Information Systems Frontiers (2020) 22:863-880
https://doi.org/10.1007/510796-019-09897-y

@ CrossMark

Information-Theoretic Remodularization of Object-Oriented
Software Systems

Amarjeet Prajapati’ - Jitender Kumar Chhabra?

Published online: 25 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Software remodularization consists in reorganizing software entities into modules such that pairs of entities belonging to the same
modules are more similar than those belonging to different modules. In recent years, Search-Based Software Engineering (SBSE)
approach has gained unprecedented growth for solving software remodularization problem. Most of the previous studies
remodularize the software system by optimizing the structural coupling and cohesion metrics as objective functions. These
metrics are defined in terms of the number of structural relationships counts, rather than taking patterns of relationships. It has
been observed that the computation of coupling and cohesion based on patterns of relationships (i.e., information-theory based)
are more accurate than the number of relationships. This paper proposes an information-theoretic software remodularization
where an entropy-based similarity measure is introduced as an objective function along with other objective functions i.e., inter-
module class change coupling, intra-module class change coupling, module size index (MSI), and module count index (MCI) and
is further optimized using many-objective meta-heuristic algorithm. To evaluate the effectiveness of the proposed approach,
seven object-oriented software systems have been remodularized using NSGA-III, MOEA/D, IBEA, and TAA algorithms. The
results are compared with existing multi-objective formulation of remodularization problem in terms of authoritative software
remodularization, non-extreme distribution, and stability. The experimentation results suggest that the proposed approach can be
a good alternative to improve the quality of software systems. The findings suggest that the approach is more suitable for
generating remodularization solution good from both quality metrics and developers perspective.

Keywords Search- based software engineering - Software remodularization - Software entropy - Information theoretic technique

1 Introduction

In order to keep pace with ever-changing user, business and
technological requirements, the source code of a software sys-
tem often needs to be changed. It has been observed that the
short deadlines of project delivery, budget constraints, and un-
familiarity of existing source code generally forces developers’
to focus on functionality rather than design structure (Fowler
etal. 1999; Mancoridis et al. 1998). Such maintenance practices

P4 Amarjeet Prajapati
amarjeetnitkkr @gmail.com

Jitender Kumar Chhabra
jitenderchhabra@ gmail.com

Department of Computer Engineering & IT, JIIT Noida, Noida, UP,
India

Department of Computer Engineering, NIT Kurukshetra,
Kurukshetra, Haryana, India

increase the complexity of design structure and degrade soft-
ware quality. The software system with poor design quality is
difficult to understand and evolve. The problem becomes more
difficult in case of highly convoluted software design with the
unavailability of their up-to-date documentation as well as orig-
inal developers (Mkaouer et al. 2015).

There are many source code anomalies that contribute in
degradation of design quality of a software system. In an
object-oriented software system, the suboptimal placement
of source code classes into packages is one of the crucial
anomalies that cause the degradation of design quality
(Bavota et al. 2014). To improve the design quality of soft-
ware system various software remodularization approaches
based on deterministic and search-based techniques have been
proposed (e.g., Praditwong et al. 2011; Barros 2012; Prajapati
and Chhabra 2017, 2017a; Parashar et al. 2016; Corazza et al.
2016; Bavota et al. 2010, 2013; Prajapati and Chhabra 2017b;
Mkaouer et al. 2015a; Kumari et al. 2013; Doval
et al. 1999; Prajapati and Chhabra 2014). The deterministic
based software remodularization approaches perform well

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-019-09897-y&domain=pdf
mailto:amarjeetnitkkr@gmail.com

864

Inf Syst Front (2020) 22:863-880

for small size software, however, for large and complex
software they become impractical and sometimes infeasible
(Mancoridis et al. 1998; Harman et al. 2012).

In case of a large and complex software, search-based soft-
ware engineering (SBSE) (Harman et al. 2012) approach has
been found as a good alternative for solving a software
remodularization problem (Prajapati and Chhabra 2017;
Bavota et al. 2013; Prajapati and Chhabra 2017b; Mkaouer
et al. 2015a). The major advantage of using SBSE approach is
that it guarantees in the generation of near-optimal solution
within a reasonable amount of time. The effectiveness of
SBSE based software remodularization approaches depends
on many factors such as search algorithms, fitness and objective
function formulations, etc. However, fitness and objective func-
tion formulation are the two most important factors that help in
driving the remodularization process towards good solutions
(Bavota et al. 2014; Anquetil and Lethbridge 1999). Hence, in
order to achieve a good quality remodularization solution ap-
propriate formulation of fitness and objective functions need to
be incorporated in search algorithms.

In last two decades, unprecedented efforts have been put
forward in designing fitness and objective functions along with
search algorithms to solve the different aspects of single and
multi-objective software remodularization problems (e.g.,
Kumari et al. 2013; Prajapati and Chhabra 2014, 2018,
2018a). Majority of the fitness and objective functions for soft-
ware remodularization are designed in terms of direct link cou-
pling of software artefacts, such as method calls or inheritance
(Mancoridis et al. 1998; Praditwong et al. 2011; Barros 2012,
Prajapati and Chhabra 2017, 2017a). However, some re-
searchers (Parashar and Chhabra 2016; Corazza et al. 2016)
have attempted to design the objective functions by analyzing
the sibling link similarity based on lexical and changed infor-
mation. Some other researchers have tried to combine the struc-
tural based direct link similarity with lexical based sibling link
similarity in their remodularization techniques (Bavota et al.
2010, 2013, 2014; Prajapati and Chhabra 2017a). Other re-
searchers have also attempted to design the objective functions
by combining the changed history information with structural
information and lexical information (Mkaouer et al. 2015a).

Although the existing fitness and objective functions de-
signed for search-based software remodularization approaches
have been reported to be quite effective, the major limitation
of such approaches is that they are not able to generate the
remodularization solution that is meaningful from developers’
perspective (Mkaouer et al. 2015a) The main reason is that
such remodularization fitness and objective functions do not
comply with the perspective of developers. Therefore, to gen-
erate a remodularization solution that is meaningful from de-
velopers’ perspective, we need to improve our
remodularization fitness and objective functions that must
consider factors that convey the developers’ perception along
with optimization of design principles.

@ Springer

Further, the existing software remodularization approaches
commonly treat all sources of information of entities to be
modularized equally (i.e., presence or absence of a feature)
to determine the fitness and objective functions. However,
software developers usually give different importance to dif-
ferent types of features while fitness and objective functions
(Bavota et al. 2013a). Therefore, the fitness and objective
functions used for remodularization evaluation should consid-
er different dimensions of information with their relative im-
portance. Most of the search-based software remodularization
approaches except (Mkaouer et al. 2015a) ignore the changed
history dependency information. However, the changed histo-
ry information may reveal many dependencies among soft-
ware components which cannot be observed by the structural
or lexical based information. The study (Bavota et al. 2013a)
showed that the changed history information is also one of the
factors that some extent reflects the developers’ perception of
coupling. Therefore, remodularization fitness and objective
functions should also consider the changed-history informa-
tion along with the structural and lexical information.

To address the above-discussed issues, this paper introduces
a multi-objective formulation of object-oriented
remodularization problem where entropy-based similarity mea-
sure along with inter-module class change coupling, intra-
module class change coupling, module size index (MSI), and
module count index (MCI) have been used as objective func-
tions. In this contribution, the remodularization objective func-
tions use different types of structural as well as lexical informa-
tion that captures the developers’ aspects of coupling in the
computation of similarity measure. Moreover, the approach uses
different types of structural and lexical information with their
relative importance. However, relative weights of different di-
mensions of information are subjective in nature and depend on
many factors (e.g., quality measurement goal). To deal with this,
this paper uses term frequency-inverse document frequency
(TFIDF) (Yates and Neto 1999; Corazza et al. 2016) to compute
the weight. Using the different dimensions of structural and
lexical information, an information theoretic similarity measure
(i.e., entropy-based similarity measure) has been used. The in-
formation theoretic concepts have been successfully applied to
other unsupervised machine learning approaches (e.g., data
clustering) (Gokcay and Principe 2002; Sugiyama et al. 2014;
Andritsos and Tzerpos 2005). The entropy measures uncertainty
about a random event, which can be used to design a
remodularization criterion for restructuring the packages of soft-
ware systems. In fact, when we assign a class to one of the
different modules we incur an entropy cost. Minimizing this
incremental entropy cost could be an effective evaluation crite-
rion for software remodularization. The model also exploits
change-history information stored in the version repository. In
particular, the approach extracts the changed dependencies be-
tween the classes and uses them to make the remodularization
solution consistent with changed history. The major idea of

Inf Syst Front (2020) 22:863-880

865

using such dependencies in remodularization is to force the
remodularization process towards a solution where classes
changing together should be grouped together.

The organization of the rest of this paper is as follows:
Section 2 presents related works. Section 3 provides back-
ground from information theory and structural/lexical based
coupling computation. Section 4 discusses the proposed ap-
proach. Section 5 presents an experimental setup. Section 6
presents results and discussion. Section 7 concludes with fu-
ture directions.

