
https://doi.org/10.1007/s10796-020-10014-7

HoneyGadget: A Deception Based Approach for Detecting Code
Reuse Attacks

Xin Huang1 · Fei Yan1 · Liqiang Zhang1 · Kai Wang1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Code reuse attacks such as Return-Oriented Programming (ROP) and Jump-Oriented Programming (JOP) are the prevalent
attack techniques which reuse code snippets named gadget in vulnerable applications and hijack control flow to achieve
malicious behaviors. Existing defense techniques for code reuse attacks attempt to prevent illegal control flow transition or
make locating gadgets a hard work. However, decades of the arms race proved the ability to detect and prevent advanced
attacks is still outdated. In this paper, we propose HoneyGadget, a deception based approach for detecting code reuse attacks.
HoneyGadget works by inserting honey gadgets into the application as decoys and keep track of their addresses once the
application is loaded. During the execution phase, HoneyGadget traces the execution records using Last Branch Record
(LBR), compares the LBR records with the maintained address list, and alarms code reuse attacks if some records match.
HoneyGadget not only prevents code reuse attacks, but also provides LBR records for researchers to analyze patterns of these
attacks. We have developed a fully functioning prototype of HoneyGadget. Our evaluation results show that HoneyGadget
can capture code reuse attacks effectively and only incurs a modest performance overhead.

Keywords Gadgets insertion · Deception · Control flow · Last Branch Record

1 Introduction

Individuals can perform many different behaviors to protect
themselves from some computer security threats (Crossler
et al. 2019), but it is still impractical to completely avoid
the effects of security threats like control flow hijack
attacks. Memory corruption vulnerability is one of the
most prevalent attack vectors to hijack control flow of the
program. Control flow hijack attacks can be divided into

� Fei Yan
yanfei@whu.edu.cn

Xin Huang
huangxxxin@whu.edu.cn

Liqiang Zhang
zhanglq@whu.edu.cn

Kai Wang
blankaiwang@whu.edu.cn

1 Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China

code injection attack and code reuse attack. With the widely
deployment of Data Execution Prevention (DEP) (Andersen
and Abella 2004) and W ⊕ X, attackers are forced to
reuse existing code snippets in binary. Triggered by a
memory error, code reuse attack proved that it can perform
arbitrary Turing-complete computation without injecting
any malicious code (Checkoway et al. 2010). There are
many disclosed CVEs rely on code reuse attack to trigger
the execution of payload. On the other hand, several
automated tools and methods can be used to help attackers
to launch an attack (Salwan 2011; Schwartz et al. 2011).
In addition, Automatic Exploit Generation (Avgerinos et al.
2014) has become a mature subject, introducing automation
technology into the exploit.

With the development of code reuse attack, researchers
have put forward many defenses. Representative defense
techniques include randomization and control flow check-
ing (Pappas et al. 2013, 2015). A general purpose of Address
Space Layout Randomization (ASLR) is to make code snip-
pets of target application and the exact memory address
of the gadget unpredictable. Control Flow Integrity (CFI)
introduced by Abadi et al. (2005) limit the transfer of
control flow by constructing Control Flow Graph (CFG)
statically and applying integrity checks during execution.

Published online: 4 May 2020

Information Systems Frontiers (2021) 23:269–283

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10014-7&domain=pdf
mailto: yanfei@whu.edu.cn
mailto: huangxxxin@whu.edu.cn
mailto: zhanglq@whu.edu.cn
mailto: blankaiwang@whu.edu.cn

Despite decades of research effort, the ability to detect
and prevent up-to-date attacks is still outdated since exist-
ing defense methods are either one-time effort or detecting
malicious behavior according to pre-defined policies.

For a long time, cybersecurity has to face such a cruel
reality that defenders are struggling to cope with countless
vulnerabilities to ensure security, and adversaries only
need to find one vulnerability to carry out the attack.
The initiative of the cyber attack and defense game is in
the hands of the attacker. To change the situation, it is
essential to know which tactics attackers employ and what
is happening in their minds when they are committing
criminal activities (Silic and Lowry 2019). For example,
attackers take advantage of the connections among people
to deceive them to achieve the diffusion of deception in
social media (Vishwanath 2015). The arms race based
on code reuse will still continue. Using deception based
techniques such as honeypots to capture these up-to-date
code reuse attacks may help defenders take the initiative.
Aimed to log malicious behavior of remote attackers,
Honey-Patches (Araujo et al. 2014) patches the vulnerable
web service with a specially designed function. Remote
attackers send malicious HTTP requests to the server and
get responses forged by the patched function, then the
malicious behavior is captured by honeypot. Unfortunately,
remote code execution does not ask for a malformed HTTP
request. The patched function of Honey-Patches cannot help
capturing remote code execution attempts.

In order to capture the pattern of these attacks or even
some previously unknown code reuse attacks, we propose
HoneyGadget, a deception based defense scheme just like
Honey-Patches. HoneyGadget inserts honey gadgets as
decoys to the target application and its related libraries,
then we can detect code reuse attacks at runtime if
inserted gadgets are executed. We have implemented a
prototype of HoneyGadget on x86-based Linux platform.
The experiment results show that HoneyGadget incurs a
modest overhead of 6.8% on average. Compared to other
defenses methods, the overhead brought by HoneyGadget is
within an acceptable range.

In summary, our main contributions of this paper include:

1. We present HoneyGadget, a deception based approach
for detecting all types of code reuse attacks, which is a
brand-new method to defend against these attacks.

2. To the best of our knowledge, we design the first generic
solution based on deception to defeat code reuse attacks
and gain information about how attackers operate. That
is, our scheme can help to analyze future evolutions of
the attack.

3. We propose novel techniques combining constructing
different types of gadgets, inserting gadgets automat-
ically and runtime detection method to capture code

reuse attacks without affecting the normal execution of
the program.

4. We implement a prototype of HoneyGadget, and our
evaluation shows that HoneyGadget achieves high
efficiency with low overhead, proving our scheme
practical.

The rest of this paper is organized as follows. We begin in
Section 2 by introducing background knowledge on existing
code reuse attacks and characteristics of the Intel’s Last
Branch Record (LBR). In Section 3, we detail our threat
model and assumptions. The design of HoneyGadget and
the concrete implementation are illustrated in Sections 4 and
5 . We evaluate our scheme in Section 6 and discuss its
security features in Section 7. Related works are given in
Section 8, and conclude in Section 9.

2 Background

In this section, we briefly summarize the techniques behind
code reuse attack and introduce characteristics of the Intel’s
Last Branch Record (LBR).

2.1 Code Reuse Attacks

Code reuse attacks exploit a vulnerability to illegally
transfer the control flow to an attacker-specified function
or code snippet. These sequences of instructions named
gadget that are already existing in the attacked program.
Each sequence ends with an indirect branch instruction
(such as the ret instruction or other indirect jumps
with similar functions, call/jmp, etc) to transfer control
from one sequence to the subsequent sequence, and
finally use system calls to achieve the purpose of attack.
According to the type of gadget exploited, code reuse
attacks can be classified into Return-Oriented Programming
(ROP) (Shacham 2007), Jump-Oriented Programming
(JOP) (Bletsch et al. 2011) and Counterfeit Object-oriented
Programming (COOP) (Schuster et al. 2015) and so on.

