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Data classification for distributed and heterogencous XML data sources is always an open challenge. A considerable number of
algorithms for classification of XML documents have been proposed in the literature. Yet, the existing approaches fall short in
ability to classify the fuzzy XML documents. In this paper, we provide a KPCA-KELM classification framework for the fuzzy
XML documents based on Kernel Extreme Learning Machine (KELM). Firstly, we propose a novel fuzzy XML document tree
model to represent fuzzy XML documents. Secondly, we employ an effective vector space model to represent the semantic
structure of fuzzy XML documents based on the proposed fuzzy XML document tree model. Thirdly, we classify the fuzzy XML
document using KELM after feature extraction using Kernel Principal Component Analysis (KPCA). The corresponding exper-
imental results demonstrate that our proposed KPCA-KELM approach shortens the training time while maintaining the same

level of accuracy as the state-of-the-art baseline models.

Keywords Data classification - Fuzzy XML - Feature extraction - Kernel extreme learning machine (KELM)

1 Introduction

With the development of the Internet, XML (Extensible
Markup Language) has become a de-facto standard for
representing a large number of rapidly increasing Web data
in numerous applications. Because of heterogeneous and dis-
tributed data source is utilized in a lot of applications, XML
data integration becomes more and more imperative (Thomo
and Venkatesh 2008; Guha et al. 2006). XML document clas-
sification plays a critical role in XML data integration. It is
logical that there is a growing demand in the research of XML
document classification (Brzezinski and Piernik 2015; Zhao
et al. 2011; Thasleena and Varghese 2015).

The XML document classification is similar to plain text
classification to a certain extent. The difference between them
is that pure text classification only focuses on the semantic
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level, while XML document classification needs to consider
both the structure and semantics of the XML document.
Various approaches have been designed to perform XML doc-
ument classification in (Zhao et al. 2011; Dalamagas et al.
2006; Tekli and Chbeir 2012; Maguitman et al. 2005; Tekli
et al. 2015).The majority of the approaches exploit the direct
comparison of the structure and semantics of the given paired
XML documents, such as tree edit distance (Dalamagas et al.
2006; Tekli and Chbeir 2012; Maguitman et al. 2005; Tekli
et al. 2015). Some of the approaches also exploit machine
learning strategies (Zhao et al. 2011; Zhang et al. 2012) to
solve this problem. Zhao et al. reported that XML documents
have to be transformed into a specific representation model,
which is then taken as an input of Extreme Learning Machine
(ELM) (Zhao et al. 2011). Ribeiro and Harder introduced an
approach of entity identification in XML documents based on
approximate joins (Ribeiro and Hérder 2006). Zhang et al.
presented an approach of computing the similarity between
XML documents, which make reference to the adjacency ma-
trix of graph theory (Zhang et al. 2012). The authors intro-
duced XML matching approaches and a template, called
XML Matcher Template, which describes the main compo-
nents of an XML Matcher in (Agreste et al. 2014).

XML documents which are previously classified are often
deterministic. However, in fact, fuzzy information often
emerges in some practical applications. Some data are
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inherently vague rather than definite since their values are
subjective in real-world applications. Fuzzy sets theory which
proposed by Zadeh has been widely used in numerous appli-
cations (Negoita et al. 1978). Fuzzy data are modeled in the
XML document in (Nierrman and Jagadish 2002; Gaurav and
Alhajj 2006; Oliboni and Pozzani 2008) and approaches
representing and processing fuzzy information based on the
XML data are proposed in (Turowski and Weng 2002;
Abiteboul et al. 2006).

With the increasing of fuzzy XML data on the Web, it
is necessary to classify fuzzy XML documents for further
integrating multiple similar fuzzy XML documents into a
single one. Unfortunately, to our best knowledge, there
are not many reports discussing the fuzzy XML docu-
ments classification. Although uncertain XML document
classification has been investigated (Zhao et al. 2016), the
proposed approaches need to consume a large amount of
time to enumerate all possible instances. Based on the
above analysis, aiming at developing an effective ap-
proach to classify fuzzy XML documents, we devise a
new fuzzy XML document tree model to represent seman-
tic and structure of the fuzzy XML documents, and then
we propose an integrated machine learning approach
(KPCA-KELM) to classify fuzzy XML documents
effectively.

In this paper, we concentrate on the classification of het-
erogeneous fuzzy XML documents which are collected from
different data sources. The main contributions of the proposed
work are as follows.

—  We take a first step in the construction of a new fuzzy
XML document tree model (FXDTM), which makes it
easier to describe fuzzy data and capture the feature in-
formation in fuzzy XML documents. Based on the
Structured Link Vector Model (SLVM) (Yang and Chen
2002), a Modified Structured Vector Space Model (MS-
VSM) is employed in (Zhao et al. 2017) to represent
fuzzy XML documents, which not only represents struc-
tural and semantic information of fuzzy XML documents,
but also makes the feature vector carry fuzzy information.
Considering that the accuracy and validity of feature ex-
traction can be improved by using the FXDTM model to
represent the key features of fuzzy XML document, in
this paper, the FXDTM model is used as an intermediary
instead of directly converting fuzzy XML document into
the MS-VSM model as in (Zhao et al. 2017). The raw
data coming from this MS-VSM model are taken as the
input of classifiers.

— We propose an integrate machine learning approach
(KPCA-KELM) to classify fuzzy XML documents. At
first, to reduce the complexity of computation and exploit
hidden information, we perform features extracting of the
input raw data using Kernel Principal Component
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Analysis (KPAC) (Scholkopf et al. 1998; losifidis et al.
2015) approach. Different feature extraction methods can
result in different classifications. The ELM is employed
as feature extractor in (Zhao et al. 2017). Considering that
the KPCA is very suitable for extracting the interesting
non-linear features from high-dimensional space data, in
this paper, we use the KPCA to capture the non-linear
features of fuzzy XML documents to extract those deci-
sive features. Secondly, due to Extreme Learning
Machine (ELM) (Huang et al. 2006; Huang and Chen
2007; Huang et al. 2016; Tang et al. 2016) has a good
classification accuracy and faster learning speed, we pro-
pose an effective algorithm based on Kernel Extreme
Learning Machine (KELM) to achieve the classification
of fuzzy XML document. In this way, we can classify the
fuzzy XML documents collected from diverse data
sources.