2 Related Works

Automatic remodularization of software systems has become
an interesting application for SBSE, where a different aspect
of software remodularization problems are simulated as
search-based optimization problems (e.g., such as single,
multi or many-objective optimization) and are solved using
search-based meta-heuristics (Harman et al. 2012). The main
attraction of SBSE towards software remodularization is that
the combinatorial and NP-hard nature of software
remodularization problem makes SBSE approaches best alter-
native (Praditwong et al. 2011). Recently, many researchers
have applied various SBSE approaches by adopting different
metaheuristics and single/multi-objective formulations to ad-
dress the different aspects of software remodularization prob-
lems (Praditwong et al. 2011; Ouni et al. 2013, 2014, 2015;
Prajapati and Chhabra 2017a; Kumari et al. 2013; Ouni et al.
2016, 2016a, b , 2017; Mancoridis et al. 1998).

In previous literature, the software remodularization problem
has been defined in different ways according to different aspect
of software restructuring. For example, 1) number of objectives:
single-objective remodularization (Mancoridis et al. 1998, 1999;
Doval et al. 1999) multi-objective remodularization (Praditwong
et al. 2011; Barros 2012; Kumari et al. 2013; Prajapati and
Chhabra 2014), and many-objective remodularization
(Mkaouer et al. 2015, 2015a; Prajapati and Chhabra 2018,
2018a), 2) type of information: structural-based remodularization
(Praditwong et al. 2011; Mancoridis et al. 1998, 1999; Mahdavi
et al. 2003), lexical-based remodularization (Corazza et al.
2016), and combined structural + lexical based remodularization
(Mancoridis et al. 1998; Prajapati and Chhabra 2017a; Bavota
et al. 2010) level of modifications: moderate remodularization
(Bavota et al. 2010; Prajapati and Chhabra 2017; Abdeen et al.
2009) software clustering (Praditwong et al. 2011; Kumari et al.
2013; Ouni et al. 2016).

The application of SBSE technique to the software
remodularization is approximately two-decade-old. In the for-
mulation of search-based remodularization, the first credit
goes to the authors Mancoridis et al. (1998) who first applied
the SBSE concepts to cluster the software entities into more
cohesive form. In their contribution, they also introduced

modularization quality (MQ) measure to evaluate the cluster-
ing quality which is defined in terms of two software quality
attributes (i.e., inter-connectivity and intra-connectivity). The
MQ, a structural information based software modularity qual-
ity criterion, has been widely used as the fitness function to
guide the remodularization process (Doval et al. 1999;
Harman et al. 2002; Mitchell and Mancoridis 2002;
Mamaghani and Meybodi 2009). The authors Mancoridis
et al. (1999) customized different meta-heuristic search tech-
niques such as Genetic Algorithm (GA), Simulated Annealing
(SA), and Hill-Climbing (HC) algorithm to address the soft-
ware module clustering problem.

Recently, authors Praditwong et al. (2011) used the MQ mea-
sure along with other software clustering criteria to formulate
the software clustering problem as a multi-objective optimiza-
tion problem. They also introduced two new multi-objective
clustering formulations namely maximize cluster approach
(MCA) and equal cluster size approach (ECA). Each of the
MCA and ECA formulations contains five partially conflicting
objectives and is based on the structural information. The re-
searchers (Barros 2012; Kumari et al. 2013; Prajapati and
Chhabra 2014) have also used the MCA and ECA formulation
to evaluate different meta-heuristic algorithms.

The above discussed MQ measure is based on the direct
link coupling. Recently, the authors Jinhuang and Jing (2016)
defined a new MQ measure which is determined on the basis
of similarity coupling. Their experimentation results demon-
strated that the similarity based MQ outperformed compared
to the direct link based MQ. The authors (Prajapati and
Chhabra 2017a) have also used the similarity based coupling
measure to remodularize the software system. The results
demonstrated that the similarity based coupling measure is
able to generate good quality software modularization.

Even though structural based software modularity measure
able to drive search algorithms towards remodularization solu-
tion which is good from the structural point of view but not good
from a semantic perspective or developers view. To
remodularize the software system which is good from the se-
mantic point of view the researchers Corazza et al. (2016) used
the lexical information to compute the similarity between the
software entities. Their results showed that the lexical based
software remodularization is able to generate remodularization
solution which is better from the semantic perspective. Some
researchers (e.g., Prajapati and Chhabra 2017a; Bavota et al.
2010, 2013, 2014) used combined structural and lexical infor-
mation to remodularize the software system.

3 Basic Concepts
This section presents a brief description of information theory

which is used in our proposed many-objective
remodularization approach. The information theory concepts

@ Springer

866

Inf Syst Front (2020) 22:863-880

are very wide; here it is not possible to describe them in detail.
The interested reader may find details about the information
theory concepts in any information theory textbook (e.g.,
Cover and Thomas 1991). Apart from the basic concepts of
information theory, in this section, a brief description about
the various types of structural (e.g., calls, inheritance, con-
tains, etc.) and lexical (e.g., method name, class name, param-
eter name, etc.) are also provided.

3.1 Minimum Entropy Concept

In this section, we explain the concepts of software entropy
corresponding to an object-oriented software remodularization.
Here the term feature is used to refer to different types of cou-
pling information (e.g., structural and lexical) of a class. The
different values that each feature takes are referred as a feature
values. We assume that the object-oriented software to be
remodularized contains a set of N number of source code clas-
ses, i.e., C={cy, Cy, ..., Ny} and each class have a set of M
features, i.e., F={f}, f,. .., fy;} with feature values w; of i-th
feature. Our approach starts by representing software system
into matrix M as given in Table 1.

The rows of the above matrix represent the source code
classes to be remodularized while the columns shows the
values of the features that describe these source code classes.
Each entry of the matrix Mjj is filled with the coupling value
of jth feature in ith class. Let X represents a discrete random
variable taking its values from a set of classes C.

If p (x;) is the probability distribution function (pdf) of the
values x; that X takes (x; € C), the entropy H(X) of variable X
is defined as follows:

H(X) =~ 3 p(x)log((p(x) (1)

x;eC

Intuitively, entropy quantifies the disorder of a system. The
higher the uncertainty leads higher the entropy. Since entropy
determines the amount of “disorder” of a system, many ap-
proaches utilizes some form of such a measure as a quality
criterion (i.e., fitness function) for clustering different types of
data (Cover and Thomas 1991; Gokcay and Principe 2002;

Table 1 Matrix M representing software system
fl f2 . . . fN
€ Wi Wi2 . . . WiN
C W21 W22
N WN1 WN2 WNN

@ Springer

Hino and Murata 2014). In clustering, the cluster containing
elements with high similarity showed the low entropy.

In the context of the remodularization of object-oriented
package structure, we assume that a module/package is the
group of classes, which has minimum entropy. It means that
a module is a partition of set of classes with minimum degree
of “disorder”. The entropy of a module is directly related to its
classes. In terms of probability, the entropy of the module
depends of the probability distribution function of its classes.
For object-oriented software system, let N number of source
code classes are distributed among the M number of modules
and ¢; is an i class of N. The pdf of ¢; is defined as follows:

ple) = 2 plalip() @

where p(?) is the prior probability for the #” module and p(c;{?)
is the prior probability of ¢; given the #” module. However we
would like to know the dependence of pdf of the #" module
with respect to ¢;. This dependency can be computed using
Bayes Theorem (Joyce 2008):
pleilt)p(?)

plile) =700 G)
when p(?c;) is uniformly distributed for all t, we can say that the
class ¢; belongs to any module and thus the uncertainty is max-
imum. On the other hand if all p(7c; but one are zero (one
having the value unity) then we are certain about the module
to which the class ¢; belongs to. Now, let C be a random variable
whose possible values are /, 2,..,K which represent the modules
of M. Let X be a random variable whose possible values are all
elements c; that belong to N. Then the entropy of C given X is:

H(CLY) =~ ¥ pltle)logpllc) @

where p(%|c;) is a posteriori pmf. Thus, our goal is to find this
function such that A (C|.X) is minimum. The entropy given by
Eq.4 is called Conditional Entropy.

The information theoretic similarity measure (i.e., H (C|X))
as discussed above is a representative of collective similarity
measure rather than traditional direct link similarity measure.
The direct link similarity measures (e.g., inter-module class
coupling and intra-module class coupling) may leads optimi-
zation process towards remodularization solution better from
the coupling and cohesion perspective and may not be mean-
ingful from the developers’ perspective. However, informa-
tion theoretic similarity measure encompasses many dimen-
sions of similarity; hence it is supposed that the incorporation
of such similarity measure into remodularization process may
lead generation of meaningful solution. To compute the con-
ditional entropy more accurately, we need to compute the
feature value of classes more accurately. In this paper, we

Inf Syst Front (2020) 22:863-880

867

consider structural as well as lexical features of the source
code classes.

3.2 Structural and Lexical Features

In this paper, we utilize various types of class information to
determine the class features. In particular, the proposed ap-
proach considers 8 different types of structural (e.g., calls,
inheritance, contains, etc.) and 6 different types of lexical
(e.g., method name, class name, parameter name, etc.) infor-
mation as class features.

3.2.1 Structural-Based Features

The classes in an object-oriented software system may be
connected with other classes by zero or more structural cou-
pling relationships (e.g., method calls, inheritance, references,
etc). Hence, structural features of a source code class can be
defined in terms of individual classes which are connected
with that class. In this paper, the structural features of a class
are the different structural-relationships by which it is connect-
ed with another class. Combination of all structural relations
among a pair of classes determines the connection strength
among these two classes and is considered as the feature value
for this pair. To determine the coupling strength between the
classes, we use eight different types of structural relationships
between the classes (Prajapati and Chhabra 2017a). The brief
descriptions of these relationships are given in Table 2.