Return-Oriented Programming (ROP) is a typical code
reuse attack. Gadgets chosen for gadget chain in ROP attack
are usually short with no more than 6 instructions (Cheng
et al. 2014) to avoid unplanned adjustment to pointers or
registers. Each gadget in the attack payload is responsible
for performing one or several steps of computation, such
as loading argument from a specific register or performing
arithmetic operations (Checkoway et al. 2010). Triggered
by an inconspicuous vulnerability, stack buffer overflow for
example, control flow of the target application is hijacked.

In ROP attack, the last instruction in each gadget
must be a ret instruction to facilitate the continuous
operation of gadgets. Jump-Oriented Programming (JOP)

270 Inf Syst Front (2021) 23:269–283

uses branch instruction (jump) to replace the ret instruction,
and can also construct gadgets with the same Turing-
complete computing power (Bletsch et al. 2011). In order
to orchestrate the orderly execution of each gadget, JOP
attack requires a critical dispatcher gadget to change the
control flow. JOP attacks ensure the continuous operation
of gadgets by controlling EIP register. Because there is no
need to change the ESP register to hijack the control flow,
the addresses of the gadgets and their corresponding data in
the JOP attack can be stored not only in the stack, but also
in any rewritable data segment of the program.

Counterfeit Object-oriented Programming (COOP) is
another novel code reuse attack technique which induces
malicious program behavior by only invoking chains of
existing C++ virtual functions in a program through
corresponding existing call sites (Schuster et al. 2015).
The attack strategy of COOP relies on Object Oriented
Programming (OOP) principles and primarily aimed at C++
applications. In contrast to ROP and JOP attack, the control
flow exploited by COOP attack is more similar to a benign
execution flow and hard to be identificated. That means it
is more difficult to defend against COOP attack based on
control flow integrity.

Together with the deployment of defense schemes
like ASLR and CFI in modern system, code reuse
techniques update correspondingly (Carlini et al. 2015;
Carlini and Wagner 2014; Göktas et al. 2014). In modern
application situations, except from software on the local
host, applications and services provided by remote servers
become a growing trend (Riden et al. 2007; Araujo et al.
2014; Durumeric et al. 2014). Correspondingly, attacks on
those remote hosts based on remote code execution and code
reuse techniques appear. Based on the feature that servers
do not rerandomize the address space layout after a crash
under particular circumstances, Blind ROP (BROP) (Bittau
et al. 2014) rewrites every single byte of stack canary after
several attempts, and this corrupts stack integrity protection.
The adversary then invokes write to dump more available
gadgets in process memory. BROP enriches the arsenal of
remote attackers and expand the attack surface of code reuse
attacks.

2.2 Last Branch Record

Last Branch Record (LBR) provides a way to trace the
execution control flow of a program, as it can log the
executed branch information in a looped buffer at real-time,
including the address of a branch instruction (from) and
the target address (to). The most recent branch decisions
recorded in LBR can be used to reconstruct the program’s

behavior. The advantage of using LBR is that the CPU
can record branch information in parallel while execution,
and it incurs no slowdown. For an Intel Skylake CPU,
LBR can record the last 32 executed instructions. While the
looped buffer of LBR is filled, the newly recorded branches
overwrite the old ones (Guide 2011). The functionality of
LBR is enabled/disabled by certain model-specific registers
(MSRs). The access to MSRs requires kernel privilege,
which makes the status of LBR transparent to programs
running in user space.

3 Threat Model and Assumptions

HoneyGadget aims to detect and prevent all forms of code
reuse attacks from both localhost and remote attackers. To
ensure that our scheme is practical, we define our threat
model based on strong yet realistic attack assumptions.
With attack models in previous literature (Bittau et al.
2014; Carlini et al. 2015; Carlini and Wagner 2014; Göktas
et al. 2014) and application scenarios of HoneyGadget, we
generate the threat model as follows.

We assume that the target application is released
and distributed without side information such as source
code and debugging information. We further assume the
application has at least buffer overflow vulnerability and the
adversary has ready knowledge to exploit the vulnerability.
The adversary is allowed to exploit the vulnerability
repeatedly and can use automatic gadget generating tools
to locate available gadgets and construct attack payload.
We assume the adversary cannot get a higher privilege
level through normal operations, for example, the adversary
targeting a user space process cannot directly access the
kernel privilege except invoking a system call maliciously.
Specifically, we assume that the adversary cannot change
the LBR records since they stored in hardware registers that
cannot be written directly from user space.

For remote side, we assume servers restart their worker
processes after a crash and do not change their address space
layout. Currently, servers such as Nginx and Apache are
compatible with this feature. We further assume that the
adversary is allowed to overwrite a variable length of bytes
including a return instruction pointer (Bittau et al. 2014).
These assumptions mean that the adversary has a chance to
mount BROP attack successfully.

We assume the operating system enables standard
defense mechanisms such as W ⊕ X and ASLR by
default. However, as HoneyGadget focuses on capturing
the malicious behavior of adversaries, methods aim to stop
unintended control flow transfer such as CFI are disabled.

271Inf Syst Front (2021) 23:269–283

4 Design

In this section, we describe the design of HoneyGadget. We
first introduce the overview of our scheme, then we give out
the detail of each component of HoneyGadget.

4.1 Overview

We design HoneyGadget as two main components: static
processing module and runtime checking module (see
Fig. 1). The static processing module is responsible for
(1) source code iteration and locating places to insert
honey gadgets as decoys; (2) generating different types
of gadgets that meet the requirement of potential code
reuse attacks and (3) gadgets insertion. After processed by
the static processing module, the input file together with
secured libraries are then taken over by runtime checking
module. The runtime checking module of HoneyGadget (1)
maintains address list of inserted gadgets and a pre-defined
sensitive function list; (2) performs runtime monitoring
of execution and (3) prevents any suspicious code reuse
attacks and collect attack data. At last the output file
runs as a service program can be accessed by local users
and remote users. The output file has no interference on
normal operations. However, those inserted honey gadgets
are tempting but dangerous traps for attackers.

4.2 Static ProcessingModule

As we mentioned, the key idea of HoneyGadget is
deception. Based on the observation of attack principle of
code reuse attacks, we draw a conclusion that those attacks
assemble gadgets into attack payload and hijack the control
flow of victim program no matter attack tricks transform.
Thus, we can insert honey gadgets that meet the requirement
of code reuse attacks as decoys to lure attackers to launch
attacks. The main function of this component is to insert
different types of gadgets into the binary file. Obviously, the
types of honey gadgets and the locations where the gadgets
inserted are the main factors that affect the effectiveness of
HoneyGadget.

4.2.1 Types of Honey Gadgets

Gadgets are existing instructions which can read &
write memory, perform operations or shift execution
flow (Shacham 2007). It has been proved that instruc-
tion sequence build by a set of gadgets is Turing-
complete (Checkoway et al. 2010). HoneyGadget defines
gadgets from two perspectives, which are the functionality
of the gadget and its control transfer instruction.

