need to apply for the constraint to be active. Therefore, this kind of constraints must 
always be satisfied by a process execution. For example, ‘Patient registration’ must be executed at least 
once. Note that this term only refers to the data conditions of the activation decision. A relational 
constraint can have both an activation decision based on data conditions and a specific activity or event 
(e.g., A in Response(A, B)) that must have occurred before the target  becomes required (e.g., B in 
Response(A, B)).

Decision-
dependent 
constraint

A constraint that does not have to be satisfied until the activation decision evaluates as true. It needs to 
be satisfied starting from when it was activated up until it (optionally) gets deactivated when the 

deactivation decision evaluates as true. An inactive constraint can be violated with no consequences. For 
example, the constraint ‘after an examination by a physician, surgery has to be performed at least once’ 
and an activation decision that evaluates as true when it is a trauma case and when the patient exhibits 
signs of shock and/or heavy local inflammation or pain during the examination.

Conforming 
activation

A constraint that is activated and satisfied by a certain (partial) trace (e.g., consequence side of an 
activated relation constraint is satisfied).

Violating 
activation

A constraint that is activated and violated by a certain (partial) trace (e.g., consequence side of an 
activated relation constraint is not satisfied).

Conformance 
percentage 

(a.k.a. 
confidence) of 
a constraint

The number of traces with a conforming activation for the constraint divided by the total number of 
traces in which the constraint was activated.

Support 
percentage of 
a constraint

The percentage of traces in which the constraint was activated (independent of whether it is a 

conforming or violating activation).

Branching 
level of a 
constraint

The number of activity/event parameters of most DeciClare constraints can be increased from level 1 
(e.g., at least one CT scan must be performed) to higher levels by introducing logical conjunctions and 
disjunctions (e.g., level 2: at least one echo or CT scan must be performed).

Seed 
constraint

A decision-independent constraint that has more than enough support but insufficient confidence. For 

example, Response(A, B) states that if A is executed, then B must be executed at least once somewhere 
after A. Let us assume minimal support and confidence levels of 10% and 90%, respectively, that A 
occurs in 15% of the traces of the given event log (i.e., a support level of 15%) and that in 80% of those 
traces A was eventually followed by B (i.e., a confidence level of 80%). The example constraint is a seed 
constraint. Adding an activation decision to this seed constraint can result in a constraint with a higher 
confidence level and a (slightly) lower support level, because it only applies to a subset of the original 
traces.

Model fit How well a model fits the set of given observations. This typically directly 
correlates to its predictive power for future observations.

Overfit
A model that corresponds too closely or exactly to the data used for its 
creation. It may therefore fail to fit additional data or predict future 
observations reliably.

Underfit
A model that corresponds too little to the data used for its creation. It may 
therefore fail to encapsulate the logic of the underlying phenomenon with 
enough details to predict future observations reliably.
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structured data, for example TiMBL (Daelemans et al. 2009).
Of course, different techniques can be applied without chang-
ing the proposed method.

4.3 Log Preparation

In this step, the traces of an event log describing the data need
to be reconstructed (Fig. 4). This means walking through the
data of each historic execution of the process, as structured by
the conceptual model, and identifying the relevant activity,
data and resource events.

The hierarchical extension of DeciClare allows activities to
be grouped as higher-level activities, which in turn can be
grouped as even higher-level activities. For example, the ac-
tivities of ‘Request an echo’, ‘Request a CT’ and ‘Request an
MRI’ can be grouped in an activity ‘Request a scan’, which in
turn can be grouped with ‘Request lab test’ as the activity
‘Request diagnostic test’. An activity can also be part of mul-
tiple higher-level activities. The definition of higher-level ac-
tivities will often require some help from a domain expert to
ensure domain validity.

We also included three optional intermediate activities in
Fig. 4 (denoted transparently and with dashed lines). These are

Fig. 2 The final method for process and decision discovery for loosely framed knowledge-intensive processes

Fig. 1 The initial method for
process discovery based on
existing methods
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not needed when the minimal requirements from Table 2 are
met. However as noted in subsection 4.1, this is not always
possible in real-life projects. Often there will be some missing
events or timestamps in the dataset. These optional intermedi-
ate activities facilitate the resolution or mitigation of such data
quality issues as much as possible.

4.4 Mining a Process and Decision Model

Process mining tools can use the event log composed in the
previous steps as input for the discovery of process models
(Fig. 5). Process mining techniques that create imperative pro-
cess models often resort to the use of slice and dice, variance-
based filtering (e.g., clustering) or compliance-based filtering
to reduce the complexity of a given event log (van Eck et al.
2015; Rebuge and Ferreira 2012; Rojas et al. 2019). For pro-
cess mining techniques that create declarative process models
this is not a necessity, as these can handle more of the com-
plexity, but can also optionally be used to focus on a specific
part of the dataset.

While the other activities can be performed mostly auto-
matically, the selection of the maximal branching level and
minimal confidence and support levels (see Table 1 for
definitions) is more of a judgement call. The minimal confi-
dence and support levels are directly linked to the data quality.
These parameters can be used to control the level of detail and

complexity of the resulting models in order to prevent
overfitting and manage the impact of noise in the event log.
Therefore, the consultant responsible for the project should
choose good initial values for these parameters. Generally,
we would advise to start with a confidence level of 100%
(or very close to it) and a minimal support level that corre-
sponds to tens or even hundreds of traces (i.e., 0.1%–2% for a
log of 10.000 traces). This will result in a model describing
behavior that is never violated in any trace and is reasonably
frequently occurring. These levels can be tuned in later itera-
tions based on the results of the evaluation described in the
next subsection. If the resulting model contains too many
decision-dependent constraints and/or overfitted decision log-
ic, then a step-by-step increase of the minimal support level
could improve the results. On the other hand, decreasing the
minimal support level is a better course of action when insuf-
ficient decision logic was found. The minimal confidence lev-
el can also be gradually lowered to counteract the noise in the
dataset (i.e., real behavior is not found due to data quality
issues or just extreme outliers). A minimal confidence level
lower than 100% will allow the mined constraints to be vio-
lated by some of the traces in the event log if enough other
traces confirm the corresponding behavior pattern. Although
DeciClareMiner can mine constraints with lower-than-100%
confidence, it can result in inconsistent models (Di Ciccio
et al. 2015b) and tools to resolve this (Di Ciccio et al. 2017)

Table 2 The ideal data and the minimal data requirements to get high-quality results

Ideal Minimum requirements

Activity events (Pre)defined events that relate to the activities
executed in the process.

