
OrgMiner: A Framework for Discovering User-Related Process
Intelligence from Event Logs

Amit V. Deokar1 & Jie Tao2

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Process Intelligence refers to the extraction and analysis of valuable knowledge nuggets embedded in business process instances/
event logs or enterprise applications, for the purpose of supporting various decision-making processes. Researchers and practi-
tioners mine such event logs using Process Mining and Analytics (PMA) techniques that help analyze business processes across
three perspectives: control flow, organization, and data. While previous PMA studies have made advances toward the control
flow and data flow perspectives, there is limited research toward the organizational perspective of process intelligence. In this
study, we propose an organizational mining framework, OrgMiner, that supports constructing organizational models from event
logs. The framework utilizes the notion of behavioral patterns, which rely on the weak order relations appearing in event logs.
The various modules and knowledge elements in the framework are described in detail. The components of the framework
support identifying, selecting, and applying behavioral patterns using different metrics for organizational mining purposes. The
derived organizational models can be used to support decision making in scenarios such as task assignment, resource allocation,
as well as role-based access control. Compared to extant studies, the proposed approach does not assume prior availability of
explicit process models. Additionally, the process patterns presented in this study can be used as building blocks, so that
researchers and practitioners can use them directly or extend them further to identify complex organizational processes. A case
study is presented to evaluate the feasibility and effectiveness of the OrgMiner framework.

Keywords Business process management . Process analytics . Behavioral patterns . Processmining . Organizational mining

1 Introduction

Business processes present a wealth of data with a potential
to be derived into information, and ultimately knowledge
for the purposes of management. Extracting and under-
standing process related knowledge is one of the key chal-
lenges in Business Process Management (BPM) domain. In
that regard, organizations employ a variety of techniques to
improve decision-making that ultimately relies on business
process data and observations. These process observations

also termed as event logs, come from various information
systems supporting the corresponding business processes,
sometimes in the form of full-fledged enterprise systems or
as standalone applications/systems that capture execution
information related to certain process segments or tasks
(Ghattas et al. 2014). Process Mining and Analytics
(PMA) techniques facilitate discovery, monitoring, and
improvement of existing processes based on the analysis
of event logs (van der Aalst 2012a, b). PMA techniques
can be applied to various phases in the business process
lifecycle to facilitate organizational learning based on
process-related knowledge. PMA has been recognized to
augment current Business Intelligence (BI) techniques by
investigating activities consisting the business processes
rather than treating them as black boxes, and thus address-
ing a limitation of mainstream BI applications of mainly
focusing on aggregating data for assisting high-level tacti-
cal or strategic decision making (Bucher et al. 2009). Thus,
with the assistance of PMA techniques, we can effectively
transition from BI to Process Intelligence (PI) (van der
Aalst et al. 2015).

* Amit V. Deokar
amit_deokar@uml.edu

Jie Tao
jtao@fairfield.edu

1 Department of Operations & Information Systems, Manning School
of Business, University of Massachusetts Lowell, Lowell, MA, USA

2 Department of Information Systems & Operations Management,
Dolan School of Business, Fairfield University, Fairfield, CT, USA

https://doi.org/10.1007/s10796-020-09990-7

Published online: 8 April 2020

Information Systems Frontiers (2021) 23:753–772

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-09990-7&domain=pdf
http://orcid.org/0000-0002-4869-9872
mailto:amit_deokar@uml.edu


While researchers have primarily focused on applying
PMA techniques for studying control-flow and data-flow per-
spectives of business processes, there is limited work on the
organizational perspective (van der Aalst 2011).
Organizational and social structures underlying business pro-
cesses shed light on the knowledge transferring network of
task handlers, and as such need to be well-understood for
improving the performance of business processes. This infor-
mation can be valuable in discovering missing knowledge
elements or redundant tasks in business processes (Leyer
et al. 2016). Existing research relies on explicit process
models and/or organizational models for obtaining informa-
tion on the organizational setting and interactions among
knowledge workers (Song and van der Aalst 2008; Thomas
and Fellmann 2006). However, in many cases (such as inter-
organizational workflows and cross-department team-based
processes), neither are process/organizational models explic-
itly available nor does a formalized structure exist to represent
such knowledge. Thus, an alternative approach is deemed
necessary in order to discover user-related process intelligence
from event logs.

Consider a following real-world scenario that can benefit
from the identifications of process patterns. In an organization
(e.g. a financial institute), manager A always reviews the
transactions completed by trader B and returns tasks back to
B, but never reviews the transactions completed by trader C.
Such interleaving (i.e. between A and B) and exclusiveness
(i.e. between A/B and C) pattern strongly suggests that A and
B should be assigned to the same organizational unit (e.g.,
team), while A/B and C would rather be in different organi-
zational units. Further, if A and B always conduct consecutive
tasks together, then the same resource (e.g. a trading terminal)
can be allocated to both of them since such allocation will not
affect the efficiency of the process. This example gives a pre-
view of basic types of process patterns and their applications
to formulate role assignment and resource allocation rules,
which are key tasks in organization mining, or other integra-
tions of the business rules (Kluza and Nalepa 2018).

This study focuses on organizational mining, which entails
extracting information on organizational structures/models
that provide insights on how knowledge workers interact to
execute business processes. Organizational mining contrib-
utes to important facets of business processes, including
strategy, governance, people, and (organizational) culture.
Moreover, organizational mining can help researchers and
practitioners construct ontologies of various industries that
represent containers of domain knowledge. In particular, this
study contributes to the PMA body of knowledge by present-
ing: a) a pattern recognition and matching approach in the
form of Behavioral Pattern Discovery Algorithm (BPDA)
for identifying behavioral process patterns from event logs,
b) a novel organizational mining approach consisting of the
Org-AHC algorithm based on behavioral process patterns, and

c) the OrgMiner framework that encapsulates three modules,
namely pattern definition, pattern selection, and organization-
al mining in a systematic manner through links to various
pertinent knowledge elements. These design artifacts have
been validated through a case study consisting of a large event
log, which also demonstrates their feasibility and utility. It is
also observed in the case study that our approach is more
economically feasible in resource-limited scenarios.

The structure of this paper is organized as follows.
Section 2 provides background and overview of PMA, with
emphasis on the organizational perspective. A motivating and
running example used throughout the paper is discussed in
Section 3. Key design artifacts including theOrgMiner frame-
work, behavioral pattern recognition using the BPDA algo-
rithm, and organizational mining approach using the Org-
AHC algorithm, are presented in Section 4. We validate the
design artifacts through a case study in Section 5. Discussion
on related work in order to situate the key contributions of this
study is presented in Section 6. The article concludes with
summary remarks in Section 7.

2 Related Studies

2.1 Process Mining and Analytics (PMA)

PMA techniques have been used to extract embedded process
knowledge and to assess and improve the performance of
business processes from different perspectives (Caron et al.
2013). The essence of PMA activities is to investigate event
logs with the goal of reasoning about the implicit relationships
between process constructs. The ultimate goal of PMA is to
derive knowledge nuggets in a user-understandable form that
can facilitate predictive process management and decision-
making. Given that PMA has its roots in the data mining
discipline, its practices are analogous to data mining applica-
tions. Notably, data mining techniques derive patterns (as for-
mal abstractions of events in the real world) from datasets (as
factual records of observations regarding the events), while
PMA techniques analyze process execution data (event logs,
as observations of events in certain business processes) to
construct the process models (as abstractions of actual busi-
ness processes) (Tiwari et al. 2008). The key similarity be-
tween data mining and PMA is that they both derive implicit
knowledge from (large) data collections.