The remainder of this paper is organized as follows.
Section 2 introduces the related works, including the funda-
mental concepts and theories of KPCA and KELM after a
presentation of fuzzy XML documents. Section 3 describes
the proposed Fuzzy XML Document Tree Model (FXDTM)
and Modified Structured Vector Space Model (MS-VSM) of
fuzzy XML documents. The KPCA-KELM framework based
on KPCA and KELM is proposed in Section 4. Experimental
evaluations are given in section 5. Finally, the conclusion is
drawn in Section 6.

2 Related Works

To facilitate the understanding of the proposed approach,
this section briefly reviews the related fundamental of
concepts/theories of the fuzzy XML documents, KPCA
and KELM. Though ELM unifies regression and classifi-
cation tasks, we only focus on the classification in the
following parts.

2.1 Fuzzy XML Document

A fuzzy XML document is a set composed of elements
and attributes, linked together via the containment rela-
tion. To represent fuzzy information in fuzzy XML docu-
ments, a representation model based on “membership de-
gree and possibility distributions” is developed in (Ma
and Yan 2007; Yan et al. 2009). In this model, an element
may be involved in a membership degree. The member-
ship degree of an element indicates the possibility of be-
ing its parent’s child element. The attribute values of ele-
ments may be presented as possibility distributions in this
representation model. Note that it is possible that some
attributes can take multiple (conjunctive) values. In
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contrast, some attributes can only take unique
(disjunctive) value. That is, we have two kinds of fuzzi-
ness in the fuzzy XML document: one is the fuzziness in
elements associated with membership degrees; another is
the fuzziness in attribute values of elements represented
with possibility distributions. The Type attribute as a child
of element Dist is used to indicate the type of possibility
distribution, having values of disjunctive or conjunctive.
In addition, each Dist element has a Val/ element as its
child. The Poss attribute as child of element VAL indicates
the membership degrees of a given element.

Here we do not present the detailed definitions of fuzzy
XML document representation model and only present an

example fragment of fuzzy XML document shown in Fig. 1.
One can refer to (Ma and Yan 2007; Yan et al. 2009; Li and
Ma 2017) for more details.

In the fuzzy XML document of Fig. 1, Poss is adopted
together with a fuzzy construct denoted by Val to specify the
possibility of a given element in the fuzzy XML document. In
line 2 of Fig. 1, <Val Poss = 0.9 > states that the membership
degree of the given element department being Information
Science and Technology is equal to 0.9. Another fuzzy con-
struct called Dist can be used to express possibility distribu-
tion of attribute values. Since we have two types of possibility
distribution, Type is adopted to indicate the type of possibility
distribution, being disjunctive or conjunctive. Lines 18-22 are

Fig.1 A fragment of fuzzy XML 1. <college Cname = “liaoning college”>
document
2. <Val Poss = 0.9>
3. <department Dname = “Information Science and Technology”>
4. <teacher Tid = “007100”>
5. <Dist Type = “disjunctive”>
6. <Val Poss = 0.8>
7. <Tname>Ford George</Tname>
8. <title>Associate Professor</title>
9. </Val >
10. <Val Poss = 0.6>
11. <Tname>Ford George</Tname>
12. <title>Professor</title>
13. </Val >
14. </Dist>
15. </teacher>
16. <student SID = “20130425">
17. <age>
18. <Dist Type = “disjunctive’>
19. <Val Poss = 0.8>26</Val>
20. <Val Poss = 0.9>28</Val>
21. <Val Poss = 0.8>29</Val>
22. </Dist>
23. </age>
24. <email>
25. <Dist Type = “conjunctive”>
26. <Val Poss = 0.6>John_Smith@yahoo.com</Val>
217. <Val Poss = 0.8>John_Smith@hotmail.com</Val>
28. <Val Poss = 0.5>]Smith@hotmail.com</Val>
29. </Dist>
30. </email>
31. </student>
32. </department >
33. </Val>
34. </college>
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the disjunctive Dist construct for the age of the student with SID
20130425. Lines 25-29 are the conjunctive Dist construct for the
email of the student with SID 20130425.

2.2 Kernel Principal Component Analysis (KPCA)

Kernel Principal Component Analysis (KPCA) (Scholkopf et al.
1998; losifidis et al. 2015), which is derived from Principal
Component Analysis (PCA), has been widely used for nonlinear
feature extraction. To be fluent for reading, let us introduce the
essential knowledge of KPCA. More details about KPCA can be
found in (Scholkopf et al. 1998; losifidis et al. 2015).

As a nonlinear method, KPCA is nothing but the PCA in the
feature space associated with a kernel function. KPCA maps all
samples from the linear data space to the nonlinear feature space,
and the PCA features are extracted in the feature space. To the
data space R?, consider a feature space by a possibly nonlinear
map &: R? — F, x — ®(x). The map & is defined implicitly with
kernel function.

Let us consider a set of N training samples in a d-dimensional
space x; € R i=1, ..., N. If the training samples have been
mapped into a feature space by a nonlinear function ¢, we may
perform PCA in feature space F. We assume that all their mapped
samples P(x;), P(x), ..., P(xy) are centered, that is
SV @ (x;) = 0. The correlation matrix of the mapped samples
in feature space F' can be computed by

1

C=v (x)P(x;)" (1)

=

The extracted features in feature space must be from the set
of the eigenvectors of C (Scholkopf et al. 1998). With these
extracted features, we can reconstruct the samples with the
minimum mean-square error. KPCA seeks to find eigenvalues
A and the associated eigenvectors V satisfying

CV =\V (2)
The eigenvalue equation can be written as

(@(x/L)T-CV) = )\((I)(xu)T-V> Jorall p=1,....N (3)

And there exists coefficients o, j=1,..., N, such that
V=13 a;®(x;) (4)

Combining Egs. (1), (3) and (4), we have

i=1 /=1

%(g > (@WT-<I><xi><1><xi)f-a,¢<r>)>

23 (2(5) s (x) (5)

=
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Now we define an N x N kernel matrix K by K;;= (D(x)"
DP(x)K;= (D(x)T &(x))). Furthermore, the following equa-
tion can be derived: K>a = \NKcr, where a = [a1, ..., anl.
In fact, the coefficient vector « is the eigenvector correspond-
ing to non-negative eigenvalue of the kernel matrix K. Finding
solutions of this equation is equivalent to solve the eigenvalue
problem of Ko =N« for nonzero eigenvalues. Then this
yields eigenvectors o', ..., & corresponding to eigenvalues
N> >N

The dimensionality of the input data is reduced by retaining
only the first p most representative eigenvectors associated with
the first p largest eigenvalues. That is, the first p nonlinear prin-
cipal components are used to describe the input data. Note that in
KPCA, the number of principal components (PC) p may exceed
the input dimensionality d. The maximum number of PCs in
KPCA is N.