Enough secondary data to reconstruct the events that relate
to the activities executed in the process
(i.e., reverse engineering).

Data events Data related to the decision rationale of, and the source data
used by, the process actors when determining the process
variant to follow. This includes all data related to the specific
context and the defining characteristics of each case.

All documented data that was used by the process actors when
determining the process variant to follow. So, all available
data related to the specific context and the defining
characteristics of each case. A process and decision model
can be discovered if relevant data is available, but otherwise
it can only be a process model.

Resource events (Pre)defined events that relate to the availability, usage and
authorization of resources during executed in the process.

Enough secondary data to reconstruct the events that relate to
the availability, usage and authorization of resources during
executed in the process (i.e., reverse engineering).

Timestamps Timestamps for each activity event and data event, which
represent the exact time that the corresponding real-life ac-
tivity was performed or that the corresponding
data element (e.g., lab results) became available to the pro-
cess actors.

A relative order of the activity and data events that represents
the order in which the corresponding real-life activities were
performed and the corresponding data elements (e.g., lab
results) became available to the process actors.

Number of cases Representative set of cases during a period in which no seriously disruptive changes to the process occurred.

Fig. 3 The intermediate activities
to go from the raw data to
preprocessed data

311Inf Syst Front (2022) 24:305–327



are not yet available for DeciClare. This means that it can be
useful to mine constraints lower-than-100% confidence when
the goal is to explain some specific behavior or to expose
some pieces of knowledge for human understanding.
However, if the goal is to use the mined model as input for a
business process engine of a process-aware information sys-
tem, then constraints lower-than-100% confidence should on-
ly be considered after extensive verification. The maximal
branching level should preferably be chosen after consulting
domain experts and/or process actors. A branching level of
one is often the best starting value. Whenever possible, hier-
archical activities should be used as they are more computa-
tionally efficient and could eliminate the need for higher
branching levels.

The second phase of DeciClareMiner, the search for
decision-dependent rules, can be executed multiple times with
the same parameter settings, as this phase is not deterministic.
The miner contains tools to combine these separate results to
one big model at the end. If no data events were defined in the
event log, the mining of a decision-dependent model can also
be skipped. This will result in a (declarative) process model
without any data-related decision logic.

Postprocessing is applied automatically to the raw out-
put of DeciClareMiner. This eliminates equivalent deci-
sion rules (i.e., combinations of data values that uniquely
identify the same cases) and returns a much smaller model
with the given minimal support and confidence levels.
However, it is not necessarily true that when two decision
rules are equivalent in a given event log, that this is also
true in the corresponding real-life process. It can be im-
possible to distinguish between a real-life decision rule
and other decision rules that identify the same set of cases
due to the incompleteness of the log (i.e., not every pos-
sible case occurring). For example, consider the constraint
that at least one NMR will be taken. This could apply to
patients with a red color code and a remark that mentions

the neck, but the same patients might also be identified
uniquely with a red color code and the remark that men-
tions sweatiness (just because this limited set of patients
happened to have both).

4.5 Evaluation

After each mining step, the correctness of the reconstructed
event log and the mined DeciClare-model needs to be evalu-
ated by a domain expert (see Fig. 2). Verifying the correctness
of the reconstructed event log is the first priority, as it is the
input for the mining techniques. Random sampling can be
used to select a set of reconstructed traces that will be manu-
ally reviewed by domain experts, preferably side-by-side to
the original data so that the experts get the full context. This
should be repeated until all following stopping criteria are
reached:

1 There should be no discrepancies between the original
timeline and the reconstructed sequence of activities of
the simulated patients (i.e., in the correct order or at least
in a realistic order when the original data does not specify
an exact time).

2 The available contextual data should be contained by the
reconstructed data events. Of course, The focus here is on
the essential contextual data that is relevant to the decision-
making of process actors.

3 All data events of the simulated patients should be based
on data that was actually available at that time in the pro-
cess (i.e., no data events using data that was added in
retrospect or at an unknown time).

When the reconstructed event log is deemed satisfactory,
the evaluation of the mined models can begin. The mined
process and decision models are difficult to review directly
because there is often nothing tangible to compare them with

Fig. 4 The intermediate activities to go from the preprocessed data to an event log

Fig. 5 The intermediate activities to go from the event log to an integrated process and decision model
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(i.e., tacit knowledge). The understandability issues associated
with declarative process models (Haisjackl et al. 2014) and the
typical size of these models also make it infeasible to go over
them one-by-one. The type of evaluation needed also depends
on the specific use case that the organization has in mind for
the mined model.

In general, we would advise the adoption of a similar ap-
proach to (Braga et al. 2010; Guizzardi et al. 2013), which
uses the visual simulation capabilities of Alloy Analyzer to
evaluate a conceptual model, for the simultaneous evaluation
of a reconstructed event log and the corresponding mined
model. The DeciClareEngine (Mertens, Gailly, and Poels
2019a) (Fig. 6) and its ‘Log Replay’-module (Fig. 7) can
replace Alloy Analyzer to demonstrate what the mined pro-
cess model knows about what can, must and cannot happen
during the execution of specific traces. It can show what ac-
tivities have been executed at each stage during the replay of a
trace (top), the corresponding data events (middle) and the
activities that can be executed next according to the mined
process model (bottom). The user can view the reasons why
a certain activity must/cannot be executed as well as any

future restrictions that might apply (in the form of constraints)
at any time by clicking on the ‘Explanation’-, ‘Relevant
Model’- and ‘Current Restrictions’-buttons. Domain experts
can be asked to give feedback during the replay of a random
sample of reconstructed traces. Before the execution of each
activity, the questions from Table 3 can be asked. The answers
gauge the correctness of the reconstructed event log (i.e., 1, 2
and 3) and mined model (i.e., 4 and 5) as well as the value of
the model to the managers and physicians (i.e., 6).