Earlier PMA approaches have been based on heuristic al-
gorithms, which identify process patterns based on intuitive
assumptions and approaches. However, a growing number of
PMAmethods make use of advanced analytic techniques such
as genetic algorithms (van der Aalst et al. 2005), fuzzy logic
algorithms (Günther and van der Aalst 2007), temporal anal-
ysis based algorithms (Köck and Paramythis 2011), clustering
algorithms (Bose and van der Aalst 2010), and pattern
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recognition based algorithms (Ferreira and Thom 2012). PMA
activities can be broadly characterized across two dimensions,
namely functions and perspectives (van der Aalst 2012b). In
regard to the functional dimension, PMA techniques entail
three major functions: The discovery function entails mining
the event logs to (semi-) automatically construct the underly-
ing process models and reason about associated properties
(activity originators and data objects), and has been the focus
of traditional PMA approaches (vanDongen and van der Aalst
2004). The conformance checking function involves deviation
detection by comparing the minedprocess model that is con-
structed from executed process observations with an a priori
model. Pattern-based approaches have been used for the con-
formance checking function of PMA in prior studies (Becker
et al. 2016). The enhancement function also involves an a
priori model; but rather than checking for conformance, it
extends the mined process model with a new aspect or func-
tionality (Jareevongpiboon and Janecek 2013). Popular en-
hancement activities include decision mining, user profiling,
and performance analysis, which can be useful for identifying
and studying the knowledge transfer patterns among networks
of knowledge workers in organizations. Furthermore, recent
PMA studies have focused on innovative applications such as
collaboration task management within business processes
(e.g. attention tracking (Fan et al. 2015). The perspectives
dimension of PMA activities pertains to inquiring about var-
ious aspects of business processes such as the control flow
perspective (‘how’), the resource flow perspective (‘who’),
and the data flow perspective (‘what’). The control flow per-
spective focuses on the ordering of events in business process-
es (Bertolini et al. 2011); the resource perspective focuses on
the originators of the events and how they are related (Song
and van der Aalst 2008); while the data perspective focuses on
the data objects and their values associated with each of the
executed events (Sun and Zhao 2013). Process pattern-based
approaches have been used in the data flow perspective, such
as the use of abstract patterns derived from process instances
to assess and control the quality of data (Wahyudi et al. 2018).
Similarly, process instances have been mined to identify pat-
terns leading to process nuggets termed as fragments that may
be conducted either in a distributed or parallel manner
(Pourmasoumi et al. 2017)

A majority of extant PMA studies focus on the control flow
perspective with all three functions; while the classical data
mining and BI (e.g. Online Analytical Processing, OLAP)
areas concentrate on the data perspective as applied to the
BPM context. Also, prior studies regarding the resource per-
spective of the business processes rely significantly on the
availability of explicit knowledge abstractions such as process
and/or organizational models (Sellami et al. 2013; Tan et al.
2008). Thus, there is lack of research on techniques for mining
organizational information solely from event logs, in absence
of such prior available models. In this study, we contribute

toward addressing this research gap by proposing a frame-
work aimed at organizational mining objectives in absence
of any explicit process or organizational structure
representations.

2.2 Organizational Mining

Organizational mining refers to specific PMA techniques for
analyzing implicit information about resources (originators,
and other entities executing activities) in event logs.
Organizational mining can have two key applications: (1) to
develop an understanding of the social networks depicting the
interactions among different resources in organizational or
cross-organizational settings; and (2) to (re)structure cross-
functional and/or cross-organizational teams of knowledge
workers based on their organizational roles (IEEE Task
Force on Process Mining 2011). For instance, Alirezaei and
Parsa (2018) use Event-Condition-Action (ECA) rules to
model cross-organizational, unstructured business processes
and the collaborative network within them. Similar to tradi-
tional PMA, organizational mining also entails functions in-
cluding discovery, conformance checking, and enhancement.
Discovery in organizational mining refers to construction of
organizational models or social network models that reflect
the organizational settings from the event logs. Organizational
models usually contain information regarding organizational
units (e.g., departments), roles (e.g., tasks), originators (e.g.,
employees), and relationships (e.g., A is “part-of” B, or C “is-
a” D), while social network models depict the interactions
(e.g., handover of work, etc.) among different originators.
Also, organizational mining can be used in tandem with other
related information to discover job assignment rules, resource
allocation rules, or user profiling rules, for decision support
purposes. Within such context, conformance checking refers
to comparing discovered models/rules with corresponding
heuristic counterparts. Moreover, enhancement in the context
of organizational mining refers to enriching existing models/
rules with value-adding knowledge, such as constructing ab-
stractions (i.e. models, rules) based on different organizational
units/roles.

Researchers in the PMA domain have recognized the im-
portance of organizational modeling and have proposed
several approaches. For instance, Sellami et al. (2013) suggest
the use of an organizational ontology for semantically anno-
tating event logs to discover relationships among originators
of activities. While this is a valid approach, it is limited by its
reliance on a static underlying knowledge structure, e.g. the
organizational ontology. Song and van der Aalst (2008) pro-
pose an approach for conformance checking of organizational
models, which relies on existing explicit process and organi-
zational models. The relatedness between different originators
of activities is calculated based on the frequencies of different
originators executing similar actions, eventually
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recommending a grouping of such originators in the same
organizational unit. In this study, we take a discovery-
oriented approach of organizational mining, in which we do
not assume that the existence of explicit models (either process
models or organizational models), given that such models
may be inaccessible in practice (e.g., cross-organizational pro-
cesses). Further, in our proposed approach, in addition to task
execution frequencies of different originators, we also rely on
recurring behavioral patterns from process segments record-
ed in the event logs to draw inferences regarding associations
among originators, and in turn about an underlying organiza-
tional model. In using process patterns within our approach,
we build on the extant work in the workflow patterns area
including action patterns notions used for process mining pro-
posed by Smirnov et al. (2012).

3 A Running Example

To illustrate the proposed framework in a self-contained man-
ner, we use an event log of the “reviewing process” document-
ed by van der Aalst (2011). The example describes the
reviewing process for an academic journal. When a paper is
submitted to the journal, it is sent to three different reviewers
(‘invite reviewers’, Activity A). Each of the reviewers is re-
sponsible to critique a paper (‘get review 1-3’, Activity B1–3).
After the comments are submitted (‘collect reviews’, Activity
C), a person is responsible to read the reviewers’ comments
and make a decision (‘decide’, Activity D). However, some-
times reviewers do not respond to the reviewing requests. In
those cases, additional reviewers are invited (‘invite additional
reviewer’, Activity E). The additional reviewer critiques the
paper (‘get review X’, Activity F) and then the comments are
analyzed to infer a decision (‘decision’, Activity D). These
steps (E-F-D) are repeated until enough reviews are solicited.
Then a final decision is made (‘accept’, Activity G or ‘reject’,
Activity H).

The original event log contains 10,000 instances (manu-
script submissions) and 236,360 events (in aforementioned 8
distinct event classes A through H). For the running example,
we select a small sample of this event log, referred to later as
the example log. Table 1 shows the example log consisting of
randomly selected six instances (each row corresponds to a
different instance identified by the instance ID) that contain all
8 distinct event classes.

We denote each event by two elements: the activity (e.g.
‘C’) and its originator (e.g. ‘Anne’). In total, 10 distinct orig-
inators are involved in these six instances. The events in each
instance are ordered according to the temporal sequence
reflected in their timestamps. The event log is pre-processed
in two steps. First, since the status changes of the events are
less relevant for organizational mining objectives, we choose
only the ‘completed’ events and ignore events with other

statuses. Next, we filter out the events without originators
(i.e., the originators of all the ‘time-out’ events are tagged as
‘_INVALID_’ and all such events are excluded from the ex-
ample). For illustration purposes, we assume that the six in-
stances exhaustively represent the process, i.e., no other in-
stance exists. We also assume that the underlying process
model and the organizational model are unknown/implicit.
Based on the example process log, the final organizational
model obtained through organizational mining is shown in
Fig. 1. In the remaining sections, we describe key aspects of
the proposed organizational mining framework using the ex-
ample log, demonstrate intermediate results obtained while
generating the final organizational model, and the interpreta-
tion of the organizational model.