According to the functionality of gadgets, they can
be divided into four categories, which are memory
read/write gadgets, arithmetic and logic operation gadgets,
function call gadgets and system call gadgets. The memory
read/write gadgets can read argument from memory and
then saves it to a specific register. The arithmetic and logical
operation gadgets are essential in most gadget chains.
The arithmetic operation gadgets consist of four basic
operators including add, subtraction, multiplication and
division. The logical operation consists of another four basic
operators including and, or, not and xor. The completness
on functionality of computaion makes assurance for Turing-
complete computational capability of gadgets.

Function call gadgets can perform arbitrary function
call in linked library by manipulating return address and
passed arguments. This is also the foundation of ret2libc
attacks. Different from function call gadgets, system call
gadgets do not rely on stack but registers to transfer
arguments. Besides, system call gadgets save the system
call number in eax register then it invokes linux-gate.so.1
provided by kernel to perform the corresponding system
call. After system call being invoked, the return address
is also saved in eax. The adversary can perform arbitrary
system call by manipulating the values in the registers
which are responsible for saving system call number
and passing arguments through read/write gadgets and
arithmetic and operation gadgets before lcall %gs:0x10 is
executed.

According to the type of control flow transfer instruction,
gadgets can be divided into ret-based gadgets, jmp-based
gadgets and call-preceded gadgets (Schuster et al. 2015).
These kinds of gadgets are able to coexist in a gadget

Fig. 1 Overview of HoneyGadget

272 Inf Syst Front (2021) 23:269–283

chain. Ret-based gadgets and jmp-based gadgets differ
in their ending instruction just as their names indicate.
Call-preceded gadgets leverage instruction call and ret to
manipulate control flow. Similar to an ordinary function
call, call-preceded gadgets use call instruction to adjust
the values in the registers. Meanwhile, ret instruction is
responsible for transferring control flow to the following
gadget.

4.2.2 Locations of Honey Gadgets

The locations to insert gadgets should be carefully arranged.
Inserting gadgets inside normal instruction sequences may
conflict with benign execution. For example, the gadget
which modifies register eax may change the return address
of benign execution flow. Consequently, the gadgets should
be placed to unreachable execution paths. In general, We
design three methods to insert honey gadgets to meet
the requirements of not changing the program execution
flow, which are summarized as function outlet, opaque
predicate and fake function. The layout of code segment
after inserting gadgets and nop instructions is shown in
Fig. 2.

Function Outlet: The outlet of a function can be identi-
fied with the ret instruction and normal execution flow
would never reach code snippets right after ret instruc-
tion. However, inserting honey gadgets right after ret will
grant the function with multiple outlets. Automatic gadget
generating tool such as ROPEME (Le 2010) and ROPgad-
get (Salwan 2011) will regard the second function outlet as
a fake one and discard it. In order to separate honey gadgets
from existing function outlets, the static processing module
selects instruction nop to complete this task. Those inserted

nop sequences form interspaces between original outlet and
the inserted gadgets, and it confuses the automatic gadget
generating tools.

Opaque Predicate: Opaque predicate have been used
in software protection extensively. By setting predicate
according to the value of invariant, context or execution
result, opaque predicate is designed to clutter the control
flow graph and it can redirect execution flow to a certain
path. Suppose there is a basic block, block0, which is
changed by designing the opaque predicate: if (always true
condition) {block0;} else {junk code;} or if (always false
condition) {junk code;} else {block0;}. Obviously the junk
code will not be executed by the program, so we can insert
our honey gadgets into it.

Fake Function: There is another method help us to introduce
honey gadgets by inserting a seemingly normal fake
function. After inserting the entire function into the binary
file, since there is no other code to call this function, it will
not be executed by the program. So it is completely feasible
to insert the gadgets into the generated fake function without
altering the program execution flow.

For each honey gadget inserted, the static processing
module records the offset to the start of the binary
file in a formulation of address list. The address list
is then maintained by runtime checking module during
executions.

4.2.3 Unintended Gadgets

Due to the poor alignment on x86 platform and the archi-
tecture actually allows instructions to be embedded within
other instructions, there are several unintended gadgets

Fig. 2 Layout of code segment after inserting honey gadgets

273Inf Syst Front (2021) 23:269–283

enrich attackers’ options on their way to construct gadget
chains. In order to strengthen defense, HoneyGadget elim-
inate potential unintended gadgets by randomly inserting
nop instructions (0x90) before each assembly instruction.
Shown in Fig. 3, by inserting a nop sequence between
instruction ”mov [ecx], edx” and ”add ebx, ebx”, the unin-
tended gadget disappears. We will introduce the detailed
implementation of inserting nop instructions and gadgets in
Section 5.

4.3 Runtime CheckingModule

Runtime checking module is designed to check whether
there are honey gadgets in execution branches of CPU.
Since inserted gadgets are independent from existing code
segments, and there is no legal control flow transferred
to them, it is most likely triggered by malicious attackers
once the inserted gadgets are executed. When loading
application, ASLR randomizes the space layout of the
application. Thus, in order to have an accurate record
of inserted honey gadgets, the runtime checking module
updates the saved address list with the mapping information
of a particular application. This module adds the base
address of code segments with offsets of each honey gadget
when the application is loaded. This maintenance procedure
is done in kernel space, which is also transparent to user
level applications.

Checking every branch instruction of the application
is inefficient. The timing of detection should be event
driven and non-bypassable. Based on the observation that
malicious executing code will eventually need to perform
system calls to achieve something meaningful, the static
processing module pre-defines a sensitive function call list
and saves it in the kernel module together with the address
list. The sensitive function list contains system calls that
can elevate privilege or perform arbitrary execution such as
execve() and setreuid(). While the target application is about
to perform a sensitive function call, the runtime checking
module pauses the execution of the target application
and reads from the looped buffer of LBR. Then the
runtime checking module compares the recorded instruction
addresses with maintained address list. If one or more
records match, HoneyGadget confirms a code reuse attack.
Once this happens, runtime checking module immediately
saves the LBR record and returns the system call with an
error code.

5 Implementation

In this section, we describe the implementation of our
prototype, and give the algorithms for gadgets insertion.

5.1 Honey Gadgets Insertion

In order to avoid potential altering of execution flow caused
by our inserted gadgets, HoneyGadget inserts them to
locations where benign control flow would never reach.
Moreover, the diversification of unreachable execution
path should be guaranteed to avoid those honey gadgets
from identification. We implement three ways based on
LLVM compiler to insert honey gadgets to meet the above
requirements: code spaces right after function outlet, opaque
predicate and fake function.