The corresponding eigenvectors o', ..., of of eigenvalue
AL, ..., W can be normalized by requiring the corresponding
vectors V', ..., V?in F be normalized, that is

= (cx"‘)TKoc/C (6)
_ )\k(o‘k)Tcxk
= X lodt|?
=1
when chkH2 = %, forallk=1,2,...,p, V ¥ is normalized.

Principal components of a test sample y are obtained by
projecting &(y) onto the eigenvectors V¥ in F: k=1, ..., p

() [Vi, ..., V,)
= (x1). k)] [ o] RV ™)
Here o = [of, o, ..o
Projection of test sample set {y;, y>, ..., yas} on 1%

(@), s @0a)] [V, 0, V)

= K[, ..., o] eRM*P (8)

Here K e = [® 00 P ar v = [k %) s v
The algorithm of KPCA is presented as Algorithm 1.

2.3 Kernel Extreme Learning Machine (KELM)

The Extreme Learning Machine (ELM) model was originally
proposed in (Huang et al. 2006; Huang and Chen 2007) and
developed in (Huang et al. 2014; Huang 2014), which
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implements a single-hidden layer feed forward neural network
(SLFN). The biggest advantage of ELM is that it can provide
extremely fast learning speed and good generalization perfor-
mance compared with the traditional neural network. The es-
sence of ELM is that the network’s hidden layer (mapping)
can be randomly assigned and the output weights can be cal-
culated by matrix operations without iteratively tuning.

Consider N arbitrary samples (x;, ;) € R" ™. Then ELM is
modeled as

100 = % 5g,0) =h0)F i= 1,00 N o)

Here L is the number of hidden layer nodes, g (*) is activa-
tion function, 3; is the weight vector between the jth hidden

node and the output nodes. 3 = 37, ..., 3; | me is the vector
of'the output weights between the hidden layer of L nodes and
the output node and 4 (x) =[g; (x), ..., gL (0)]" is the output
(row) vector of the hidden layer with respect to the input x.
h(x) actually maps the data from the n-dimensional input
space to the L-dimensional hidden-layer feature space (ELM
feature space).

According to the ELM theory (Huang et al. 2012) and
Karush-Kuhn-Tucher (KKT) (Fletcher 1981) theorem, ELM
aims to minimize the training errors and the output weights.
This objective function can be expressed as follows:

1 Cc X
min (16 +5 X I€IF st h)8 = o/ =€f

10
nin (10)

Here &, is the training error matrix on training data, &, = [,
Es +os Eim]' &=[En €y -y &l T the ith column of € with
respect to the training sample x;, N and m are the number of
training samples and classes, and C is a regularization param-
eter which trades off the norm of output weights and training
errors.

The optimization problem in Eq. (10) can be efficiently
solved. According to (Huang et al. 2012), the optimal /3 which
minimizes Eq. (10) can be analytically obtained as

!
ﬁzHT(LrHHT) T (11)

C

Here [ is an identity matrix.

T=[d . &y,
h(xl) gl(X1) gL('xl)
H = : = :
h(xN) gl(xzv) gL(xN) NxL

In ELM, A(x;) denotes the output of the hidden-layer with
regard to the input sample x;. H is called the feature mapping
matrix due to the fact that it represents the corresponding
feature space mapping of the given N training samples.

f(xt) = h(x,)ﬁ

Feature mapping /(x;) maps the data x; from the input space
to the hidden-layer feature space, and the feature mapping
matrix H is irrelevant to the training target values #;s.

After obtaining the optimal output weights (3, the decision
score of the corresponding to a new data points (x;) can be
predicted fast and accurate by

(12)

However, in this specific case, the feature mapping %(x)
may not be known to users; instead, its corresponding kernel
K(u, v)(e. g., K(u, v) = exp (—yllu—vII*)) is given to users. The
dimensionality L of the feature space (number of hidden
nodes) need not be given either. The ELM like this is called
the Kernel ELM (KELM). If a feature mapping A(x) is un-
known to the users, one can apply Mercers conditions on
ELM. A kernel matrix for ELM is defined as follows
(Huang et al. 2012):

QELM = HHT : QELM,-,]- = h(x,)h(x,) = K(xi,xj) (13)

The kernel matrix {2gy s is neither relevant to the number
of output nodes m nor to the training target values ¢s. The
kernel matrix Qg n=HH” is only related to the input data x;
and the number of training samples N. The size of kernel
matrix 25 =HH' is N x N.

Then, the output function of KELM classifier can be writ-
ten compactly as

f(x) = h(x)H" (é + HHT> T

K(x,x1) I -1
= 5 (6 + QELM) T
K(X, )CN)

(14)

The algorithm of KELM is presented as Algorithm 2.

3 Representation Model of Fuzzy XML
Document

3.1 Fuzzy XML Document Tree Model

Obviously, finding all element/attribute features of the fuzzy
XML documents is a core task. To captures features of fuzzy
XML documents, we need first to establish a suitable model to
represent the fuzzy XML document. XML documents are
presented as ordered labeled trees in most existing approaches
in (Dalamagas et al. 2006; Tekli and Chbeir 2012; Maguitman
et al. 2005; Tekli et al. 2015). In this ordered labeled tree, the
nodes represent elements/ attributes and are labeled with the
corresponding element/ attribute label names, which are
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ordered following their orders of appearance in the fuzzy
XML document.

A fuzzy XML document which represents hierarchically
structured information can be also presented as a rooted or-
dered labeled tree. But the fuzzy XML document is clearly
different from the crisp XML document because the fuzzy
XML document contains several special fuzzy constructions,
which is attribute Poss and Type, in addition to element VAL
and Dist. These fuzzy constructions contain fuzzy information
of associated tree nodes. To reduce the model complexity, the
redundant elements/attributes are deleted and the pertinent
information (including fuzzy information) of the elements/
attributes is encapsulated in the node of the fuzzy XML doc-
ument tree. We adopt the following considerations in order to
reach such a goal.