Ideally, the model fit should be perfect. However, this is
not realistic for loosely framed knowledge-intensive process-
es. The main obstacles are the data quality and completeness
of the event log. On the one hand, data of insufficient quality
can hide acceptable behavior and introduce wrong behavior in
models (Suriadi et al. 2017). On the other hand, event logs are
almost always incomplete (i.e., they do not contain examples
of all acceptable behavior) (Rehse et al. 2018). Thus, some
(infrequent) behavior is bound to be missing in the mined
models, even when inductive reasoning is applied to general-
ize the observed behavior. The result is that mined models
often will simultaneously contain some over- and underfitting
pieces. While a slight underfit is not that big of a problem for
process automation, overfitting can be. Overfitting causes ac-
ceptable behavior to be rejected because it was not observed in
exactly the same way in the reconstructed event log. We en-
vision that mature process engines will automatically relax or
prune away these overfitting rules (i.e., self-adaption) when a
user overrules the model, similar to how it would handle grad-
ual process evaluation (Deokar and El-Gayar 2011). This also
reduces the need for a full validation of the mined model as it
will be validated gradually by the users, with each overfitting
rule serving as a warning that the deviating behavior is not
typical. Of course, this is not a free pass to purposefully overfit
models. It just means that when searching the optimal model
fit, a small overfit is manageable and perhaps preferred to an
underfit. This feature is currently in development for
DeciClareEngine.Fig. 6 The interface of the DeciClareEngine model simulator

Fig. 7 The ‘Log Replay’-module for DeciClareEngine

313Inf Syst Front (2022) 24:305–327



5 Method Application: The Emergency Care
Process

This section provides a brief description of the application of
the method presented in the previous section. The practical
problem and organizational context that has been tackled is
the discovery of an integrated process and decision model of
the emergency care process that takes place in the emergency
medicine department of a private hospital with 542 beds.1

Data about the registration, diagnosis and treatment of patients
over a span of just under 2 years is available in their Electronic
Health Record (EHR) system. Most of this data is plain text
(in Dutch), which is a typical obstacle for process and decision
discovery (Sittig et al. 2008). The role of consultant was per-
formed by the first author as is typical in ADR.

Discovery methods are used as a tool to achieve specific
goals in an organization. This method application contained
two of the most important use cases for model discovery of
loosely framed knowledge-intensive processes in general: a
model for operational process automation and a model to ex-
tract tacit knowledge related to operational decision-making.

For the first use case, the discovered model should enable
operational process automation by serving as the foundation
for a context- and process-aware information system (Nunes
et al. 2016). Such a system can support the process actors by
enforcing the model (Mertens, Gailly, and Poels 2019a) and
by providing context-aware recommendations on what to do
next (Mertens, Gailly, Van Sassenbroeck, et al. 2019b). While
the former can prevent medical errors, the latter can offer
guidance and help optimize the process. The primary goal of
the method application was to create a model that facilitates
the transition from a process-unaware information system to a
context- and process aware information system without
disrupting the current working habits. A review of whether
every patient in the dataset was handled correctly according
to the current medical guidelines was outside the scope of the
project, therefore, we assumed that all patients in the dataset
were handled correctly. This meant that the goal for the

resulting model was to incapsulate the observed behavior
from the reconstructed event log and also allow unobserved
behavior that follows similar logic, while at the same time
restricting other unobserved behavior as much as possible.

Medical personnel typically leverage their knowledge and
experience when deciding on how to deal with a specific pa-
tient. This knowledge can apply to all patients (e.g., registra-
tion always first) or to a specific subset of patients based on
the characteristics of the patient and other context variables
(e.g., if shoulder pain and sweaty, then take echo of the heart).
This kind of knowledge is typically not explicitly available
anywhere, but rather contained in the minds of the physicians.
The second use case consists of transforming such tacit
knowledge into explicit knowledge, which can be used in
many ways: it can be discussed amongst physicians to pro-
mote transparency and ensure uniformity, used to train new
physicians and nurses, to improve resource planning (e.g., can
reserve some slots for patients that will need anMRI based on
their contexts, even though it has not been formally requested
yet), etc. Therefore, the goal for the resulting model was to
discover useful and realistic medical knowledge.

5.1 Extraction

The hospital provided us with an export of six database tables
from their internally developed EHR system spanning the pe-
riod from 31/12/2015 until 22/09/2017. The data was exported
from the original relational DBMS in the form of anonymized
CSV-files. The minimum requirements from Table 22 were
not satisfied because of some missing timestamps and a lack
of data related to the availability, usage and authorization of
the resources during the execution of the process.

5.2 Data Preprocessing

Figure 8 presents the conceptual model that was reconstructed
from the raw EHR data. A care episode represents a single
admittance of a patient that can end with a discharge or a
transfer to another department. The plain text data fields were
structured by transforming them each to a set of keywords.

1 AZ Maria Middelares hospital, Ghent, Belgium - https://www.
mariamiddelares.be/

Table 3 The questions for the domain experts and the underlying purpose behind each of them for the evaluation

Question Purpose

1 Based on the data, are there any activities that might be missing at this point? Identify missing activities

2 Is the order of activities how you would expect based on the data? Identify activity reconstruction mistakes

3 Do the data events generated so far correspond to the data available at this point? Identify data reconstruction mistakes

4 Does the model allow activities to be executed next that should not be allowed? Detecting underfit in model

5 Does the model prohibit activities to be executed next that should be allowed? Detecting overfit in model

6 Does the decision logic for why certain activities are allowed/prohibited reflect real decision-making
processes?

Measuring knowledge extraction of
model
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5.3 Log Preparation

Next, we reconstructed the chronology and created a trace
for each care episode. The reconstruction of the activity
events is illustrated with an example in Fig. 9. The activity
events are shown in blue with the elapsed time between
brackets (corresponding data events are omitted). The
green arrows link the activity events with the data on
which they are based. The relevant data values are trans-
formed to data events in the trace. The most interesting

data to reconstruct the decision logic of the process is
stored in the plain text attributes (e.g., the attribute ‘text’
in the ContactLine-class), which have been preprocessed to
multisets of keywords as described in subsection 4.2. For
each of those attributes, the keywords were transformed to
categorical data events (e.g., ‘Description of Medical his-
tory’ = ‘foot’). Practically, we used the XES-format for the
event log and used a custom extension to include general
data events (i.e., adds data events with a timestamp that do
not need to be directly linked to an activity event).

