
Sustaining Open Source Communities by Understanding
the Influence of Discursive Manifestations on Sentiment

Denis Dennehy1 & Kieran Conboy1 & Jennifer Ferreira2 & Jaganath Babu1

Published online: 15 September 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Sustaining open source (OS) communities is fundamental to the long-term success of any open source software (OSS) project. An
OSS project consists of a community of software developers who are part of a larger business ecosystem involving hardware and
software companies. Peer review of software code, known as patch review comments, is an important quality assurance activity
for OSS development that requires developers to provide feedback concerning their degree of satisfaction. Despite the impor-
tance of feedback, which can affect sentiment of OS communities, the underlying discourse has not been studied. In this study,
we use Activity Theory to identify and categorise 20,651 discursive manifestations of contradictions that occurred in patch
review comments of a large, evolving OS community. Unique community-specific expressions are identified and mapped to
developers’ sentiment during a software release cycle. The study contributes new insights concerning discursive manifestations
of contradictions as a driving force for sustaining OS communities.

Keywords Activity theory . Contradictions . Sentiment analysis . Open source . Patch reviews

1 Introduction

Sustainability, an influential factor to creating competitive ad-
vantage (Berns et al. 2009; Hertel and Weisent 2013; Pappas
et al. 2018) can be defined as the triple bottom line of eco-
nomic, social, and environmental performance (Porter and
Kramer 2006). To achieve this bottom line, companies will
need to become ‘sustainability-oriented’ (Perrini and Tencati
2006), by (i) being aware of its responsibilities to various
stakeholder groups, (ii) actively improving its ecological per-
formance, (iii) contributing to sustainable social changes, (iv)
and delivering value for society (Bednar and Welch 2020,
Popovič et al. 2018, Pappas et al. 2018, Klievink et al.
2017). In this study, we focus on the sustainability of OS
communities as it is fundamental to the long-term success
and sustainability of any OS project (Gamalielsson and
Lundell 2014).

Sustainability in OSS projects largely depends on OSS
developers maintaining healthy relationships with their peers
in order to ensure their input and support (Ozer and Vogel
2015). Sustainability of OS projects largely depends on active,
voluntary engagement from the OS community (Ho and Rai
2017; Germonprez et al. 2017; Xie and Matusiak 2016). Yet,
research has shown that while processes, tools, and gover-
nance are important in enabling effective OSS development,
sustaining the OS community is the most challenging
(Appleyard and Chesbrough 2017; Ho and Richardson
2013; Sholler et al. 2019; Shaikh and Vaast 2016; Tourani
et al. 2014). The reason sustainability is often such a challenge
is that in traditional environments there is typically a formal
reporting structure where one usually has a line manager or
someone responsible for each developer. Developers can raise
issues and concerns, and can get help if problems arise.
However, OSS developers rarely raise issues and have no
formal line manager to report to or who may be watching
out for their well-being and motivation. Due to this, devel-
opers often simply disengage when not required to participate,
when no communication regarding issues takes place, or when
no support is provided to solve problems (Gamalielsson and
Lundell 2014).

As OSS developers are usually geographically dispersed,
‘mailing lists’ are used to facilitate interactions between mem-
bers of an OS community (Tourani et al. 2014; Mistrík et al.

* Denis Dennehy
denis.dennehy@nuigalway.ie

1 National University of Ireland Galway, Galway, Ireland
2 Victoria University of Wellington, Wellington, New Zealand

Information Systems Frontiers (2023) 25:241–257
https://doi.org/10.1007/s10796-020-10059-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10059-8&domain=pdf
mailto:denis.dennehy@nuigalway.ie

2010; Bird et al. 2006). Mailing lists are communication chan-
nels where OSS developers conduct peer review of software
code in the form of a patch1 and provide feedback concerning
their degree of satisfaction (Guzman et al. 2014). Previous
research on mailing lists focused on discovering knowledge
sharing practices (Sowe et al. 2008), information seeking be-
haviours among software developers (Sharif et al. 2015), iden-
tifying active contributors (Guzzi et al. 2013), and collective
development (Hemetsberger and Reinhardt 2009). Other stud-
ies (Garcia-Cumbreras et al. 2013; Guzman et al. 2014; Pletea
et al. 2014; Paul et al. 2018; Rousinopoulos et al. 2014; Sinha
et al. 2016; Tourani et al. 2014; Ortu et al. 2015) applied
sentiment analysis, which is essentially the task of identifying
positive and negative opinions, evaluations, gestures, and cul-
tural meanings organised around a relationship to a social
object, usually another person or group (Wilson et al. 2005,
Jongeling et al. 2015). While such studies have provided nov-
el insights, they have largely focused on sentiment at a high
level and not the underlying discourse, which can affect
sentiment.

Our study is informed byActivity Theory (AT) as it anticipates
discursive manifestations, which are types of contradictions (i.e.
conflict, breakdown in communication) that interrupt the fluent
flow of work (Hasan and Banna 2012; Helle 2000). Engeström
and Sannino (2011) propose four distinct types of contradictions
which they associate with discursive manifestations, namely, (i)
double bind, (ii) conflict, (iii) critical conflict, and (iv) dilemma.
Contradictions are historically accumulating structural tensions
that occur within an activity and/or between multiple interrelated
activities that generate disturbances and conflicts, as well as inno-
vative attempts to change the activity (Karanasios et al. 2017;
Engeström 2001). We argue that analysing patch review com-
ments is important for three key reasons.

First, despite the long history of OS projects, patch review,
a critical activity in sustaining OS projects has received rela-
tively limited research effort (Wang et al. 2015). As AT deals
with the purpose of information exchange (Valecha et al.
2019), it is a suitable lens to study the exchange of patch
review comments. Our study extends previous research on
sentiment analysis in OS projects by analysing the underlying
discourse in patch review comments as discursive manifesta-
tions of contradictions, which can affect sentiment.

Second, data is now regarded as one of the most valuable
resource to achieving a competitive edge and creating sustain-
able societies (Mikalef et al. 2020; Pappas et al. 2018; Chen
et al. 2012; Gupta et al. 2018). As mailing lists provide a rich
data source, this data can be used to advance our understand-
ing of practices and social norms that contribute to the sus-
tainability of OS communities (Bird et al. 2006; Shihab et al.
2009). We draw on a large, evolving OS community of 160

software developers from 25 companies that rely on a mailing
list to conduct patch reviews.

Third, research has shown that sentiment affect quality, pro-
ductivity, creativity, group rapport, and job satisfaction (De
Choudhury and Counts 2013). It would therefore seem intuitive
that for any OSS project, sentiment of OS communities plays an
important role in sustaining an OS project (Tourani et al. 2014).
Further, understanding the sentiment of software developers is
important for project managers as it provides a better understand-
ing of the social factors that affect the OS project and the correc-
tive actions required to improve sentiment (Guzman et al. 2014;
Rigby et al. 2008). This study shows how the language used by
software developers in patch review comments can positively or
negatively influence sentiment. To this end, the aim of this study
is to advance knowledge on sustaining OS communities, by an-
swering the following research questions:
1 How do discursive manifestations of contradictions mani-

fest in OS patch reviews?
2 How do discursive manifestations of contradictions influ-

ence sentiment of OS communities?

The paper is structured as follows. First, we review literature
on third generationAT and the types of discursivemanifestations
of contradictions. We then provide background to OSS develop-
ment and the role of mailing lists and patch reviews. Next, the
context of the OS project studied, and the analytical method used
for data collection and analysis is outlined. In the discussion, we
summarise key findings, followed by implications for practice
and research. The paper ends with a conclusion, limitations and
future action.

2 Theoretical Framework

2.1 Activity Theory and its Use in Information Systems
Research

Contemporary thinking on AT, known as third generation AT
emerged from the seminal work of Engeström (1987) who
critically examined the classical lineage of semiotic and epis-
temological theories (cf. Peirce, Popper) and the lineage of
symbol-mediated construction (cf. Mead, Trevarthen).
Engeström (1987) concluded the former were too narrow in
focus and the latter was conceived as ‘construction-for-the
mind’ rather than ‘practical material construction’ (Ditsa
2003). Hence why it is possible to identify parallels between
third-generation AT and other classical theories such as
Mead’s Symbolic Interactionism (Kuutti 1996).

AT is broadly defined as a “philosophical and cross-
disciplinary framework for studying different forms of human
practice as historically developing cultural systems” (Kuutti
and Molin-Juustila 1998). It is a “reflexive theory that posits a
dialectical relationship between theory and practice emerging

1 Patches are sets of modifications to the existing codebase of a specific OS
project.

242 Inf Syst Front (2023) 25:241–257

in the context of history and culture” (Vermeulen et al. 2016,
p. 1332). Strengths of AT are the interaction in a social con-
text, and the notion of dynamics and development of a work
activity (Mursu et al. 2007).