On the other hand, by means of randomly combining
different operation instructions and control flow transfer
instructions, HoneyGadget is able to generate all types
of gadgets. This makes those honey gadgets inserted
applicable for constructing a gadget chain. In general, the
longer the length threshold of generated gadget, the richer
the types of gadgets that can be generated, but at the same
time the memory overhead will increase. In our previous
work (Huang et al. 2019), we had ever set length threshold
to 6 since a gadget is usually short with no more than 6
instructions in the real-world ROP attacks (Cheng et al.
2014). However, in other types of code reuse attacks, some
special gadgets are more than 6 instructions. For example, in
BROP attack, the BROP gadget contains 7 instructions. In
order to balance detection efficacy and memory overhead,
the length of generated honey gadget is no more than 8
instructions.

5.1.1 Function Outlet

As mentioned in Section 4, inserting gadgets directly after
ret instruction will grant a function with multiple outlets. In
this case, automatic gadget generating tools will recognize
the inserted gadgets and discard them. In HoneyGadget, we
insert nop instructions to space out the two outlets as a
disguise. After analyzing several frequently used dynamic
libraries including glibc and ld, we noticed that there are
several nop instructions between basic blocks. The number
of nop instruction is between 5 to 40. Thus, we disguise
those inserted gadgets as normal code segments by inserting
5 to 40 nop instructions after ret.

The algorithm of honey gadgets insertion after function
outlet is given in Algorithm 1. HoneyGadget randomly
inserts nop instructions and gadgets after the ret instruction
at the probability of pGadget. For each insertion location,
static processing module generates a random number
pRand. If pRand is less than pGadget, static processing
module first inserts several nop instructions after the ret
instruction, and then it randomly chooses a set of operation
instructions such as call, mov or sub and an ending
instruction to construct a gadget.

274 Inf Syst Front (2021) 23:269–283

5.1.2 Opaque Predicate

For opaque predicate, there exists three different types,
which are invariant opaque predicate, contextual opaque
predicate and dynamic opaque predicate (Ming et al. 2015).
In HoneyGadget, we focus on using invariant opaque
predicate due to its easy deployment, and it is the most
frequently leveraged opaque predicate (Ming et al. 2015).
There is two ways to insert honey gadgets through opaque
predicate. The first method is to make use of some existing
open source tools. We can use Obfuscator-LLVM (Junod
et al. 2015) to process the source code and then use
KLEE (Cadar et al. 2008) to locate the unreachable path. In
HoneyGadget, we choose another method to insert gadgets.
We implement an LLVM pass to create invariant opaque
predicate during the code generation phase and then insert
honey gadgets after that.

The algorithm of honey gadgets insertion after opaque
predicate is given in Algorithm 2. It traverses each basic
block, randomly inserts opaque predicate and then inserts
honey gadgets on the unreachable path. The main difference
is that inserting honey gadgets after opaque predicate does
not require the insertion of extra nop instructions to space
out the two outlets.

5.1.3 Fake Function

Since most of the current applications are written with
thousands of lines of code, it is hard to find some extra
dummy functions inserted in them. The function of inserting
fake funtion is also implemented over LLVM compiler. We
can randomly generate some functions that just look like
normal functions through an LLVM pass. LLVM provides
a lot of APIs for manipulating Intermediate Representation
(IR), so it is convenient to use these interfaces to generate
fake functions. We can use a set of C++ classes that provide

275Inf Syst Front (2021) 23:269–283

methods for constructing the corresponding functions, basic
blocks and instructions.

When generating a fake function, we first construct a
function using Function::Create(), and then randomly add
basic blocks and instructions inside. The algorithm of fake
function generation is given in Algorithm 3. In a fake
function, we can embed multiple types of gadgets at the
same time, such as code snippets ending with jmp or ret
instructions. We can also insert some special gadgets to
enhance the ability to detect specific code reuse attacks.
Moreover, by inserting virtual functions into the binary
file, we can even lure attackers to mount COOP attacks.
In this scenario, we can capture all forms of code reuse
attacks.

5.2 nop Insertion

As presented in Section 4, HoneyGadget randomizes code
layout by randomly inserting nop before each instruction,
this procedure can eliminate potential unintended gadgets to
strengthen defense.

Similar with gadgets insertion procedure, during nop
insertion procedure, static processing module traverses
each instruction from the first line in source code. For
each instruction traversed, the module generates a random
number pInsert. If pInsert is less than pNop defined
previously, static processing module inserts a nop ahead of
the instruction.

5.3 Runtime Detection

We implement runtime checking module as a loadable
kernel module leverages LBR to monitor execution states
of instruction branches. The module inserts hooks in the
system call table to intercept the risky system calls, and
then invokes the checking algorithm to ensure that no honey
gadgets have been executed. We leverage bit-vectors to store
the information about inserted gadgets due to it is space
and time efficient. Moreover, the maintained address list
is in kernel space, this makes the address list transparent
to adversaries and immune to information leakages in
application layer.

HoneyGadget pre-defines a sensitive function list con-
taining function calls that can elevate privilege or perform
arbitrary execution. It will trigger runtime detection mech-
anism if one of the sensitive functions is called. It need
to be noted that sensitive function list can be customized,
in our prototype system, it include system calls mprotect(),
mmap(), execve() and setreuid(). These system calls are very
risky and are often used by attackers in the real-world code
reuse attacks. While the detection mechanism is invoked,
HoneyGadget pauses the execution of the target application.
Then runtime checking module sends the privilege instruc-
tion rdmsr to kernel to read LBR buffer. After reading the
32 recorded instructions, the module checks whether there
exist one or more recorded instructions match with items
in the address list. Since only malicious execution flow can
reach inserted gadgets, those addresses in the address list
shall never appear in LBR records during normal execu-
tion. Once the matching address is detected, the checking
module immediately saves the related LBR records and
then returns the system call with an error code. The saved
branch information can be used to analyze how attackers
operate.

276 Inf Syst Front (2021) 23:269–283

Fig. 3 The layout of instruction sequence after nop insertion

6 Evaluation

We implement HoneyGadget on Ubuntu 16.04 and the
deployed LLVM and Clang version are both 3.5.2. The
machine equips an Intel Skylake i5-6500 CPU with
8GB available memory. We evaluate the extra memory
requirement of inserting nop instructions and gadgets,
effectiveness and performance overhead of HoneyGadget.

6.1 Memory Cost Evaluation

When the application is loaded, those inserted gadgets and
nop instructions are loaded into the memory along with the
application. Consequently, the memory consumption of the
target application inevitably increases. In our experiment,
we evaluate the memory cost of nop insertions and gadgets
insertion.

6.1.1 Evaluation of Gadgets Insertion

We use HoneyGadget to process common Linux appli-
cations and evaluate the memory cost of honey gadgets
insertion. In this experiment, we set pGadget from 0.1 to
0.9 and test the memory cost of inserting honey gadgets into
function outlet, opaque predicate and fake function by using
the corresponding LLVM pass, respectively. As shown in
Table 1, three insertion methods take 8.2%, 18.9%, 9.4%
extra memory respectively when pGagdet is set to 0.5. We
can see that memory cost of gadgets insertion is positively
correlated with the insertion probability pGadget.

In addition, we set pNop and pGadget to 0.5, and
use three LLVM passes to insert gadgets into the binary
simultaneously, the result shows that the average increase in
binary size is about 35%. The proportion of inserted gadgets
is more than 60%.