Fig. 8 UML class diagram of the conceptual model for the preprocessed data

Fig. 9 An example of how the
internal representation
(preprocessed data) is
transformed to a trace
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Several iterations were needed to create a satisfactory event
log. Yet, the need for these iterations only can come up during
later steps because a domain expert must make this assess-
ment. It would be possible to add an intermediate evaluation
of the constructed event log at the end of this step, depending
on the urgency of the project and the availability of the domain
expert. However, the next step (mining) is automated anyway.
Therefore, we decided against adding the extra evaluation
step. We just used the created event log to mine a model and
had the domain expert evaluate the event log and mined model
simultaneously during the normal evaluation step. The first
iterations of the event log creation focused on the identifica-
tion and granularity of activities and data elements, while the
sequencing of activities with missing timestamps (i.e., imag-
ing activities and lab tests) also required multiple iterations.
Each iteration incrementally improved the event log to better
reflect reality. The resulting event log contains 41,657 traces
using 116 unique activities and 951 unique data values. Some
additional statistics about the log are presented in Table 4.

5.4 Mining a Process and Decision Model

DeciClareMiner was executed on an Intel XeonGold 6140with
the emergency care event log from subsection 5.3 and several
different parameter settings as input. The maximal branching
level was set at 1 (i.e., no branching). Some smaller scale ex-
periments with higher branching levels showed a significant
increase in model size with little added value. The definition
of 15 hierarchical activities also reduced the need for higher
branching levels. We started with a minimal confidence level
of 100% (i.e., only never-violated behavior was mined) and a
minimal support level of 10% (i.e., only behavior that was
observed in minimally 4166 of 41,657 traces). These two
values were iteratively adjusted to improve the quality of the
results. Minimal support levels were relaxed from 10% to 5%,
2%, 1%, 0.24%, 0.048%, 0.024%, 0.012% and 0.007%. These
values were not chosen randomly, but rather based on the min-
imal number of observations we wanted for the discovered
behavior patterns (e.g., 0.007% corresponds to a minimum of
three observations). In the context of the second use case, we
also mined models with minimal confidence levels of 98%,
97.5%, 96.67%, 95% and 90% in order to also find knowledge
patterns that are otherwise hidden due to noise in the data. The
results2 consist of a post-processed model for the evaluation of
the first use case and the raw model used for the evaluation of
the second use case.

5.5 Evaluation

We used DeciClareEngine and its ‘Log Replay’-module for
the evaluation of the model of the emergency care process.We

also created an additional module to visualize the original data
plain text of the EHR side-by-side with the trace and its key-
word representations of those texts to facilitate the evaluation
of the reconstructed event log. The ‘Log Replay’-module and
the new custom module have an interface that gives an over-
view of the activities of the trace on the left and ‘Data’-buttons
on the right (left side of Fig. 10). Clicking on one of the
activities will set the state of the engine to just after the exe-
cution of that activity, while the original EHR data can be
opened by clicking on the ‘Data’-button next to each activity
(right side of Fig. 10). This was used to replay the care epi-
sodes of many patients for the domain expert. He was asked
the questions from Table 3 before and after each activity in a
replayed trace. Hence, it was an evaluation using sampling
and validation of the model in the context of specific patients,
and not on a per constraint basis. The evaluation helped iden-
tify several issues with the reconstructed event log as well as
with the mined models. These issues were handled during
subsequent iterations of the method. This was repeated until
a satisfactory result was reached (taking into account the data
quality of the available dataset).

The result of the first use case, the discovery of a model for
operational process automation, is an operational model of the
emergency care process that takes place in the emergency
medicine department of the AZ Maria Middelares hospital in
Belgium. The model contains 28,162 decision-independent
and 6283 decision-dependent constraints. The minimal confi-
dence level setting of 100% and the application of induction
by the mining technique resulted in a model that was suffi-
ciently flexible and general to serve as input for a business
process engine (e.g., DeciClareEngine) of a context- and
process-aware information system. Figure 11 presents a sim-
plification of the decision-independent constraints of the mod-
el using the Declare visual syntax (Pesic 2008). It shows only
the activities done by emergency physicians (so no specialist
activities), combines the external transfers that do not have a
specific relation constraint into a generalized activity called
‘External transfer (other)’, omits chain constraints and omits
other constraints with a support lower than 0.25%.

The model created for the first use case provides a rare peek
into the daily operation of an emergency medicine depart-
ment. The model reveals the patterns and the specific contexts
that some of the patterns apply to. The broad outlines of the
model were not surprising to any of the process actors, as they
already had an implicit idea of the general way things are done
at the department, but the model makes them explicit so that it
becomes accessible to outsiders (e.g., management, emergen-
cy physicians in training, patients, etc.). However, from the
point of view of knowledge extraction things get more inter-
esting when diving deeper into a model. The model from the
first use case is limited to behavior that is not violated in any of
the observations in the event log in order to be suited for
operational use. This means that even the slightest inaccuracy2 https://github.com/stevmert/discoveryMethod

316 Inf Syst Front (2022) 24:305–327

https://github.com/stevmert/discoveryMethod


of the source data, due to either forgetfulness or incompetence,
will prevent the discovery of certain valid behavior and deci-
sion patterns no matter its frequency of occurrence.