AT has inspired a number of theoretical reflections on what
information systems (IS) and information systems develop-
ment (ISD) are about (Allen et al. 2013; Beynon-Davies
2010; Bertelsen and Bødker 2000; Chen et al. 2013; Hasan
et al. 1998, 2010; Korpela et al. 2001; Kuutti and Molin-
Juustila 1998; Kuutti 1999; Vermeulen et al. 2016). AT has
been used to examine Human Computer Interaction and IS
design (Kuutti 1999; Nardi 1996), information systems devel-
opment (Chen et al. 2013; Korpela et al. 2001; Dennehy and
Conboy 2019; Igira 2008), technology mediated change
(Chaudhury et al. 2001, Karanasios and Allen 2014; Ryu
et al. 2005), patterns of use of IS (Wiredu and Sørensen
2006), and information and data sharing (Slavova and
Karanasios 2018). A number of studies focused on contradic-
tions associated with a new or changed mediating artefact,
such as mobile technologies (Karanasios and Allen 2014;
Kietzmann 2008), a pagination system, web channels
(Chaudhury et al. 2001), software development tools
(Dennehy and Conboy 2019), interaction systems, and enter-
prise systems (Malaurent and Karanasios 2020). Indeed such
studies have made valuable contributions to knowledge; how-
ever, as they tend to overly focus on the material manifestation
of contradictions (physical and virtual tools), they minimise,
or possibly exclude the psychological tools (e.g. language,
terminology) that influence the psyche and behaviour of peo-
ple (cf. Hasan et al. 2010). Hasan et al. (2010) categorise the
types of tools that mediate human activity and their influence
on the object or subject (see Table 1). We map these tools to
the context of this study.

During major transformations of their work activities, prac-
titioners (i.e. software developers) are dealing with

contradictions, but in expansive learning efforts, they must
do much more than that, “they put themselves into imagined,
simulated, and real situations that require personal engage-
ment in actions with material objects and artifacts (including
other human beings) that follow the logic of an anticipated or
designed future model of the activity” (Engeström 2007,
p. 37).

2.2 Discursive Manifestations of Contradictions

A fundamental concept of AT is the notion of contradictions,
which occur within an activity and/or between multiple interre-
lated activities and promote dialectical transformation
(Karanasios et al. 2017; Engeström 2001). While the term ‘con-
tradiction’ may be considered by some as a weakness, from the
perspective of AT, they are a sign of richness and an opportunity
to develop (Karanasios et al. 2017; Karanasios 2018).
Contradictions are seen as the sources of learning and can be-
come the driving force for change and development in a system,
if they are addressed (Hasan and Banna 2012). Using contradic-
tions, referred to as ‘growth buds’ by Foot (2001) to promote
learning and change is referred to as “expansive learning”
(Engeström et al., 1999). Essentially contradictions are ‘motors
of change’ (Allen et al. 2013). Contradictions can occur either
inside the key constructs (e.g. community) or between them, or
they may occur in networks of activity systems (Engeström
2001; White et al. 2016). Contradictions can be identified
through their manifestations, which include, disturbances, errors,
problems, rupture of communication, breakdowns, and clashes
(Helle 2000; Kuutti 1996; Engeström 2001). Contradictions,
however, may not be obvious, openly discussed, or be culturally
or politically challenging to confront (Allen et al. 2013).
Researchers must therefore rely on indirect methods to make
visible the contradictions and to explain the genesis of their de-
velopment (Dionne and Bourdon 2018). The identification of

Table 1 Categories of tools in AT

Types of tools (Hasan et al.
2010)

Tool description (Hasan et al. 2010) Relevance in this study

Artifacts, instruments,
machines, computers,
mobile phones

Tools can be physical or digital objects and are used to produce changes in
the object. Enables the automation of a new routine or construction of a
new tool

• aData Plane Development Kit (DPDK)
mailing list

Language, signs, ideas,
models

Tools are psychological and influence the psyche and behaviour of
subjects (internal and external artefacts)

• Terminology of DPDK community
• Ideas in the form of patch review

comments
•Visualisation of DPDK community metrics

(e.g. Top 10 contributors, Top 10
reviewers)

Cultural systems, scientific
fiction, virtual realities

Tools are psychological and influence the psyche and behaviour of
subjects (imagined, simulated, real)

• Culture of participating organisation and
project teams

• Culture of OS community

a DPDK is a framework for fast packet processing in data plane applications. Users may use the code to understand some of the techniques employed, to
build upon for prototyping or to add their own protocol stacks. https://doc.dpdk.org/guides/prog_guide/overview.html

Inf Syst Front (2023) 25:241–257 243

https://doc.dpdk.org/guides/prog_guide/overview.html

contradictions can help those involved in an activity to focus their
efforts on the root cause of problems, which can lead to the
creation of a shared vision for the solution of the contradictions
(Engestrom 2000). More recently, discursive manifestations of
contradictions in organisational change efforts have been studied
(Engeström and Sannino 2011; Dionne and Bourdon 2018;
Malaurent and Karanasios 2020). Engeström and Sannino
(2011) identify four distinct types of contradictions associated
with discursive manifestations and its resolutions (see Table 2).
Although Engeström and Sannino (2011) acknowledge that their
categorisation of manifestations is not exhaustive, it does provide
a foundation for this study to build upon.

Double bind is typically expressed “first by means of rhe-
torical questions indicating a cul-de-sac, a pressing need to do
something and, at the same time, a perceived impossibility of
action” (Engeström and Sannino 2011). It occurs when a per-
son or group engages in interactions that raise paradoxical and
contradictory demands, which make it difficult to step back
from their current activities, and consequently create feelings
of helplessness. A double bind is typically a situation which
cannot be resolved by an individual alone (ibid.). Resolution
requires making practical changes that are transformative and
collective actions that go beyond words but is often accompa-
nied with expressions such as “let us do that”, “we will make
it” (Dionne and Bourdon 2018; Engeström and Sannino
2011).

Critical conflict are Pappassituations ‘in which people face
inner doubts that paralyse them in front of contradictory mo-
tives unsolvable by the subject alone’ (Engeström and
Sannino 2011, p. 374). These critical conflicts are very emo-
tionally and morally charged, which makes it difficult, or even
impossible, for them to be resolved solely by the subjects
involved (ibid.). Discourse is also marked by vivid metaphors
that describe an object or action in a way that isn’t literally
true, but helps explain an idea or make a comparison (Dionne
and Bourdon 2018). Its resolution occurs through ‘a renego-
tiation of meaning for the subject who was accompanied by

the collective in order to allow the former to gain critical
distance from their experience and to give it new meaning’
(ibid., p. 282).

Conflict takes the form of resistance, disagreement, argu-
ment and criticism, and occurs “when an individual or a group
feels negatively affected by another individual or group, i.e.
because of a perceived divergence of interests, or because of
another’s incompatible behaviour” (De Dreu and Van De
Vliert 1997, p. 1). Engeström and Sannino (2011) observed
that people engaged in a conflict tend to argue and to criticise
each other. Conflicts are resolved through compromise or
submitting to authority or the majority (Dionne and Bourdon
2018).

Dilemma is an ‘expression or exchange of incompatible
evaluations, either between people or within the discourse of
a single person’ and is most often expressed in the form of
hesitations, such as “yes, but” (Engeström and Sannino 2011).
It is typically reproduced rather than resolved, often with the
help of denial or reformulation (i.e. I didn’t mean that).

Using AT as the theoretical lens is pertinent in this study
for four reasons, namely (i) understanding context in which
the words are used is important as it strongly influences accu-
racy (Aue and Gamon 2005; Turney 2002), (ii) AT is oriented
at understanding the activity in context (Cole and Engeström
1993), (iii) AT acknowledges contradictions as a means of
understanding and change (Engeström 2001; Ilyenkov
1974), a concept that is not explicit in other social theories
(Karanasios and Allen 2014), and (iv) AT is a developmental
theory that seeks to explain and influence changes in human
practices over time (Engeström 1999).

3 Background to OSS Development

Founded in 1998, the Open Source Initiative protects and
promotes open source development, standards, and commu-
nities of practice. Open source is a development method for

Table 2 Types of discursive manifestations of contradictions (Engeström and Sannino 2011)

Manifestation Features Linguistic Cues

Double bind Facing pressing and equally unacceptable alternatives in an
activity system:

Resolution: practical transformation (going beyond words)

“We”, “us”, “we must”, “we have to” pressing rhetorical questions,
expressions of helplessness

Critical
conflict

Facing contradictory motives in social interaction, feeling
violated or guilty

Resolution: finding new personal sense and negotiating a
new meaning

Personal, emotional, moral accounts narrative structure, vivid metaphors “I
now realise that. . .”

Conflict Arguing, criticising
Resolution: finding a compromise, submitting to authority

or majority

“No”, “I disagree”, “this is not true”, “this I can’t accept”

Dilemma Expression or exchange of incompatible evaluations
Resolution: denial, reformulation

“On the one hand [. . .] on the other hand”; “yes, but” “I didn’t mean that”,
“I actually meant”

244 Inf Syst Front (2023) 25:241–257

software that harnesses the power of distributed peer review
and transparency of process. The promise of open source is
better quality, higher reliability, more flexibility, lower cost,
and an end to predatory vendor lock-in. A unique characteris-
tic of OSS development is the involvement of communities
that engage general users who do not belong to typical soft-
ware development roles (Wang et al. 2015). As the people
who contribute code to an OS project are always users of the
code produced, it means that software developers are a subset
of the OS user, but not all users are software developers.
Figure 1 illustrates the role of users and software developers
in an OS project.

