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Abstract
Contagious diseases pose significant challenges to public healthcare systems all over the world. The rise in emerging contagious
and infectious diseases has led to calls for the use of new techniques and technologies capable of detecting, tracking, mapping and
managing behavioral patterns in such diseases. In this study, we used Big Data technologies to analyze two sets of flu (influenza)
activity data: Twitter data were used to extract behavioral patterns from a location-based social network and to monitor flu
outbreaks (and their locations) in the US, and Cerner HealthFacts data warehouse was used to track real-world clinical encoun-
ters. We expected that the integration (mashing) of social media and real-world clinical encounters could be a valuable enhance-
ment to the existing surveillance systems. Our results verified that flu-related traffic on social media is closely related with actual
flu outbreaks. However, rather than using simple Pearson correlation, which assumes a zero lag between the online and real-
world activities, we used a multi-method data analytics approach to obtain the spatio-temporal cross-correlation between the two
flu trends and to explain behavioral patterns during the flu season. We found that clinical flu encounters lag behind online posts.
Also, we identified several public locations from which a majority of posts initiated. These findings can help health authorities
develop more effective interventions (behavioral and/or otherwise) during the outbreaks to reduce the spread and impact, and to
inform individuals about the locations they should avoid during those periods.
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1 Introduction and Motivation

Surveillance systems have long been the cornerstone of public
health efforts that are designed to address a wide range of

public health needs such as detection (early identification) of
epidemics (or outbreaks) and control of infectious diseases.
Such systems can inform policy decisions by identifying risk
factors for disease and targets for preventive healthcare
(Richards et al. 2014). Traditional surveillance systems have
mainly relied on data reported by medical institutions, which
oftentimes involve a very long data processing, thus increas-
ing the uncertainty of decision making and more importantly
delaying the effective intervention (Fang and Chen 2016).
Furthermore, the failure of public health agencies to detect
and manage emerging infectious disease is generally attribut-
ed to limitations of traditional surveillance systems for out-
break management (Y.-D. Chen et al. 2011). However, with
the recent explosive growth in data availability as well as the
ability to record collective behavior through digital data, so-
cial media, connected sensors and embedded systems (the so–
called Internet of things), more efficient and reliable surveil-
lance systems can be built in order to monitor the health status
of a population at a given time. For instance, disease outbreaks
can be detected with the help of a surveillance system based
on query logs of search engines to determine in a timely man-
ner where, when, and how health resources are allocated in
order to achieve the best outcomes (Fang and Chen 2016).
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Emerging infectious diseases are of paramount concern to
public health officials and governments throughout the world.
The susceptibility of people to infectious diseases has been
evidenced by the emergence of HIV/AIDS in the late se-
venties, pandemic Swine flu in 2009, the H3N2 epidemic
during the 2012-2013 winter season, and more recently, the
Ebola virus disease worldwide, as well as the reemergence of
Swine flu in India. In most countries, influenza outbreaks
happen in different forms every year and invoke different
consequences of varying impacts. The annual impact in the
US has been estimated at an average of 610,660 undiscounted
life-years lost, 3.1 million hospitalized days, 31.4 million out-
patient visits, and a total of $87.1 billion in economic burden
(Molinari et al. 2007). In order to minimize this cost, early
detection and rapid development of behavioral interventions
aimed at reducing the spread and impact of disease outbreaks
are critical for public health.

The use of disease detection and surveillance systems are
crucial in providing the necessary epidemiologic intelligence
that health officials and clinical administrators rely on to prop-
erly enact preventative measures and assist in staffing and
stocking decisions (Santillana et al. 2016). While several sur-
veillance systems have been used for monitoring influenza
virus activity, an effective disease surveillance is expensive
and needs a formal public health network (Wilson and
Brownstein 2009). Hospital admissions data (Congdon
2005), pneumonia and influenza mortality rates (Sebastiani
et al. 2006), over-the-counter drug sales (Magruder 2003),
syndromic/sentinel surveillance (Griffin et al. 2009), prescrip-
tion pharmaceutical sales (Patwardhan and Bilkovski 2012),
laboratory test isolation (Nunes et al. 2013), and emergency
room visit rates (Corberán-Vallet and Lawson 2014) are
among instances of traditional surveillance systems.
However, none of these measurements can be deemed as the
best single surveillance information source (Amorós et al.
2015), and such passive surveillance systems typically rely
on data sources submitted to the public health authorities by
networks of physicians, hospitals, laboratories, pharmacies,
and other healthcare providers (if well run and efficient) and
may not reflect behavioral patterns accurately.