We note that Type always appears as the first child attribute
of the Dist and Poss always appears as the first child attribute
of the VAL. They are considered redundant data and increase
the computational complexity. Therefore, all of Type and Poss
attribute are no longer reserved when a fuzzy XML document
is mapped into a fuzzy XML document tree. But Va/ values
are remained because they need to be considered while calcu-
lating the values of TF-IDF (cf. Section 3.2). So, we need to
copy Val values into its sibling (element/attribute) nodes in
processing of transformation. Similarly, we can disregard the
Type and Dist elements if it is not affecting the tree structure
and the depth of the other node.

Based on the discussion above, we present a new Fuzzy
XML Document Tree Model (FXDTM for short).

Definition 1 (Fuzzy XML document tree) Formally, we model a
fuzzy XML document as a rooted ordered labeled tree
FXDTM={M, E, L, T, FT, AC}. Here.

— Nis the set of nodes in tree FXDTM.

—  Eis the set of edges, which reflect the hierarchical struc-
ture of the tree FXDTM.

— L is the set of labels of the elements and attributes corre-
sponding to the nodes in N.

—  Tisthe set of data types, including the basic element data
types and attribute data types.

—  FTis the set of fuzzy data types of nodes N.

—  Pis the set of Poss values of nodes N.

We need to hold related information of elements/ attributes
(e.g. label, the fuzzy value) when the fuzzy XML document is
transformed into the fuzzy XML document tree model
(FXDTM) we proposed. Hence, following our tree represen-
tation model, a fuzzy XML document tree node is modeled as
follows:

Definition 2 (Fuzzy XML document tree node) A node neN of
FXDTM is represented by a quintuple n = {NodeLabel,
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NodeDepth, NodeFuzzy, NodeFuzzyType, NodePossValue}.
Here.

—  NodeLabele L is the label name of the node.

—  NodeDepth is the nesting depth of the node in the fuzzy
XML document. The depth of the root node is defined to
be 1. If the parent of node n is at depth d, then the depth of
nodenisd+ 1.

—  NodeFuzzy is used to indicate if the node is a fuzzy or
crisp one. If the value of NodeFuzzy is 1, the node is a
fuzzy one. If the value of NodeFuzzy is 0, the node is a
crisp one. In particular, the value of NodeFuzzy of the
node Dist or Val is 0.

—  NodeFuzzyTypecFT denotes the type of possibility distri-
bution, disjunctive or conjunctive distributions. For a
crisp node, its value is equal to Null.

—  NodePossValue is the memberships of the node or the
possibility of attribute values of elements. For a crisp
node, the value of NodePoss is equal to 1.

To sum up, FXDTM is a rooted ordered tree, in which the
nodes represent the fuzzy XML elements/ attributes. Nodes
are ordered following their order of appearance in the fuzzy
XML document. And FXDTM representation model that we
proposed here considers the most common characteristics
(e.g., label, the fuzzy values) of fuzzy XML documents.

After the fuzzy XML document mentioned in Section 2.1 is
converted into the FXDTM tree model in this way, we can
extract the feature information of nodes and apply the ap-
proach based on KELM to classify the fuzzy XML documents
represented by the proposed FXDTM tree model. Figure 2
shows a FXDTM tree instance that basically comes from the
corresponding fragment of a fuzzy XML document is de-
scribed in Fig. 1. Without loss of generality, when we use
“node” we mean “element node” or “attribute node” in fol-
lowing section.

3.2 Representation Structured Vector Space Model
of Fuzzy XML Document Tree

Although we use a new fuzzy XML document tree model
FXDTM to better represent the feature information of the fuzzy
XML document, a fuzzy XML document needs to be represent-
ed in the form of eigenvectors in order to apply machine learning
algorithm based classification (Tang et al. 2016). Therefore, in
order to classify the fuzzy XML documents, it is necessary to
transform the fuzzy XML documents from FXDTM model to
vector model. That is, instead of directly transforming the vector
model from the fuzzy XML document, we have gone through
the intermediate transformation of the FXDTM tree. The advan-
tage of this method is that FXDTM tree can more accurately
reflect the hierarchical structure and fuzzy information of feature
terms compared with plain text documents.



Inf Syst Front (2021) 23:515-530 521
‘college’ 1 ‘O‘Null‘Null‘
[Cname [ 2 [0[Nul1[Null] [ Val [2]0[Null[Null]
‘department ’ 3 ‘I‘Null‘ 0.9 ‘
[Dname[ 4 [1][Nul1] 0.9 [teacher| 4 [1[Null[0.9 | [ student [ 4 [1]Nul1] 0.9 |
[ Tid [5]1[Nl1]0.9] [pist[5[o[Null]0.9] [sID[5][1]Null]0.9] age [5[1[Nul1[0.9] [email[5[1[Null]0.9
| Val [6]0]disjunctive |0. 9] [Val [ 6 [0[ disjunctive] 0.9 |
‘Tname‘ 7 ‘ 1 ‘disjunctive‘ 0.8 ‘ ‘ Tname ’ 7 ‘l‘disjunctive‘ 0.6 ‘
[title] 7 [1]disjunctive| 0. 8 | [ title [7[1]disjunctive]0. 6]
Fig. 2 A FXDTM tree corresponding to the fuzzy XML document in Fig. 1
Vector Space Model (VSM) (Salton and McGill 1983) is
XMS-VSM =< X1y ..., Xp > (17)

often used to represent plain text documents, which takes dis-
tinct feature terms TF-IDF value as feature vectors. However,
VSM cannot directly represent structural information of a
semi-structured (XML) document. Structured Link Vector
Model (SLVM) is proposed in (Yang and Chen 2002) based
on VSM to represent semi-structured documents, which con-
tains both semantic and structural information. Given a set of
XML documents D, an XML document deD. Structured
Vector is defined as

dy =< dy,....d, > (15)
where d; is a feature vector of the ith XML document feature
terms calculated as

dl' = (TF(WI',DOC.ej')'Ej)'IDF(Wi)
1

(16)

IZE

J

where w; is the ith term, ¢; is a unit vector corresponding to the
element node e;, and m is the number of nodes corresponding
to term w;.