The value of connection strength between class c; and class
¢j is computed by aggregating the number of instances of each
relationship with their relative weights. The connection
strength (CS) from class c; to class c; is defined as follows:

CS(enes) = T wrlenes) x meeinc) O

where n, and w, represent the number of instances and weights
of r-type relationship respectively. To compute the relative
weights w, for r-type relationships this paper uses term
frequency-inverse document frequency (TFIDF) weighting
scheme. This is the most widely used technique in data mining

to assign the weights to document terms (Yates and Neto
1999). In this study, the documents are the source code classes
and terms are their relationships. The weight w, of r-type re-
lationship from class c; to class ¢; is given as follows:

wr(ei, ¢;) = of (r).log(idf (r)) (6)

Where tf(r) (term frequency) is the frequency of r-type
relationship from class ¢; to class c;j and idf{(r) (inverse docu-
ment frequency) is the fraction n/n,(c;), where n is the number
of classes, and n,(c;) is the number of classes connected with
class ¢; with r-type relationships.

3.2.2 Lexical-Based Features

In addition to structural-based features of source code classes,
the proposed remodularization approach also uses the lexical-
based features of classes. Different types of unique terms pres-
ent in the classes are considered as the feature of the classes.
Our approach uses six major categories of lexical features
similar to the approach reported in (Corazza et al. 2016). A
brief description of the different categories is given in Table 3.

Similar to the structural-based features, here first each
lexical-based feature (i.e., the terms with their occurrence) is
computed, then the relative importance (weights) of each term
is determined, and finally, the corresponding weight is multi-
plied with the actual terms occurrences. Given a class c;, the
weight of the term t; of a particular zone is computed as follows:

W(t7 672) = U(‘(t)'l()g(idf(t)) (7)

where tf(t) (term frequency) is the frequency of term t of zone z
for class ¢ and idf(t) (inverse document frequency) is the fraction
n/df(t, z), where n is the number of classes, and df(t, z)is the
number of classes in which the term t occurs, within the zone z.

4 Proposed Approach

This section presents the detailed descriptions of major steps
used in proposed information-theoretic software

Table 2 Structural relationships

Description

existing between two classes Relations Abbr.

l. Inheritance EX
2. Has Parameter HP
3. Reference RE
4. Calls CA
5. Implement ™M
6. Is of Type IT

7. Return RN
8. Throws TH

class c; extends class c;

class c¢; has a method with a parameter of class c;

instance of class ¢; invokes to the attribute or method of class c;.
method of class c; calls the method of class c;.

class c; implement or realize, the behavior specified by the class c;.
class c; has an attribute that is type of class c;.

class c; has a method which returns an object of class c;.

class c;, throws an exception to the class c;.

@ Springer

868

Inf Syst Front (2020) 22:863-880

Table 3 Types of lexical class

relationships # Zone Abbr. Description
1 Class Name CN Name of the class, super class or implemented interfaces
2 Attribute Name AN Name of attributes and corresponding types
3 Method Name MN Names of methods and their return types
4 Parameter Name PN Names of parameters and their types
5 Comment CO Lexemes extracted from all comments of classes
6 Source Code Statement SCS Lexemes occurring in the body of methods.

remodularization. The main objective of the proposed approach
is to re-organize the source code classes of object-oriented soft-
ware system among packages/modules such that the re-grouping
is good from the quality metrics point of view as well as mean-
ingful from developers’ perspectives. To achieve the goal, pro-
posed work defines five package quality evaluation criteria (i.e.,
package entropy (to minimize), inter-module class change-
coupling (to minimize), intra-module class change-coupling (to
maximize), Module Count Index (to minimize), and Module
Size Index (to minimize)) that help in guiding the
remodularization process towards more promising search region.

The complete framework of overall working process
of the proposed software remodularization approach is
presented in Fig. 1. The activities of whole framework
are divided into three main phases. In first phase, the
required information regarding the structural, lexical,
and changed history of software are extracted. In second
phase, structural and lexical coupling is computed inde-
pendently and then combined together. In third phase,
package entropy, inter-module class change-coupling,
intra-module class change-coupling, Module Count
Index, and Module Size Index are computed. Finally,
the search-based algorithm is applied to generate the
remodularization solution.

Fig. 1 Framework of proposed 2 N

4.1 Extraction of Software Information

In this phase the software information such as structural infor-
mation (e.g., classes, packages, and class relationships) lexical
information (e.g., class name, attribute name, method name,
parameter name, comments, and source code statements), and
changed history information are collected. As the proposed
software remodularization approach is specially designed for
the object-oriented software implemented in the Java pro-
gramming language. Hence, various terminologies and infor-
mation used in this work is based on the Java programming
language.

4.2 Remodularization Objectives

The automated software remodularization driven by a search-
based meta-heuristic algorithm requires fitness functions that
can force the optimization process towards expected solution.
To achieve a meaningful remodularization solution from the
developers’ perspective, it is necessary to incorporate a better
software evaluation model and metrics during remodularization
process that can reflect developer’s perspective. The developers’
perspective can be inference from the source code information
where developers’ knowledge is embedded. Based on the

remodularization approach

Existing package

structure of object- ;
oriented software E

Changed history

Structural Class-by-class Vo Structural
information [—| matrix creation ' > coupling]
extraction : calculation
Lexical Term-by-document | ! Lexical
information — matrix creation — coupling
extraction : calculation

Improved package

coupling, Module Count Index, and Module

information e -
N (Computation of objective functions) v
: Aggregate
! Package entropy, inter-module class change- coupling
OUTPUT ' coupling, intra-module class change- < calculation i

between classes

v

structure for object- '
oriented software ‘:\‘\{

Many-objective evolutionary algorithm

@ Springer

\

H

1

1

1

H

H

’ H
Size Index E
H

H

1

1

H

H

|

|

Inf Syst Front (2020) 22:863-880

869

various dimensions of structural and lexical information,
change-history information, and module dispersion information
this paper designs the following objective functions:

* Software Entropy: Entropy is the measure of disorder;
higher the entropy, lower is the certainty. For a good soft-
ware module, it is necessary that it should contain highly
correlated classes. The entropy of the software system is
defined as follows (Aldana-Bobadilla and Kuri-Morales
2011):

H(CIY) = ¥ H(X))

where H(#X) is the entropy of module t. The objective is to
minimize the entropy for each module.

* Inter and Intra-module Class Change Coupling: The
classes changed together should be grouped together is
one of the core design principle for software systems.
Here, we use the change-history information from the ver-
sion repository and compute the change coupling between
classes in terms of change-coupling at the class level by
mining their co-change pattern. The inter-module class
change coupling refers to the total class change-strength
within modules and intra-module class change coupling
refers to the total class change-strength between modules
(Parashar and Chhabra 2016). The change-strength be-
tween two classes is defined as follows:

cNe;l - |aing;
Change—strength (C;, C;) = | 1 i + | i |J 9)
i J

where |C;NC}| is count of change-commits in which both C;
and C; are changed together. |C}| is count of change-commits
consisting of C;.

e Module Count Index (MCI): In search-based software
remodularization, the optimization process driven by the
only similarity criteria may lead to generation of singleton
module or modules containing single entities. To avoid such
situation, this work uses two other conflicting namely mod-
ule count index (MCI) and module size index (MSI) intro-
duced by the authors (Prajapati and Chhabra 2017a). The
MCI determine the deviation between the number of mod-
ules produced during optimization and number of modules
set by the by developers. The MCl is defined as follows:

“In (m*)\ 2
MCI = exp [—; <ln(rzv)lnl?n())> 1 (10)

Where m, m*, and n represent the number of modules in
produced solution, number of module defined by the devel-
opers, and number of classes respectively. The parameter ‘w’
represents the penalty factor that penalizes the
remodularization which is far away from m*.

* Module Size Index (MSI): Then main goal of the MSI
objective function is to prevent generation of very large
size of modules (i.e., containing large number of entities).
In other words, the MSI evaluate the deviation between
the size of generated modules and size of developer’s
modules. To determine the ideal module size, the re-
searchers used the method of Component Packaging
Density (CPD) (Abdeen et al. 2009). The MSI is defined
as follows:

2
In (S4y0)—In (s*
MSI = ex _l M where Sgv,
P wln(n) .

33 (11)

where s; is the size of the module in which class i locate in.
The ideal module size is defined as s* =n/m*. Similar to the
MCI, the parameter ‘w’ represents the penalty factor.

4.3 Remodularization Problem Encoding

To apply a search-based meta-heuristic, the problems need to
be encoded in a suitable form such that the various manipula-
tor operator of meta-heuristics can be performed effectively.
To encode the software package organization of existing soft-
ware system, an n-sized (i.e., equal to the number of lasses)
integer array is used, where the value v 0 < v<p of i element
indicates the package number v, to which the i source code
class is assigned. The symbol p represents the number of
packages/modules. For example, in Fig. 2, array index 5 rep-
resents the class 5 and the value at index 5, i.e., 2 shows that
the class 5 is assigned to the module 2.