6.1.2 Evaluation of nop Insertion

Similar to the above evaluation, We leverage same
applications to evaluate the memory cost and the percentage
of remained unintended gadgets after nop insertion. In this
test, we set pGadget to 50% as benchmark. Figure 4 shows
that it takes 1.2% extra memory space while pNop is set
to 0.1, and 10.6% extra memory cost while pNop is set to
0.9. We can see that the extra memory requirement has a
linear positive relationship with nop insertion probability.
On the other hand, along with the increase of pNop, the
possibility of corrupting an unintended gadget raises. The
dashed line in Fig. 4 gives the percentage of remained
unintended gadgets. We can see that the percentage of
remained unintended gadgets drops to 3.4% when pNop is
0.9.

6.2 Effectiveness

In order to assess the effectiveness of our scheme, we verify
HoneyGadget with different types of code reuse attacks
under two real world vulnerabilities. During these tests,
pNop and pGadget are both set to 50%. Results of these tests
indicate that HoneyGadget can prevent code reuse attacks

Table 1 Memory cost of
inserting honey gadgets pGadget Function Outlet(%) Opaque Predicate(%) Fake Function(%)

0.1 1.7 3.6 2.1

0.2 3.3 7.4 3.7

0.3 5.0 11.2 5.6

0.4 6.5 15.3 7.6

0.5 8.2 18.9 9.4

0.6 9.9 23.2 11.7

0.7 11.6 27.8 14.4

0.8 13.4 32.4 16.6

0.9 14.6 36.2 19.3

277Inf Syst Front (2021) 23:269–283

0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90

E
xt

ra
 M

em
or

y
R

eq
ui

re
m

en
t(

%
)

R
em

ai
ne

d
U

ni
nt

en
de

d
G

ad
ge

ts
(%

)

Probability of Inserting nop(%)

Memory Consumption
Unintended Gadgets

Fig. 4 Memory cost and effectiveness of nop insertion

effectively. As expected, our HoneyGadget can detect those
attacks with no false positive.

ROP attack In the first test, we evaluate the effectiveness
of HoneyGadget against ROP attacks. We first construct a
small program that contains a stack buffer overflow vulner-
ability. By inputting long parameters, the vulnerability will
be triggered and then be utilized to launch attacks. We use
the automatic ROP gadget generating tool ROPGadget (Sal-
wan 2011) to search available gadgets and randomly choose
them to construct a ROP gadget chain. We repeat this test
50 times and detecte 49 out of them.

We also select No-IP Dynamic Update Client version
2.1.9 for testing. The application fails to perform a boundary
check when calling the vulnerable function strcpy(). The
exploit database Exploit-db provides an example of a ROP
gadget chain. We replace the gadgets in the gadget chain
with gadgets generated by automatic tool. We use same
method to choose different gadgets to generate 50 gadget
chains as attack payload to exploit. Among the 50 repeated
tests, 48 of them used at least one of the inserted gadgets to
construct the ROP gadget chain.

JOP attack Similar to the first test, we use the above
two vulnerability programs to evaluate the effectiveness of
HoneyGadget against JOP attacks. We use tool ROPGadget
to find JOP gadgets and randomly choose them to construct
JOP gadget chains. Finally, we generate 50 JOP gadget
chains to attack that small program, HoneyGadget detect
all of them due to payloads contain at least one inserted
gadget. Then we repeat the JOP attack 50 times against No-
IP Dynamic Update Client using the similar method. The
result shows that HoneyGadget can detect 100% all the JOP
attacks.

BROP attack In the last test, we assess the effectiveness of
HoneyGadget against BROP attacks. Nginx web server is
one of the most popular web servers in real world appli-
cation situations. However, the weak security enforcement
makes it vulnerable to a couple of attacks (Bittau et al.
2014; Evans et al. 2015). We exploit a simple stack vulner-
ability on Nginx 1.4.0 (64-bit) to initiate a BROP attack.
BROP attack (1) uses stack reading to build memory leak-
age to defeat stack canaries and bypass ASLR; (2) finds a
particular BROP gadget to locate function call and write in
PLT, and gadgets to control arguments; (3) invokes those
functions is enough to dump memory pages of the remote
sever, and the dumped binary is transferred through net-
work, that enables known exploits techniques such as the
classic ROP. We apply HoneyGadget on Nginx server, and
the scheme inserte honey gadgets that meets the require-
ment of BROP attack automatically. We repeat BROP attack
attempt 50 times, all of them are detected since they lever-
aged at least one inserted gadget during stage 2 or 3 in attack
payload.

6.3 Performance Overhead

To evaluate the overhead brought by HoneyGadget, we
divide the evaluation into two phases. Corresponding to
the architecture of HoneyGadget, the first phase is static
processing, and another one is runtime checking.

We set pGadget and pNop to 50% and evaluate the
overhead of static processing phase by adding -time-passes
argument. During processing, the module recognizes all
instructions, basic blocks and functions. Therefore, the
larger the library size, the longer the static processing takes.
Time for processing frequently-used libraries are shown in
Fig. 5. As the results show, except from some huge libraries,
it demands about 30 seconds to process a dynamic library.

 0
 100
 200
 300
 400
 500
 600

libc-2.23

libpthread-2.23

libm-2.23

libreadline.so.6.3

ld-2.23

liblzma.so.5.0.0

libglib-2.0

libpcre.so.3.13.2

libz.so.1.2.8

libutil-2.23

Pr
oc

es
si

ng
 T

im
e(

s)

Fig. 5 Time consumption for processing different libraries

278 Inf Syst Front (2021) 23:269–283

For example, it takes 32.9 seconds to process ld-2.23.so and
32.7 seconds to process liblzma.so. As for libraries with
a huge quantity of basic blocks and functions, processing
these libraries requires much time. Taking the library libc-
2.23.so as an example, the time consumption increases to
421.6 seconds. Although it does take some time to do
the static processing work, fortunately, operations in static
processing phase is mostly a one-time effort, for libraries
can be shared by different applications.

We evaluate the performance overhead of runtime
checking module by using phoronix test suite (Larabel
and Tippett 2011) which provides a number of benchmark
tests for the Linux platform, and the results for each
benchmark are presented in Table 2. Since inserted gadgets
are unreachable for benign control flow, so in fact they
don’t introduce runtime overhead during execution. The
main performance overhead incured by HoneyGadget is
to compare LBR records and execute the inserted nop
instructions. The results show that HoneyGadget introduces
an average overhead of 6.8%, that is less than Readactor++
(8.4%) and other fine-grained CFI solutions. This indicates
the overhead of HoneyGadget is within an acceptable
range. In addition, insignificant runtime overhead prevents
attackers from detecting the deployment of HoneyGadgte
because the time difference between program executions
is not so great. Even if nuances are noticed, attackers will
most likely think that is caused by other factors, such as
computer status or network latency. So it is not easy for

attackers to detect the deployment of HoneyGadget through
a differential method.