In SLVM, each d;, is a feature matrix Rnxm. d; is a m
dimensional feature vector which consists of XML element
node the corresponding to a same feature term.

A Modified Structured Vector Space Model (MS-VSM)
based on SLVM to represent fuzzy XML documents is pro-
posed in (Zhao et al. 2017), which not only achieves the
representing of semantic and structural information of fuzzy
XML documents, but also makes the feature vector to carry
fuzzy information.

Given a set of fuzzy XML documents FD, a fuzzy XML
document xeFD. Modified Structured Vector Space Model
(MS-VSM) to represent fuzzy XML document is described as

where x; is a feature vector of the ith fuzzy XML document
feature terms calculated as
m

x; =Y, (TF(Li, FXDoc.n;)-;)-IDF (L;)
=

(18)

where m is the number of nodes corresponding to feature
terms L; (Label) in fuzzy XML document FXDoc, FXDoc.n;
is the jth node corresponding to feature terms L; in fuzzy XML
document FXDoc, &;, which is the unit vector of FXDoc.n; and
define in similarity matrix by users according to their concrete
application in SLVM (Yang and Chen 2002), is now the prod-
uct of the reciprocal of node depth (1, NodeDepth) and node
fuzzy value (n;.NodePossValue).

1

g = W - n;.NodePossValue (19)

Example 1 shows the calculation process of eigenvectors
corresponding to feature terms.

Example 1 To illustrate the calculation process of eigenvec-
tors, we calculate the corresponding eigenvectors for the two
feature terms “teacher” and “title” in Fig. 2:

109 100
Xteacher — 18 4 0g1+80
= (L, 08 1 06N . 190
e =\18 77 T8 7 1550

The FXDTM tree has 18 nodes in Fig. 2. Here, suppose
that the sum of documents in the Corpora is 100, the number
of documents in which the feature term “teacher” appears is
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80, the number of documents in which the feature term “title”
appears is 50. The eigenvectors of a fuzzy XML document are
derived from the corresponding eigenvectors of several fea-
ture terms.

4 Classification of Fuzzy XML Document
with KPCA-KELM

An ELM-based double hidden layer framework is proposed in
(Zhao et al. 2017). The proposed framework includes the fea-
ture extraction with Extreme Learning Machine and the clas-
sification with Kernel Extreme Learning Machine.
Considering that the KPCA is very suitable for extracting
the interesting non-linear characteristics from high- dimen-
sional space data, we choose the KPAC as feature extractor
in this paper. In this section, first of all, we introduce prepro-
cessing of fuzzy XML documents, which produce raw data of
feature representation of fuzzy XML documents. And then we
propose a new KPCA-KELM framework for fuzzy XML doc-
ument classification. The overall architecture of the proposed
KPCA-KELM includes the training stage and the testing
stage.

4.1 Preprocessing

In (Zhao et al. 2017), the fuzzy XML document is directly
represented as a Modified Structured Vector Space Model
(MS-VSM). In this paper, we use the method described in
Section 3 to represent the fuzzy XML document samples in
order to represent more accurately information.

To obtain the raw data of the characteristics of the fuzzy
XML document, we need to transform the fuzzy XML docu-
ment into FXDTM tree, and calculate the feature value of each
element. For each sample either for training or for testing, the
necessary pre-processes such as size normalization are imple-
mented to facilitate the feature extraction process. We propose
Algorithm 3 to implement this preprocessing. Assume that
there is a fuzzy XML document set FD = {x;} (i=1, ..., N).
Then, the raw data of the train sample set (D) and test sample
set (T) is obtained. The next process is to extract the KPCA
features from the raw data and realize the final classification of
the test sample. This preprocessing can be realized as
Algorithm 3.

4.2 KPCA-KELM Classification Architecture

The starting-point of the proposed KPCA-KELM is as fol-
lows. At first, one can extract more information by using suit-
able nonlinear features from a given raw dataset. The KPCA is
very well suited to extract interesting nonlinear features in the
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data. It is particularly important that KPCA has the advantage
of capturing the nonlinear features in high dimensional space
(Scholkopf et al. 1998; losifidis et al. 2015). The KPCA maps
the raw data obtained in the pre-processing stage to nonlinear
feature space. In addition, it is easy to understand that dimen-
sionality reduction before performing classification tasks can
improve classification accuracy and reduce training time. At
the same time, a feature selection technique is employed for
pre-processing before the classification models are construct-
ed. We try to find out which features are most relevant to fuzzy
XML documents through feature selection. Feature selection
is applied to identify the informative features, and after then
several feature subsets with top-p ranked features are fed to the
classifier for classification and performance evaluation.
Secondly, in order to solve the classification problem, we need
to find a suitable machine learning classification algorithm.
Compared with SVM, the KELM can achieve comparative
or better performance with much easier implementation and
faster training speed in many classification tasks (Huang et al.
2014; Huang 2014; Huang et al. 2012). That is, the KELM
requires much less learning time and has good generalization
accuracy. These characteristics inspire us to use the KELM to
solve the fuzzy XML document classification problem. In a
word, we try to use KELM classifier to classify fuzzy XML
documents by combining the KPCA feature extraction meth-
od and suitable feature selection.