The Centers for Disease Control and Prevention (CDC) is
the US’s leading public health agency that monitors influenza-
like illness (ILI) activities by collecting data from medical
institutions, collating reports and publishing them on a weekly
basis. However, the lack of operational knowledge of
reporting systems and real-time monitoring have resulted in
a miscount of influenza cases and substantial lags (roughly
2 weeks) between the point at which an outbreak trend starts
to happen and the point at which that data point becomes
available in aggregate ILI reports (Amorós et al. 2015).
These substantial lag times do not allow for optimal decision
making, as public health decisions need to be based on more
recent information. These issues can adversely affect the

effectiveness of behavioral interventions targeted at reducing
the spread and impact of outbreaks. Because of this, there is a
glaring need for systems that can provide real-time influenza
activity estimates. To have a proactive surveillance system,
public health officials need to be forewarned at the earliest
possible time to ensure effective behavioral interventions
and shorten the course of outbreak complications. This has
led to calls for more augmented surveillance systems capable
of incorporating behavioral patterns, estimating the preva-
lence, and tracking the spread of influenza. The emergence
and global spread of unknown variants of influenza in recent
years prompted CDC and other public health agencies to call
for rapid development of behavioral interventions aimed at
promoting health-related behaviors and minimizing the spread
and impact of pandemic outbreaks. Such recommended be-
haviors can be, for instance, keeping distance from flu-
infected people or those who show ILI symptoms, such as
sneezing and coughing, or reducing the time spent in crowded
places during the peak flu season (Prati et al. 2011). More
recently, CDC launched the BPredict the Influenza Season
Challenge Competition^ to encourage researchers to charac-
terize the flu season that occurs each year using digital data
from various sources such as social media, search queries, or
other Internet data.1 In particular, social media data can be
crucial to identify more real-time behavioral patterns during
the flu season and to promote health intervention efforts.

Today, in the era of online communication and social me-
dia, thousands of online services and mobile applications have
yielded and will continue to yield a vast amount of user-
generated and location-based content every day. Many people
seek information about health online, and often, use social
media to share their thoughts, feelings, and experiences pub-
licly with their friends (Nguyen et al. 2015). The availability
of such patient-generated health data on the Internet, with
varying quality and legitimacy, has provided a new means
for not only early detection of infectious diseases, but also
surveillance of patient behaviors from the early recognition
and interpretation of symptoms to the representation of dis-
ease and treatment-seeking. During a new disease outbreak,
not only that affected communities can benefit from social
media by looking for known symptoms, preventative mea-
sures and treatment related information, but also health orga-
nizations can analyze millions of messages exchanged on so-
cial media platforms about disease signs and symptoms, trans-
mission mediums, death reports etc. for quick response and
and implementation of intervention strategies (Rudra et al.
2018). Although an Internet-based surveillance system is only
limited to people who seek health-related information on the
Internet, we can sense the simultaneous presence of real and
Bdigital^ outbreaks from such seemingly social networking

1 http://www.cdc.gov/flu/news/predict-flu-challenge.htm
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data; we can read the city’s public health status in real-time,
determine infectious hotspots, and highlight Bmust-know
facts^ for people visiting these areas.

With such geo-referenced and time-stamped social media
data at hand, patient-generated health data can be synthesized
and mashed up with large sets of clinical and medical data to
gain valuable insights for patients and healthcare providers,
gain insights into complex infectious disease conditions, and
anticipate public health outbreak crises that ensue. As a result
of the presence of Big Data in healthcare, digital epidemiology
has emerged as a major field of research that investigates how
Bbig data^ can be used to better understand, detect, monitor,
and address public health problems (Young et al. 2014). This
field has the potential to significantly aid public health offi-
cials as far as launching vaccination campaigns, allocating
resources, and other strategic measures used to fight the
spread of infectious diseases.