To initialize the population, the solutions of the population
are generated randomly in the range of lower and upper
bounds of the each decision variables.

4.4 Many-Objective Evolutionary Algorithm

There has been an important progress in formulating the real-
world optimization problem as search-based multi-objective
optimization problem and solving them using multi-objective
evolutionary algorithms MOEAs (e.g. NSGA-II (Deb et al.
2002), SPEA2 (Zitzler et al. 2002), and PESA-II (Corne
et al. 2001). These algorithms used the Pareto-dominance

@ Springer

870

Inf Syst Front (2020) 22:863-880

Fig. 2 An example of

remodularization encoding

Class -

\

7

0 1 2 3 4 54~
Lol s [[s]eey
\

’

Module -7

concept to rank the solutions in the population for the purpose
of selection. However, the studies (Bingdong et al. 2015;
Jaimes et al. 2009; Wang et al. 2015) demonstrated that the
Pareto-dominance based MOEAs approaches are not able to
perform well when the number of objective functions in the
optimization problem gets large (specifically more than three).
In our software remodularization, there are five objective
functions that have to be optimized simultaneously in order to
improve the existing package structure. Hence, in this case the
Pareto-dominance based MOEA may not work effectively. To
optimize these objective functions simultaneously and effec-
tively, we adapt NSGA-III (Deb and Jain 2014), MOEA/D
(Zhang and Li 2007), IBEA (Zitzler and Kunzli 2004), and
TAA (Praditwong and Yao 2006) the most popular many-
objective evolutionary which are designed to work effectively
in case of large number of objective functions. These algo-
rithms have been applied successfully to solve the different
many-objective optimization problems (Jain and Deb 2014).

5 Experimental Setup

To evaluate the ability of our entropy-based software
remodularization to generate good modularization solu-
tion, we conducted a set of experiments on seven open-
source software systems. The details of experimental
setup includes 1) description of software systems on
which proposed approach is evaluated, 2) results
collecting method, 3) the results evaluation criteria, 4)
existing remodularization algorithms, and 5) used
Statistical tests.

5.1 Studied Software Projects

We chose seven object-oriented software systems each
one is characterizing a real-world software system with
diverse complexity in terms of number of connections,
number of classes, number of modules, and lines of
code (LOC). These software systems are open-source
and written in Java programming language. The main
reason of considering these software systems is that
they are different sizes and complexities and these soft-
ware systems have also been used by the previous re-
searchers (Prajapati and Chhabra 2018; Erdemir and
Buzluca 2014; Prajapati and Chhabra 2018a; Bavota
et al. 2013) to evaluate the similar approach. Table 4
provides the complete description of their respective
characteristics.

5.2 Collecting Results

Since search-based software remodularization ap-
proaches are stochastic optimizers, they can generate
different results for the same software instance from
one run to another. For this reason, we collect results
from our proposed software remodularization approach
by applying it for each test software system on 31 in-
dependent runs. In each execution, the many-objective
optimization techniques generate a set of non-dominated
solutions. To select a single solution that gives maxi-
mum trade-off to all the considered objective functions,
we use the trade-off worthiness metric defined in the
works (Rachmawati and Srinivasan 2009).

Table 4 Characteristics of the

used software projects Systems Version #Classes #Connections #Modules Lines of code (KLOC)

Weka 33.6 455 1385 42 111
GEF 3.8 756 2349 45 63

Lucene 43.1 2090 11,959 205 285
ArgoUML 034 1686 5586 93 156
JFreeChart 0.9.21 401 1420 50 72

Solr 43.1 771 2423 64 102
Tomcat 7.0.42 972 3567 116 184

@ Springer

Inf Syst Front (2020) 22:863-880

871

Table 5 Many-objective remodularization approaches

Existing multi-objective remodularization approaches

Proposed approach

Structural-based Lexical-based

Structural + Lexical based

1. Maximize structural-based MQ 1. Maximize lexical-based MQ 1.

2. Minimize inter-module 2. Minimize inter-module 2.

class change coupling class change coupling

3. Maximize intra-module 3. Maximize intra-module 3.

class change coupling class change coupling

4. Minimize module count index 4. Minimize module count index 4.
5. Minimize module size index 5. Minimize module size index 5.

Minimize module count index
Minimize module size index

Maximize structural + lexical based MQ 1. Minimize software entropy

Minimize inter-module class 2. Minimize inter-module class
change coupling

change coupling

Maximize intra-module class 3. Maximize intra-module class
change coupling

change coupling
4. Minimize module count index
5. Minimize module size index

5.3 Result Evaluation Criteria

Evaluations of the search-based remodularization results
are generally performed by two approaches: internal and
external assessment. Internal assessment approach is to
evaluate the quality of the internal characteristics of the
modules in produced remodularization. There exist a
number of quality metrics to assess the remodularization
internally, for example, coupling and cohesion (Cui and
Chae 2011), modularization quality (Praditwong et al.
2011), size of clusters (extremity) (Glorie et al. 2009;
Erdemir and Buzluca 2014), and the number of clusters
(Wang et al. 2010). In this study, we intend to use the
size of clusters (extremity).

The aim of the external assessment is to find the association
between obtained remodularization and the authoritative
remodularization suggested by a human expert (e.g., original
developer). The approach is also known as Authoritativeness.
The produced remodularization solution should resemble the
authoritative remodularization as much as possible (Wu et al.
2005). To find the authoritativeness, different measures may
be used, MoJo and MoJoFM (Wu et al. 2005; Tzerpos and
Holt 1999; Andritsos and Tzerpos 2005; Bittencourt and
Guerrero 2009) and precision, recall (Sartipi and
Kontogiannis 2003). In this study, we used MoJoFM a most
widely used measure for authoritativeness. The brief descrip-
tions of these metrics are given in following sub-sections.

Table 6 Authoritativeness using NSGA-IIT

5.3.1 Non-Extreme Distribution (NED)

For a well-modularized software system, it is necessary
that the size of any individual module should not be
extremely small or large (Erdemir and Buzluca 2014).
Hence, an automatic software remodularization approach
should generate a modularization solution that has a
better distribution of classes into the modules. To eval-
uate the extremity of module size, Wu et al. (2005)
defined a non-extreme distribution (NED) as follows:

k
_ Zi:],M, IS NOT EXTREME‘Mi‘
-)

NED M;is not extreme if (12)

n
5 < M| < 1.5 X |MApay|

Where k is the number of modules, n is the total num-
ber of classes, [Mi| is the size of module i, and [MA .|
is the size of the largest module.

5.3.2 Authoritativeness

Authoritativeness is a measurement used for determining the
similarity between the remodularization solution generated by
the automatic remodularization method and the
remodularization solution suggested by the experts (Erdemir
and Buzluca 2014). To find the authoritativeness, different
measures may be used. In this study, we use the MoJoFM
measure. Let M and Ma be two remodularization solutions,

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 73.542 74914 80.389 83.452 +++
GEF 73.845 71.515 77.236 86.265 +++
Lucene 65.351 67.253 73.654 73.254 ++ =
ArgoUML 51.874 53.065 67.345 68.345 ++ =
JFreeChart 62.378 61.258 70.385 73.361 ++ =
Solr 61.287 65.245 71.284 76.289 +++
Tomcat 71.256 74.325 77367 81.647 +++

@ Springer

872 Inf Syst Front (2020) 22:863-880
Table 7 Authoritativeness using MOEA/D

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 74.285 73.724 83.614 80.035 ++ -

GEF 71.249 73.345 75.243 81.154 +++

Lucene 63.845 66.468 71.265 70.124 ++ =
ArgoUML 56.195 53.065 61.256 66.231 +++
JFreeChart 62.378 61.258 68.124 70.235 ++ =

Solr 64.235 63.547 69.621 73.854 +++

Tomcat 72.365 74.325 75.325 80.256 +++

mno(M,Ma) be the minimum number of join and move oper-
ations to transform remodularization M to remodularization
Ma where join operation combines two modules into single
module and move operation moves a component from one
module to another module. MoJoFM (M,Ma) is defined as
follows:

mno(M, Ma)

x 100
max (mno(VM , Ma)

MoJoFM (M, Ma) = 100—

(13)

where MoJoFM(M,Ma) represents authoritativeness, M and
Ma represent the modular architecture generated by the ap-
proach and authoritative modular structure suggested by the
experts respectively, and max(mno(VM, Ma)is the maximum
possible distance of any remodularization M from the
remodularization Ma.

In practice, for academicians it is a very difficult task to
find the original developers of the software systems being
evaluated, who were engaged in developing the correspond-
ing original software system. To overcome this problem, we
use the same method to obtain authoritative remodularization
as used by the previous researchers (Erdemir and Buzluca
2014; Wu et al. 2005; Corazza et al. 2016). The process of
obtaining authoritative remodularization for a test software
system is summarized as follows: 1) Find the packages and
classes associated with that package, 2) Validate the existing
package organization with the comments are written in the
source code class in these software systems, 3) Merge a

Table 8 Authoritativeness using IBEA

package with its closed package in case it contains a number
of classes that are less or equal to five, 4) Final, authoritative
remodularization is developed from the preliminary authorita-
tive remodularization by involving external expert developers.

5.3.3 Stability

An automatic software remodularization approach should not
generate dramatically different modular structure for a similar
version of the software with minor changes. Stability is for-
mulated as follows:Stability(M") = MoJoFM(M", M" 1),
where M™ and M™'are the software remodularization results
generated for two consecutive versions of a software system.