The knowledge currently captured by a model mined with
DeciClareMiner consists of two main components: the func-
tional and control-flow perspectives describing the occurrence
and sequencing rules concerning the activities and the deci-
sion logic that determines the context in which each occur-
rence and sequencing rule applies. The second use case
focusses on the knowledge that was extracted from the recon-
structed event log about the operational decisions made by the
process actors. This refers to the data contexts that make con-
straints active, which in turn can require or block the execution
of certain activities (e.g., if the triage mentions an overdose
and respiratory issues, then the patient will eventually be
transferred to the intensive care unit). The goal was to ascer-
tain whether or not the discovered decision logic matched the
tacit medical knowledge of the physicians. The model did not
need to be executable for this use case. Therefore, it combined
the results of the first use case with additional mining results
with minimal confidence levels lower than 100%.

We used an evaluation consisting of two parts for this
second use case. The same setup as for the first use case
was used in the first part because this allowed for an efficient
validation of the reconstruction of the event log as well as
showed some of the activation decisions in a real context. The
second part entailed a direct evaluation of the activation de-
cisions of selected constraints. The disjunct pieces of decision
logic were listed for each of the constraints, which facilitated
a Likert-scale scoring by domain experts based on (medical)
correctness of each activating data context. The domain

expert was subsequently asked to evaluate some of the dis-
covered decision criteria for when certain activities need to be
executed. For example, if the patient received a green color
code during the triage and the medical discipline of the care
episode is ophthalmology, then the patient would eventually
be discharged. Note that this type of rules (i.e., positive) are
the most interesting but also the most difficult to discover. A
lot of decision logic related to negative rules was also discov-
ered, but this is less interesting due to those rules being less
helpful and typically common sense (e.g., a patient with de-
mentia should never be transferred to Neonatology). The do-
main expert evaluated 208 discovered decision criteria for
when the following activities are executed at least once:
Patient Discharge, Request CT, Request RX, Transfer to
Pediatrics, Transfer to Oncology/Nephrology, Transfer to
Cardiology and Transfer to Geriatrics. Each disjunct part of
the discovered decision logic was listed and subsequently
scored on a Likert-scale ranging from medical nonsense to
realistic decision logic. The results are summarized in Fig. 12.
We also included the results of an intermediate version of this
evaluation to show the evolution after several iterations of the
proposed method.

The results show that around 53% of the decision criteria
were evaluated as realistic in the final evaluation, although
some small nuances were often missing. This highlights the
potential value of the proposed method to automatically trans-
form tacit to explicit knowledge in healthcare, and more gener-
ally, for all sorts of loosely framed knowledge-intensive pro-
cesses. The improvements over the intermediate evaluation
demonstrate the need for multiple iterations. The model used
in the intermediate evaluation contained much more nonsense,

Table 4 Additional statistics on the event log

Total of all traces Minimum per trace Maximum per trace Average per trace Median per trace

Duration (hours) 133,686 0.067 22.3 3.2 2.9

#Activity events 625,682 3 128 15 17

#Data events 1,350,331 2 166 32.4 32

Fig. 10 The log replay console that can replay a trace up to every decision point and display the original EHR data for the simulated patient
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primarily due to the use of lower minimal support levels during
the mining step. Much of this nonsense was filtered out of the
model by increasing the minimal support level.

5.6 Discussion

The paper is based on the premise that imperative modeling
techniques are not suitable for loosely framed processes (van
der Aalst 2013; van der Aalst et al. 2009; Goedertier et al.
2015; Mertens et al. 2017; Rovani et al. 2015), which includes
many healthcare processes. Figure 13 presents an imperative
process model mined from the same event log created in this
section.3 The model was created by the Disco-tool,4 which
was also used to mine a model for an emergency medicine
department in Rojas et al. (2019). It contains all activities but
ignores the data events (as this feature is not supported by the
tool) and shows just the 1.1% most frequently travelled paths.
This is a good example of how traditional process discovery
techniques would represent the emergency care process of the
AZ Maria Middelares hospital. Despite the omission of data
events and 98.9% of the less frequently travelled paths, the
result is still an unreadable model that is often referred to as a
spaghetti model (van der Aalst 2011; Rojas et al. 2019). This
is caused by the 28,980 unique variations in the log (out of
41,657 patients), as identified byDisco when only considering
the activity events, of which the most frequent variation oc-
curs just 686 times (1.65%). An imperatively process discov-
ery tool either interconnects almost every activity to include
each of these variations (i.e., unreadable spaghetti model) or
filters out all complexity to only leave some sort of

generalized happy path (i.e., does not reflect reality). This is
a typical problem when modeling healthcare processes imper-
atively that results in poor usability of the resulting models
(Duma and Aringhieri 2020; Fernandez-Llatas et al. 2015).
Rojas et al. (2019) worked around this by asking domain
experts to manually define subsets of activities that are expect-
ed to be part of smaller and more manageable subprocesses,
while Duma and Aringhieri (2020) resort to making signifi-
cant assumptions and simplifications. Declarative modeling
languages are better suited to these processes (Goedertier
et al. 2015), because they actually extract the logical rules that
define the connections between activities instead of just enu-
merating the most frequently encountered connections like
imperative techniques do. The DeciClare language used in
our method caters specifically to loosely framed knowledge-
intensive healthcare processes with its integrated data perspec-
tive, which enables even more fine-grained knowledge to be
extracted from the data.

The process and decision model created during the appli-
cation of the proposed method certainly revealed some useful
insight into the emergency care process of the AZ Maria
Middelares hospital. Despite the basic (rather than advanced)
data analysis and other limitations, it managed to transform a
lot of tacit knowledge into valuable and explicit knowledge.
Of course, much of the discovered knowledge was already
known to the experienced physicians in the department, but
now it is also readily available to less experienced physicians
and other stakeholders that want to gain insight into the oper-
ation of an emergency medicine department. Having explicit
rules for the occurrence and sequencing of activities and the
corresponding decision logic available enables deeper analy-
sis and optimization of the working habits of the emergency
physicians. Both use cases showed the potential of the

3 Also available at https://github.com/stevmert/discoveryMethod.

4 https://fluxicon.com/disco/

Fig. 11 Simplified Declare representation of the mined process model
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proposed method to make previously tacit knowledge explic-
itly available for all stakeholders, for both operational and
decision-making purposes. Process and decision models, like
the one mined in this paper, have the potential to unlock a new
tier of applications further along the line. For example:

& An explicit justification as to why certain activities are
performed in specific cases and others are not.