7 Discussion

7.1 Stack Pivot Attack

Stack pivot attack (Snow et al. 2013; Yan et al. 2016)
manipulates the stack pointer to point to another memory
region that stores attack payload. By applying indirect
control flow manipulation, stack pivot attack can be utilized
to bypass control flow integrity checks. Different from
mechanisms using control flow integrity theories, the main
idea of HoneyGadget is deception. By inserting gadgets as
traps and nop instructions to eliminate potential unintended
gadgets, HoneyGadget traps adversaries who tried to use
inserted gadgets as attack payload. LBR can honstly record
executed instruction branches and check with inserted
gadgets. Thus, HoneyGadget can detect stack pivot attacks
as long as inserted gadgets are used to construct the gadget
chain.

7.2 Detection Rate

The theoretic detection rate of HoneyGadget depends on
the number of hoeny gadgets and their types. We assume
it takes numGadgets gadgets to construct an ROP payload,

Table 2 Runtime Overhead of HoneyGadget on the Phoronix Test Suite

Benchmark Metric Original HoneyGadget Overhead

SQLite sec 71.98 77.95 8.3%

Tremulous Frames/s 73.13 68.73 6.4%

HMMer sec 46.39 48.29 4.1%

C-Ray sec 112.40 114.09 1.5%

BYTE Lines/s 9069220 7646897 18.6%

Parallel BZIP2 sec 45.89 47.45 3.4%

Smallpt sec 621.46 674.28 8.5%

LZMA sec 762.37 782.19 2.6%

Gcrypt microsec 6142 6308 2.7%

dcraw sec 157.44 168.62 7.1%

MP3 Encoding sec 41.19 43.58 5.8%

PostgreSQL Trans/s 278.97 248.64 12.2%

GnuPG sec 21.07 22.61 7.3%

Average 6.8%

279Inf Syst Front (2021) 23:269–283

the number of original gadgets in source code is numReal,
and the number of inserted gadgets is numDec. We can
confirm code reuse attacks once one of the inserted gadgets
is executed. The ideal detection rate of HoneyGadget comes
to:

P = 1−(numReal/(numReal+numDec))numGadgets (1)

However, the function of gadgets varies in a gadget chain,
and the frequency of their appearance differs. As a result,
the appearance frequency of different types of gadgets is an
important factor that influences the detection rate.

HoneyGadget requires a comprehensive set of inserted
gadgets. We further assume the functionality of honey
gadgets is consistent with original gadgets and they are
of equal probability to be chosen to construct a ROP
gadget chain. The total gadget type is n. For gadget type
i, there are numReali gadgets in the source code, and
numDeci honey gadgets are inserted by HoneyGadget, the
number of occurrences of gadget type i in a gadget chain is
numGadgeti . We can conclude that:

numReal =
n∑

i=1

numReali (2)

numDec =
n∑

i=1

numDeci (3)

numGadget =
n∑

i=1

numGadgeti (4)

The theoretic detection rate of HoneyGadget while all
gadgets are of equal possibility to be chosen to assemble a
gadget chain can be concluded as:

P =1−
n∏

i=1

(numReali/(numReali+numDeci))
numGadgetsi

(5)

We can conduct the conclusion that the detection ratio of
HoneyGadget has a positive relationshipwith the proportion
of inserted honey gadgets. On the other hand, we can
also infer that the detection ratio is closely related to the
type of inserted gadgets. For example, as long as any type
of inserted gadget has a ratio of more than 90% of the
corresponding type of gadget, the theoretic detection rate
of HoneyGadget can be greater than 90%. Therefore, by
analyzing the pattern of code reuse attacks, we can insert
specific gadgets to increase the detection rate. The attack
data collected by LBR can help us to do this thing.

7.3 Special Gadget Chain

There are some kinds of code reuse attacks that relies on
specific gadgets. For example, BROP (Bittau et al. 2014)
relies on a special gadget named BROP gadget which is
consisted of 7 instructions to pop contents stored in the
stack. BROP gadget is critical for BROP attack since it can
be used to control the first two arguments of calls. Since the
number of BROP gadgets in the binary itself is relatively
small, we increase the detection rate by inserting some
BROP gadgets. Consequently, on launching a BROP attack,
the adversary has a high probability of choosing inserted
BROP gadget to construct attack payload. According to
Section 6.2, detection on BROP comes to 100%. Similarly,
because JOP attack requires a critical dispatcher gadget to
orchestrate the orderly execution of each gadget, we can use
the same method to increase the detection ratio.

7.4 Robustness

The detection effect of HoneyGadget relies heavily on
isnerted gadgets. By inserting honey gadgets and elimi-
nating unintended gadgets in source code, HoneyGadget
induces the adversary to use inserted gadgets as attack
payload. However, several originally exist gadgets are still
available for adversary. Though the possibility of choosing
those gadgets is diluted by inserting nop instructions, the
possibility for adversary to pick out a gadget chain using
original gadgets still exists. For such cases, the detection
mechanism of HoneyGadget fails to react. Our approach
is to analyze the pattern of code reuse attacks to maxi-
mize the success rate of detecting attacks. One possible
solution to prevent such attacks is combining HoneyGadget
with other techniques like G-Free (Onarlioglu et al. 2010)
or binary rewriting to eliminate critical gadgets from orig-
inal program code to prevent them from being misused by
attackers.

We also have to consider that the adversary can try
to bypass HoneyGadget by avoid reusing code snippets
follows directly behind ret instruction consciously. Under
this circumstance, some of inserted gadgets are filtered.
Fortunately, HoneyGadget not only inserts gadgets after
return of functions, but also unreachable branches of opaque
predicate and fake functions. Locating opaque predicate
or fake function requires for a reverse engineering and
performing symbolic execution, which is not an easy task
for attackers, especially in the case of large applications.
As a result, the gadgets inserted into unreachable execution
branches of opaque predicate and fake functions are still
tempting traps for adversary. Inserting gadgets into branches
of opaque predicate and fake functions just enriches code
diversity. Thus, in this assumption, HoneyGadget is still
able to detect potential code reuse attacks.

280 Inf Syst Front (2021) 23:269–283

8 RelatedWork

To defend code reuse attacks, several defenses have been
proposed. Address Space Layout Randomization (ASLR) is
a representative mechanism by changing the space layout
of the application and its related libraries. However, a
single memory leakage vulnerability is enough to de-
randomize the whole memory space. Enhancement to ASLR
focus on applying fine granularity and re-randomization.
For example, ASLP (Kil et al. 2006) randomizes the
target application at the function level, Remix (Chen
et al. 2016) randomizes the address space at basic block
level, and ILR (Hiser et al. 2012) realizes randomization
at instruction level. Bigelow et al. promoted a timely
randomization scheme to re-randomizes address layout
during execution (Le 2010). Although these fine-grained
ASLR significantly increase the difficulty for attackers
to locate gadgets, it also brings extra time and sapce
consumption.

kGuard (Kemerlis et al. 2012) uses a nop sled to
increase the difficulty for the attacker to obtain internal
information of the program, but they only do this to protect
and diversify the kernel. HoneyGadget uses deception
for detecting code reuse attacks by randomly inserting
gadgets to the target application and its related libraries.
As mentioned in Section 5, the diversity of gadget types
and inserted locations makes attackers hard to distinguish
inserted gadgets from original ones. In order to further
enhance the detection effect, HoneyGadget inserts nop
instructions to eliminate unintended gadgets.