5.4 Rival Remodularization Approaches

Most of the existing software remodularization approaches
used modularization quality (MQ) (Mancoridis et al. 1998)
metric as remodularization objective function to drive the op-
timization process. In the multi-objective formulation of soft-
ware remodularization problem, the MQ is used as core ob-
jective along with other supportive objective functions. The
authors Praditwong et al. (2011) redesigned the MQ and used
it as core objective function along with other four supportive
objective functions (e.g., inter-cluster coupling, intra-cluster
coupling, number of clusters, etc) to remodularize the soft-
ware systems. Similarly, the authors (Barros 2012; Prajapati
and Chhabra 2017, 2017a; Kumari et al. 2013; Prajapati and

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 59.678 66.356 75.689 76.235 ++ =
GEF 63.257 71.351 76.254 77.475 ++=
Lucene 52.356 55.645 63.125 68.647 +++
ArgoUML 43.568 48.326 58.654 68.365 +++
JFreeChart 48.261 52.374 63.642 69.258 +++
Solr 57.921 56.823 62.654 72.925 +++
Tomcat 62.875 68.645 73.025 78.562 +++

@ Springer

Inf Syst Front (2020) 22:863-880

873

Chhabra 2018, 2018a) used the MQ as the core objective
function in their multi-objective formulation of software
remodularization problem. The MQ is defined as follows:

MO=S MF, (14)
k=1

Where n is the number of packages/modules and MF is the
modularization factor. The Modularization Factor (MF)) for
module k is defined as follows:

0, ifi=0
ifi>0 (15)

.+1.’
i
>/

MF, =

where 1 is the coupling of the classes within the packages k
and j is the coupling between the classes of package k and the
classes exist in rest of the packages of the system. The cou-
pling between the classes can be determined based on the
different types of information (e.g., structural information,
lexical information, and combined structural and lexical infor-
mation). To make a fair comparison between our entropy
based software remodularization (entropy as core objective)
and existing MQ based software remodularization (MQ as
core objective), we have taken the same supportive objective
functions (i.e., minimize inter-module class change coupling,
maximize intra-module class change coupling, minimize
module count index, minimize module size index). Table 5
summarizes the used objective functions in the proposed ap-
proach and existing search-based multi-objective
remodularization approaches.

5.5 Statistical Tests

The meta-heuristic optimization algorithms are random opti-
mizers (i.e., algorithms can generate different results over the
same test problem from one run to another Mkaouer et al.
(2015). The result obtained through a single run cannot be used
to reveal any conclusion about the algorithms. Hence, it be-
comes necessary to obtain a set of results for the same problem
instance over many runs. In this study, we collect the results by

Table 9 Authoritativeness using TAA

executing each algorithm 31 times on the same problem in-
stance. The sample with 31solutions are statistically analyzed
by using the Wilcoxon rank sum test (Arcuri and Briand 2011)
with a 95% confidence level (= 5%).

6 Results and Analysis

In this section, we present the authoritativeness, NED, and
stability results achieved through proposed and existing
search-based software remodularization approaches.

6.1 Authoritativeness

Tables 6, 7, 8, and 9 present the authoritativeness results
achieved through the proposed entropy-based approach and
existing remodularization approaches (i.e., structural similari-
ty, lexical similarity, structural + lexical based) on seven soft-
ware systems for each considered many-objective meta-heu-
ristic algorithms (i.e., NSGA-III, MOEA/D, IBEA, and TAA).
The columns of each table labelled with Wilcoxon test shows
the statistical results of comparison between the proposed ap-
proach and existing remodularization approaches. The sym-
bol’+’ denotes that there is a statistically significant difference
between the proposed approach and the existing approach and
it is in favour of the proposed approach. The symbol’—" de-
notes that there is a statistically significant difference between
the proposed approach and the existing approach and it is in
favour of the existing approach. The symbol ‘=’ denotes that
there is no significant difference between the proposed ap-
proach and the existing approach. In the sequence three sym-
bols of the Wilcoxon test columns, the first symbol is the
result of the statistical test between structural-based approach
and proposed approach, the second symbol is the result of a
statistical test between lexical-based approach and proposed
approach, and the third symbol is the result of a statistical test
between structural + lexical based approach and the proposed
approach. For example, the first symbol (i.e., ‘+°) in sequence
“+ + —” for Weka software system of Table 7, represents that
there is a significant difference between the proposed ap-
proach and the structural-based approach and the difference

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 52.345 62.378 71.642 74.378 +++
GEF 48.345 68.468 72.345 75.346 +++
Lucene 45.785 52.465 61.358 78.238 +++
ArgoUML 48.238 44.235 62.354 67.398 +++
JFreeChart 41.823 63.245 64.023 63.254 ++ =
Solr 56.824 53.012 61.875 71.397 +++
Tomcat 56.231 67.321 70.231 79.564 ++ =

@ Springer

874 Inf Syst Front (2020) 22:863-880
Fig. 3 The impact of different LEXICAL
many-objective meta-heuristic al- STRUCTURAL
gorithms on remodularization 100 100
o o
Z 60 uNSGA-III £ B NSGA-TII
£ 40 = MOEA/D E # MOEA/D
2 20 IBEA z IBEA
0 - ETAA ETAA
¥ & F S S &
3 $ S
SN %o@\ s <«
LN
STRUCTURAL+LEXICAL ENTROPY-BASED
100
% 2
g 80 2
o o
% 60 = NSGA-1I % = NSGA-II
E 40 = MOEA/D E = MOEA/D
z 2 IBEA 2 IBEA
0 F e oo o s ETAA ETAA
¥ S5 & & &
Q¢ o@@ Jou &
& oL <
LN

is in favour of the proposed approach. The second symbol
(i.e., ‘“+’) in sequence “+ + —” for Weka software system of
Table 7, represents that there is a significant difference be-
tween the proposed approach and the lexical-based approach
and the difference is in favour of the proposed approach.
Similarly, the third symbol (i.e., *-’) in “+ + —” for Weka
software system represents that there is a significant difference
between the proposed approach and the structural + lexical
based approach and the difference is in favour of the structural
+ lexical based approach.

Now if we see the authoritativeness results presented in
Tables 6, 7, 8, and 9 achieved through proposed and existing
approaches on seven software systems with many-objective
meta-heuristic algorithms (i.e., NSGA-III, MOEA/D, IBEA,
and TAA), it is clearly indicates that the proposed approach
outperforms the existing approaches by producing significant
better authoritativeness values in most of the cases. In partic-
ular, the proposed approach outperforms the structural and
lexical model significantly better in all test software systems.

Table 10 Non-extreme distribution (NED) using NSGA-IIT

However, in some cases, authoritativeness of proposed ap-
proach is competitive with the structural + lexical approach.

Apart from the comparison between the proposed approach
and existing approaches, we have also compared the authori-
tativeness of each many-objective meta-heuristic algorithms
(i.e., NSGA-III, MOEA/D, IBEA, and TAA) over each
remodularization approach (structural, lexical, structural +
lexical, and entropy-based). These comparative results dem-
onstrated by Fig. 3. Now if we observe the results of Fig. 3, it
is clearly indicated that the NSGA-III algorithms performs
better compared to the MOEA/D, IBEA, and TAA.
However, the results of MOEA/D, IBEA, and TAA algo-
rithms are competitive.

6.2 Non-Extreme Distribution (NED)

Tables 10, 11, 12, and 13 present the NED results achieved
through the proposed entropy-based approach and existing
remodularization approaches (i.e., structural similarity, lexical

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 99.325 100.000 100.000 100.000 RrR
GEF 100.000 99.235 100.000 100.000 R
Lucene 100.000 100.000 98.647 100.000 RER
ArgoUML 100.000 100.000 100.000 100.000 RRR
JFreeChart 100.000 98.789 100.000 100.000 R
Solr 99.357 100.000 98.567 100.000 RRX
Tomcat 100.000 100.000 100.000 100.000 R

@ Springer

Inf Syst Front (2020) 22:863-880

875

Table 11 Non-extreme distribution (NED) using MOEA/D

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 100.000 100.000 99.754 100.000 RER

GEF 98.265 100.000 100.000 100.000 R

Lucene 100.000 100.000 100.000 100.000 RRR
ArgoUML 100.000 99.812 100.000 100.000 RRR
JFreeChart 99.687 100.000 99.631 100.000 =

Solr 100.000 100.000 100.000 100.000 ==

Tomcat 100.000 100.000 100.000 100.000 =

similarity, structural + lexical based) on seven software sys-
tems for each considered many-objective meta-heuristic algo-
rithms (i.e., NSGA-III, MOEA/D, IBEA, and TAA). The
meanings of symbols used in Wilcoxon test columns of each
table are same as described in section 6.1. For each proposed
and exiting approaches the 100% NED value denotes the most
stable remodularization solution. Now if we see the results
presented in Tables 10, 11, 12, and 13, it clearly shows that
the proposed entropy-based approach is able to achieve 100%
NED for each many-objective meta-heuristic algorithms on
each of the test software systems. However, existing
remodularization approaches results are competitive and pro-
duce only slightly lower NED values in some cases. The
Wilcoxon test results also show that there are no significant
difference between the proposed entropy-based approach and
the existing approaches in all cases.