It is shown that the proposed KPCA-KELM architecture is
structurally divided into two separate steps: 1) feature extrac-
tion and 2) classification. In the first step, a KPCA-based
extractor is developed to extract sparse features of the input
raw data, which can help to exploit hidden information among
training samples. The KPCA first maps the raw input data into
some high dimensional feature spaces via a nonlinear kernel
function (e.g. Gaussian kernels and polynomial kernels) and
then performs linear PCA on the mapped data. After a series
of matrix operations, the largest first p eigenvalues and the
corresponding eigenvectors need to be found. Through such
feature selection and dimensionality reduction, the most rep-
resentative relevant features can be identified. The extracted
features can be used as a basis for classification after feature
selection. It should be noted that the actual physical meaning
of extracted features is not very explicit. The eigenvectors in
the feature space do not correspond to the feature terms in the
input raw data space. For example, the FXDTM tree in Fig. 2
has 14 feature terms, which are “college”, “Cname”, “Val”,
“department”, “Dname”, “teacher”, “student, “Tid”, “Dist”,
“SID”, “age”, “email”, “Tname”, and “title”. Suppose we
want to select the first 5 eigenvectors in the feature space.
The extracted eigenvectors only include the largest common
information of 14 feature terms. The first p principal compo-
nents have the largest amount of common information relative
to the input raw data. The second step of the KELM-based
classification is performed for final decision making by using
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projections of feature extraction results as the inputs of
classifier. Although the SVM has gained much more pop-
ularity due to its mature theory as well as the satisfactory
classification performance, the KELM still has its own
advantages in some aspects. The KELM method improves
the disadvantage of ELM method: random assignment and
hidden layer bias cause unstable output results. At the
same time, the hidden layer feature mapping does not
need to be known. For example, the Gaussian kernel func-
tion is applied in this paper. Two main parameters pre-
sented in KELM with Gaussian kernel are penalty param-
eter C and kernel parametery, which play an important
role in model construction. Through these two steps, the
KPCA-KELM model provides an improved performance
for the classification of fuzzy XML documents. The pro-
posed framework of KPCA-KELM is shown in Fig. 3.
In first (KPCA) step, the nonlinear projection produces
almost orthogonal eigenvectors V¥ which are linearly in-
dependent in the training stage. In the testing stage, the
principal components of the test sample y can be extracted
by projecting &(y) onto the eigenvectors V¥ in F as Eq.
(7). In second (KELM) step, .4, is calculated by Eq.
(13) in the training stage. In the testing stage, the final
classification of the sample is realized by Eq. (14). The
algorithm of KPCA-KELM is presented as Algorithm 4.
Overall, to capture the principal component features, a
representative raw dataset is constructed with Algorithm 3

from the fuzzy XML document set. And then, the KPCA
features are extracted from these representative raw
datasets. Finally, in the new feature space, the KELM
classifier is used to realize classification.

5 Experimental Evaluation

In this section, we present experiments conducted in order
to verify the effectiveness and efficiency of the proposed
KPCA-KELM framework. We compare it with the other
existing main relevant state-of-the-art classifiers (original
ELM, SVM etc.) in the literature in terms of classification
accuracy and training time cost on various datasets.

5.1 Experimental Settings

Although a variety of classification methods are presented
in the literature (Huang et al. 2006; Suykens and
Vandewalle 1999; Blatman and Sudret 2011; Paliwal and
Kumar 2009; Kamgar-Parsi and Kanal 2010; Gupta et al.
2019; Palshikar et al. 2018), we choose popular tech-
niques to compare the computational performance of dif-
ferent classifier.
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Fig. 3 The model architecture of KPCA-KELM
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The current version of ELM and Kernel ELM' has been
employed for the performance analysis. For SVM classifier,
the classic algorithm (Suykens and Vandewalle 1999) has
been rewritten to verify its performance in terms of different
parameters which are consistent with other classifiers.

In all the experiments, we apply the original ELM (Eq.
(12)) and the Kernel ELM (Eq. (14)) algorithms for different
ELM mapping space.

In the case of original ELM space mapping, we have
employed the Sigmoid activation function:

1
1 4+ exp(—(a-x + b))

gla,b,x) = (20)
Here all the hidden node parameters a and b are randomly
generated. The number of hidden nodes L is set as {26, 27,
213 }. The regularization parameter C is set as {2_10, 2_9, e
2°).
In the case of Kernel ELM space determination, we
employed the Gaussian kernel function:

K(u,v) = exp(—u]?)) @)

where the value v of the Gaussian kernel is set in the range
{275, 27, ..., 2*}. The optimal value for the regularization
parameter Cis setas {27'%, 27, ..., 2°}.

The same Gaussian kernel function is adopted in the
KPCA-KELM and SVM. In order to gain an unbiased esti-
mate of the generalization accuracy, the all experiments will
be repeated and averaged over 20 runs to obtain results for the
classification comparison, and the mean and standard devia-
tion are given.

All the experiments were conducted on a computer with an
Intel Core i7 processor, §GB RAM. All the simulations are
carried out in MATLAB R2014a and JDK 1.6 environment,
which runs on Windows 7 operating system with synthetic
and real datasets.

5.2 Datasets

To test our method’s effectiveness, we used the following
synthetic and real datasets for the experimental evaluation.
We experimented with synthetic datasets® from five different
domains. Each domain has a corresponding XML DTDs. The
characteristics of these XML DTDs represented different appli-
cation domains are shown in Table 1. To obtain fuzzy XML
documents, at first, we used our adaptation of the XML docu-
ments generator to generate the corresponding XML documents
based on these XML DTDs. And then, we manually add fuzzy
construct to these XML documents during the top-down traversal
of a XML document. To be specific, at each visited node N, we

! http://www.ntu.edu.sg/home/egbhuang/
2 http://www.cs.washington.edu/research/xmldatasets/
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Table 1 Characteristics of the synthetic datasets
Domain DTD No.Docs Element Max-
depth
Auction yahoo.dtd 40 10 5
University reed.dtd 40 12 5
Protein psd7003.dtd 20 18 7
Dblp dblp.dtd 60 24 6
SigmodRecord SigmodRecord.dtd 40 16 6

randomly generate a fuzzy construct (Dist node D with Tipe
node as first children) to be the child of N during the top-down
traversal of an XML document. The original children of N be-
come the children of the newly generated Dist node D, which
have fuzzy construct (Va/ node with Poss node as first children)
being assigned with random probabilities to specify the member-
ship degree of the given elements.

For real datasets, we considered the ABC News,3 IBM
Developer Works* and Wikipedia® as three original real
datasets. Of course, we need to make use of a random data
generation method that transformed the XML documents in
original real datasets into a fuzzy XML document. That is, we
artificially add fuzzy nodes to the XML documents using
same approaches to deal with XML documents in synthetic
datasets.

After obtaining fuzzy XML documents of synthetic and
real datasets, we choose a part of them as their subsets. For
example, IBM Developer Works is composed of around 1200
XML documents classified in 6 classes, out of which we
choose 3 classes and 600 random XML documents as a sub-
set. In this way, synthetic dataset is randomly split into 4
subsets (T1, T2, T3, T4), and real dataset is randomly split
into 6 subsets (T5, T6, T7, T8, T9, T10), respectively.

Subsequently, we transform these fuzzy XML documents
in synthetic and real datasets (T1-T10) ordered by increasing
samples size into MS-VSM which we proposed using
Algorithm 3. Consequently, we obtain 10 datasets represented
with MS-VSM as input raw data of KPCA-KELM frame-
works and other classifiers. The key characteristics of the real
datasets are summarized in Table 2.