3.1 The Role of Mailing Lists in OSS Development

Mailing lists have a central role in OSS development (see
Fig. 2) as software developers use them as a communica-
tion channel to discuss a variety of issues related to the
source code and external factors such as the introduction
of new features in competing products (Shihab et al. 2009).
Mailing lists have been used to study social structure
(Ogawa et al. 2007), identify architectural changes
(Baysal and Malton 2007), code peer review process
(Rigby et al. 2008, Weissgerber et al. 2008), knowledge
sharing (Sowe et al. 2008), and the morale of software
developers (Lakhani and von Hippel 2004).

In this study, we analyse the DPDK mailing list data as it
enables us to analyse patch reviews of a large OS project.

3.2 Patch Review in OSS Development

Patch review is a practice in which members of an OS project
review software code in order to discover defects as early as

possible during the software development release-cycle and to
contribute and verify solutions that repair or improve them
(Wang et al. 2015). The process of incorporating patches into
the source code of an OS project is known as a ‘patch contri-
bution process’, which effects both the quality of the OS sys-
tem and the growth of the OS community (Sethanandha 2011;
Sethanandha et al. 2010b). The main features of the DPDK
patch review process include, (i) hosting software code in a
public repository, (ii) a mailing list where registered members
‘submit’ code, (iii) code is reviewed publicly on the mailing
list, and (iv), successfully reviewed code is merged into the
main repository for scheduled releases.

The patch review process is an important activity for OSS
development because it (i) is a primary quality assurance
mechanism, especially for contributions from new contribu-
tors (Mockus et al. 2000; Rigby et al. 2008), (ii) enables learn-
ing and knowledge transfer (Nurolahzade et al. 2009;
Sethanandha et al. 2010a, (iii) provides an opportunity for
recruiting potential software developers into OS projects as
contributors are able to gain influential roles in such projects
(Jensen and Scacchi 2007; Sethanandha 2011), (iv) plays an
important role in the integration and socialisation of new

Fig. 1 Classification of OS users and software developers

Fig. 2 Central role of mailing lists in OS projects. (source: Shihab et al.
2009)

Inf Syst Front (2023) 25:241–257 245

members in an OS project (Ducheneaut 2005), and (v) raises
the status of individuals and companies involved in the pro-
ject, if the community involved recognise their contribution as
being highly appropriate and of excellent quality (Gacek and
Arief 2004).

Factors such as contributor experience, the capability of
tools, and the quality of patches have significant influence
on the amount of time required to complete a patch review
(Sethanandha 2011). The patch review is widely regarded as
the one that significantly benefits from the community in-
volvement (Wang et al. 2015). Despite the importance of the
patch reviews, there is limited research that examines software
changes contained in email archives in the form of patches as
opposed to analysing the change information stored in soft-
ware repositories (Wang et al. 2015; Rigby et al. 2008;
Weibgerber et al. 2008). Previous studies (e.g. Hackman
et al. 2007) that focused on patch review activities provide
evidence that the peer review practice is likely to vary across
different OS communities, and that no one-size-fits-all model
can ensure success (Barnham 2012).

3.3 Empirical Setting and Analytical Methodology

The study reported here is part of a larger 4-year research
project. The over-arching goal of the project is to examine
how analytics can be used to track changes, improvements,
and transitions of the OS community and provide manage-
ment with actionable insights. The case studied has a dedicat-
ed Research and Development (R&D) campus which is a
Centre of Excellence for network transformation and cloud
computing. The company’s software developers participate
in the DPDK OS project and also use the software in their
work. DPDK was launched as commercial software in 2010
and made available under a permissive open source license in
2013. The DPDKOS community has since been continuously
growing in terms of the number of contributors, patches, and
contributions from software developers and organisations.

3.4 Overview of DPDK OS Community

This community has been steadily growing since its establish-
ment in 2013. Figure 3 shows how the growth from 200 con-
tributors with 20 commits in 2013 to 1,600 with 160 commits
in version 18.05 in 2018. The growing and evolving OS com-
munity has two key implications for management of the OS
project. First, as comments in the patch review are being pro-
vided by software developers who do not speak English as
their first language, their meaning can then be lost in transla-
tion, as well as influence the sentiment of software developers.
Second, management had the assumption that sentiment of the
OS community was generally negative.

About DPDK It consists of data plane libraries and network
interface controller drivers to accelerate the performance of
telecommunications and data networks. DPDK is currently
managed as an open-source project under the Linux
Foundation and licensed under the Open Source License. As
new networking hardware is developed for improved commu-
nications and connectivity, new software features are needed
to enable those new hardware capabilities and support on-
going improvements in performance. New features are con-
tinually being added (committed) to the DPDK codebase by
way of the community contributing, reviewing, and approving
the software code for these features (https://www.dpdk.org/).

DPDK Patch Review The main features of the DPDK patch
review process include, (i) hosting software code in a public
repository, (ii) a mailing list where registered members ‘sub-
mit’ code, (iii) code is reviewed publicly on the mailing list,
and (iv), successfully reviewed code is merged into the main
repository for scheduled releases. All code contributions to the
DPDK project are submitted to the dpdk-dev mailing list for
community review. If the OS community approves (e.g.
Ack = acknowledged/accepted) a patch, it is considered ready
to be merged with the main codebase. If a patch requires
improvements (e.g. NIT =minor problems with the code) to
the code, the software developer will implement the sugges-
tions and resubmit the patch to the mailing list for another
round of reviews. If the OS community reject a patch (e.g.
NACK = not acknowledged/rejected) then it is not merged
with the main codebase.

DPDK Release Cycle The DPDK release cycle timeline for
2018 is presented in Fig. 4. The coding used for each release
cycle (e.g. 18.02, 18.05, 18.08, and 18.11) is based on the
current year and month of scheduled release. As there is a
cut-off time for patches to be sent for review by the commu-
nity during each release (18.05 V1), when patches have been
approved (Ack’d) they must be added to the code base (see
amber symbols). All validated patches are then released as
scheduled (see green symbols). All validated patches are then
released as scheduled (see green symbols).

4 Data Collection and Analysis

In order to rigorously analyse sentiment and discursive manifes-
tations of contradictions in theDPDKmailing list, the data had to
be prepared (extracted, validated, cleaned) using analytical tech-
niques. We used the Cross Industry Standard Process for Data
Mining (CRISP-DM) as it is an industry standard methodology,
developed in 1996 by Daimler Chrysler, that prescribes a set of
guidelines to guide the efficient extraction of information from
data (Chapman et al. 2000; Shearer 2000). The CRISP-DM

246 Inf Syst Front (2023) 25:241–257

https://www.dpdk.org/

methodology consists of six cyclical steps, namely (i) Business
Understanding, (ii) Data Understanding, (iii) Data Preparation,
(iv) Modeling, (v) Evaluation, and (vi) Deployment. We adapt
this methodology to suit the context of our research, which in-
cludes four cyclical phases (see Fig. 5).

The adapted model (Fig. 5) does not exclude any of the six
phases of CRISP-DM, instead, it merges them into four inter-
related activities, namely, (i) Business and Data Understanding,
(ii) Modeling, (iii) Evaluation, and (iv) Actionable insights.

Business and Data Understanding In this phase, business un-
derstanding focused on the context, aim and business problem
in order to align with the project objectives, and data under-
standing provided an understanding of the data that needed to
be analysed, identify potential issues (i.e. quality) and prepare
for modeling. Input data comprised of (i) dataset of 29,605
messages from the DPDK-dev mailing list archived at http://
mails.dpdk.org/archives/dev/, and (ii) two popular sentiment
analysis dictionaries (e.g. Opinion Lexicon, Comparative
Words) that were customised for the business understanding
(Lin et al. 2018; Novielli et al. 2018; Jongeling et al. 2015).

Data Preparation This phase determined what data should be
included in the dataset, cleaning the data and all other activi-
ties that needed to be done to process data which served as an
input to the modeling tool in the next step. Data extraction and
integration using Python scripts whereby messages were con-
verted from RAR file format into .CSV file format. Messages
dated outside the four release cycles of 2018 were removed

which resulted in 20,651 messages being included in this
study. The message content was cleaned for analysis using
regular expressions to ensure that only the message body
and natural language remained. All message headers, code,
file paths, and non-alphanumeric symbols/characters were re-
moved. This activity was critical to reduce any instances of
misclassification (Tourani et al. 2014). The remaining text
was then converted into Pandas DataFrame format (a tabular
data structure in Python) for compatibility purposes with the
sentiment analysis algorithm.

Modeling This phase performed the following three prerequisite
tasks, (i), classification of discursive manifestations, (ii) identifi-
cation of community-specific expressions e.g. ‘NIT’ (e.g. minor
problems with the code), ‘NACK’ (e.g. a patch not accepted by
the community), ‘SELF-NACK’ (e.g. a patch removed by its
author), and (iii) sentiment analysis across four release cycles
of 2018. Task one involved the customisation of the sentiment
analysis dictionaries (e.g. Opinion Lexicon, Comparative
Words), which enabled us to classify the types and frequency
of discursive manifestations. This involved augmenting the nat-
ural language dictionary with community-specific expressions
(e.g. NACK, NIT) of the OS community. In doing so, the lin-
guistic cues unique to the OS community studied are central in
the analysis of discursivemanifestations of contradictions, name-
ly ‘NIT’ (e.g. Dilemma), and ‘NACK’ (e.g. Critical conflict,
conflict). Task three involved analysing the sentiment in themes-
sage body content (see Table 3).We followed a similar approach
to Rousinopoulos et al. (2014) where the message body was split

Fig. 3 Growth of the DPDK
community relative to the number
of commits

Fig. 4 DPDK patch review and
release cycle timeline

Inf Syst Front (2023) 25:241–257 247

http://mails.dpdk.org/archives/dev/
http://mails.dpdk.org/archives/dev/

into tokens and using a rule-based algorithm in combination with
the two dictionaries, assigned a positive, neutral, or negative
score. The assigned sentiment scores ranged from ‘Strong nega-
tive’ (-20), Weak negative (-10), Neutral (0), Positive (+ 10), and
Strong positive (+ 20). A tokenwas assigned a score according to
the matching word found in the dictionaries and the overall sen-
timent of a message was computed as the sum of all scores
assigned to the tokens contained in that message.