6.3 Stability

To assess the stability of the proposed approach, we analyzed
21 successive versions of the JFreeChart. The stability results
of proposed entropy-based approach and existing structural,
lexical, structural + lexical based approaches with NSGA-III,
MOEA/D, IBEA, and TAA algorithms are given in Tables 14,
15, 16, and 17. For each remodularization approaches, the
bold value indicates the best stability result. The meanings
of symbols used in Wilcoxon test columns of each table are
same as described in section 6.1.

Now if we see the stability results presented in
Table 14, it clearly shows that the structural, lexical,
structural + lexical, and entropy-based approach with
NSGA-III algorithm, the stability values range between
51.35-76.53%, 68.51-92.75%, 74.65-98.65%, and
81.25-99.35%, respectively. These stability values ob-
tained show that the entropy-based evaluation model
achieves higher stability compared to the existing ap-
proaches. Similar to the NSGA-III, the results of
Tables 15, 16, and 17 shows that the entropy-based
approach achieves higher stability in case of MOEA/D,
IBEA, and TAA algorithms compared to the existing
algorithms.

In summary, the results show that the information theoretic
similarity measure has a significant impact on the generation
of software modularization with better authoritativeness,
NED, and stability values compared to other approaches.
Therefore, we think our information theoretic many-
objective approach can be useful for remodularizing object-
oriented software systems.

6.4 Discussion

Even though the information theoretic similarity measure con-
cept is not a wide-spread concept in SBSE. We believe that it
is very useful for remodularizing software systems. The fact
that remodularization of a software system using information
theoretic similarity measure concept is not used by many
SBSE practitioners. In the previous years, the software

Table 12 Non-extreme distribution (NED) using IBEA

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 100.000 100.000 100.000 100.000 =R

GEF 100.000 99.825 100.000 100.000 RER

Lucene 100.000 100.000 100.000 100.000 RER
ArgoUML 99.575 100.000 98.364 100.000 R
JFreeChart 100.000 100.000 100.000 100.000 RRR

Solr 98.754 100.000 100.000 100.000 =

Tomcat 100.000 100.000 100.000 100.000 RRR

@ Springer

876 Inf Syst Front (2020) 22:863-880
Table 13 Non-extreme distribution (NED) using TAA

Systems Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
Weka 100.000 100.000 100.000 100.000 R

GEF 100.000 99.347 100.000 100.000 P

Lucene 100.000 100.000 100.000 100.000 P
ArgoUML 98.164 100.000 100.000 100.000 P
JFreeChart 100.000 99.286 100.000 100.000 R

Solr 100.000 100.000 100.000 100.000 R
Tomcat 98.374 100.000 100.000 100.000 R
remodularization process was based on the structural and lex- 7 Threats to Validity

ical similarity measure; the proper use of information theoretic
similarity measure concept for software remodularization is a
novel concept and has been used for the first time in this paper
to remodularize software systems. The usefulness of this con-
cept is supported by the experimental results of our approach,
which clearly show the advantages of information theoretic
similarity measure for software remodularization. Further, as
there are five objective functions (i.e., more than three objec-
tive functions) to be optimized simultaneously in our
remodularization approach, hence considering a many-
objective meta-heuristic algorithm is a good alternative.

Table 14 Stability results of NSGA-III over JFreeChart project

In this section, we explore the factors that can influence the
validity of the results reported in this paper. For software en-
gineering experimentation, the work reported in literature
(Wohlin et al. 2000) has divided threats to validity into four
categories: conclusion, internal, construct, and external
threats.

Conclusion threats to validity: These threats are con-
cerned with the relationship between treatment and out-
come. The meta-heuristic algorithms use many random

Version MoJoFM (Mn, Mn — 1) (%)
Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test

0.9.0 - - - - -
0.9.1 66.325 82.023 87.284 99.348 +++
0.9.2 76.534 89.348 76.287 81.356 +—+
09.3 56.285 81.524 81.593 93.278 +++
094 59.274 76.524 98.645 93.452 ++ -
0.9.5 61.945 79.521 84.624 84.012 ++=
0.9.6 53.125 68.514 74.651 81.254 +++
0.9.7 58.654 92.735 85.021 86.457 +-=
0.9.8 68.235 78.954 82.456 90.412 +++
0.9.9 65.621 85.475 86.379 98.754 +++
0.9.10 61.832 71.287 83.254 82.985 ++=
0.9.11 53.652 78.953 76.154 89.763 +++
0.9.12 58.623 69.482 80.517 86.425 +++
0.9.13 67.628 79.257 78.614 85.286 +++
0.9.14 69.542 92.341 88.342 91.362 +=+
0.9.15 62.485 85.173 97.624 96.754 ++=
0.9.16 53.295 82.314 89.652 98.627 +++
0.9.17 51.354 79.542 76.245 85.364 +++
0.9.18 54.392 89.645 92.456 96.235 +++
0.9.19 60.821 86.168 93.254 92.451 ++=
0.9.20 63.637 81.254 86.746 94.267 +++

@ Springer

Inf Syst Front (2020) 22:863-880

877

Table 15 Stability results of MOEA/D over JFreeChart project
Version MoJoFM (Mn, Mn — 1) (%)

Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
0.9.0 - - - - -
0.9.1 63.975 79.757 96.754 91.325 ++-
0.9.2 74.954 77.334 73.973 89.042 +++
093 53.895 78.215 79.279 89.964 +++
0.9.4 56.145 89.218 88.331 89.138 ==
0.9.5 59.556 76.287 79.310 81.698 ++=
0.9.6 50.734 66.208 72.337 78.862 +++
0.9.7 56.854 80.121 89.707 83.143 ++ -
0.9.8 65.849 76.643 88.142 87.098 ++=
0.9.9 63.626 89.161 83.065 88.443 +=+
0.9.10 59.467 67.573 80.940 81.671 ++=
0.9.11 51.857 73.139 71.840 85.449 +++
0.9.12 56.328 67.165 87.203 81.385 ++=
0.9.13 65.263 76.143 82.308 82.972 ++=
0.9.14 67.747 81.027 91.028 86.048 ++—
0.9.15 60.190 82.859 95.310 96.416 ++=
0.9.16 50.906 80.065 87.338 96.313 +++
0.9.17 48.957 77.178 73.931 83.552 +4++
0.9.18 51.197 87.561 90.142 93.921 +++
0.9.19 58.422 83.854 82.940 80.137 +==
0.9.20 61.742 78.941 84.432 91.253 +++

operators (e.g., random initial population generation) and
they may produce different results for the same problem
instance on a different run. To mitigate this threat, we exe-
cuted each algorithm on the same problem instance 31
times and collected the sample of results. To compare the
results of meta-heuristic algorithms, we obtained results by
executing each algorithm on each problem instance 31
times and it is statistically analyzed by using Wilcoxon rank
sum test with a 95% confidence level («x =5%).

Table 16 Stability results of IBEA over JFreeChart project

Internal threats to validity: In this category of threats,
the effects of experimental design choices, algorithm’s
parameter settings, and data collection have been consid-
ered. The parameter settings of algorithms are based on
the similar previous remodularization studies (Mkaouer
et al. 2015, 2015a), while for others many-objective al-
gorithms we used a trial-and-error calibration method.

Construct threats to validity: These threats are con-
cerned with the relations between theory and observation.

Version MoJoFM (Mn, Mn — 1) (%)
Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test

0.9.0 - - - - -
0.9.1 51.661 88.654 87.321 87.011 +==
09.2 72.640 75.020 71.659 86.728 +++
093 61.581 86.245 75.965 81.650 +—+
094 63.831 76.904 86.017 82.824 ++-
0.9.5 57.242 76.973 76.196 76.384 ==
0.9.6 48.420 62.891 70.523 76.548 +++
0.9.7 54.540 77.876 81.345 87.829 +++
0.9.8 53.535 85.329 85.328 84.784 +==
0.9.9 51.312 86.747 79.752 86.229 +=+
0.9.10 67.153 65.259 79.638 72.357 ++ -
0.9.11 49.543 70.825 69.526 83.135 +++
0.9.12 54.014 64.851 84.819 83.171 ++=
09.13 62.949 73.829 77.994 87.658 +++
0.9.14 55.433 72.713 88.714 81.734 ++ -
0.9.15 57.876 88.545 82.996 82.102 +-=
0.9.16 58.592 77.352 81.024 95.935 +++
0.9.17 66.643 71.864 75.617 93.238 +++
0.9.18 58.883 95.247 87.828 95.107 +=+
0.9.19 56.108 78.540 72.626 87.823 +++
0.9.20 52.428 76.627 82.118 88.932 +++

@ Springer

878 Inf Syst Front (2020) 22:863-880
Table 17 Stability results of TAA over JFreeChart project
Version MoJoFM (Mn, Mn — 1) (%)

Structural-based Lexical-based Structural + Lexical Entropy-based Wilcoxon test
0.9.0 - - - - -
0.9.1 59.347 86.340 75.007 86.697 +=+
0.9.2 71.326 72.706 79.341 85.414 +++
0.9.3 59.263 73.931 83.651 82.336 +4+=
0.9.4 62.517 81.590 82.703 83.510 ==
0.9.5 56.923 64.659 63.882 74.070 ++=
0.9.6 46.136 61.577 63.209 74.231 +++
0.9.7 52.226 85.562 80.031 84.515 +=+
0.9.8 52.224 83.615 83.014 83.470 +==
0.9.9 58.513 71.433 84.438 83.915 ++=
0.9.10 64.239 62.945 78.324 71.043 ++-
0.9.11 47.229 68.511 67.212 81.821 +++
0.9.12 51.703 62.537 82.505 80.857 ++=
0.9.13 61.231 71.515 85.680 85.344 ++=
0.9.14 53.519 70.399 76.400 89.420 +++
0.9.15 55.562 86.231 81.682 79.788 +-=
0.9.16 56.278 75.038 78.710 93.621 +++
0.9.17 64.329 69.550 73.303 91.924 +++
0.9.18 56.569 72.933 85.514 92.793 +++
0.9.19 53.794 76.226 70312 85.509 +4++
0.9.20 51.124 74313 79.834 86.638 +++

The design of fitness functions are based on previous and
widely used software remodularization works (Prajapati
and Chhabra 2017a; Corazza et al. 2016; Parashar and
Chhabra 2016). For a proper comparison between the
two algorithms, we assigned an equal number of fitness
evaluation.