For each dataset, 80% samples are used for training while
the rest 20% samples are used for testing. We have normalized
all input variables to the (—1, 1) range for all the classifiers.

5.3 Performance Comparison and Discussion

In this part, we compare the performance of the above-
mentioned methods for classification over ten raw datasets,

3 http://abcnews.go.com/
4 http://www.ibm.com/developerworks/develop/
3 http://wikipedia.c3sl.ufpr.br/
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Table 2  Key Characteristics of the datasets

Dataset ~ Samples  Features  Classes  Description

T1 80 12 2 Synthetic datasets

T2 100 16 3 Synthetic datasets

T3 160 18 4 Synthetic datasets

T4 200 24 5 Synthetic datasets

T5 200 32 3 ABC News

T6 400 32 6 ABC News

T7 600 45 3 IBM Developer Works
T8 1200 45 6 IBM Developer Works
T9 2400 56 10 Wikipedia

T10 4800 56 20 Wikipedia

including both classification accuracy and training time cost,
to demonstrate both the effectiveness and the computational
efficiency of the proposed KPCA-KELM framework.

First, we demonstrate the selection of parameters in origi-
nal ELM and KPCA-KELM frameworks on synthetic datasets
(T1-T4). Compared with the traditional learning algorithms,
fewer parameters need to be chosen in the training process of
them.

The performance of original ELM is mainly influenced by
the cost parameter C for the regularized least mean square
calculation and the number of hidden neurons L. Here, these
two key factors will be examined in detail.

Figure 4 shows the 3-D testing accuracies curves of origi-
nal ELM in terms of (C, L). It is shown that the influence of C
and L on the performance of original ELM is different. As
shown in Fig. 4, the accuracy curves become smoother and
steadier as L increases when C has different values. On the
other hand, it is shown that the trend of accuracy curves does
not change very much as C increases if L is set large enough
(e.g.,L> 21%4n our simulations). That is, selection of C is less
important, while L should be large enough.

Being different from original ELM, the performance of
KPCA-KELM is mainly influenced by the cost parameter C
and kernel parameter -y in Gaussian kernel function. In order to

-
o
o

Testing Accuracy(%)

Fig. 4 Testing accuracy curve of ELM in terms of (C, L)

achieve good generalization performance, the cost of param-
eter C and kernel parameter v and KPCA-KELM also need to
be chosen appropriately. Thus, the best combination of (C, )
of KPCA-KELM with Gaussian kernel needs to be found.

Figure 5 shows the 3-D testing accuracies curves of KPCA-
KELM in terms of (C, ). We can clearly see that the testing
accuracy of KPCA-KELM is heavily influenced by the pa-
rameter y. The testing accuracy is getting maximum value
when the value of 7y is close to 1. Compared to the parameter
v, the parameter C is not sensitive to the performance of
KPCA-KELM when C is large enough. That is, the classifi-
cation accuracy keeps stable as C increases if y is set to a fixed
value (e.g., y=1).

It should be mentioned that the KPCA-KELM seems to
achieve a similar testing accuracy compared with the original
ELM, and its performances tend to be quite stable in a wide
range of C (C>2°). This improvement may be because the
KPCA-KELM framework is able to effectively capture the
nonlinear relationship existed in the fuzzy XML document
datasets with the aid of the Gaussian kernel. Meanwhile, the
performance of KPCA-KELM is more sensitive to the param-
eter C than that of the original ELM. As C increases, the
accuracy of KPCA-KELM is larger fluctuating than ELM.

To investigate whether feature extraction can further im-
prove the performance of KPCA-KELM for fuzzy XML doc-
uments classification, we further conduct the experiments in
the reduced feature space which was obtained using KPCA
algorithm.

This parameter that affects the performance of the KPCA-
KELM framework is the number of principal components (p)
of feature extraction in KPCA Algorithm 1, We discuss the
impacts of the parameter (p) on the performance of the KPCA-
KELM framework in detail.

Figure 6 shows the change curves of testing accuracies
under different number of the extracted features (p). It is
shown that KPAC-KELM gets different classification results
on different parameter p, and the trends of classification

Testing Accuracy(%)

Fig. 5 Testing accuracy curve of KPCA-KELM in terms of (C, y)
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accuracy seems to be increasing when the value of parameter
p is growing. It can be also seen that the testing accuracies
curves keep stable on different real datasets (T5-T9) when the
value of parameter p is large enough.

Figure 7 shows the change curves of training time in terms
of the number of extracted features (p). We can see that the
training time seems to be increasing when the value of param-
eter p is growing. Moreover, the training time is increasing
with the increase of the number of samples when the value of
p is the same.

From the above analysis, we can find that KPCA-KELM
framework has improved its performance for fuzzy XML doc-
ument classification with the aid of feature extraction using
KPCA.

Furthermore, in order to evaluate the effectiveness of the
proposed KPCA-KELM approach, the SVM was also imple-
mented for comparison. Here we only considered the
Gaussian kernel for SVM classification. The optimal parame-
ter pair (C, y) was employed to construct the SVM predictive
model.

In summary, user-specified optimal parameters used in our
simulations are adopted as follows: (C, L) for original ELM is
(50, 1000), (C, y) for KPCA-KELM with Gaussian kernel is
(25, 1), and the same optimal parameters are adopted in the
SVM.

Hereunder, we used more complicated real datasets to ver-
ify the classification performance of KPCA-KELM over the
other existing main relevant state-of-the-art classifiers (origi-
nal ELM, SVM, kernel ELM) in the literature.

For KPCA-KELM, feature extraction is performed using
KPCA, and the resulting features are randomly projected be-
fore ELM-based classification; for ELM and kernel ELM, the
randomly mapped raw data is input for classification. For fair
comparison, in the feature classification stage, the same
Gaussian kernel function is adopted in the KPCA-KELM,
kernel ELM and SVM. In addition, the sigmoid activation
function is adopted in original ELM.

To analyze numerical results, two performance metrics
have been graphed: testing accuracy, training time. The aver-
age performance comparison of different methods was gath-
ered in Table 3 and plotted in Figs. 8 and 9.