Evaluation In this iterative phase, the model, data, and emerging
findings were analysed in relation to the business and data un-
derstanding (e.g. aims of the business and research). This in-
volved collaborating with experienced software developers and
managers involved in a large OS project and who were involved
in the patch review process. This iterative process ensured that
the emerging findings and actionable insights supported the OS
project. These findings are presented in the next section.

5 Findings and Analysis

This section presents key findings under three interrelated
subsections, namely, (i) discursive manifestations of

contradictions, (ii) frequency and effect of the community-
specific expressions (e.g. NIT, NACK) on sentiment, and
(iii) a statistical analysis of sentiment throughout 2018. Our
analysis draws on the analytical approach that was scaffolded
by the CRISP-DM methodology to provide an analytical and
explanatory chain of evidence (e.g., word frequencies). The
excerpts that we present in this section are those we consider
to be representative of the OS community studied.

5.1 Discursive Manifestations of Contradictions

Analysing the natural language contained in the DPDK mail-
ing list provides rich insights into the internal dynamics of the
OS community. In the context of this study, Fig. 6 presents the
frequency of the four distinct types of discursive manifesta-
tions of contradictions as proposed Engeström and Sannino
(2011). Most noticeable is the high frequency of ‘conflict’
(arguing, criticising) and ‘double blind’ (unacceptable alterna-
tives) manifestations, specifically in the 18.02 and 18.08 re-
lease cycles. This finding would suggest that software devel-
opers have established strong working relationships and are
comfortable with challenging their peers and vice versa to

Fig. 5 Research methodology

Table 3 Sample of DPDK patch review comments with time stamp

Index Time Stamp Patch review comment

13,674 2018-03-31
17:04:08

on XXX 2018 at 11 37 am, XXX wrote uhmm, not sure about this. it is specific to the nfp pmd and i do not see it as a new
feature, at least dpdk users will not be aware of it. i forgot to remove this reference. it is not needed now, but it was with the
initial internal work. about the other build errors, i do not get them and i have used a couple of different systems, XXX and
XXX. this is, of course, a serious concern. can you givememore information about the system you are using i remember i
got some build error with other patches, from automatic builds made just after those patches were sent. i did not get any
this time, just those warning for checkpatch which i was aware of. is this automatic build not happening

15,587 2018-04-10
15:28:48

i am sorry, i have to nack because the change is not explained.

248 Inf Syst Front (2023) 25:241–257

ensure that patches are defect free before being merged with
other code prior to the release.

There was a much lower frequency of ‘critical conflict’
manifestations across all four-release cycles, except the
18.05 release cycle which accounted for the majority of these.
The low number of critical conflicts suggests there is a high
degree of professionalism and accepted language used by the
software developers as they have established working rela-
tionships over a number of years. It could also suggest that
software developers have a shared understanding of the patch
and the code is consistent across the OS community.

No ‘dilemma’ manifestations were identified in three re-
lease cycles (e.g. 18.05, 18.08, 18.11) and only twenty in the
18.02 release cycle. The low number of dilemmas would sug-
gest that the OS community generally use language that is
unambiguous in their patch reviews and that the OS commu-
nity have developed a common language that is understood by
the experienced software developers. Possibly new members
(e.g. graduate software developers) to the OS community
write comments that contribute to these dilemmas but over
time, assimilate into the social norms of the OS community.

Table 4 lists excerpts of the patch review comments that are
categorised as discursive manifestations of contradictions, as
proposed by Engeström and Sannino (2011). By extracting
the underlying discourse used in the patch review comments
and categorising it as discursive manifestations of contradic-
tions, we gain a new perspective about the OS community and
how language can influence sentiment and success of the OS
community.

The value of Table 4 is that it shows how a ‘NACK’ can
manifest as different types of contradictions (e.g. critical con-
flict, conflict, dilemma), depending on how it is framed by the
person reviewing the patch. This would suggest that there are
subtle differences around instances of ‘NACK’ that require
further investigation. For example, in the following excerpt
from an email message (2nd Mar), “In my opinion the fact
test is allowed on a closed port is fishy. The proposed patch is
a workaround that doesn’t address the underlying issue, thus
NACK unless proven otherwiseJ” we start to understand why
sentiment around ‘NACK’ is not strongly negative. Firstly, a
smiley emoji at the end of the sentence indicates that the
author is not adversarial with this comment. Secondly, the
author rejects the patch, but leaves it to the community to
prove that this patch is still useful for solving the ‘underlying
issue’, which implies this is a conditional ‘NACK’ and the
author is willing to retract it. In another excerpt (12th Apr),

“It’s a NACK from me, but let’s work together on something
better” a positive sentiment is displayed by the author who
encourages the community to work towards a better solution,
despite the rejection of the patch.

We acknowledge that discursive manifestations of contra-
dictions can indeed overlap with other categories (i.e. NACK),
depending how (i) the sender frames the discourse, (ii) the
recipient receives it, and (iii) it is categorised by the
researchers.

5.2 Frequency and Effect of Community-specific
Expressions on Sentiment

As the community-specific expressions (e.g. NIT, NACK, and
SELF NACK) are unique to the DPDK community, identify-
ing their frequency and effect on sentiment is important.
Figure 7 lists the frequency of the community-specific expres-
sions for each release cycle of 2018. Most noticeable is the
high frequency of ‘NACKS’ (#15), NITS (#17), and specifi-
cally ‘SELF NACKS’ (#7), during the 1805 release cycle. By
identifying the frequency of these expressions, it provides a
rich contextual understanding of the OS community, and to
influence change in the OS community over time. For exam-
ple, code that may be considered to be too innovative and not
adhering to the traditional practices of the OS community may
be prematurely rejected by members of the community.

To understand the impact of community-specific expres-
sions, the 18.05 release cycle, which has the highest frequency
of manifestations (39 in total), is used to illustrate the impact
of these 39 manifestations on sentiment of the OS community
(see Fig. 8). The sentiment score is first plotted against the
time period of the 18.05 release cycle (28th Feb – 5 May)
during which three key activities, (i) scoping, (ii) pre-merge
code, and (iii) bug fix, test, and release are completed by the
OS community. Each of the thirty-nine reported community-
specific expressions is thenmapped to the actual date recorded
in DPDK (see Fig. 8). Figure 8 shows that the frequency of
community-specific expressions during the 18.05 release cy-
cle is balanced, with a slight increase towards the end of the
release. Most concerning though, is the number of ‘NACK’
and ‘SELF NACK’ expressions that occur close to the release
date. When compared to similar instances that occur much
earlier in the release cycle these have a high negative impact
on sentiment. While a possible explanation may be that soft-
ware developers are more confident in resolving such in-
stances early in the release cycle, such instances clearly impact

Fig. 6 Frequency of discursive
manifestations

Inf Syst Front (2023) 25:241–257 249

Table 4 Examples of discursive
manifestations of contradictions Manifestation Examples in the context of the OS community studied

Double bind • It is not friendly to multi-process model as it leads to port ID contention issue if two processes
both find the data entry is free. We must allocate from the pre-defined array so that we can
find it.

• I think we must guarantee no port allocation for the same port ID in the callback time.

• Unfortunately, it doesn’t meet the basic quality criteria… we must not add compile time
device option if not well justified. I guess we can work around with a direct include.

• We must consider a solution as you propose below, but my proposal could easily be
implemented for v18.05. Whereas your patch is quite a big change and I think it’s a bit too
late as integration deadline.

• We must allocate from the pre-defined array so that we can find it.

Critical

conflict

• What I dislike is having inconsistencies in the code layout. Paragraphs, for lack of a better
word, are highly subjective and a matter of taste. Given that subjectivity is not helpful in
review and taste is hard to debate, I prefer to have a single terse rule; this makes a patch
context as information rich as possible. Sorry that I made it more difficult than necessary.

• This is irritating when one is compiling with warnings as errors in order to catch more serious
bugs. One potential fix might be to define page size but as I’m not clear on the implications, I
can’t comment further.

• Looks like the bind mechanism should be managed directly by the Project Managers rather
annoying application developers to deal with it.

• I’m very unhappy about the logging hack.

• I am sorry but I have to NACK because the change is not explained.

• I can’t agree with this statement, the essence of DPDK is to give a good alternative to
managing network devices. I disagree with this final assessment.

Conflict • I bet your teacher would disagree with that statement with one single paragraph in your book
reports - taste is hard to debate, but you have gone the extreme route with only the bare
minimum blank lines and that is not good. A silly script does not read code or understand
code, we the humans have to make the code readable.