Over the last few years, several innovative web-based flu
surveillance systems have been proposed to improve the over-
all efficiency of public health monitoring. Internet surveys
(Vandendijck et al. 2013), search queries (Dukic et al. 2012;
Fang and Chen 2016; Santillana et al. 2015), and
microblogging (Signorini et al. 2011) have been used to dis-
cover public health seeking patterns and transform them into
flu activity. Perhaps, the development of the Google Flu
Trends (GFT) (Ginsberg et al. 2009) has been the most
groundbreaking innovation of the web-based surveillance sys-
tems, which later led to an increasing focus on harnessing
Internet-scale data for public health surveillance and planning.
GFT was shut down in August of 2015, creating a need for a
new, reliable method to replace it. GFTallowed for significant
progress in the field of digital epidemiology, as both Google
and other researchers have been able to recommend updates
and improvements to GFT (Copeland et al. 2013). A number
of these updated models have shown notable improvements in
areas such as inputting historical flu activity and dynamically
recalibrating models, as to ensure the usage of the most recent
clinical information and adapt to changing behavior within the
population (Lampos et al. 2015; Wagner et al. 2018).

Several studies have shown that social media can also be
used as an enhanced method for faster detection of influenza
outbreaks (Broniatowski et al. 2013; Signorini et al. 2011;
Louis and Zorlu 2012). Most of these studies make the as-
sumption that digital surveillances are substitutes for, rather
than supplements to, the traditional surveillance data sources.
However, these sources of information provide just indirect
estimates (Bnowcast^) of the ILI cases in the population and
do not provide an absolute alternative to existing surveillance
systems. Rather, they can improve the forecast by informing
other models of the state of the observed conditions in real-
time; thus, allowing the surveillance system to operate at its
best. Therefore, new developments should be mostly focused
on exploring the ways to integrate web-based data sources

into existing forecasting/surveillance systems, rather than ret-
rospective analyses of performance (Aslam et al. 2014; Lazer
et al. 2014; Milinovich et al. 2014). More recently, several
studies advocated use of hybrid systems combining informa-
tion from traditional surveillance and big data sources such as
search queries, social media and health forums (Al-garadi
et al. 2016; Davidson et al. 2015; Simonsen et al. 2016).
Applying advanced GIS and machine learning techniques to
social media data can provide opportunities to understand be-
havioral patterns and characterize the spread of influenza out-
breaks, in real-time and at different geographical scales (Allen
et al. 2016).

Prior works on flu trend analysis on Twitter have mostly
focused on temporal information, and how well the Twitter
data fits the clinical data. However, the spatio-temporal dy-
namics of the flu outbreak needs to be further studied. In this
paper, we focus on flu outbreaks in U.S. and examine that
whether social media data can be used to effectively identify
real-time behavioral patterns during the flu season, and if so,
can this lead to more timely promotion of health intervention
efforts. Specifically, this study seeks to answer the following
research questions: 1) Do flu-related social media posts pre-
cede or help identify the flu outbreak? 2) Do the spatio-
temporal dimensions of social media data exhibit evidence
of infectious hotspots or signal the presence of flu viruses in
the vicinity of certain points of interest?

While prior studies have analyzed the flu trend at the ag-
gregate level, our work uses a fine level of granularity (i.e.,
inpatient/outpatient encounter) and employs a series of corre-
lations and time series-based models to examine the spatio-
temporal relationship between the incidence of flu and social
media. In particular, the point processes technique introduced
in this study is capable of tracking behavior at lower levels of
granularity to test the correlation of Twitter data with clinical
data. Despite the increasing emphasis on using the massive
amounts of data available through social networks to employ
the potential of big data technology in behavioral research,
few studies have used big data analytics as a tool to support
decision making in public health decisions, especially for pre-
emptive actions prior to disease outbreaks. Hence, in response
to the call for more examples on the use of big data for ana-
lytics in health behavior research, in this paper, we created
large datasets of flu-related activities from Twitter and
Cerner medical records and built analytical models to under-
stand patterns and trends in these datasets. The data manage-
ment approach presented in this paper utilizes a Hadoop in-
frastructure to develop a social media analytics application for
flu spreadmonitoring.We demonstrate an example of how big
data technologies such as Hadoop, HDFS, MapReduce, Hive,
Flume or BigR are developing into a more advanced and
interactive form of application development.