4 Design and Development of the OrgMiner
Framework

We first formally define the notion of event logs.
D e f i n i t i o n 1 : ( E v e n t L o g s ) . L e t A

(A ¼ a1;…;anf g; n ¼ jAj ) be the set of distinct activities in a
business process, and O (O ¼ o1;…; omf g;m ¼ jOj ) be the
set of all distinct originators (e.g. persons, system modules)
that conduct the activities inA. The Cartesian product E ¼ A
�O represents a set of events indicating association of activ-
ities and originators (e.g. (D, Wil) implies that activity D is
conducted by originator Wil). Eþ is the set of possible non-
empty finite ordered sequence of events from E. Any t∈Eþ is a
possible trace (temporally ordered sequence of events). Thus,
an event log L is a multi-set of traces. Each l∈L is a process
instance (a one-time execution of the process). We define the
following related notions:

& R ¼ ri; j
� �

is a symmetric, non-empty matrix that reflects
the relations between each pair of activities in A; i.e. ri; j
¼ ai; a j
� �

;∀ai; a j∈A ;
& πA is an assignment operation applicable to an originator

that returns all the activities executed by that originator,
e.g. πA(oi) = {ai ∣ ai∈ A; i ¼ p;…; qg ;

& Given an event e ¼ a; oð Þ∈E, πE is an operation that re-
trieves the activity that was completed during that event,
e.g. πE(e) = a∈ A .

The following assumptions are made regarding the event
logs:

& Each of the events in an event log has an originator;
events without any originator (typically automated tasks)
are excluded.
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& Each of the events signifies an activity; events not refer-
ring to an activity are discarded as erroneous from the
event log(s).

& The relatedness between originators is positively correlat-
ed with the temporal relationship between activities being
executed by them.

4.1 OrgMiner Framework

The OrgMiner framework is aimed at providing decision sup-
port for business process analysts when conducting organiza-
tional analysis (e.g., learning implicit organizational knowl-
edge for process intelligence). Figure 2 depicts the functional
modules within the framework, as well as the knowledge ele-
ments used and generated by these modules. OrgMiner con-
sists of three modules, namely: Pattern Definition, Pattern
Selection, and Organizational Mining. Additionally, a dash-
board acts as an interface between the system and the end
users (business process analysts).

Within the Pattern Definition module, four basic types of
behavioral patterns are articulated as ‘pattern schemas’: strict
order pattern, inversed strict order pattern, exclusiveness
pattern, and interleaving pattern. Users may create additional
complex or ad hoc patterns based on them. The event log(s) to
be analyzed serves as the input of this module. The Pattern
Selection module relies on the pattern schemas and the event
log to generate a behavioral relation matrix using the pro-
posed Behavioral Pattern Discovery Algorithm (BPDA).
This matrix essentially captures the instantiation of patterns
embedded in the event logs. Selection of patterns is based on
support and confidence as metrics, resulting in (selected) be-
havioral patterns. TheOrganizational Miningmodule utilizes
the discovered behavioral patterns to create organizational
analytical reports. In this module, activity distances and ac-
tivity relatedness are calculated based on the relations between
activities and then used as metrics to determine the connection
between originators, namely originator relatedness.
Following this, the module util izes the proposed
Organizational Mining Algorithm (Org-AHC) for discovering
an organizational model by clustering originators with higher

Table 1 Event log for the running
example (Example log) Instance

ID
Activities and Originators

1 (A, Mike), (B2, Carol), (B3, Pam), (B1, John), (C, Anne), (D, Wil), (E, Anne), (F, Pam), (D, Wil),
(E, Mike), (F, Mary), (D, Wil), (E, Mike), (F, Sara), (D, Wil), (H, Anne)

10 (A, Anne), (B2, Sara), (C, Mike), (D, Wil), (E, Mike), (D, Wil), (E, Mike), (D, Wil), (E, Anne), (F,
Pete), (D, Wil), (E, Anne), (D, Wil), (E, Mike), (F, Carol), (D, Wil), (E, Anne), (D, Wil), (G,
Mike)

11 (A, Mike), (B3, Sam), (C, Anne), (D, Wil), (E, Mike), (D, Wil), (E, Mike), (D, Wil), (E, Mike), (D,
Wil), (E, Anne), (F, Mary), (D, Wil), (E, Anne), (D, Wil), (E, Anne), (F, Mary), (D, Wil), (E,
Mike), (F, Carol), (D, Wil), (H, Anne)

12 (A, Anne), (B2, Carol), (B3, John), (C, Anne), (D, Wil), (E, Mike), (D, Wil), (E, Anne), (D, Wil),
(E, Mike), (F, Pete), (D, Wil), (E, Anne), (F, Pete), (D, Wil), (E, Mike), (D, Wil), (E, Mike), (F,
Carol), (D, Wil), (H, Mike)

13 (A, Anne), (B2, Carol), (B3, John), (C, Anne), (D, Wil), (E, Anne), (D, Wil), (E, Mike), (D, Wil),
(E, Mike), (D, Wil), (E, Mike), (F, Carol), (D, Wil), (E, Anne), (D, Wil), (E, Mike), (D, Wil), (E,
Mike), (F, Pam), (D, Wil), (E, Anne), (F, Pete), (D, Wil), (E, Mike), (F, Carol), (D, Wil), (H,
Mike)

100 (A, Mike), (B3, Pam), (B1, Sara), (B2, Pete), (C, Anne), (D, Wil), (E, Mike), (D, Wil), (E, Anne),
(D, Wil), (E, Anne), (F, Mary), (D, Wil), (E, Mike), (D,Wil), (E, Anne), (F, Mary), (D, Wil), (G,
Mike)

Fig. 1 Organizational Model
Generated for the Example Log
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originator relatedness values together in a bootstrapped man-
ner. Based on the discovered organizational model, organiza-
tional analytical reports can be generated through
(semi-)structured queries for discovery, conformance
checking, and enhancement goals. As an example, business
process analysts and managers can query about resource allo-
cations to generate an organizational analytical report for
inferring resource allocation rules. Each of the three modules
in the OrgMiner framework and their interactions with the
knowledge elements are discussed next.

4.2 Module I: Pattern Definition

The Pattern Definition module concerns tasks such as defin-
ing basic behavioral patterns, as well as defining ad hoc or
complex patterns based on the basic behavioral patterns. In
this article, without loss of generality, we restrict our scope to
basic behavioral patterns, while recognizing the extensibility
of the approach for complex patterns. Behavioral patterns are
based on the concept of behavioral relations, further defined in

terms of weak order relations, and analogous to action
patterns proposed by Smirnov et al. (2012). The major differ-
ence is that action patterns are defined for business process
model repositories, while the proposed behavioral patterns are
defined in the context of event logs without any a priori basis
of explicit process models.

Definition 2: (Weak Order Relations). Let L be an event
log, and Eþ be the set of all possible traces inL. Aweak order
relation (≻L ai; aj

� �
) contains all pairs of (ai, aj) such that ∃t

∈Eþ; if and only if πE(ei) = ai ∧ πE(ej) = aj, 1 ≤ i < j ≤ ∣ t∣,
where t is an ordered trace in L: We denote a weak order
relation as ri; j ¼ ≻d

L ai; a j
� �

; ai; aj∈A, which extends the tra-
ditional definition by incorporating the notion of distance. The
integer d denotes the distance between the activities ai and aj
in a process instance lk (lk∈L ), which is measured by the
number of activities between ai, aj. Notably, the weak order
relation is not reversible, i.e. ≻d

L ai; a j
� �

≠≻d
L a j; ai
� �

. Further,

ri; j ¼ ⊁L ai; aj
� �

denotes that a weak order relation does not
exist between ai, aj.