• I’ve seen this kind of approach implemented before to add additional memory types to DPDK
and I don’t like it. I’ve outlined some of my thoughts on this before. You’re welcome to
continue that discussion, and make sure whatever comes out of it is going to be useful for all
of us. Now that the memory hot plug is merged, I’ll hopefully get more time prototyping, it’s
a NACK from me, but let’s work together on something better.

• You did not reply to my questions and did not address everything. It deserves an explanation.
Please Mr. X; think about commit explanations more often.

Dilemma • Small NIT, duplicating the title in the body is not useful and the returned value is positive.

• Some NITS, why is the whole item not under ‘xxx’ as it’s more accurate to keep consistency
among the errors.

• Two NITS, I think we could add a note in commit log that it only applies to primary and
secondary request. To make the change simpler, maybe we can just put a declaration of
function.

• On second thoughts, SELF-NACK… without this patch the original problem still exists and
we need to find an alternative workaround.

• We would like 2 or 3 more days on this before we can ‘ACK’ ‘NACK’ this patch.

• NACK, this is breaking the native Linux compilation. I am looking into it.

Release Cycle NACK NIT SELF NACK

18.02

18.05

18.08

18.11

Fig. 7 Frequency of OSS
community-specific expressions

250 Inf Syst Front (2023) 25:241–257

their sentiment as the release date draws nearer and their pro-
fessional reputation and that of their company can be
questioned if a patch is rejected in the days preceding a
release.

Analysis of the sentiment reveals that the overall sentiment
is minimally positive (0.210). A number of positive and neg-
ative outliers are present at the start and end of release cycle.
The underlying reason for these is that initially a patch will
have errors/defects but following a series of reviews and revi-
sions, the quality of the patch improves, as does sentiment of
the community. As overall sentiment is minimally positive,
these findings challenge two assumptions. First, that senti-
ment of the DPDK OS community is negative. Sentiment is
only negative during certain periods of the release cycles, i.e.
towards the end of the pre-merge code phase and during the
bug fix, test, and release phase. This is understandable given
the complexity of OSS development and that the software
developers’ work under pressure due to fixed timelines and
release dates that cannot be adjusted. Second, that patch re-
view comments containing a ‘NACK’ should have strong
negative sentiment. A patch review comment containing a
‘NACK’ can also contain positive sentiment, which can have
a neutralising effect on the overall sentiment score.

5.3 Statistical Analysis of Sentiment

The findings are supported by the distribution of sentiment
scores represented in Fig. 9 that shows the sentiment score
distribution that is normally distributed and the mode is
zero. This indicates that the majority of discussions were
neutral due to the technical nature of the conversations for
each review.

Table 5 provides a summary of statistics for each release
cycle during 2018. The table shows that mailing list sentiment
changes over the course of the year as evidenced by the varia-
tions in the mean and standard deviations of the sentiment
scores for each release cycle. The mean sentiment score for
the entire year is 0.2 (marginally positive). Although sentiment
remains marginally positive throughout the year, the mean
scores steadily decrease in positivity from the first release cycle
(18.02), to the second (18.05), and into the third release cycle
(18.08), before increasing again in the fourth release cycle
(18.11). The 18.02 release cycle exhibits the highest mean sen-
timent score of 0.31 and is therefore the most positive of all the
release cycles for 2018. While the 18.08 release cycle exhibits
the lowest mean sentiment score of 0.06 and is therefore the
closest to neutral sentiment of all release cycles in 2018.

The standard deviation of sentiment scores for the year is
2.2, which is sentiment scores for mailing list messages sent in
2018 differ from the mean by 2.2 points. In this instance, the
1805 release cycle has the largest standard deviation, indicat-
ing that mailing list messages exhibit stronger positive or
stronger negative sentiment than in other release cycles.

The 18.02 release cycle has the lowest standard deviation,
indicating that the mailing list messages exhibit weaker posi-
tive or negative sentiment. The strength of sentiment is low in
the first release cycle (e.g. 18.02) and then it peaks in the
second release cycle (e.g. 18.05), before steadily declining
throughout the rest of the release cycles. These scores indicate
that more emotion is expressed in the two mid-year release
cycles (e.g. 18.05, 18.08) than in the first (e.g. 18.02) and last
(e.g. 18.11) release cycles. These scores support the previous
analysis such as the ‘mean’ progressing from − 0.12 in Feb to
+ 0.21 in April.

Avg Sentiment 0.2

Bug fix, test, and releasePre-merge codeScoping

Fig. 8 Sentiment score of 18.05 release cycle

Inf Syst Front (2023) 25:241–257 251

6 Discussion and Implications

From the outset, the aim of this study was to advance knowl-
edge on sustaining OS communities, by understanding how
discursive manifestations of contradictions manifest in OS
patch reviews and its influence on sentiment of OS commu-
nities. In doing so, this study makes important theoretical con-
tributions to sustainability in the 21st century (Bednar and
Welch 2020, Popovič et al. 2018, Pappas et al. 2018,
Klievink et al. 2017), and activity theory (Engeström and
Sannino 2011; Dionne and Bourdon 2018; Karanasios et al.
2017; Malaurent and Karanasios 2020), and OSS develop-
ment (Appleyard and Chesbrough 2017; Gamalielsson and
Lundell 2014; Germonprez et al. 2017; Shaikh and Vaast
2016).

6.1 Implications for Research

First, we advance knowledge on sustainability in the context OS
projects by understanding the language and community-specific
expressions, which are essentially psychological tools (cf. Hasan
et al. 2010) that influence the sentiment of OS communities and
impact its long-term sustainability. Previous studies that exam-
ined sentiment in OS projects they tend to overly focus (and rely)
on the statistical meanings of sentiment which limits understand-
ing of the personal relations between members of the OS com-
munities. By understanding the language of the OS community
our studies highlights how the use of language is both ‘a product

of activity and a key determining factor of human behaviour,
which affects the activity itself’ (cf. Sannino 2008). This is crit-
ically important to the long term evolution and sustainability of
the OS community.

Second, we make a methodological contribution to
Activity Theory by applying discursive manifestations of con-
tradictions (Engeström and Sannino 2011)to a new domain
(e.g. OS communities). Previous studies (e.g. Dionne and
Bourdon 2018; Malaurent and Karanasios 2020) have exam-
ined discursive manifestations of contradictions in the context
of organisational change efforts but to the best of our knowl-
edge, this is the first study to apply the four types of contra-
dictions (e.g. double bind, double conflict, conflict, dilemma)
as proposed by Engeström and Sannino (2011).

Third, we contribute to OSS development by theorising
about the influence of discursive manifestations of contradic-
tions on sentiment of OS communities, which can influence
the sustainability of an OS project. By using a robust theoret-
ical framework such as AT, it provides researchers with the
opportunity to analyse and conceptualise complex real-world
situations where the interrelationship between communities of
people (OS community), mediating tools (online forum), and
a cultural‐historical setting co‐evolve (new members join or
leave the OS community). While the “global process of
digitalising and digitalised mediation of every aspect of hu-
man practice and activity is the hardest challenge activity
theory has ever met” (Rückriem 2009, p. 30), this study
shows that AT is a robust theory that provides a powerful

Fig. 9 Frequency distribution of
sentiment scores

Table 5 Summary statistics of release cycles

Statistical Analysis 18.02 Release cycle 18.05
Release cycle

18.08
Release cycle

18.11
Release cycle

Full Year Cycle (2018)

Number of messages 7,413 8,585 6,232 7,375 a29,605

Mean sentiment score 0.31 0.21 0.06 0.21 0.20

Standard deviation 2.13 2.55 2.29 2.18 2.20

a During the data preparation phase (cleaning) this figure was reduced to 20,651 messages in the actual analysis reported in this study as messages that
were ‘forwarded’, or ‘follow-ups’ were excluded to ensure a more accurate representation of the OS community.

252 Inf Syst Front (2023) 25:241–257

analytical lens to study digitised mediated environments and
ecosystems. This is an important contribution as there is a
noticeable absence of research that progress from simply ap-
plying sentiment analysis (e.g. Tourani et al. 2014; Guzman
et al. 2014; Rigby et al. 2008) to advancing the accumulative
body of knowledge via theoretical development. This lack of
cumulative tradition resonates with the issue of ‘fragmented
adhocracy’ (Metcalfe 2004;Weick 1989) which has previous-
ly overshadowed IS research (Fitzgerald and Adam 2000;
Banville and Landry 1989; Hirschheim et al. 1996).

Fourth, we advance knowledge by highlighting that events
that are generally perceived as ‘bad’ in an OS project are
indeed opportunities for (i) innovation, (ii) improved dialogue
within the OS community, and (iii) better collaboration be-
tween all stakeholders of the OS project. For example, rather
than view ‘NACK’ as a waste of time, resources, and finances,
it can be used as an opportunity to create events (on/offline)
that can build cohesion in the OS community and contribute to
the overall health and sustainability of community. Existing
OS research and associated theories examine methods for
eliciting and sustaining behaviour, but all are built on the
assumption that (i) issues that create negative sentiment are
known, and (ii) there is time to take corrective action.
Researchers can now use sentiment analysis to get an earlier
determination of negative issues, and so research interventions
can then be more targeted and will have more time to take
effect, hopefully increasing their success.