& The decision logic of treatments in the model can be com-
pared to the available clinical guidelines. Do the physi-
cians follow the guidelines? If not, what are the character-
istic and decision criteria of the cases in which they di-
verge from the guidelines? Are these justifiable?

& The decision logic of different physicians can be com-
pared. Do the physicians treat similar patients similarly?
What are the differences? Can adjustments be made to
make the service level more uniform?

& The knowledge contained by models will make simula-
tions much more realistic and flexible. For example, how
would a department address an increase in a group of
pathologies by 5%? Would this create new bottlenecks?
Can these be eliminated by changing, if possible, some
decision criteria?

& The knowledge made explicit by the mined models
can be used to bring interns more quickly up to
speed or even to educate future nurses/physicians
as part of their medical training.

& The mined models can be used for evidence farming
(Hay et al. 2008). This is the practice of posteriori anal-
ysis of clinical data to find new insights without setting
up case-control studies. Evidence farming can be used as
an alternative or, even better, as a supplement to
evidence-based medicine.

Throughout the application of the developed method, we
encountered several typical limitations of process discovery
projects. Different types of noise in the data that was used to
create the model are the primary limitation. This is real-life

data that was recorded without this sort of applications in
mind, so it would be unrealistic to expect perfect data. The
data quality framework of Vanbrabant et al. classifies 14 data
quality problems typical to electronic healthcare records of
emergency departments in several (sub)categories: missing
data, dependency violations, incorrect attribute values and da-
ta that is not wrong but not directly usable (Vanbrabant et al.
2019). All 14 data quality problems were encountered at one
point or another during this project. In terms of the forms of
noise defined by van der Spoel et al., we encountered the
following (van der Spoel et al. 2013):

& Sequence noise: errors in, or uncertainty about, the order
of events in an event trace.

In this project we did not have an exact timestamp of
the radiology and lab activities. So, a workaround was
devised that is by no means perfect. Additionally, the
timestamps that we did have are those of when the phy-
sicians or nurses describe activities in the EHR, but this
does not necessarily reflect the timing and order of the
actual activities performed. Some physicians prefer to up-
date the EHR of a patient for several activities simulta-
neously. Consequently, the preservation of the sequence
information is dependent on whether physicians describe
those activities in the same order as they performed them
(which was generally the case). Although there is no way
to fully resolve this issue, aside from a whole new system
to record the data, we did use names for the activities that
correctly reflect the data that we had. Many activities were
named like ‘Describe …’ or ‘Request …’ to signify that
we cannot make a statement about when the actual activity
occurred, just when the description or request was made.

& Duration noise: noise arising from missing or wrong
timestamps for activities and variable duration between
activities.

The issues described for sequence noise also apply
here. We only had timestamps of when an update was

Fig. 12 The results of the
evaluations of the mined decision
logic by the domain expert
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saved to the EHR. Hence, there was no timestamp of the
actual activity or even a duration. We gave every activity
an arbitrary duration of 2 s for practical reasons, but this
does not reflect reality.

& Human noise: noise from human errors such as activities
in a care path which were the result of a wrong or faulty
diagnosis or from a faulty execution of a treatment or
procedure.

When writing in the EHR, physicians and nurses will
unavoidably make mistakes: typos, missing text, missing
activity descriptions, activity descriptions entered in the
incorrectly activity text field… But even correct descrip-
tion of activities can cause problems as a different jargon
will make it more difficult to detect patterns. We
preprocessed the plain text data to resolve the more fre-
quent typos and used a list of synonyms and generaliza-
tions to deal with the use of different jargons. However,
these solutions are not exhaustive, and thus, could still be
improved. The release of an official dictionary and thesau-
rus of medical jargon in the Dutch language would be a
big step in the right direction.

Two other general limitations related to data completeness
typical for process mining projects also applies to this project.
Firstly, process mining starts with an assumption of event log
completeness (Ghasemi and Amyot 2016). This means that
we assume that every possible trace variation (i.e., type of
patient, diagnosis, complication, treatment, etc.) that can occur
also occurred in the event log. Of course, this is not realistic as
each event log contains just a subset of these variations. The
result is that the process models will generally overfit the
event log (i.e., it was never observed that a patient needed
more than four CT-scans, so the model says this cannot occur,
while there might be infrequent cases for which this could be
possible). This can be mitigated during the project by fiddling
with the minimal support level for the mining step and after
the project by slowly gathering more and more data. The sec-
ond general limitation relates to the completeness of the con-
text data. Decision mining works best when all the data used
by the process actors during the execution of the process is
available in the event log. However, due to privacy concerns
this is difficult to achieve, especially in healthcare. In our case,
we did not get access to several general patient attributes (e.g.,
age and gender) as well as to any information about the med-
ical history of the patients. Of course, this severely limits what
can be discovered. And finally, we encountered the following
event log imperfection patterns (Suriadi et al. 2017): form-
based event capture, unanchored events, scattered events, elu-
sive cases and polluted labels.

The issues described above lead to a loss of accuracy in the
resulting process and decisionmodel. Some knowledge is lost,
while other knowledge that was discovered does not correctlyFi
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reflect reality. Furthermore, the model only considers the
emergency medicine department of one hospital. The gener-
alizability of the model is therefore low. Every hospital and/or
department has their own capabilities, limitations and way of
doing things.

During this case study, several ideas and opportunities
came up to increase the success rate of similar projects in the
future at the emergency medicine department of AZMM. The
benefits of storing additional process-related information be-
came more concrete, which further increases the willingness
to make changes to the current situation. Some ideas entail
changes to the underlying information system. For example,
storing more timestamps concerning radiology and lab activ-
ities (i.e., time of request, time of execution, time when the
results were made available, time when the physician looks at
the results…). While other ideas involve to more radical
changes to the way that the medical personnel go about their
business. A medical scribe was made available during a test
period to relief the physicians of most of the writing activities
in the EHR and at the same time to make the input more
uniform. An expansion of the current capabilities to generate
default texts based on shortcuts is also under consideration,
possibly in combination with all options/answers so that the
physician just needs to remove what is not applicable instead
of having to type it. An even more ambitious idea of adding
some sort of spelling correction to interface of the EHR was
also discussed. All this extra structure in the textual input of
the EHR will result in more precise data in the future, and
consequently, more precise process models.