Fig. 2 OrgMiner Framework
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We now define three types of behavioral relations depend-
ing on how the weak order relation exists in a pair of activities
in an event log.

Definition 3: (Behavioral Relations). For a process in-
stance lk∈L from an event log L, a behavioral relation ri; j∈
R has to be one of the following:

& R1: Strict order relation (⟶d
L ai; aj
� �

), if and only if
ai≻Laj∧aj⊁Lai;

& R3: Exclusiveness relation (þd
L ai; a j
� �

), if and only if
ai⊁Laj∧aj⊁Lai;

& R4: Interleaving relation (∥d
L ai; aj
� �

), if and only if
ai≻Laj∧aj≻Lai.

It can be noted that a strict order relation is not commuta-
tive, while the other two behavioral relations exhibit commu-
tative property. Thus, in addition we define an inversed strict
order relation as R2: ⟶d

L −1ð Þ ai; a j
� �

.
These behavioral relations are codified as pattern schemas

and used in subsequent modules. The use of such behavioral
relations can be illustrated with the activities in the example
log. For instance, we have ⟶d

L A;Dð Þ since in all instances
Activity A precedes Activity D. Similarly, the following pat-

terns also hold: ∥d
L D;Eð Þ and þd

L G;Hð Þ. Additionally, from
instance 1 in Table 1, the following holds: ⟶3

L A;Cð Þ since
there are three activities between Activity A and C. If an
activity appears several times in a process instance (e.g. in a
loop), d is the longest distance between the two activities. For
instance, in instance 10, it exists: ⟶16

L A;Dð Þ since there are
maximally 16 activities between A and D.

4.3 Module II: Pattern Selection

The second module, Pattern Selection, utilizes the pattern
schemas from the prior module to identify behavioral patterns
from the event log(s) that should be selected for each pair of
activity. The module generates a behavioral relation matrix as
an intermediate output for further analysis stages including
pattern discovery. A behavioral relation matrix is defined as
follows.

Definition 4: (Behavioral Relation Matrix). For an event
log L, RB= A�A;RB⊆R is a non-empty matrix that reflects
the maximal behavioral relation and its occurrence between
each pair of activities in A; e.g. rBi; j ¼ ri; j; n

� �
;∀rBi; j∈R

B,

where ri; j is the behavioral relation between activities (ai,
aj) defined above, while n is the number of its occurrences,
i.e., frequency of a behavioral relation ri; j in the event log L.

Figure 3(a) illustrates the Behavioral Pattern Discovery
Algorithm (BPDA) for generating the behavioral relation ma-
trix from an event log considering all pairs of activities across
all of its instances. Fig. 3(b) shows a portion of the behavioral

relation matrix for the activities C, D, E, and F in the example
log, considering the strict order relation. This shows, for in-
stance, that pattern R1 (strict order relation) exists between
activity C and D and occurs 6 times in the example log.

To determine which of the discovered patterns should be
selected, support and confidence metrics are used to calculate
conviction, the ranking metric for candidate patterns. The pat-
tern selection process is similar in principle to the Apriori
algorithm for association rules proposed by Savasere et al.
(1995) and Agrawal and Srikant (1994), but the definitions
of the support and confidence metrics are unique to this appli-
cation due to the ordering constraints. For deriving the pattern
selection threshold, we put higher emphasis on confidence
since it indicates the relation that is of greater significance in
comparison to others.

Support of a behavioral pattern supp ri; j
� �

determines how
frequently the pattern ri; j appears between activities (ai, aj)
across all process instances (lk∈L ) in an event log L (which
is n according to Definition 4 above). Confidence of a behav-
ioral pattern is defined as follows. Given supp(ai) as the sup-
port count of activity ai in event log L and ε as a constant, we
have:

conf ri; j
� � ¼ supp ri; j

� �
supp aið Þ ; i f pattern∈ R1;R2;R4f g

ε; i f pattern∈ R3f g

8><
>:

The rationale for splitting the definition of confidence of
relationships is twofold. First, the patterns ⟶d

L ai; a j
� �

,

⟶(−1)(ai, aj), and ∥d
L ai; a j
� �

align with the notion of asso-
ciation rules, which rely on the intersection of the antecedent
and the consequent. Thus, we adopt the traditional definition
of confidence from association rule learning for relations R1,
R2, and R4 (Nguyen et al. 2014). Computationally, confidence
is the ratio of support of the relation (i.e., supp ri; j

� �
and the

support of the preceding activity (i.e., supp(ai)). Second, it is
interesting to note that pattern R3 relies on the union of pre-
ceding activity (am) and following activity (an), which by
definition, does not occur. As such, the traditional definition
of confidence does not apply directly to pattern R3. So, we use
a constant (ε) for the confidence of R3 and the value of ε is
determined experimentally. To illustrate the computations of
support and confidence, consider the data in the running ex-
ample. In order to reason about the relationship R1 between
B3 and B1 (→L(B3,B1)) in the event log L, it can be noted
that this relationship occurs in 2 instances out of the total 6
instances in the example log. We have, supp(B3 ) = 5/6, while
supp(B1 ) = 2/6. Thus, supp →L B3;B1ð Þð Þ ¼ 2

6 ¼ 0:33, while

conf →L B3;B1ð Þð Þ ¼ 2
5 ¼ 0:4.

The BPDA algorithm is used to identify the patterns, fol-
lowing which the support and confidence of the patterns be-
tween all pairs of activities in L are computed. Next, if the

759Inf Syst Front (2021) 23:753–772



support and confidence values of the strict order/interleaving
patterns are greater than the respective user-defined thresh-
olds, the patterns are accepted, else the exclusiveness pattern
is said to hold. We also note here that confidence is later used
to calculate activity/originator relatedness (AR/OR),
discussed in the next subsection.

In the context of this study, we adopt conviction as the
metric to rank the learned candidate patterns because it takes
into consideration both the support of both the preceding as
well as the following activity. Conviction of a pattern ri; j
refers to the expected frequency of a pattern between a pair
of activities (ai, aj):

conv ri; j
� � ¼

1−supp aj
� �

1−conf ri; j
� � ; i f pattern∈ R1;R2;R4f g

1

1−ε
; i f pattern∈ R3f g

8>>><
>>>:

Here, supp(aj) is the support of the consequent while conf
ri; j
� �

is the confidence of the pattern respectively. Conviction
is sensitive to the rule direction and is not symmetric like some
of other metrics like lift (i.e., conv ri; j

� �
≠conv r j;i

� �
). This is in

line the inherent temporal nature between the activities and

attempts to measure the degree of implication of the behavior-
al pattern. Conviction values above 1 mean positive depen-
dence, while values in the (0,1) mean negative dependence.
Also, conviction value of 1 implies independence between the
antecedent and the consequent, while a theoretical value of
infinity indicates logical implication (confidence = 1)
(Guillet and Hamilton 2007). Thus, conviction is a more ap-
propriate measure to rank candidate patterns. As an illustra-

tion, conv →L B3;B1ð Þð Þ ¼ 1−2=6
1−0:4 ≈1:1167, implying a strong

positive dependence among the activity pair (B3, B1) for the
R1 relation.