6.2 Implications for OS Practice

This study has three critical implications for the management
of OS projects and associated work practices.

First, by illuminating the community-specific expressions
and mapping them to the release cycle, it provides managers
and software developers the opportunity to reflect and reassess
their current work practices in order to reduce unnecessary
time pressures. Indeed, such reassessment could challenge
the ‘adherence based’ approach to using a specific software
development method or project management tool as it may be
interrupting the fluent flow of work (Helle 2000) or restricting
the interactions of the OS community (Kuutti 1996).

Second, in contrast to sentiment analysis, which by itself,
does not provide rich contextual data to drive change (i.e. OS
community), AT is a developmental theory that seeks to ex-
plain and influence changes in human practices over time
(Engeström 1999). By using AT to analyse patch review com-
ments, this study provides rich data in the form of discursive
manifestations of contradictions that can influence the long
term sustainability of an OS community. This is particularly
valuable, given that sustaining an OS community is one of the
biggest challenges in OSS practice (Appleyard and
Chesbrough 2017; Sholler et al. 2019; Tourani et al. 2014)
and that software developers rarely raise concerns or issues

of negativity - they just stop contributing. Therefore, early
detection of negative sentiment is critical.

Third, it provides insights into the well-being of software
developers and holds much promise for better management of
people involved in software development projects in general.
Sentiment is a useful indicator of the social well-being of
individuals and teams, as well as maintaining the social struc-
ture of communities (Pappas et al. 2018). Further, in order for
sustainability to be meaningful, it must be achievable and
measurable (Solow 1993), sentiment as an indicator is there-
fore valuable to sustaining OS communities. For example, it
can provide companies the opportunity to develop interven-
tions that improve the quality of life and well-being of its
software developers, which in turn would reduce health care
costs, as prevention is better than a cure (Rogers et al. 2012).

7 Conclusion, Limitations, and Future Action

Sustaining a large, evolving OS community is indeed chal-
lenging, as these communities by their nature are exigent, in
the sense of sustaining positive sentiment in a dynamic, con-
tinuously changing pressurised environment. This study dem-
onstrates that it is feasible to extract data from a mailing list
and analyse with high accuracy the sentiment and discursive
manifestations of contradictions of an OS community.

There are limitations to this work that warrant further investi-
gations. First, we categorised discursive manifestations of con-
tradictions into four neat categories (e.g. double bind, conflicts,
critical conflicts, and dilemmas) by following a similar approach
to Rousinopoulos et al. (2014) where the message body of the
patch review was split into tokens and using a rule-based algo-
rithm in combination with the two dictionaries, assigned a posi-
tive, neutral, or negative score. We believe that focusing on ac-
ademic rigour was critical due to the novelty of the study but
acknowledge that using a different analytical approach or less
rigor, some tokens may fit into more than one category or none
at all. Future studies could adopt other analytical approaches (i.e.
machine learning) or conduct a manual analysis of the same data.
Future studies could also extend the four categories proposed by
Engeström and Sannino (2011). Second, since all sentiment anal-
ysis tools have limitations, researchers need to assess the suitabil-
ity of such tools for their research project and to carefully under-
stand the social context of the research in order to draw mean-
ingful and actionable insights. While we used two popular tools
(e.g. Opinion Lexicon, Comparative Words), researchers should
carefully evaluate their chosen tools in the specific context of
usage before building something on top of them (Lin et al.
2018). Third, analysis of sentiment is a snapshot in time and
therefore is not always representative of theOS community being
studied. This study does however present opportunities for future
work in order to gain a deeper understanding of the relationship
between discursive manifestations of contradictions and

Inf Syst Front (2023) 25:241–257 253

sentiment, as well as the propensity of individual patch reviewers
over time. Future work could include a longitudinal study over a
number of years and/or compare sentiment across multiple OS
projects. This study highlights the importance of not only con-
sidering sentiment as statistical values but to take into consider-
ation the context of the sentiment and how discourse can directly
and indirectly have a positive or negative impact on people with-
in an OS community.

Acknowledgements This work was supported with the financial support
of the Science Foundation Ireland grant 13/RC/2094 and co-funded under
the European Regional Development Fund through the Southern &
Eastern Regional Operational Programme to Lero - the Science
Foundation Ireland Research Centre for Software (www.lero.ie).

References

Allen, D. K., Brown, A., Karanasios, S., & Norman, A. (2013). How
Should Technology-Mediated Organizational Change Be
Explained? A Comparison of the Contributions of Critical Realism
and Activity Theory. MIS Quarterly, 37, 835–854.

Appleyard, M. M., & Chesbrough, H. W. (2017). The dynamics of open
strategy: from adoption to reversion. Long Range Planning, 50(3),
310–321.

Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new
domains: A case study. In Proceedings of recent advances in natural
language processing (RANLP) 1(3), 1–2.

Banville, C., & Landry, M. (1989). Can the Field of MIS be Disciplined?
Communications of the ACM, 32, 48–60.

Barham, A. (2012). The impact of formal QA practices on FLOSS
communities–the case of Mozilla. In Proceedings of 2012 IFIP
International Conference on Open Source Systems (pp. 262–267).
Berlin: Springer

Baysal, O., & Malton, A. J. (2007, May). Correlating social interactions
to release history during software evolution. In Proceedings of the
Fourth International Workshop on Mining Software Repositories
(MSR’07: ICSE Workshops 2007) (pp. 7–7). IEEE.

Bednar, P. M., & Welch, C. (2020). Socio-Technical Perspectives on
Smart Working: Creating Meaningful and Sustainable Systems.
Information Systems Frontiers, 22(4), 281–229. https://doi.org/10.
1007/s10796-019-09921-1.

Berns, M., Townend, A., Khayat, Z., Balagopal, B., Reeves, M.,
Hopkins, M. S., & Kruschwitz, N. (2009). The business of sustain-
ability: what it means to managers now. MIT Sloan Management
Review, 51(1), 20–26.

Bertelsen, O. W., & Bødker, S. (2000). Introduction: Information tech-
nology in human activity. Scandinavian Journal of Information
Systems, 12(1), 3.

Beynon-Davies, P. (2010). The enactment of significance: a unified con-
ception of information, systems and technology. European Journal
of Information Systems, 19(4), 389–408.

Bird, C., Gourley, A., Devanbu, P., Gertz, M., & Swaminathan, A.
(2006). Mining email social networks. In Proceedings of the 2006
International Workshop onMining Software Repositories (pp. 137–
143). ACM.

Carver, J., Capilla, R., Penzenstadler, B., Serebrenik, A., & Valdezate, A.
(2018). Gender, sentiment and emotions, and safety-critical systems.
IEEE Software, 35(6), 16–19.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer,
C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining
guide. Chicago: SPSS Inc, 16.

Chaudhury, A., Mallick, D., & Rao, H. R. (2001). Web channels in e-
commerce. Communications of the ACM, 44(1), 99–104.

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence
and analytics: From big data to big impact. MIS Quarterly, 36(4),
1165–1188.

Chen, R., Sharman, R., Rao, H. R., & Upadhyaya, S. J. (2013). Data
Model Development for Fire Related Extreme Events: An Activity
Theory Approach. MIS Quarterly, 37, 125–147.

Cole, M., & Engeström., Y. (1993). A cultural-historical approach to
distributed cognition (pp. 1–46). Distributed cognitions:
Psychological and educational considerations.

De Choudhury, M., & Counts., S. (2013). Understanding affect in the
workplace via social media. In Proceedings of the 2013 Conference
on Computer Supported Cooperative Work (303–316). New York:
ACM

De Dreu, C. K. W. & Van De Vliert., E. (1997). Introduction: Using
conflict in organizations.

Dennehy, D., & Conboy, K. (2019). Breaking the flow: a study of con-
tradictions in information systems development (ISD). Information
Technology & People, 33(2), 477–501. https://doi.org/10.1108/ITP-
02-2018-0102.

Dionne, P., & Bourdon, S. (2018). Contradictions as the driving force of
collective and subjective development group employment
programmes. Journal of Education and Work, 31(3), 277–290.

Ditsa, G. (2003). Activity theory as a theoretical foundation for informa-
tion systems research. Information Management: Support Systems
& Multimedia Technology,192–231.

Ducheneaut, N. (2005). Socialization in an open source software com-
munity: A socio-technical analysis. Computer Supported
Cooperative Work (CSCW), 14(4), 323–368.

Engestrom, Y. (1987). Learning by expanding. Helsinki: Orienta-
Konsultit Oy.

Engeström, Y. (1999). Activity theory and individual and social transfor-
mation. Perspectives on activity theory, 19(38), 19–30.

Engestrom, Y. (2000). Activity theory as a framework for analyzing and
redesigning work. Ergonomics, 43(7), 960–974.

Engeström, Y. (2001). Expansive learning at work: Toward an activity
theoretical reconceptualization. Journal of education and work,
14(1), 133–156.

Engeström, Y., & Kerosuo, H. (2007). From workplace learning to inter-
organizational learning and back: the contribution of activity theory.
Journal of Workplace Learning, 19(6), 336–342.

Engeström, Y., & Sannino, A. (2011). Discursive manifestations of con-
tradictions in organizational change efforts: A methodological
framework. Journal of Organizational Change Management,
24(3), 368–387.