The method application described in this section required a
substantial amount of manual work. This is typical for process
mining projects, and even more so in healthcare settings (Rojas
et al. 2016). The intrinsic complexity of the processes and the
characteristic process-unaware information systems are the
main culprits here. The long-term goal of the overarching re-
search project and the emergency medicine department in-
volved in the case is therefore, respectively, the development
of and transition to a context- and process-aware information
system. Such a system should understand the process and store
the required data directly (e.g., an event log), which eliminates
much of the manual work aside from the evaluation. From a
research perspective, the manual work performed in the case
confirms the need for such a system and provides a glimpse
behind the scenes of a real-life loosely frame knowledge-
intensive process. The healthcare organization on the other
hand can view the manual work as a necessary investment to
gather insight into the process taking place in order to facilitate
the transition to amore process-aware information system in the
future. But even when an organization is not eying a transition
to a more process-aware information system, the amount of
manual work can be regarded as an investment. Process mining
projects are meant to be part of a BPM lifecycle in an organi-
zation (Dumas et al. 2018), which specifically states that it is a

cycle that needs to be repeated on a continuous basis. Thus, the
manual work performed in the first iteration does not need to be
redone each iteration, but rather, can be reused in the following
iterations. As a result, the amount of manual work will be much
lower in later iterations.

Finally, the proposed method should be regarded as a mere
tool for process and decision discovery.With that, wemean that
its success will depend heavily on the way it is applied. In
Table 5, we provide a summary of the lessons we learned dur-
ing this research and application project. These lessons are
geared towards the data scientists who will be responsible for
applying the method in future discovery projects. We have
already touched upon some of these in the previous sections,
but here we take a step back and discuss them on a project level.

6 Conclusion and Future Research

This paper describes the application of ADR to develop a
method for process and decision discovery for loosely framed
knowledge-intensive healthcare processes, centered around
the DeciClareMiner tool. The method describes the steps to
proceed from raw data in the IT-system of an organization to a
detailed process and decision model of such a process. The
use of a declarative process mining technique with integrated
decision discovery is novel and requires modified approach
compared to existing methods for process mining based on
imperative process mining techniques. As part of the ADR-
cycle, DeciClareMiner was applied for the first time to a real-
life loosely framed knowledge-intensive healthcare process,
namely the one that is performed in the emergency medicine
department of a private hospital. This process is one of (if not
the) most diverse, multi-disciplinary and dynamic processes in
a hospital. Consequently, process and decision discovery in
this setting is very challenging. Most of the process mining
papers in a healthcare setting focus on a limited number of
steps, aspects or pathologies (e.g., clinical pathways) to reduce
the complexity of the task at hand. In contrast, the scope of this
project was set out to be as comprehensive as possible with the
available data. All recorded activities performed as part of the
process in the emergency medicine department as well as all
pathologies were considered from the viewpoint of the func-
tional, control-flow and data perspectives of the process with-
out resorting to filtering or clustering techniques to reduce the
complexity.

The ‘spaghetti’ model that resulted from applying an im-
perative process mining technique to the data (Fig. 13) further
strengthens the claim that imperative process modeling is not
suitable for this type of processes. The understandability ad-
vantages (for human users) of imperative over declarative lan-
guages is completely negated by the high flexibility needs of
the process and the resulting enumeration of all possible paths.
Declarative languages are better suited due to their implicit
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Table 5 A summary of the lessons learned for data scientists

Lesson Description

1 Start with a specific goal in mind It is important to define and discuss the goal(s) of the discovery project beforehand with
the managers and physicians. The specific goals can have a significant impact on
several steps of the method application. In this paper, we described two use cases
with different goals that required different minimal confidence and support levels
and evaluation. Other interesting use cases could focus on the physicians providing
the treatment. For example, discovering a model that only includes patients that were
treated by the more experienced physicians or a model per physician to compare
them internally. Each of these use cases would require different implementations of
the selection of data extracted from the information system and/or the event log
filtering steps.

2 The available data, data selection and data quality remain crucial The process and decision discovery method is an important part of a discovery project.
Yet, it is the available process data that will determine whether the project goals are
achievable, even when everything else is done perfectly. The method will not
produce any useful results without the right data of sufficiently high quality. This is
essentially the ‘garbage in, garbage out’-principle. Perfect data does not exist in
real-life projects, so it is important to be aware of the imperfections and, where
possible, try to mitigate them. Being aware of the data issues is also important to
prevent wrong conclusions from being drawn from the results.

Perhaps the most important role here is played by the domain expert(s) supporting the
data scientists. Good domain experts have experiences on the work floor and are
preferably still active there. As a data scientist, it is essential to thoroughly explain
what you need and what the eventual goals are to the domain experts. If they fully
understand those, they can anticipate your needs and point you in the right direction.
Also involve them asmuch as possible in the data selection and quality review. They
can give valuable insight into what is being inputted into the system and how
trustworthy this data is.

In our method application, we had to deal with multiple data problems such as data not
being registered, not having access to certain useful data (e.g., no patient age or
gender due to patient privacy regulations), pruning out unrelated or low quality data
attributes and managing different types of noise. Therefore, we performed a critical
review of the available data with together with people from different levels of the
organization:

- After a thorough discussion of the purpose of the discovery method, we defined the
project with the head of the emergency department. This included a review of the
information system as used on the work floor to get a good feel for what is being
recorded and the subsequent opportunities for the potential goals of the project. This
provided the foundation for the data selection, although at this point still in terms of
data inputs of the information system.

- The IT-department provided a mapping of the data inputs in the information system to
the model of the extracted data. This revealed the extent to which the requested data
was scattered across multiple databases and some other problems for which we had
to devise mitigation strategies.

- The physicians were asked to explain how theymade use of certain data input fields in
the information system. This uncovered some misalignments between how the
intended usage by the IT-department and the actual usage by the physicians, as well
as some creative use to get around certain limitations. Based on this information, we
could prune out certain low-quality data attributes and implement several data
quality improvement steps.