External threats to validity: The external threats to va-
lidity are concerned with the generalization of the results
achieved by the proposed approach. The approach has
been carried out over medium to large real-world ob-
ject-oriented software systems with different complexity
in terms of number of connections, number of classes,
number of modules, and lines of code. The correctness
of the authoritativeness remodularization might also af-
fect the results. To obtain the authoritativeness
remodularization, we follow the same approach as report-
ed in literature (Prajapati and Chhabra 2017a; Corazza
et al. 2016; Erdemir and Buzluca 2014; Wu et al. 2005).

8 Conclusion and Future Directions

A new many-objective software remodularization approach
for object-oriented software system has been proposed in this
paper. The approach proposes the use of information theoretic
proximity measure as a new objective function along with four
other objective measures (i.e., inter-module class change cou-
pling, intra-module class change coupling, module count in-
dex, and module size index). In addition, our approach utilized

@ Springer

different aspects of structural and lexical with their relative
weights. Information present in the change-history of the soft-
ware has also been integrated into the approach for identifying
consistent modularization. The proposed approach has been
compared with other variants of remodularization evaluation
models over seven test software using different search based
meta-heuristics (NSGA-III, MOEA/D, IBEA, and TAA). The
obtained results have been assessed in terms of authoritative
software remodularization, non-extreme distribution, and sta-
bility. The results of the evaluation clearly suggest that the
proposed approach can be a good alternative to improve the
quality of software systems whose quality is not up to the
mark. As part of the future work, we perform an empirical
study on more problem instance with different configuration
settings.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Abdeen, H., Ducasse, S., Sahraoui, H.A., Alloui, 1. (2009). Automatic
package coupling and cycle minimization, in: Proceedings of the
16th working conference on re- verse engineering, 103—112.

Aldana-Bobadilla, E., & Kuri-Morales, A. (2011). A methodology to find
clusters in the data based on Shannon's entropy and genetic algo-
rithms. In Proceedings of the 10th WSEAS international conference
on communications, electrical & computer engineering, world sci-
entific and engineering academy and society (WSEAS) (pp. 272—
280). Wisconsin, USA: Stevens Point.

Inf Syst Front (2020) 22:863-880

879

Andritsos, P., & Tzerpos, V. (2005). Information-theoretic software clus-
tering. [EEE Transaction on software engineering., 31(2), 150-165.

Anquetil, N., Lethbridge, T. (1999). Experiments with clustering as a
software remodularization method. In Proceedings of 6th Working
Conference on Reverse Engineering, Atlanta, GA, USA 235-255.

Arcuri, A., Briand, L. (2011). A practical guide for using statistical tests to
assess randomized algorithms in software engineering, 201/ 33rd
International Conference on Software Engineering (ICSE),
Honolulu, HI, 1-10.

Barros, M. (2012). An analysis of the effects of composite objectives in
multi-objective software module clustering. in: Proceedings of the
fourteenth international conference on Genetic and evolutionary
computation, 1205-1212.

Bavota, G., Lucia, A. D., Marcus, A., & Oliveto, R. (2010). Software re-
modularization based on structural and semantic metrics. /n
Proceedings of WCRE, 2010, 195-204.

Bavota, G., Lucia, A. D., Marcus, A., & Oliveto, R. (2013). Using struc-
tural and semantic measures to improve software modularization.
Empirical Sofiware Engineering, 18, 901-932.

Bavota, G., Dit, B., Oliveto, R., Penta, M. D., Poshyvanyk, D., Lucia,
A.D. (2013a). An empirical study on the developers' perception of
software coupling, 2013 35th International Conference on Software
Engineering (ICSE), San Francisco, CA, 692-701.

Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., & Lucia, A. D.
(2014). Improving software modularization via automated analysis
of latent topics and dependencies. ACM Transaction on Software
Engineering and Methodology, 4(1), 1-33.

Bingdong, L., Jinlong, L., Tang, K., & Xin, Y. (2015). Many-objective
evolutionary algorithms: A survey. ACM Computing Survey, 48(1),
1-37.

Bittencourt, R. A., & Guerrero, D. D. S. (2009). Comparison of graph
clustering algorithms for recovering software architecture module
views (pp. 251-254). In: Proceedings of the European Conference
on Software Maintenance and Reengineering, IEEE CS Press.

Corazza, A., Martino, S. D., Maggio, V., & Scanniello, G. (2016).
Weighing lexical information for software clustering in the context
of architecture recovery. Empirical Software Engineering, 21(1),
72-103.

Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M. J. (2001). PESA-II:
Region-based selection in evolutionary multiobjective optimization.
In Proc. 3rd Annual Conference on Genetic Evolutionary
Computation. 283-290.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory.
Wiley and Sons, 1991.

Cui, J. F., & Chae, H. S. (2011). Applying agglomerative hierarchical
clustering algorithms to component identification for legacy sys-
tems. Information and Software Technology (IST), 53(6), 601-614.

Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting ap-
proach, part I: Solving problems with box constraints. /EEE
Transaction on Evolutionary Computing, 18(4), 577-599.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and
elitist multi-objective genetic algorithm: NSGA-II. /EEE
Transactions on Evolutionary Computing, 6(2), 182—197.

Doval, D., Mancoridis, S., & Mitchell, B. S. (1999). Automatic clustering
of software systems using a genetic algorithm (pp. 73-81). In:
Proceedings of IEEE conference on software technology and engi-
neering practice.

Erdemir, U., & Buzluca, F. (2014). A learning-based module extraction
method for object-oriented systems. Journal of Systems and
Software, 97, 156—-177.

Fowler, M., Beck, K., Brant, J., Opdyke, Q., & Roberts, D. (1999).
Refactoring — Improving the Design of Existing Code (1st ed.).
Addison-Wesley.

Glorie, M., Zaidman, A., Deursen, A., & Hofland, L. (2009). Splitting a
large software repository for easing future software evolution-an

industrial experience report. Journal of Software Maintenance and
Evolution: Research and Practice, 21(2), 113-141.

Gokcay, E., & Principe, J. C. (2002). Information theoretic clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
24, 158-171.

Harman, M., Hierons, R., & Proctor, M. (2002). A new representation
and crossover operator for search-based optimization of software
modularization (pp. 1351-1358). In: Proc. genetic and evolutionary
computation conference.

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software
engineering: Trends, techniques and applications. ACM Computing
Survey, 45(1), 1-61.

Hino, H., & Murata, N. (2014). A nonparametric clustering algorithm
with a quintile-based likelihood estimator. Neural Computing., 26,
2074-2101.

Jaimes, A.L., Coello Coello, C.A., Barrientos, J.E.U. (2009). Online ob-
jective reduction to Deal with many-objective problems. In the 5th
international conference on Evolutionary Multicriterion
Optimization. 423—437.

Jain, H., & Deb, K. (2014). An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting ap-
proach, part II: Handling constraints and extending to an adaptive
approach. [EEE Transactions on Evolutionary Computation, 18(4),
602-622.

Jinhuang, H., & Jing, L. (2016). A similarity-based modularization qual-
ity measure for software module clustering problems. Information
Sciences, 342(10), 96-110.

Joyce, J. (2008). Bayes theorem. The Stanford encyclopedia of philoso-
phy, fall 2008 edition, Eds: Zalta, Edward N.

Kumari, A. C., Srinivas, K., Gupta, M. P. (2013). Software module clus-
tering using a hyper-heuristic based multi-objective genetic algo-
rithm. 2013 IEEE 3rd international advance computing conference
(IACC), Ghaziabad, 813-818.

Mahdavi, K., Harman, M., & Hierons, R. M. (2003). A multiple hill
climbing approach to sofiware module clustering (pp. 315-324).
In: Proceedings of the international conference on software
maintenance.

Mamaghani, A. S., & Meybodi, M. R. (2009). Clustering of software
systems using new hybrid algorithms (pp. 20-25). In: Proceedings
of the ninth IEEE international conference on computer and infor-
mation technology.

Mancoridis, S., Mitchell, B. S., Chen, Y. F., Rorres, C., & Gansner, E. R.
(1998). Using automatic clustering to produce high-level system
organizations of source code (pp. 45-53). In: Proc. int’l workshop
program comprehension.