CFI poses an unacceptable overhead of more than 20%,
that is too significant to deploy in commodity systems.
In order to make CFI practical, a few coarse-grained
mechanisms are proposed. CCFIR (Zhang et al. 2013a) and
binCFI (Zhang and Sekar 2013b) relax the limitation of
legal indirect control flow transfers and reduce overhead
to an acceptable level. However, the loose checking policy
can be bypassed by advanced attacks (Schuster et al. 2015).
Another way to reduce overhead of checking the validity
of control flow transfer is based on hardware. Liu et
al. introduced a CFI enforcement using Intel Processor
Trace (Liu et al. 2017). Kbouncer (Pappas 2012) and
ROPecker (Cheng et al. 2014) use LBR to detect attacks.
Compared to using IPT to trace the execution path, CPU
is able to read LBR registers parallel at execution. This
feature makes LBR a more efficient way to log instruction
branches of the application. HoneyGadget also uses LBR
to record execution branch of the target application.
However, different from these approaches, the main idea
of HoneyGadget is tempting adversaries to launch attacks
by inserted gadgets, then capture and log the behavior of
attacker.

Booby trap (Crane et al. 2013) is a mechanism to actively
detect and respond to attacks against a target application
proposed by Crane et al. The main idea of booby traps is
as follows: in a diversified application, code sequences (the
actual booby traps) are added that trigger an active response,
such as terminating the program or generating an alert.
Readactor++ (Crane et al. 2015) inserts booby traps in both
PLT and vtables to mitigate blind probing of table entries.
HoneyGadget inserts nop instructions and honey gadgets to
lure adversary to launch attack. Compare to Readactor++,
our HaneyGadget is more active and has a greater chance of
getting attackers into the traps.

9 Conclusion and FutureWork

In this paper, we present a deception based approach
for detecting code reuse attacks named HoneyGadget. By
inserting honey gadgets to the application, our HoneyGad-
get confuses adversary with traps. In case an attacker uses
the inserted gadgets to mount attack, we can detect it and
record his behavior. HoneyGadget maintains an address list
recording addresses of inserted gadgets in kernel space and
defines a set of sensitive function calls. Once executing
the sensitive function call, HoneyGadget pauses execution
of the target application and reads LBR buffer to check
whether recorded instruction branches match with main-
tained addresses. If the record matches, HoneyGadget con-
firms a potential code reuse attack and saves the relevant
information. Our evaluation shows that HoneyGadget incurs
an acceptable runtime overhead of 6.8%. Compared to other
defenses, the key idea of HoneyGadget is deception, which
is a brand-new method to detect code reuse attacks.

The key for enhancing the efficacy of HoneyGadget is
to enrich the type and location of inserted gadgets. Most
gadgets in a ROP gadget chain are common and replaceable,
however, some types of gadgets are rare but necessary for
a certain kind of code reuse attacks. Consequently, limiting
the types of honey gadgets to those critical gadgets will
certainly increase the possibility for attacker to sink into our
traps. On the other hand, it is necessary to figure out how
the different types of honey gadgets and different placement
strategies affect the effectiveness of HoneyGadget. How to
reduce the system’s false negative rate and how to prevent
attackers from detecting the deployment of HoneyGadget
also require further research. Future work could focus
on systematizing the limitations and refining the type of
inserted gadgets to get the better results.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China under Grant No. 61272452 and
the National Basic Research Program of China (973 Program) under
Grant No. 2014CB340601.

281Inf Syst Front (2021) 23:269–283

References

Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J. (2005). Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and communications security (pp. 340–353): ACM.

Andersen, S., & Abella, V. (2004).Data execution prevention. changes
to functionality in microsoft windows xp service pack 2, part 3:
Memory protection technologies.

Araujo, F., Hamlen, K. W., Biedermann, S., Katzenbeisser, S.
(2014). From patches to honey-patches: Lightweight attacker
misdirection, deception, and disinformation. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications
security (pp. 942–953): ACM.

Avgerinos, T., Sang, K. C., Rebert, A., Schwartz, E. J., Woo,M., Brum-
ley, D. (2014). Automatic exploit generation. Communications of
the Acm, 57(2), 74–84.

Bittau, A., Belay, A., Mashtizadeh, A., Mazières, D., Boneh, D.
(2014). Hacking blind. In 2014 IEEE Symposium on Security and
privacy (SP) (pp. 227–242): IEEE.

Bletsch, T., Jiang, X., Freeh, V. W., Liang, Z. (2011). Jump-oriented
programming: a new class of code-reuse attack. In Proceedings
of the 6th ACM Symposium on Information, Computer and
Communications Security (pp. 30–40): ACM.

Cadar, C., Dunbar, D., Engler, D. R., et al. (2008). Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI, (Vol. 8 pp. 209–224).

Carlini, N., & Wagner, D. (2014). Rop is still dangerous: Breaking
modern defenses. In USENIX Security Symposium (pp. 385–399).

Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R. (2015).
Control-flow bending: On the effectiveness of control-flow
integrity. In USENIX Security Symposium (pp. 161–176).

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham,
H., Winandy, M. (2010). Return-oriented programming without
returns. In Proceedings of the 17th ACM conference on Computer
and communications security (pp. 559–572): ACM.

Chen, Y., Wang, Z., Whalley, D., Lu, L. (2016). Remix: On-demand
live randomization. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy (pp. 50–61): ACM.

Cheng, Y., Zhou, Z., Miao, Y., Ding, X., Deng, H. (2014). Ropecker:
A generic and practical approach for defending against rop attack.
Proceedings of the 21th Annual Network and Distributed System
Security Symposium (NDSS’14).

Crane, S., Larsen, P., Brunthaler, S., Franz, M. (2013). Booby trapping
software. In Proceedings of the 2013 New Security Paradigms
Workshop (pp. 95–106): ACM.

Crane, S.J., Volckaert, S., Schuster, F., Liebchen, C., Larsen, P., Davi,
L., Sadeghi, A.R., Holz, T., De Sutter, B., Franz, M. (2015). It’s
a trap: Table randomization and protection against function-reuse
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (pp. 243–255): ACM.

Crossler, R. E., Bélanger, F., Ormond, D. (2019). The quest for
complete security: an empirical analysis of users’ multi-layered
protection from security threats. Information Systems Frontiers,
21(2), 343–357.

Durumeric, Z., Bailey, M., Halderman, J.A. (2014). An internet-wide
view of internet-wide scanning. In USENIX Security Symposium
(pp 65–78).

Evans, I., Fingeret, S., Gonzalez, J., Otgonbaatar, U., Tang, T., Shrobe,
H., Sidiroglou-Douskos, S., Rinard, M., Okhravi, H. (2015).
Missing the point (er): on the effectiveness of code pointer
integrity. In 2015 IEEE Symposium on Security and privacy (SP)
(pp. 781–796): IEEE.

Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G. (2014).
Out of control: Overcoming control-flow integrity. In 2014 IEEE
Symposium on Security and privacy (SP) (pp. 575–589): IEEE.

Guide, P. (2011). Intel® 64 and ia-32 architectures software
developer’s manual. Volume 3B: System programming Guide, Part
2.

Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J. W. (2012).
Ilr: Where’d my gadgets go? In 2012 IEEE Symposium on Security
and privacy (SP) (pp. 571–585): IEEE.

Huang, X., Yan, F., Zhang, L., Wang, K. (2019). Honeygad-
get: A deception based rop detection scheme. In Interna-
tional Conference on Science of Cyber Security (pp. 121–135
): Springer.

Junod, P., Rinaldini, J., Wehrli, J., Michielin, J. (2015). Obfuscator-
LLVM – software protection for the masses. In Wyseur, B. (Ed.)
Proceedings of the IEEE/ACM 1st International Workshop
on Software Protection, SPRO’15 (pp. 3–9). Firenze: IEEE.
https://doi.org/10.1109/SPRO.2015.10.

Kemerlis, V.P., Portokalidis, G., Keromytis, A.D. (2012). kguard:
lightweight kernel protection against return-to-user attacks. In
Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12) (pp. 459–474).

Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P. (2006). Address space
layout permutation (aslp): Towards fine-grained randomization
of commodity software. In Computer Security Applications
Conference, 2006. ACSAC’06. 22nd Annual (pp. 339–348): IEEE.

Larabel, M., & Tippett, M. (2011). Phoronix test suite. Phoronix
Media, [Online] Available: http://wwwphoronix-test-suitecom/
[Accessed July 2019].

Le, L. (2010). Payload already inside: datafire-use for rop exploits.
USA: Black Hat.

Liu, Y., Shi, P., Wang, X., Chen, H., Zang, B., Guan, H.
(2017). Transparent and efficient cfi enforcement with intel
processor trace. In 2017 IEEE International Symposium on
High performance computer architecture (HPCA) (pp. 529–540):
IEEE.

Ming, J., Xu, D., Wang, L., Wu, D. (2015). Loop: Logic-
oriented opaque predicate detection in obfuscated binary code. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (pp. 757–768): ACM.

Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E. (2010).
G-free: defeating return-oriented programming through gadget-
less binaries. In Proceedings of the 26th Annual Computer
Security Applications Conference (pp. 49–58).

Pappas, V. (2012). kbouncer: Efficient and transparent rop mitigation.
Pappas, V., Polychronakis, M., Keromytis, A.D. (2013). Transparent

rop exploit mitigation using indirect branch tracing. In USENIX
Security Symposium (pp. 447–462).

Pappas, V. (2015). Defending against return-oriented programming.
New York: Columbia University.

Riden, J., McGeehan, R., Engert, B., Mueter, M. (2007). Know your
enemy: Web application threats, using honeypots to learn about
http-based attacks.

Salwan, J. (2011). Ropgadget–gadgets finder and auto-roper.
Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A. R.,

Holz, T. (2015). Counterfeit object-oriented programming: on the
difficulty of preventing code reuse attacks in c++ applications. In
2015 IEEE Symposium on Security and privacy (SP) (pp. 745–
762): IEEE.

Schwartz, E.J., Avgerinos, T., Brumley, D. (2011). Q: Exploit
hardening made easy. In USENIX Security Symposium (pp. 25–
41).

Shacham, H. (2007). The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and
communications security (pp. 552–561): ACM.

Silic, M., & Lowry, P. B. (2019). Breaking bad in cyberspace:
Understanding why and how black hat hackers manage their

282 Inf Syst Front (2021) 23:269–283

https://doi.org/10.1109/SPRO.2015.10
http://wwwphoronix-test-suitecom/

nerves to commit their virtual crimes. Information Systems
Frontiers, 1–13.

Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen,
C., Sadeghi, A. R. (2013). Just-in-time code reuse: on the
effectiveness of fine-grained address space layout randomization.
In 2013 IEEE Symposium on Security and privacy (SP) (pp. 574–
588): IEEE.

Vishwanath, A. (2015). Diffusion of deception in social media:
Social contagion effects and its antecedents. Information Systems
Frontiers, 17(6), 1353–1367.

Yan, F., Huang, F., Zhao, L., Peng, H., Wang, Q. (2016). Baseline
is fragile: On the effectiveness of stack pivot defense. In 2016
IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS) (pp. 406–413): IEEE.

Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S.,
Song, D., Zou, W. (2013a). Practical control flow integrity and
randomization for binary executables. In 2013 IEEE Symposium
on Security and privacy (SP) (pp. 559–573): IEEE.

Zhang, M., & Sekar, R. (2013b). Control flow integrity for
cots binaries. In USENIX Security Symposium (pp. 337–
352).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Xin Huang is a graduate student at Wuhan University, China. He
received his B.S. degree in Computer Science from Wuhan University,
China, in 2018. His research interests include software security,
moving target defense, hardware-assisted security and AI security.

Fei Yan is an associate professor of the School of Cyber Science
and Engineering at Wuhan University, China. He received his Ph.D.
degree from Wuhan University, China, in 2007. He is a co-founder
of ChinaSigTC (Chinese special interest group on trusted cloud) and
served associate chair of program committee of CTCIS (Chinese
Trusted Computing and Information Security Conference) from 2017
to 2019. His current research interests include system security, trusted
computing, moving target defense and AI security.

Liqiang Zhang is a lecturer of the School of Cyber Science and
Engineering at Wuhan University, China. He is a senior evaluator
for Chinese Classified Protection of Cybersecurity, and a senior
Chinese Information Technology Project Management Professional.
His current research focus on system security, trusted execution
environment and security measurement. He has published more than
20 papers in these areas.

Kai Wang was a graduate student at Wuhan University before July of
2019. He received his M.S. degree in Cyber Science and Engineering
from Wuhan University, China, in 2019, and received his B.S. degree
from Northwestern Polytechnical University, China, in 2016. His
research interests include system security and software security.

283Inf Syst Front (2021) 23:269–283

	HoneyGadget: A Deception Based Approach for Detecting Code Reuse Attacks
	Abstract
	Introduction
	Background
	Code Reuse Attacks
	Last Branch Record

	Threat Model and Assumptions
	Design
	Overview
	Static Processing Module
	Types of Honey Gadgets
	Locations of Honey Gadgets
	Function Outlet:
	Opaque Predicate:
	Fake Function:

	Unintended Gadgets

	Runtime Checking Module

	Implementation
	Honey Gadgets Insertion
	Function Outlet
	Opaque Predicate
	Fake Function

	nop Insertion
	Runtime Detection

	Evaluation
	Memory Cost Evaluation
	Evaluation of Gadgets Insertion
	Evaluation of nop Insertion

	Effectiveness
	ROP attack
	JOP attack
	BROP attack

	Performance Overhead

	Discussion
	Stack Pivot Attack
	Detection Rate
	Special Gadget Chain
	Robustness

	Related Work
	Conclusion and Future Work
	References