There are several methods to determine the threshold(s) for
pattern selection such as: (i) a user-defined value (i.e., thresh-
old, or top-k rules based on a specific metric); (ii) a (semi-)
automatic procedure to determine the optimal values for the
threshold(s). In this study, we use a combination of both ap-
proaches to determine the pattern selection thresholds. For the
pattern selection purpose, we are interested in activity sets
with higher conviction values. Thus, any selected pattern is
required to have the highest conviction value as compared to
other behavioral patterns between the same pair of activities.
Thus far, we have discussed domain-independent metrics to
evaluate behavioral relations. However, we note that domain-

(a) Behavioral Pattern Discovery Algorithm (BPDA) Algorithm

(b) Example Output (partial) of Application of the BPDA Algorithm

Fig. 3 a Behavioral Pattern
Discovery Algorithm (BPDA)
Algorithm. b Example Output
(partial) of Application of the
BPDA Algorithm
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dependent metrics may also be derived based on the analysis
conducted that is specific to the context at hand as well as by
adapting domain-independent metrics. For example,
conviction also serves as the Handover-Work ratio (HoW
ratio) metric when measuring the robustness of behavioral
relations, which would have important practical semantics in
different domains (e.g., building knowledge intensive, domain
specific semantic repositories (Fraga et al. 2019)). In the
healthcare domain, for instance, HoW ratio can indicate the
likelihood of a patient receiving treatment Y after receiving
treatment X in the same visit (process instance), compared to
random chance. This can be used for decision-making during
resource allocation, or facility/process redesign.

Building on the concept of behavioral relations, we can
now define behavioral patterns formally. A tuple BP ¼
ri; j; d; conv
� �

denotes a behavioral pattern in an event log L,
where:

& ri; j is one of the behavioral relations between (ai, aj) from
Definition 3;

& d is the distance between the two activities;
& conv is the conviction conv ri; j

� �
of the specific pattern

between (ai, aj).

Table 2 illustrates the outcomes of the pattern discovery
process for the example log. The matrix is noted to be asym-
metric along its diagonal elements. The behavioral relation ma-
trix is obtained using the BPDA algorithm on the example log,
and then selecting behavioral patterns with the highest convic-
tion value. The cell for activitiesB2,H list both R1 and R3 since
the conviction values of both the strict order pattern and the
exclusiveness pattern are equal. In such cases, business process
analysts can either manually assign a behavioral pattern to the
pair of activities, or create a new pattern style of interest, in

order to resolve such conflicts. In this example, we select the
strict order pattern over the exclusiveness pattern between (B2,
H) for the organizational mining purpose.

4.4 Module III: Organizational Mining

The behavioral patterns are used as the basis of mining orga-
nizational structure from the event logs. From the pattern
matching and selection module, we have the behavioral rela-
tion matrix RB = [rB], which is an ∣A ∣ × ∣ A∣ matrix. To
quantify and normalize the relations between each pair of
activities (ai, aj), we use the notions of average behavioral
distance and activity distance to arrive at the activity distance
matrix, discussed next.

Let T(ai, aj) be the set of all traces containing activities ai,
aj. ∀tk(ai, aj) ∈ T(ai, aj) (k = 1, 2, …, m). If the distance be-
tween ai and aj is dk, then the average behavioral distance

(d ai; a j
� �

) between ai, aj is given by: d ai; aj
� � ¼ ∑m

1 dk
m : For

example, in example log, d A;Cð Þ ¼ 1þ1þ1þ2þ2þ3
6 ¼ 5

3 :

The activity distance can be computed based on the aver-
age behavioral distance using the following rationale. If an
interleaving pattern holds between (am, an), the activity simi-
larity between (am, an) would be the highest, so the activity
distance between them would be the lowest (for computation-
al purpose, denoted as 0). If an exclusiveness pattern exists
between (am, an), the activity similarity between (am, an)
would be the lowest, so the activity distance between them
would the highest (for computational purpose, denoted as
+∞). If a strict order pattern holds between (am, an), then D
am; anð Þ∈ 0;þ∞ð Þ: Since D am; anð Þ increases as d am; anð Þ in-
creases and conf rm;n

� �
decreases, we computationally denote

D am; anð Þ ¼ d am;anð Þ
conv rm;nð Þ. The activity distance matrix can be ob-

tained by representing the activity distances in a matrix
format.

Definition 5: (Activity Distance). The activity distance D
is defined as follows:

D am; anð Þ ¼
0 if R4 exists between am; anð Þ

d am; anð Þ
conv rm;n

� �
 !

if R1=R2 exists between am; anð Þ
þ∞if R3 exists between am; anð Þ

8>>><
>>>:

where conv is the conviction of a behavioral pattern between a
pair of activities (am, an); and d is the average behavioral dis-
tance between the two activities in the same pattern across
different instances. Table 3 shows the activity distance matrix
between the activities in the example log. The cells highlight-
ed in pale blue reflect the interleaving pattern between the
activities (e.g., (B2, B3)). The cells highlighted in dark blue
reflect the exclusiveness pattern between the activities (e.g.,
(A, B1)). The other cells reflect the strict order pattern or

Table 2 Example of selected behavioral patterns

Activity 2

Task A B1 B2 B3 C D E F G H

Activity 1

A – R3 R2 R2 R2 R2 R2 R2 R3 R2

B1 R3 – R1 R3 R3 R3 R3 R3 R3 R3

B2 R1 R2 – R4 R2 R2 R2 R2 R2 R2/R3

B3 R1 R3 R4 – R2 R2 R2 R2 R3 R2

C R1 R3 R1 R1 – R2 R2 R2 R3 R2

D R1 R3 R1 R1 R1 – R4 R4 R3 R2

E R1 R3 R1 R1 R1 R4 – R4 R3 R2

F R1 R3 R1 R1 R1 R4 R4 – R3 R2

G R3 R3 R3 R3 R3 R3 R3 R3 – R3

H R1 R3 R1/R3 R1 R1 R1 R1 R1 R3 –
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inversed strict order pattern. Building on the concept of activ-
ity distance, we characterize the affiliation between activities
and originators through the concepts of activity relatedness
and originator relatedness respectively.

Definition 6: (Activity Relatedness). Activity relatedness
(AR) is defined as:

AR am; anð Þ ¼ e−D am;anð Þ

¼
e0 ¼ 1 if R4 exists between am; anð Þ

e
−
d am; anð Þ

conv rm;nð Þ if R1=R2 exists between activities
e−∞ ¼ 0 if R3 exists between activities

8>><
>>:

Since the activity distances are denoted in the range of [0, +
∞], we use the exponential function e for normalization such
that AR(am, an) ∈ [0, 1]. Also, AR of the same activity is de-
fined to equal unity, i.e., AR(am, am) = 1. Next, in order to map
the AR to the relatedness between originators, we apply the
assignment operation πA. For any pair of originators oi; oj∈O,
applying the assignment function we have,
πA oið Þ ¼ fai ai∈A; i ¼ p;…; q; p < qj g,
πA o j
� � ¼ ajjaj∈A; j ¼ m;…; n;m < n

� �
. Table 4 shows

the AR metric between the activities in the example log. It
may be noted that the cells highlighted in orange are rounded
to 0.

Definition 7: (Originator Relatedness). Originator
relatedness (OR) is defined as:

OR oi; o j
� � ¼ ∑

q

i¼p
∑n

j¼mAR ai; a j
� �

q−p−1ð Þ � n−m−1ð Þ ; if oi≠oj

1; if oi ¼ oj

8>><
>>:

The OR metric is symmetric, i.e., OR(oi, oj) =OR(oj, oi).
Also, in order to achieve more accurate organizational models,
two methods can be employed: threshold-based approach or
top-k approach. A threshold (γ), for example, on particular
activities undertaken by specific originators considers the ratio
of occurrence of the activity by the originator to the overall
occurrence of the activity. Only AR values of the activities
greater the threshold are then considered in computing OR.
The threshold-based approach assumes a strong relationship
between the value of the threshold and the quality of the dis-
covered patterns. Also, discovering the optimal value of the
threshold is a non-trivial problem. As such, we select the top-k
method in this study. In particular, k refers to the number of
rules containing activities undertaken by specific pairs of orig-
inators with the highest conviction values. Table 5 shows the
ORmetric between the originators in the example log with the
top-3 method.