Fitzgerald, B., & Adam, F. (2000). The status of the IS field: historical
perspective and practical orientation.

Foot, K. A. (2001). Cultural-historical activity theory as practice theory:
Illuminating the development of conflict-monitoring network.
Communication Theory, 11(1), 56–83.

Gamalielsson, J., & Lundell, B. (2014). Sustainability of Open Source
software communities beyond a fork: How and why has the
LibreOffice project evolved? Journal of Systems and Software, 89,
128–145.

García-Cumbreras, M., Montejo-Ráez, A., & Díaz-Galiano, M. C.
(2013). Pessimists and optimists: Improving collaborative filtering
through sentiment analysis. Expert Systems with Applications,
40(17), 6758–6765.

Germonprez, M., Kendall, J. E., Kendall, K. E., Mathiassen, L., Young,
B., & Warner, B. (2017). A theory of responsive design: A field
study of corporate engagement with open source communities.
Information Systems Research, 28(1), 64–83.

Gupta, A., Deokar, A., Iyer, L., Sharda, R., & Schrader, D. (2018). Big
data and analytics for societal impact: Recent research and trends.
Information Systems Frontiers, 20(2), 185–194.

254 Inf Syst Front (2023) 25:241–257

http://www.lero.ie
https://doi.org/10.1007/s10796-019-09921-1
https://doi.org/10.1007/s10796-019-09921-1
https://doi.org/10.1108/ITP-02-2018-0102
https://doi.org/10.1108/ITP-02-2018-0102

Guzman, E., Azócar, D., & Li, Y. (2014). Sentiment analysis of commit
comments in GitHub: an empirical study. In Proceedings of the 11th
Working Conference on Mining Software Repositories (352–355).
New York: ACM.

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., & Deursen, A.-V.
(2013). Communication in open source software development mail-
ing lists. In Proceedings of the 10th Working Conference on Mining
Software Repositories (277–286). Piscataway: IEEE Press.

Hasan, H., & Banna, S. (2012). The unit of analysis in IS theory: The case
for activity. Information Systems Foundations, 191.

Hasan, H., Gould, E., & Hyland, P. (1998). Information systems and
activity theory: tools in context. Wollongong: University of
Wollongong Press.

Hasan, H., Kazluaskas, A., & Crawford, K. P. (2010). Blending complex-
ity and activity frameworks for a broader and deeper understanding
of IS. In Proceedings of the Thirty First International Conference on
Information Systems (ICIS), St. Louis, USA.

Helle, M. (2000). Disturbances and contradictions as tools for under-
standing work in the newsroom. Scandinavian Journal of
Information Systems, 12(1), 7.

Hemetsberger, A., & Reinhardt, C. (2009). Collective development in
open-source communities: An activity theoretical perspective on
successful online collaboration. Organization Studies, 30(9), 987–
1008.

Hertel, M., & Wiesent, J. (2013). Investments in information systems: A
contribution towards sustainability. Information Systems Frontiers,
15(5), 815–829.

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1996). Exploring the
intellectual structures of information systems development: a social
action theoretic analysis. Accounting, Management and Information
Technologies, 6(1–2), 1–64.

Ho, S. Y., & Rai, A. (2017). Continued voluntary participation intention
in firm-participating open source software projects. Information
Systems Research, 28(3), 603–625.

Ho, S. Y., & Richardson, A. (2013). Trust and distrust in open source
software development. Journal of Computer Information Systems,
54(1), 84–93.

Igira, F. T. (2008). The situatedness of work practices and organizational
culture: implications for information systems innovation uptake.
Journal of Information Technology, 23(2), 79–88.

Ilyenkov, E. V. (1974). Activity and knowledge. Philosophy and culture.
Jensen, C., & Scacchi, W. (2007). Role migration and advancement pro-

cesses in OSSD projects: A comparative case study. In Proceedings
of the 29th international conference on Software Engineering (pp.
364–374). Washington, D.C.: IEEE Computer Society.

Jongeling, R., Datta, S., & Serebrenik, A. (2015). Choosing your
weapons: On sentiment analysis tools for software engineering re-
search. In Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME) (531–535).
https://doi.org/10.1109/ICSM.2015.7332508.

Karanasios, S. (2018). Toward a unified view of technology and activity:
The contribution of activity theory to information systems research.
Information Technology & People, 31(1), 134–155.

Karanasios, S., & Allen, D. (2014). Mobile technology in mobile work:
contradictions and congruencies in activity systems. European
Journal of Information Systems, 23(5), 529–542.

Karanasios, S., Riisla, K., & Simeonova, B. (2017). Exploring the use of
contradictions in activity theory studies: An interdisciplinary review.

Kietzmann, J. (2008). Interactive innovation of technology for mobile
work. European Journal of Information Systems, 17(3), 305–320.

Klievink, B., Romijn, B. J., Cunningham, S., & de Bruijn, H. (2017). Big
data in the public sector: Uncertainties and readiness. Information
systems frontiers, 19(2), 267–283.

Korpela, M., Mursu, A., & Soriyan, H. A. (2001). Information systems
development as an activity. Computer Supported Cooperative Work
(CSCW), 11(1–2), 111–128.

Kuutti, K. (1996). Activity theory as a potential framework for human-
computer interaction research. Context and consciousness: Activity
theory and human-computer interaction, 1744.

Kuutti, K. (1999) Activity theory, transformation of work, and informa-
tion systems design. Perspectives on activity theory: 360.

Kuutti, K., & Molin-Juustila, T. (1998). Information System Support for
‘Loose’Co-ordination in a Network Organisation: an Activity
Theory perspective. Information Systems and Activity Theory:
Tools in Context: 73–92.

Lakhani, K. R., & Von Hippel, E. (2004). How open source software
works:“free” user-to-user assistance. In Porceedings of the
Produktentwicklung mit virtuellen Communities (pp. 303–339).
Wiesbaden: Gabler Verlag.

Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., & Oliveto, R.
(2018). Sentiment analysis for software engineering: How far can
we go? In Proceedings of the 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE) (94–104). Piscataway:
IEEE.

Malaurent, J., & Karanasios, S. (2020). Learning from workaround prac-
tices: The challenge of enterprise system implementations in multi-
national corporations. Information Systems Journal, 30(4), 639–
663.

Metcalfe, M. (2004). Theory: Seeking a plain English explanation.
JITTA: Journal of Information Technology Theory and
Application, 6(2), 13.

Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data
and business analytics: A research agenda for realizing business
value. Information & Management, 57(1), 103237.

Mistrík, I., Grundy, J., Van der Hoek, A., & Whitehead, J. (2010).
Collaborative software engineering: challenges and prospects. In
Collaborative Software Engineering (389–403). Berlin: Springer.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A case study of open
source software development: the Apache server,” ICSE ‘00: In
Proceedings of the 22nd International Conference on Software
Engineering (pp. 263―272). New York: ACM Press.

Mursu, A., Luukkonen, I., Toivanen, M., & Korpela, M. (2007). Activity
Theory in information systems research and practice: theoretical
underpinnings for an information systems development model.
Information Research: An International Electronic Journal, 12(3),
3.

Nardi, B. A. (1996). Activity theory and human-computer interaction.
Context and consciousness: Activity theory and human-computer
interaction (Vol. 436, pp. 7–16). Cambridge: MIT Press.

Novielli, N., Girardi, D., & Lanubile, F. (2018). A Benchmark Study on
Sentiment Analysis for Software Engineering Research. In
Proceedings of the 15th International Conference on Mining
Software Repositories (pp. 364–375). New York: ACM. https://
doi.org/10.1145/3196398.3196403.

Nurolahzade, M., Nasehi, S. M., Khandkar, S. H., & Rawal, S. (2009).
The role of patch review in software evolution: an analysis of the
mozilla firefox. In Proceedings of the joint international and annual
ERCIMworkshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops (pp. 9–18). New York: ACM.

Ogawa, M., Ma, K. L., Bird, C., Devanbu, P., & Gourley, A. (2007).
Visualizing social interaction in open source software projects. In
Proceedings of the 2007 6th International Asia-Pacific Symposium
on Visualization (pp. 25–32). Piscataway: IEEE.

Ortu, M., Destefanis, G., Adams, B., Murgia, A., Marchesi, M., &
Tonelli, R. (2015). The jira repository dataset: Understanding social
aspects of software development. In Proceedings of the 11th inter-
national conference on predictive models and data analytics in soft-
ware engineering (pp. 1–4).

Ozer, M., & Vogel, D. (2015). Contextualized relationship between
knowledge sharing and performance in software development.
Journal of Management Information Systems, 32, 134–161.

Inf Syst Front (2023) 25:241–257 255

https://doi.org/10.1109/ICSM.2015.7332508
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1145/3196398.3196403

Pappas, I.-O., Mikalef, P., Giannakos, M.-N., Krogstie, J., & Lekakos, G.
(2018). Big data and business analytics ecosystems: paving the way
towards digital transformation and sustainable societies. Berlin:
Springer.

Paul, R., Bosu, A., & Sultana, K. Z. (2018). Expressions of Sentiments
During Code Reviews:Male vs. Female. In Proceedings of the 2019
IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER) (pp. 26–37). Piscataway:
IEEE.