We used a big data technology framework to build a model
that employs Twitter data to track influenza activities in the
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US. Our analytics initiative comprised temporal and spatial
big data analyses. In the temporal analysis, we analyzed
whether Twitter data could indeed be adapted for the
nowcasting of influenza outbreaks. In spatial analysis, we
mapped flu outbreaks to the geo-spatial property of Twitter
data to identify influenza hotspots. In addition, we used lead-
lag theory, also known as the sequence theory, to investigate
the relationship direction between online posts and actual
cases of the flu, as online discussions may result from, pre-
cede, or reflect flu outbreaks. The lead-lag effect theory, espe-
cially in economics, is based on the principle that changes in
the business are not simultaneous, but successive. It describes
the situation where one (leading) variable is cross-correlated
with the values of another (lagging) variable at later times
(Wang et al. 2013). Guided by this theory, we demonstrated
the application of point processes as an integrated framework
to investigate lead-lag relationship and spatio-temporal cross-
correlation between two trends in a location-based social net-
work context. We tested not only the contemporaneous rela-
tionship of flu activity on Twitter and clinical health records,
but also whether one preceded the other. To the best of our
knowledge, there is no prior research on using point process as
its modeling framework for characterizing the spatial and tem-
poral relationship between the disease outbreaks and online
social networks. One obvious contribution of this study, there-
fore, is its roles as a proof-of-concept for the use of spatial big
data analysis and mapping methods to supplement traditional
disease surveillance systems. We utilized the analytical and
visualization capabilities of GIS to enhance our understanding
of early disease spreading patterns using location-enabled so-
cial media, otherwise hard to discern from patient medical
records in near real-time. We further analyzed the geographic
patterns to identify influenza public hotspots. In addition, the
geostatistical measures were used for auto- and cross-
correlations to examine the spatiotemporal distribution of flu
activity. The study provides theoretical, empirical, and meth-
odological advances that help policymakers use location-
based social media platforms as a source of spatio-temporal
information for spread of various diseases.

The remainder of this work is structured as follows. In the
next section, we provide an overview of recent work in related
research areas. Subsequently, we provide objectives and out-
line of our research according to the identified gap. In the
following section, we briefly review the theoretical back-
ground of our research, followed by a section that covers the
data and research methods employed in this study. The appli-
cation of the statistical and data mining models to evaluate the
explanatory power of location-enabled social media is pre-
sented in the next section. Therein, the flu mapping using
geo-spatial social media activity is also illustrated. The penul-
timate section presents the findings of our research and pro-
vides an outlook on future research. The paper concludes a
summary of the research method the findings.

2 Theoretical Background

In this section, we review theories that explain how human
behavior properties impact the propagation of information on
social networks. Among all the theories that exist in IS re-
search, theories of critical mass, social exchange, and attach-
ment motivation conform to our observations/findings and
therefore, are brought up as potential determinants of human
behaviors in information propagation phenomena online.

2.1 Critical Mass

The critical mass theory proposes that social movements start
once a specific threshold of participants or actions involved in
a collective behavior is crossed (Oliver et al. 1985). Previous
studies have investigated the role of critical mass in adoption
of microblogging platforms and its influence on the intention
for the cascading behavior such as re-tweeting (Shi et al.
2014). It is asserted that the perceived critical mass impacts
the collective or cascading behavioral intention in social
networks.

A disease outbreak needs a critical mass of infected patients
and a critical mass must be present for patient one to become
infected and susceptible to the infection. This threshold can be
inferred from social media activities. When a large number of
people are sharing content related to flu on social media plat-
forms, that is likely a critical mass for an early-warning sur-
veillance system of a change in influenza activity in a city or
state.

2.2 Social Exchange

Social exchange theory states that people engage in a process
of social exchange expecting returns for their input (Homans
1958). In the IS literature, content sharing is considered a
social exchange mechanism that is formed with the involve-
ment of three parties: the creator, the sharer, and the targeted
audience of the content. The literature has emphasized the
rewarding aspects of social interactions for humans and that
the perceived reputation enhancement is accounted as a key
factor in explaining human behavior in information sharing.
Social exchange theory provides additional insights into the
factors why people talk about health conditions on social me-
dia platforms. Social media is used as a means of social ex-
change in which a society exhibits social strain in connection
with a disease and throughout this interchange, relevant health
information is offered by the healthcare professional.