One of the most important evaluation criteria is the testing
accuracy. As shown in Table 3 and Fig. 8, we can conclude
that KPCA-KELM and KELM have similar testing accuracy
performance for all of datasets because the same kernel func-
tion and parameter are adopted in each algorithm. Moreover,
the testing accuracy comparison shows that three ELM-based
algorithms are similar to the SVM-based method. Importantly,
we observe that the KPCA-KELM algorithms cannot obtain a
huge advantage compared with other algorithms on classifi-
cation accuracy. Furthermore, Fig. 8 shows the standard devi-
ations for testing accuracy on the same dataset are generally
identical due to the similar accuracies for the four different
classifiers. Finally, it is shown that there are several low testing
accuracies such as T1, T3 for small datasets. This indicates
that the performance of the classifiers really depends on the
nonlinear nature of datasets themselves rather than the number
of samples.

Fig. 6 Testing accuracy curve of 100
KPCA-KELM in term of p
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Fig. 7 Training time curve of 10°
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Another important evaluation criterion of learning algo-
rithm is the training time, of which the comparison is present-
ed in Fig. 9. The Fig. 9 shows the change curves of training
times (in a logarithmic scale) of the four classifiers: KPCA-
KELM, ELM, KELM and SVM on the different datasets. For
almost all the data sets, KPCA-KELM is the fastest. However,
the ELM, which is the second slowest one in the smaller
datasets, is similar to or slightly faster than KELM for the
bigger datasets. It seems that, for the large datasets, the com-
putational cost of process the whole training set (N samples) in
KELM is higher than the cost of calculate the matrix H in
ELM. Moreover, from the experimental results we can see
that SVM is a significantly more time-consuming algorithm

1 1 1
4 6 8 10 12 14 16 18 20

Number of extracted features(p)

than ELM-based algorithms for all datasets. The difference
between KPCA-KELM/ELM and SVM increases with the
size of the dataset. Since the major part of the training time
is the matrix calculation, the feature extraction method in
KPCA-KELM removes redundant features, the effect of fea-
ture extraction is obvious and the training time of KPCA-
KELM decreases to a great extent.

In summary, the above results validate that the KPCA-
KELM learning framework achieves a significant improve-
ment on the performance of fuzzy XML documents classifi-
cation compared with the existing other methods although the
classification accuracy of the KPCA-KELM is slightly higher
than that of others. However, it is acceptable to the common

Table 3  Performance of classifiers on the different datasets
Dataset ELM(L = 1000) SVM KELM KPCA-KELM
Testing Training Testing Training Testing Training Testing Training
Accuracy(%)(SD)  Time(s) Accuracy(%)(SD)  Time(s) Accuracy(%)(SD)  Time(s) Accuracy(%)(SD)  Time(s)
Tl 63.8(x1.25) 0.19 64.13(+1.85) 1.65 64.28(+1.13) 0.056 63.96 (+0.53) 0.022
T2  76.32(x1.80) 0.22 75.28(£3.52) 5.84 76.05(x1.71) 0.071 76.23(+0.23) 0.034
T3  73.08(x2.35) 0.46 72.56(£2.38) 6.32 72.84(+1.65) 0.75 71.95(£0.61) 0.26
T4  77.92(x1.36) 0.52 76.78(£2.35) 10.47 77.25(£2.13) 0.92 77.93(+0.82) 0.68
T5  92.94(=0.15) 1.23 93.14(£3.20) 12.36 92.05(x1.34) 1.98 93.26(+0.58) 0.25
T6  86.14(+0.85) 0.96 85.82(+1.80) 32.51 86.38(+1.38) 1.83 85.42(+1.54) 0.62
T7  89.26(x1.43) 325 89.45(+1.08) 48.79 89.42(+1.05) 8.12 88.51(+1.39) 0.25
T8  98.24(+0.67) 2.05 98.14(+1.23) 146.35 98.05(+0.84) 3.59 98.26(+1.18) 0.98
T9  92.35(+0.88) 6.18 94.78(+£2.45) 236.54 94.09(+1.36) 16.41 93.25(+1.29) 1.05
T10  96.36(£1.28) 10.15 96.15(+0.81) 1020.05 98.40(£1.15) 30.25 97.83(+0.95) 3.01
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Fig. 8 Testing accuracy of 100
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personal computer with the implementation environment
mentioned at the beginning of this section. And, in the mean-
time, the training time of KPCA-KELM is extremely faster
than the above other methods.

The major difference between KPCA-KELM and other
methods is that before feature classification, KPCA-KELM
uses KPCA algorithm to obtain sparse representation of the
input raw data. The compact features can help to remove re-
dundancy of the original inputs, and thus improve the overall
learning performance.

Then, we discuss some limitations of KPCA-KELM. The
tunable parameter of KPCA-KELM framework is the kernel
spread v, the regularization parameter C, and number of fea-
ture extraction p, which must be tuned for each particular
dataset. Therefore, the classification performance of KPCA-
KELM not only depends on the size (number of patterns,
inputs and classes) of the dataset, and but also on result of
feature extraction. However, we can clearly see that feature
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extraction can further decrease the training time of the KPCA-
KELM.

™5 T6 T7 T8 T9 T10

6 Conclusion

In order to deal with the classification of the fuzzy XML
documents effectively, in this paper, we first propose a novel
tree representation model to capture the node information of
fuzzy XML documents, and then a vector space model of
representing the semantic and structure of fuzzy XML docu-
ments is employed based on the proposed fuzzy XML docu-
ment tree model to extract feature of fuzzy XML document.
We propose KPCA-KELM framework to classify the fuzzy
XML document based on the vector space model. The core
component of the proposed framework is the KELM classifier.
With the aid of the feature extraction techniques (KPCA), the
performance of KELM classifier is improved with extracted

Fig. 9 Training time of different 10 T
classifiers —c— ELM
100 H T SVM .
—%— KELM
—#— KPCA-KELM

Training time(s)
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features. Finally, the experimental results show that our algo-
rithms can efficiently perform classification on the fuzzy
XML documents. Note that our proposed KPCA-KELM ap-
proach achieves a significant reduction in training time while
maintaining the same level of accuracy as the state-of-the-art
baseline models. In the future, duo to the computation cost of
KPCA increases dramatically with the sample size, it is intu-
itive to accelerate the proposed KPCA-KELM algorithm by
using the cloud computing technology on a large dataset. We
also plan to develop a prototype system based on the proposed
framework and then simulate it for other real application
systems.
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