Perrini, F., & Tencati, A. (2006). Sustainability and stakeholder manage-
ment: the need for new corporate performance evaluation and
reporting systems. Business Strategy and the Environment, 15(5),
296–308.

Pletea, D., Vasilescu, B., & Serebrenik, A. (2014). Security and emotion:
sentiment analysis of security discussions on GitHub. In
Proceedings of the 11th working conference on mining software
repositories (pp. 348–351). New York: ACM.

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The
impact of big data analytics on firms’ high value business perfor-
mance. Information Systems Frontiers, 20(2), 209–222.

Porter, M. E., & Kramer, M. R. (2006). Strategy & Society: The Link
Between Competitive Advantage and Corporate Social
Responsibility. Harvard Business Review, 84(12), 78–92.

Rigby, P. C., German, D. M., & Storey, M. A. (2008). Open source
software peer review practices: a case study of the apache server.
In Proceedings of the 30th international conference on Software
engineering (pp. 541–550). New York: ACM.

Rogers, D. S., Duraiappah, A. K., Antons, D. C., Munoz, P., Bai, X.,
Fragkias, M., & Gutscher, H. (2012). A vision for human well-
being: transition to social sustainability. Current Opinion in
Environmental Sustainability, 4(1), 61–73.

Rousinopoulos, A., Robles, G., & González-Barahona, J. (2014).
Sentiment Analysis Of Free / Open Source Developers:
Preliminary Findings From a Case Study. Electronic Journal of
Information Systems, 13(2), 1.

Rückriem, G. (2009). Digital technology and mediation: A challenge to
activity theory. Learning and expanding with activity theory (pp.
88–111).

Ryu, C., Kim, Y. J., Chaudhury, A., & Rua, H.-R. (2005). Knowledge
acquisition via three learning processes in enterprise information
portals: Learning-by-investment, learning-by-doing, and learning-
from-others. MIS Quarterly, 29, 245–278.

Sannino, A. (2008). Experiencing conversations: Bridging the gap be-
tween discourse and activity. Journal for the Theory of Social
Behaviour, 38(3), 267–291.

Sethanandha, B. D. (2011). Improving open source software patch con-
tribution process: methods and tools. In Proceedings of the 33rd
International Conference on Software Engineering (pp. 1134–
1135). New York: ACM.

Sethanandha, B. D., Massey, B., & Jones, W. (2010a). Managing Open
Source Contributions For Software Project Sustainability.
Management of Engineering & Technology, 2010. In Proceedings
of the Technology Management for Global Economic Growth (pp.
1–9). IEEE. Portland International.

Sethanandha, B. D., Massey, B., & Jones, W. (2010b). On the need for
OSS patch contribution tools. In Proceedings of the Second
International Workshop on Building Sustainable Open Source
Communities (Notre Dame, IN, USA, June 2010)..

Shaikh, M., & Vaast, E. (2016). Folding and unfolding: Balancing open-
ness and transparency in open source communities. Information
Systems Research, 27(4), 813–833.

Sharif, K. Y., English, M., Ali, N., Exton., C., Collins, J. J., & Buckley, J.
(2015). An empirically-based characterization and quantification of
information seeking through mailing lists during open source devel-
opers’ software evolution. Information and Software Technology,
57(3), 77–94.

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data
mining. Journal of Data Warehousing, 5(4), 13–22.

Shihab, E., Bettenburg, N., Adams, B., & Hassan, A. E. (2009). On the
central role of mailing lists in open source projects: An exploratory
study. In Proceedings of the JSAI International Symposium on
Artificial Intelligence (pp. 91–103). Berlin: Springer.

Sholler, D., Steinmacher, I., Ford, D., Averick, M., Hoye, M., & Wilson,
G. (2019). Ten simple rules for helping newcomers become contrib-
utors to open projects. PLoS Computational Biology, 15(9),
e1007296.

Sinha, V., Lazar, A., & Sharif, B. (2016). Analyzing developer sentiment
in commit logs. In Proceedings of the 13th International Conference
on Mining Software Repositories (pp. 520–523). New York: ACM.

Slavova, M., & Karanasios, S. (2018). When Institutional Logics Meet
Information and Communication Technologies: Examining Hybrid
Information Practices in Ghana’s Agriculture. Journal of the
Association for Information Systems, 19(9), 4.

Solow, R. M. (1993). Sustainability: An economists perspective.
Published in Dorfman, R. & Dorfman, NS (eds.) Selected readings
in environmental economics.

Sowe, S. K., Stamelos, I., & Angelis, L. (2008). Understanding knowl-
edge sharing activities in free/open source software projects: An
empirical study. Journal of Systems and Software, 81(3), 431–446.

Tourani, P., Jiang, Y., &Adams, B. (2014).Monitoring sentiment in open
source mailing lists: exploratory study on the apache ecosystem. In
Proceedings of 24th Annual International Conference on Computer
Science and Software Engineering (pp. 34–44). Armonk: IBM
Corp.

Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation
applied to unsupervised classification of reviews. In Proceedings of
the 40th annual meeting on association for computational linguis-
tics (pp. 417–424). Stroudsburg: Association for Computational
Linguistics.

Valecha, R., Rao, R., Upadhyaya, S., & Sharman, R. (2019). An activity
theory approach to modeling dispatch-mediated emergency re-
sponse. Journal of the Association for Information Systems, 20(1), 2.

Vermeulen, H., Gain, J., Marais, P., & O’Donovan, S. (2016).
Reimagining gamification through the lens of Activity Theory. In
Proceedings of the 49th Hawaii International Conference on System
Sciences (HICSS)..

Wang, J., Shih, P. C., Wu, Y., & Carroll, J. M. (2015). Comparative case
studies of open source software peer review practices. Information
and Software Technology, 67(1), 1–12.

Weick, K. E. (1989). Theory construction as disciplined imagination.
Academy of management review, 14, 516–531.

Weißgerber, P., Neu, D., & Diehl, S. (2008). Small patches get in! In
Proceedings of the 2008 international working conference on
Mining software repositories (pp. 67–76). Leipzig: ACM.

White, L., Burger, K., &Yearworth,M. (2016). Understanding behaviour
in problem structuring methods interventions with activity theory.
European Journal of Operational Research, 249(3), 983–1004.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual
polarity in phrase-level sentiment analysis. In Proceedings of the
Human Language Technology and Empirical Methods in Natural
Language Processing (pp. 347–354). Stroudsburg: Association for
Computational Linguistics.

Wiredu, G. O., & Sørensen, C. (2006). The dynamics of control and
mobile computing in distributed activities. European Journal of
Information Systems, 15(3), 307–319.

Xie, I., & Matusiak, K. (2016). Discover digital libraries: Theory and
practice. Amsterdam: Elsevier.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

256 Inf Syst Front (2023) 25:241–257

Denis Dennehy is Director of the master’s in business analytics pro-
gramme at NUI Galway and funded investigator at the Lero research
group. His research broadly encompasses information systems and
emerging technologies, with specific interest in viewing technology-
mediated human activity through the lens of Activity Theory. This re-
search has been published in ranked journals such as Information Systems
Frontiers, Information Technology & People, and Journal of Systems and
Software.

Kieran Conboy is a Professor in Information Systems and leader of the
Lero research group at NUI Galway. He previously worked for Accenture
Consulting and the University of New South Wales in Australia. He has
collaboratedwith many organisations such as Accenture, Atlassian, Cisco
Systems, and Fidelity Investments, as well as many SMEs. He is on the
board of the Irish Research Council and advisor to the EU Commission
on funding programmes and calls. Kieran has published over 200 articles
in leading international journals and conferences including Information
Systems Research, the European Journal of Information Systems, IEEE
Software and IEEE Computer.

Jennifer Ferreira is a senior lecturer at Te Herenga Waka - Victoria
University of Wellington, New Zealand. She conducts inter-disciplinary
research in partnership with organisations based in New Zealand, the UK,
Canada, and Ireland. She regularly publishes on topics that span Design,
Software Engineering, and Social Science perspectives. Her research fo-
cuses on the human aspects of software development, from investigating
ways of enhancing collaborative work on diverse software teams, to the
user experience design of software products.

Jaganath Babu is a technical/analytical research assistant with the Lero
research group and a postgraduate student on the MSc. Business
Analytics program at NUI Galway, Ireland. He holds an MBA from
Anna University, Chennai, India, and BSc in Electrical and Electronics
Engineering from Anna University, Chennai, India. He has worked on a
number of technical projects involving data science, computer vision,
natural language processing, and machine learning.

Inf Syst Front (2023) 25:241–257 257

	Sustaining Open Source Communities by Understanding the Influence of Discursive Manifestations on Sentiment
	Abstract
	Introduction
	Theoretical Framework
	Activity Theory and its Use in Information Systems Research
	Discursive Manifestations of Contradictions

	Background to OSS Development
	The Role of Mailing Lists in OSS Development
	Patch Review in OSS Development
	Empirical Setting and Analytical Methodology
	Overview of DPDK OS Community

	Data Collection and Analysis
	Findings and Analysis
	Discursive Manifestations of Contradictions
	Frequency and Effect of Community-specific Expressions on Sentiment
	Statistical Analysis of Sentiment

	Discussion and Implications
	Implications for Research
	Implications for OS Practice

	Conclusion, Limitations, and Future Action
	References