Mancoridis, S., Mitchell, B. S., Chen, Y. F., & Gansner, E. R. (1999).
Bunch: A clustering tool for the recovery and maintenance of soft-
ware system structures. Proc. IEEE Int’l Conf. Software
Maintenance, 50-59.

Mitchell, B. S., & Mancoridis, S. (2002). Using heuristic search tech-
niques to extract design abstractions from source code. Proc.
Genetic and Evolutionary Computation Conf., 1375-1382.

Mkaouer, M. W., Kessentini, M., & Bechikh, S. (2015). On the use of
many quality attributes for software refactoring: A many-objective
search-based software engineering approach. Empirical Software
Engineering, 21(6), 2503-2545.

Mkaouer, M. W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S.,
Deb, K., & Ouni, A. (2015a). Many objective software
remodularization using NSGA-III. ACM Transaction on software
engineering and methodology, 24(3), 1-17.

Ouni, A., Kessentini, M., Sahraoui, H., & Boukadoum, M. (2013).
Maintainability defects detection and correction: A multi-objective
approach. Journal of Automated Software Engineering (ASE),
20(1), 47-79.

@ Springer

880

Inf Syst Front (2020) 22:863-880

Ouni, A., Kessentini, M., & Sahraoui, H. (2014). Multiobjective optimi-
zation for software refactoring and evolution. Advances in
Computers, 94, 103-167.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Hamdi, M. S.
(2015). Improving multi-objective code-smells correction using de-
velopment history. Journal of Systems and Software, 105, 18-39.

Ouni, A., Kula, R. G., Kessentini, M., Ishio, T., German, D. M., & Inoue,
K. (2016). Search-based software library recommendation using
multi-objective optimization. Journal of Information and Software
Technology, Elsevier, 83, 2016.

Ouni, A., Kessentini, M., Sahraoui, H., Cinneide, M.O., Deb, K., Inoue,
K. (2016a). MORE: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells.
Journal of Software: Evolution and Process (JSEP), John Wiley &
Sons.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016b).
Multi-criteria code refactoring using search-based software engi-
neering: An industrial case study. ACM Transactions on Software
Engineering and Methodology, 25(3), 1-23.

Ouni, A., Kessentini, M., Inoue, K., & Cinnéide, M. (2017). Search-based
web service anti patterns detection. /EEE Transactions on Services
Computing, 10(4), 603-617.

Parashar, A., & Chhabra, J. K. (2016). Mining software change data
stream to predict changeability of classes of object-oriented software
system. Evolving Systems, 7(2), 117-128.

Praditwong, K., Yao, X. (2006). A new multi-objective evolutionary op-
timization algorithm: The two-archive algorithm. /n: Cheung Y-M,
Wang Y, Liu H (eds) Proceedings of the international conference
computational intelligence and security, vol 1, 286-291.

Praditwong, K., Harman, M., & Yao, X. (2011). Software module clus-
tering as a multi-objective search problem. /EEE Transaction on
Software Engineering, 37(2), 264-282.

Prajapati, A., & Chhabra, J. K. (2014). An empirical study of the sensi-
tivity of quality indicator for software module clustering. In 2074
Seventh International Conference on Contemporary Computing
(IC3), Noida, (2014) (pp. 206-211).

Prajapati, A., & Chhabra, J. K. (2017). Improving package structure of
object-oriented software using multi-objective optimization and
weighted class connections. Journal of King Saud University -
Computer and Information Sciences, 29(3), 349-364.

Prajapati, A., & Chhabra, J. K. (2017a). Improving modular structure of
software system using structural and lexical dependency.
Information and Software Technology, 82, 96-120.

Prajapati, A., & Chhabra, J. K. (2017b). Harmony search based
remodularization for object-oriented software systems. Computer
Languages, Systems & Structures, 47, 153—169.

Prajapati, A., & Chhabra, J. K. (2018). Many-objective artificial bee
colony algorithm for large-scale software module clustering prob-
lem, soft computing., 22(19), 6341-6361.

Prajapati, A., & Chhabra, J. K. (2018a). FP-ABC: Fuzzy-Pareto domi-
nance driven artificial bee colony algorithm for many-objective soft-
ware module clustering. Computer Languages, Systems &
Structures, 51, 1-21.

Rachmawati, L., & Srinivasan, D. (2009). Multiobjective evolutionary
algorithm with controllable focus on the knees of the Pareto front.
IEEFE Transaction on Evolutionary Computation., 13(4), 810-824.

Sartipi, K., & Kontogiannis, K. (2003). On modeling software architec-
ture recovery as graph matching. In International Conference on
Software Maintenance, ICSM 2003. Proceedings., Amsterdam, the
Netherlands (pp. 224-234).

Sugiyama, M., Niu, G., Yamada, M., Kimura, M., & Hachiya, H. (2014).
Information-maximization clustering based on squared-loss mutual
information. Neural Computing, 26, 84—131.

Tzerpos, V., & Holt, R. C. (1999). MoJo: A distance metric for software
clustering. In Proceedings of the 6th working conference on reverse
engineering (pp. 187-193). GA, USA, October: Atlanta.

@ Springer

Wang, Y., Liu, P, Guo, H., Li, H., & Chen, X. (2010). Improved hierar-
chical clustering algorithm for software architecture recovery. In
International conference on intelligent computing and cognitive
informatics (pp. 247-250).

Wang, H., Jiao, L., & Yao, X. (2015). Two_Arch2: An improved Two-
archive algorithm for many-objective optimization. /EEE
Transactions on Evolutionary Computation, 19(4), 524-541.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., &
Wesslen, A. (2000). Experimentation in software engineering: An
introduction. Kluwer Academic Publishers.

Wau, J., Hassan, A. E., & Holt, R. C. (2005). Comparison of clustering
algorithms in the context of software evolution. In /n: Proceedings
of the 21st IEEE International Conference on Software Maintenance
(pp. 525-535).

Yates, R.B., Neto, B.R. (1999). Modern information retrieval. Addison-
Wesley-Longman.

Zhang, Q., & Li, H. (2007). MOEA/D: A multi-objective evolutionary
algorithm based on decomposition. /[EEE Transaction on
Evolutionary Computing, 11(6), 712-731.

Zitzler, E., & Kunzli, S. (2004). Indicator-based selection in multi-
objective search. In In Proceedings of the 8" International
Conference on Parallel Problem Solving from Nature. Springer
(pp. 832-842).

Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the
strength Pareto evolutionary algorithm. /n Proc. Evolutionary.
Methods Design Optimization. Control Application, 95-100.

Dr Amarjeet Prajapati is working as Assistant Professor in the
Department of Computer Science & Engineering at Jaypee Institute of
Information Technology (JIIT) Noida-62, Uttar Pradesh-India since
January 2017. He has completed his PhD degree from the Department
of Computer Engineering, NIT Kurukshetra, Haryana in 2017. He obtain-
ed his M. Tech degree in Computer Engineering from the Department of
Computer Engineering, NIT Kurukshetra, Haryana in 2011. He obtained
his B. Tech degree in Computer Science and Engineering from UPTU,
Lucknow in 2004. He has presented and published many research papers
in reputed journals and various national and international conferences.
His important research contribution includes developing search-based
software engineering methods that help in improving the modular struc-
ture of software systems. His research interests include Software
Engineering, Soft Computing, and Metaheuristic Algorithms, etc.

Dr Jitender Kumar Chhabra Professor, Dept of Computer Engg has
been always topper throughout his career. He did his B Tech as well as
M Tech from N.L.T. Kurukshetra as Gold Medalist. He did his PhD in the
area of Software Engineering. He has 25 years of teaching and research
experience. He is author of three books from International publisher
McGraw Hill including the one Schaum Series International book. He
is Reviewer of IEEE Transactions, ACM Transactions, Elsevier, Springer,
Wiley, T & F and many other Journals. He has published more than 120
papers in reputed International and National Journals and conferences
including more than 50 publications from IEEE, ACM, Elsevier and
Springer etc, which are SCI and Scopus indexed. He has visited many
countries and presented his research work in USA, UK, Canada, Spain,
France, Singapore, Turkey, UAE and Thailand. He has worked in collab-
oration with multinational IT companies Hewelett Packard and Tata
Consultancy Services in the area of Software Engineering and is
privileged to be invited as Judge for IBM National Contests. He has also
received Sir Isaac Newton Scientific Award, Best Teacher award etc His
area of interest are software engineering, soft computing, machine learn-
ing and data mining.

	Information-Theoretic Remodularization of Object-Oriented Software Systems
	Abstract
	Introduction
	Related Works
	Basic Concepts
	Minimum Entropy Concept
	Structural and Lexical Features
	Structural-Based Features
	Lexical-Based Features

	Proposed Approach
	Extraction of Software Information
	Remodularization Objectives
	Remodularization Problem Encoding
	Many-Objective Evolutionary Algorithm

	Experimental Setup
	Studied Software Projects
	Collecting Results
	Result Evaluation Criteria
	Non-Extreme Distribution (NED)
	Authoritativeness
	Stability

	Rival Remodularization Approaches
	Statistical Tests

	Results and Analysis
	Authoritativeness
	Non-Extreme Distribution (NED)
	Stability
	Discussion

	Threats to Validity
	Conclusion and Future Directions
	References