Table 3 Example of activity distance

Activity 
Distance

A B1 B2 B3 C D E F G H

A 0.000

B1 0.000 0.000

B2 +∞ +∞ 0.000

B3 0.667 +∞ 0.000 0.000

C 2.167 +∞ +∞ 0.500 0.000

D 18.000 +∞ +∞ 16.333 14.833 0.000

E 16.167 +∞ +∞ 14.500 13.000 +∞ 0.000

F 16.167 +∞ +∞ 15.000 13.500 +∞ +∞ 0.000

G 0.000 +∞ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ 0.000 0.000

Table 4 Example of activity relatedness

Activity 
Relatedness

A B1 B2 B3 C D E F G H

A 1.000

B1 1.000 1.000

B2 0.000 0.000 1.000

B3 0.513 0.000 1.000 1.000

C 0.114 0.000 0.000 0.607 1.000

D 0.000 0.000 0.000 0.000 0.000 1.000

E 0.000 0.000 0.000 0.000 0.000 0.000 1.000

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

G 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
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The AD, AR, and OR metrics can then be tied to a certain
domain. AD and AR measure how close two activities in a
process are, while OR measures how close two originators
are as they frequently conduct the two activities measured in
AD and AR. Again, considering the healthcare domain as an
example, lower AD or higher AR would reflect that two treat-
ments X and Y often occur sequentially during patient visits;
thus, they may be used to measure treatment consecutiveness.
Higher OR values would reflect that two physicians/
technicians often conduct treatments X and Y together, and
thus, it may be used to measure the collaborative consistence
between physicians/technicians. Given the understanding that
physicians/technicians with higher collaborative consistence
should work in the same group or department, various
resource-based decisions can be informed.

The aforementioned metrics can lead to a flat organization-
al model; however, organizational models typically follow a
hierarchical fashion. To derive hierarchical organizational
models, we apply an Agglomerative Hierarchical Clustering
(AHC) technique adapted from the group-average AHC algo-
rithm proposed by Shepitsen et al. (2008). Hierarchical clus-
tering has proven to be more efficient than traditional exhaus-
tive searchmethods (Cong et al. 2015), and is very relevant for
organizational mining. The proposed Org-AHC clustering al-
gorithm, shown in Fig. 4, conducts stepwise clustering on
originators when OR between two originators is greater than
the threshold (measure) at level k∈ 1; Oj j½ �. It then moves up to
the (k - 1) level with threshold updated to (measure + step).
The algorithm halts at (k = 1), which implies that all origina-
tors belong to the same cluster.

Figure 1 depicted earlier, shows the organizational
model in the form of a dendogram obtained by applying
the Org-AHC algorithm for the example log. Given that
the example log contains too few (six) instances, the or-
ganizational model is clearly not representative to draw
general inferences about the business context. Also, some

observations are worth noting here. One issue observed in
this organizational model is that originator Mary should
have been grouped with {Pete, Pam} since Mary is an
external reviewer according to Table 1, while originator
Wil should have been grouped with {Anne, Mike} because
he is also a decision maker (e.g. senior editor) in the
review process. The issue can be rationalized as follows.
Upon close examination of the data, it is evident that there
are some short loops (e.g. E-F-D, E-D) in the example
log. Thus, the pattern between each pair from Activities
D, E, and F are all interleaving. Also, in this small exam-
ple, Wil and Mary only conducted one activity respective-
ly (‘Wil, D’, ‘Mary, F’), which erroneously increases their
originator relatedness (OR). One approach to counteract
this issue is to increase the size of instances so that the
originators would possibly have more than one activity.
Another way to amend this issue is to develop a method
to deal with the short loops in event logs, as indicated by
Alves de Medeiros et al. (2004). We follow the first ap-
proach by selecting the complete “review process” event
log (c.f. http://data.3tu.nl/repository/uuid:da6aafef-5a86-
4769-acf3-04e8ae5ab4fe).

The complete event log contains 10,000 traces (papers) and
236,360 events (in 8 distinct event classes). 10 originators are
involved in the event log. The organizational model in the
form of a dendogram obtained by applying the framework
for the entire review event log is shown in Fig. 5(a). Using a
large event log addresses aforementioned issue of short loops.
It can be noted that {John, Sam, Carol, Sara} are merged into
the same organizational unit (or role) since they undertake
similar activities in the example log. Thus, they can be labeled
as in-house reviewers. Similarly, {Pete, Mary, Pam} (external
reviewers) and {Anne, Mike} (editors) can be labeled as such
in the organizational model. Fig. 5(b) shows the manually
derived organizational model for comparison.

Table 5 Example of Originator Relatedness

Originator Relatedness Anne Carol John Mary Mike Pam Pete Sam Sara Wil

Anne 1.000

Carol 0.000 1.000

John 0.083 0.778 1.000

Mary 0.000 0.333 0.000 1.000

Mike 0.275 0.067 0.133 0.000 1.000

Pam 0.000 0.500 0.500 0.500 0.000 1.000

Pete 0.000 0.500 0.500 0.500 1.000 0.500 1.000

Sam 0.000 0.667 1.000 0.000 0.000 0.500 0.500 1.000

Sara 0.083 0.667 0.667 0.667 0.667 0.667 0.667 0.667 1.000

Wil 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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5 Demonstration of OrgMiner: Repair Process
Case Study

In order to demonstrate the feasibility and efficacy of the pro-
posed approach, we use a case study of repair process of
phones in an electronics company. This case study is a real-
world dataset used popularly in several process mining re-
search studies, e.g., Bose and van der Aalst (2012).

5.1 Case Overview

The repair process event log is structurally similar to the re-
view process discussed in the event log. The process model
underlying this process is assumed to be unknown or implicit.
The process logic in described in this section for readers’
understanding and is not incorporated in the demonstrate of
the application of the framework. The process typically starts
with a repair request registered in the system (‘register’,
Activity A). Then the defected phone is sent for investigation
(‘analyze defect’, Activity B). There are two types of repairs in
this process: if the issue with the defected device is minor, then
just a simple repair can suffice (‘repair (simple)’, C1); other-
wise, complex repairs are needed (‘repair (complex)’, C2).
Any repair done needs to be tested to ensure that the analyzed
defect has actually been fixed (‘test repair’, D), and one of the
two outcomes is expected: successful or failed repair. If the
repair is successful, the repair case is archived (‘archive re-
pair’, E1); if the repair fails, the repair activity (C1 or C2) is
done again (‘restart repair’, E2). These few steps (C1/C2-D-
E2) can repeat several times until the repair is tested to be
successful. The repair process concludes by informing the
customer that their phone has been successfully repaired (‘in-
form user’, F).

The repair event log contains 1104 traces (repair instances)
and 29,058 events (in 8 distinct event classes). 11 originators
are involved in this event log. One of the reasons for selecting
this case study is that the roles of all the originators are pre-
defined in the log: the 11 originators are categorized into four
roles: {system: system, complex repairers: solverC1,
solverC2, solverC3, simple repairers: solverS1, solverS2,
solverS3, testers: tester1, tester2, tester3, tester4, tester5,
tester6}.

Fig. 4 Org-AHC Algorithm

Fig. 5 a Reviewing process: Mined organizational model from entire
event log. b Reviewing process: Manually derived organizational model
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5.2 Organizational Mining

We conduct organizational mining using the approach
discussed in Section 4 on the repair event log. The organiza-
tional model generated using the OrgMiner framework is
shown in Fig. 6(a).

Four organizational groups are evident from the mined or-
ganizational model shown in Fig. 6(a). The rightmost group
containing {SolverS1, SolverS2, SolverS3} is the ‘simple re-
pairers’ team. On the left half, three pairs of originators
{(Tester1, SolverC1), (Tester2, SolverC2), (Tester3,
SolverC3)} are clustered together, and can be labeled as ‘com-
plex case handlers’. Such clustering is reasonable since with
complex repair claims, frequent/specialized testing is re-
quired. The second organizational group, namely ‘testers’,
consists of {Tester4, Tester5, Tester6} and are responsible
for testing repairs from both the ‘simple repairers’ and the
‘complex case handlers’ teams. Lastly, the ‘system’ group,
contains only one unit, namely {system}, since it represents
system automation and is distinct from other originators. The
mined organizational model thus reveals implicit knowledge
embedded in the event log: the ‘complex repairer’ group and
the ‘tester’ group are broken down, and some of the testers
{Tester1, Tester2, Tester3} are paired with the complex re-
pairers {SolverC1, SolverC2, SolverC3}.