- Together with the head of the emergency department, who was also our domain
expert, we subsequently ran through many process instances during the evaluation
step to review both the quality of the data and of the model based on that data. This
exposed additional data issues, like registered data that was not provided to us or
misinterpreted data. Most of these issues could be solved during a subsequent
iteration of the method.

The remaining data and quality issues were documented during the method application
and linked to certain parts of the discovered model to make the eventual users of the
model aware of its weaknesses.

3 Favor hierarchical activities over branching The underlying process logic often involvesmore than the minimal number of activities
linked to a certain declarative rule. Increasing the branching level will allow the
miner to discover more of this logic. However, the percentage of spurious
relationships in the results will likely rise and the added computational effort is very
high. When possible, hierarchical activities should be defined to group some lower
level activities or even other hierarchical activities. This is a manual step that requires
some domain knowledge but could certainly pay dividends later down the line.
Mining hierarchical activities is much more computationally efficient and prevents
many of the spurious relationships to be discovered. If the domain knowledge is not
available to define the hierarchical activities, one can still resort to higher branching
levels when the sufficient computational power is available.

322 Inf Syst Front (2022) 24:305–327



incorporation of process variations. The combination of this
declarative viewpoint and an extensive data perspective en-
ables DeciClaremodels to capture both the loosely framed and
the knowledge-intensive characteristics of the targeted pro-
cesses. As a result, the discovered DeciClare model of the
emergency care process offers a glimpse into the previously
tacit knowledge about how patients are diagnosed and treated
at the emergency medicine department of the hospital.
Transforming this tacit knowledge to explicit knowledge can
have many benefits to the department, the hospital and possi-
bly even to the medical field in general (e.g., transparency,
analysis, comparison, optimization, education…). The evalu-
ation demonstrates that realistic functional, control-flow and
decision logic can be identified with the developed method.

This research contributes to the information systems com-
munity by bringing together the state-of-the-art from different
fields like computer science, business process management,
conceptual modeling, process mining, decision management
and knowledge representation to make advancements in the
field of medical informatics. Although many advancements
have recently been made in process mining research, most of
the proposed techniques and methods are either geared

towards tightly framed processes or lack support for the
knowledge governing the path decisions. We have addressed
this research gap for the discovery of loosely framed
knowledge-intensive healthcare processes. The proposed
method is not merely a theoretical contribution, it is a practical
contribution. This was demonstrated by the application of the
method to a real-life example process, which both shows it
feasibility and its potential. Data scientists can use this as a
template to create similar models in other healthcare organi-
zations. We envision the method and corresponding tools to
be integrated into the hospital information systems of the fu-
ture to allow for the automatic discovery of such models di-
rectly. This could become part of the review process that many
healthcare organizations already undergo periodically to ver-
ify that clinical guidelines and hospital policies are being ap-
plied correctly. On the other hand, the model itself enables the
use of process engines like DeciClareEngine that offer auto-
matic interpretation of the model and support users while ex-
ecuting the process by providing them with the right pieces of
knowledge at the right time. This is a necessary step towards
offering real-time process and decision support covering the
complete process, as opposed to current generation of clinical

Table 5 (continued)

Lesson Description

4 The identification of data elements is a tough balancing exercise A naive approach to the identification of data elements might be ‘the more the merrier’.
After all, the discovery of decision logic depends on having the necessary data
elements in the event log. Yet, the practical reality is that this is a difficult trade-off
between potentially uncovering more of the real decision logic versus the general
quality of the discovered decision logic and the computational effort. Lower quality
data elements might lower the quality of the mined model because they could be
incorrectly linked to certain discovered decisions, while they also significantly in-
crease the search space leading to a lot of waste mining time. Therefore, the identi-
fication and selection of data elements to use in the event log should be done with
much care.

Wewould advise to start from a small set of potential data element candidates, manually
review the quality as much as possible and iteratively increase/refine the data ele-
ments throughout the project based on the results of the evaluation step at the end of
each iteration.

5 Test multiple parameter combinations in parallel The selection of the maximal branching level and minimal confidence and support
levels can be a bit of trial and error. It is not wrong to choosing one specific
combination of values for these parameters for each iteration, but it can be
inefficient. By mining with multiple parameter combination per iteration,
comparisons can bemade of the results early in the project. The different models can
be evaluated in the same evaluation step at the end of each iteration
to save some time.

Also, keep in mind that the mining step is not deterministic nor complete. Parameter
combinations that range from general (high support) to specific (low support) and
strict (high confidence) to more lenient (low confidence) can be chosen so that the
more general and strict parameter settings are subsumed by each subsequent
parameter setting with less general and more lenient levels. So, all models that are
more general and stricter can be merged directly in the other models. In general, all
the rules in the discovered models can be combined and new models of each
parameter combination can be created by filtering the rules with the specific
thresholds. The resulting models will be more complete because the search space
directly or indirectly explored in these models will be at least equal to, but almost
always bigger than, the search space explored during each of the original mining
steps. Thismeans that the additional computational effort required tominemore than
one model per iteration for internal comparison is optimally leveraged to increase the
quality of all models.
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decision support systems that only offer support at some very
specific decision point(s) (e.g., for the prevention venous
thromboembolism (Durieux et al. 2000)).

As future research, we need to make a distinction be-
tween the developed method and the practical case through
which the method was developed. In the context of the
method, we will further refine it by applying it to other
healthcare process, while following the recommendations
of Martin et al. (Martin et al. 2020). We will also verify
its general applicability to other loosely framed knowledge-
intensive processes by applying it to datasets from other
domains. From the perspective of the practical case, a pro-
ject like this does not really have a definite ending. It will
need to be repeated continuously as initiatives to improve
the data quality start to bear fruit. The quality of the discov-
ered process and decision model will improve with more
and better data, which in turn externalizes more and more
real-life medical knowledge. Additionally, we are investigat-
ing how the process and decision model can be used to help
users during the execution of the process. The process en-
gine used in the evaluation of the discovered model is a first
step in this direction, yet the development of a true context-
and process-aware information system is still ongoing.
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