Based on the assumption that no explicit process or orga-
nizational models exist for the event log, we conduct an em-
pirical evaluation on the discovered organizational model for
its accuracy. Four researchers were tasked with creating an
organizational model based on the event log. To keep the
evaluation unbiased, the mined organizational model was
not revealed to the researchers until they finished creating their
own models. The researchers created the originator related-
ness matrices which were then reconciled to form the

organizational model shown in Fig. 6(b). Next, the
Cophenetic Correlation Coefficient (CCC) (Fowlkes and
Mallows 1983) is used to evaluate the accuracy of the mined
organizational model in Fig. 6(a), considering the model in
Fig. 6(b) as the ground truth. The CCC values lie in the inter-
val [−1,1], and values close to 1 indicate high resemblance
between the two dendograms being compared. The CCC val-
ue between the two dendograms in Fig. 6(a) and (b) is 0.766,
which provides substantive evidence that the organizational
model generated by theOrgMiner framework is in accordance
with the judgments from domain experts.

5.3 Application of Organizational Mining

We next discuss the utility of the OrgMiner framework
through a popular business process management application
of generating resource allocation rules. Resource allocation
rules entail mapping activities to appropriate originators.
Typically, role-based approaches are employed in resource
allocation applications, where originators are divided into
high-level organizational groups based on their organizational
characteristics (e.g., title) and then assigned to different activ-
ities (Liu et al. 2012). Such approaches present the challenge
of coarse-grained role definitions which may lead to improper
assignments. With the OrgMiner framework, we can capture
the handover-work relationship between the originators and
construct the organizational model (containing the organiza-
tional groups) in a fine-grained manner. Moreover, the
OrgMiner framework also captures the logical association be-
tween the workflow activities and the originators, which sup-
ports resource allocation decision-making.

In order to use the OrgMiner framework for mining
resource allocation rules, the event log is analyzed using
the BPDA algorithm to generate the behavioral relation

Fig. 6 a Repair process: Mined organizational model from the event log. b Repair process: Manually constructed organizational model
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matrix. Based on this matrix, the n-item frequent item
(activity) sets are generated and used as candidate resource
allocation rules. The next step for mining resource alloca-
tion rules is to logically link activities with originators. The
organizational mining module within the OrgMiner links
activities with originators through AR and OR computa-
tions. Further, OR also helps captures fine-grained charac-
teristics of originators through their prior task completion
data. A key challenge in resource allocation rule mining is
that too many uninteresting rules are generated from the
frequent itemsets, leading to inefficiency and low efficacy.
In other words, post hoc handling of candidate rules is
critical in resource allocation rule mining. We discuss this
issue in the context of the repair process case below.

In case of the repair process event log, using the BPDA
algorithm in the OrgMiner framework, we obtain the behav-
ioral relation matrix for generating resource allocation rules.
Using minimum support = 0.01 and minimum confidence =
0.1 thresholds for the behavioral relation matrix, 18,222 can-
didate rules are generated. Appendix 1 shows a sample of the
candidate resource allocation rules generated. From the can-
didate rules generated, redundancy between several rules is
evident. Traditionally, confidence (Agrawal and Srikant
1994) and lift (Kannan and Bhaskaran 2009) metrics from
the fields of association rule learning as well as cooperation-
based approach (Huang et al. 2012) from process mining field
have been used to address the rule redundancy issue. Given
the focus on mapping activities to appropriate resources, we
use the OR metric used in the OrgMiner framework for filter-
ing redundant rules instead of the traditional approaches. In
our approach, the selected k value in the top-k method serves
as a redundancy control knob for rule selection. The top-10
resource allocation rules generated are shown in Appendix 2.

Lift, computed as li f t x→yð Þ ¼ con f x→yð Þ
supp yð Þ is a correlation met-

ric to filter uninteresting rules: a rule r is negatively correlated
when lift(r) < 1 (Liu et al. 2012). Lift measures the degree of
dependence between the itemsets. The higher lift values indi-
cate the extent to which the rule is more likely to occur than if
the antecedent and consequent in the rules were statistically
independent. Such an understanding would inform decision-
making for resource allocation.

The rules in Appendix 2 show actionable insights for re-
source allocation. As an example, rule # 1971 with lift 2.917
suggests that if the ‘repair (simple)’ activity, i.e., Activity C1,
has been already attempted by two solvers in the Simple
Repairers group (SolverS1, SolverS2, SolverS3), the task
should be assigned to the remaining member of the group.
This seems to logically make sense in that if prior attempts
have been unsuccessful with some resources, another resource
should be allocated to address the issue at hand. Similarly, the
remaining rules are also actionable and are in accordance with
the mined organizational model. Few points are noteworthy.

First, by using the OR metric to filter the candidate rules, we
can retain interesting (high lift), yet rare (low support) rules
(e.g., rule # 1216 in Appendix 2), while ensuring high associ-
ation between originators. Second, although association rules
are commonly read as the presence of antecedent implying the
presence of consequent, in this particular application the focus
is on the mapping between activities and originators from
underlying rules in the process model that are not explicit.
As such, given the implicit policies in the latent process mod-
el, we do not consider the rules as direction sensitive, but
rather emphasize association. The temporal nature of activities
is accounted through the behavioral relations in the prior anal-
ysis step, which supports this rationale.

In addition to demonstrating the efficacy of the proposed
approach based on theOrgMiner framework, we also assess
the efficiency of the proposed approach in terms of least
number of filtered rules generated that are relevant to the
process context. In terms of the absolute computational
time, the end-to-end analysis of the repair event log case
study logged 9 min and 48 s on a machine with an Intel i7
CPU and 16 GB RAM. We also examine the number of
filtered resource allocation rules generated under different
minimum support and minimum confidence thresholds. We
compare the results from the OrgMiner approach to the
Apriori algorithm, interestingness-based filtering (lift)
(Liu et al. 2012), and cooperation-based filtering (Huang
et al. 2012) approaches.). We use a similar setup in compar-
ing the approaches (0.01 ≤ support ≤0.1, step = 0.01; 0.05 ≤
confidence ≤0.5, step = 0.05). The numbers of filtered rules
generated are reported in Fig. 7(a) and (b). It is evident that
our approach generates the tightest set of actionable rules as
compared to other approaches.

Further, we also examine the number of two-item rules,
given that two-item rules are most relevant in a resource allo-
cation context (Liu et al. 2012). The number of filtered two-
item rules generated are reported in Fig. 8(a) and (b). In two-
item rules case as well, it is shown that our approach generates
the tightest set of filtered rules compared to other approaches.
In sum, the feasibility and efficacy of the proposed approach,
along with better rule generation efficiency, is evident for the
resource allocation application.

6 Discussion

6.1 Related Work

As noted earlier, there are only a limited number of extant
studies that have focused on the organizational PMA perspec-
tive (Ferreira and Alves 2012; Ni et al. 2011; Qiu and Lin
2011; Song and van der Aalst 2008). Review of the literature
suggests that Song and van der Aalst’s (2008) proposed com-
prehensive organizational mining approach is the first notable
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study in this area. Building on this study, Ferreira and Alves
(2012) developed a user-community discovery approach with
user interactions as the foundation for the clustering metrics.
The approach proposed in our study extends both these ap-
proaches further. By leveraging behavioral patterns, we are
not only able to consider user interactions, but also task sim-
ilarities. In essence, with the help of event log aggregation
techniques (Tao and Deokar 2015) as a method of conceptual
modeling, the capabilities of task similarity-based analysis can
be expanded to include relationships between originators in-
directly involved in the process, thus supporting advanced
analyses related to organizational mining (e.g. inter-
organizational modeling, cross-functional mining, and do-
main modeling).

Ni et al. (2011) proposed a grid clustering based
organizational mining approach that relies on the
originator-task pairs. Compared to this approach, the
proposed approach in this study is different in the fol-
lowing ways: 1) Instead of using single originator-task
pairs, using behavior patterns is likely to better capture
the interactions among users, particularly among users

that are within the same functional area but across dif-
ferent organizational units (e.g. teams, departments). 2)
In contrast to grid clustering, an AHC-based method can
construct an organizational model at different levels that
is more reflective of the actual organizational structure
in practice, which in turn provides more information for
model abstraction.

Qiu and Lin (2011) proposed an approach that en-
ables learning an organizational model from social net-
works within organizations. This is slightly different
compared to the aforementioned approaches since it re-
lies on social network structure rather than event logs.
Moreover, as stated by Qiu and Lin (2011), the learning
algorithm is less effective because of the computational
complexity of tree edit distances. Notably, we believe
that employing novel, customized behavioral patterns
based on the three basic ones proposed in our study
can address this limitation. It can better portray the so-
cial network structure/communications and can signifi-
cantly reduce the computational complexity through the
use of the originator relatedness notion.

(a) Number of filtered rules under different support thresholds (confidence = 0.1, 
minimum support = 0.01, step = 0.01)

(b) Number of filtered rules under different confidence thresholds (support = 0.01,
minimum confidence = 0.1, step = 0.05)
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Fig. 7 a Number of filtered rules
under different support thresholds
(confidence = 0.1, minimum
support = 0.01, step = 0.01). b
Number of filtered rules under
different confidence thresholds
(support = 0.01, minimum
confidence = 0.1, step = 0.05)
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6.2 Practitioner Implications

Organizational mining presents substantial value-building oppor-
tunities for practitioners in business process management. In par-
ticular, mined organizational models can be used to derive job
assignment rules, resource allocation rules, or user profiling
rules, across all three perspectives of PMA, namely discovery,
conformance checking, and enhancement. Considering discov-
ery as an example, the aforementioned rules are crucial for sce-
narios such as task assignment, resource allocation, and role-
based access control. For instance, in a manuscript review pro-
cess, editors should be able to select and assign reviewers to
papers (task assignment), and reviewers should not have access
to identifying user information if it is a double-blind review
process (role-based access control). A number of studies have
focused on researching issues in similar scenarios. Liu et al.
(2008) proposed semi-automatic approaches for process-
oriented staff assignment. Also, Liu et al. (2012) proposed an
approach for generalizing resource allocation rules from event-
based data. In a similar vein, Lohmann (2013) proposed an ap-
proach for role-based access control from the compliance assur-
ance perspective, through analyzing event logs. Even though
these approaches are based on mined organizational models as
well, they rely heavily on the knowledge of pre-existing process
models and/or organizational models. Relaxing this prerequisite

in our research approach enables analysis for such scenarios,
particularly where the underlying business process or organiza-
tional structure is unclear or too complex. A similar conclusion
can be drawn from both conformance-checking and enhance-
ment perspectives.

Further, the organizational mining approach proposed in
this paper can be leveraged to analyze sensor networks, which
are considered a backbone of Internet of Things (IoT).
Clustering sensors, analogous to originators, of different func-
tions into groups can potentially help improve the efficiencies
of a sensor network, which is one of the foremost challenges
in the IoT domain. For instance, service composition is used
for orchestrating sensors/services in service-oriented architec-
ture (SOA) based IoT (Garriga et al. 2018; Guinard et al.
2010; Vladimir et al. 2015). Existing query-based,
recommendation-oriented service composition methods re-
quire detailed specification of services/sensors, whereas by
clustering them functionally, service composition can be im-
proved by augmenting existing methods.

7 Conclusion

In this study, we have proposed OrgMiner, a behavioral
pattern-based framework for supporting decision-making

(a) Number of two-item rules under different support thresholds (confidence = 0.1,
minimum support = 0.01, step = 0.01)

(b) Number of two-item rules under different confidence thresholds (support = 0.01,
minimum confidence = 0.1, step = 0.05)
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Fig. 8 a Number of two-item
rules under different support
thresholds (confidence = 0.1,
minimum support = 0.01, step =
0.01). b Number of two-item
rules under different confidence
thresholds (support = 0.01, mini-
mum confidence = 0.1, step =
0.05)
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from business process data. We have defined the concept of
behavioral patterns, which rely on weak order relations
appearing in event logs. Further, we identify and select behav-
ioral patterns using appropriate metrics, and then apply them
for organizational mining purposes. In this manner, organiza-
tional models containing clustered originators of activities in
event logs can be built without explicit prior knowledge of
process and/or organizational models. Through an empirical
evaluation, the organizational models generated by OrgMiner
are shown to be in accordance with expert-created manual
models. Lastly, we demonstrated the utility of the framework
for generating resource allocation rules, a typical organization-
al mining application.

We acknowledge some limitations of this study. To im-
prove the accuracy of mined organizational models, further
research is needed to develop a method to deal with the short
loops in event logs. Also, we only considered the sequential
relations between activities in event logs. Future work should
consider incorporating more domain-specific knowledge (e.g.
in the form of domain ontologies) that may be utilized to
derive more complex relations. Domain-specific knowledge
may be extracted from other organizational knowledge arti-
facts such as business rules or process models, if available. An
example of such a technique is presented in a prior study (Tao
and Deokar 2015). Furthermore, the identified behavioral pat-

terns can be applied for other related PMA goals such as social
network analysis, decision point mining, mining data flow
and/or data object interactions, performance checking, and
cost-benefit analysis. Thus, in addition to the control flow
and organizational perspectives, we need to analyze the data
entities traversing through business processes, which would
provide a more comprehensive understanding of how origina-
tors of tasks are connected together (Sun et al. 2006). We also
acknowledge that our work highly relies on the availability,
meaningfulness, and correctness of the event logs. This im-
plies requiring a pre-processing step including normalizing
the event logs for ensuring their meaningfulness, merging
event logs from different information systems together, and
then preparing them for applying organizational mining
approaches.

In sum, the proposed OrgMiner framework presents a via-
ble and effective mechanism for analyzing event logs to infer
organizational models. This behavioral patterns-based frame-
work has been demonstrated in a real-world case study. We
believe that the framework and its applications extend the
understanding of the organizational mining aspect of process
mining and analysis.

No Rule Support Confidence Lift

3114 {(B, Tester5), (C2, SolverS3), (E2, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

5696 {(C2, SolverS3), (D, Tester1), (D, Tester4)} = > {(C2, SolverS1)} 0.01 1.00 5.348

6004 {(C2, SolverS2), (D, Tester5), (D, Tester6)} = > {(C2, SolverS1)} 0.01 1.00 5.348

6104 {(C2, SolverS3), (D, Tester5), (D, Tester6)} = > {(C2, SolverS1)} 0.01 1.00 5.348

8226 {(B, Tester5), (C2, SolverS3), (E2, System), (F, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

8231 {(A, System), (B, Tester5), (C2, SolverS3), (E2, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

8236 {(B, Tester5), (C2, SolverS3), (E1, System), (E2, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

11,210 {(C2, SolverS3), (D, Tester1), (D, Tester4), (E2, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

11,215 {(C2, SolverS3), (D, Tester1), (D, Tester4),(F, System)} = > {(C2, SolverS1)} 0.01 1.00 5.348

11,220 {(A, System), (C2, SolverS3), (D, Tester1), (D, Tester4)} = > {(C2, SolverS1)} 0.01 1.00 5.348

Appendix 1. Repair Case: Top 10 Candidate
Rules from the Event Log
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