2.3 Attachment Motivation

The attachment motivation theory is used to explain online
user’s behavior in social networks due to an individual’s desire
for social interaction and social communication (Oliver et al.
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1985). The attachment motivation theory sheds light on peo-
ple’s motivation to spread health-related information on social
media, yet it has to be evaluated as a credible or reliable source
of information.

2.4 Lead-Lag

The lead-lag effect is a concept of common practice in econo-
metrics that has been used to describe the relationships that
exist between a pair of spatial time series data items. Examples
of this effect include the temporal relationship between social
media (blog buzz) and sales (Dewan and Ramaprasad 2014),
the spatial relationship between the utilization of information
technologies and socioeconomic factors (Pick et al. 2015), and
the spatiotemporal relationship between criminal activity and
socioeconomic variables (Toole et al. 2011). In time series,
this effect is commonly referred to as Bcross-correlation.^
The notion of lead-lag relationship can be linked to the con-
cept of Granger causality and its implications to understand
which variable is more likely to precede the other (Granger
1969). In theory, social media and electronic word-of-mouth
(eWOM) activities may not only result from real-world dy-
namics (e.g. (Duan et al. 2008; Lymperopoulos and Ioannou
2015)), but also may inform it in due course of time (e.g.
(Dewan and Ramprasad 2009)). Statistical measures compris-
ing both spatial and temporal cross-correlation processes can
provide a better estimate of such relationships (Y. Chen 2015;
Ma et al. 2006). In summary, all the theories discussed above
are complementary and useful for us to understand the nature
of the relationship between the social media activities and flu
behavior.

3 Data and Methods

The exponential growth of big data technology in today’s
world has changed the way we manage and process data. It
has led to an architectural paradigm shift in data movement.
Instead of bringing the data to computation, the new architec-
ture pushes computation to the data. The move from ‘scale-
up’ to ‘scale-out’ architecture requires a very different ap-
proach to data storage and processing. Big data technology
as a viable solution consists of a set of highly scalable tools
and techniques capable of moving beyond terabytes and even
exabytes of data. Hadoop as an integral part of big data ana-
lytics has fundamentally changed the economics of storing
and analyzing information. The high rate of unstructured data
production on social media makes it appealing to use Hadoop
in the production environment.

Digital data is massive with real information hidden within
an immense amount of irrelevant data. Hadoop as an integral
part of big data analytics has fundamentally changed the eco-
nomics of storing and analyzing such huge amounts of semi-

structured and unstructured data. Guided by design science
theory (von Alan et al. 2004), the approach presented in this
paper leverages a Hadoop platform to design and develop a
social media-based surveillance system for tracking flu activ-
ity. We used IBM InfoSphere BigInsights as our big data an-
alytics platform to derive underlying relationships in flu-
related data sources, and to understand how well such infor-
mation can help in achieving public health goals. BigInsights
is the IBM’s distribution of Hadoop. It combines an IBM-
created open source query language called JAQL with the
usual Apache Hadoop components such as Hive, HBase, Pig
and Java MapReduce. The reason we used the Hadoop eco-
system is the power, the scalability and the functionalities it
provides to our infrastructure to support what we do on the
data. We ingested Twitter data using Apache Flume where
many flows (queries) run in parallel (via Flume interceptors).
The Hadoop’s ability to efficiently collect large volumes of
complex data in parallel, process and aggregate it with data
from other sources via various applications available within
the same package has made Hadoop a powerful system. All
these assumptions necessitated the use of a Big Data Analytic
platform (i.e. IBM BigInsights) in this paper to manage and
process vast amounts of data that can, otherwise, be technical-
ly challenging to manage and analyze conveniently if tradi-
tional data management systems were used. As shown in
Fig. 1, the proposed big data analytics methodology of this
paper consists of four major modules: data processing, data
manipulation, data modeling and forecasting.

3.1 Data Processing

Unlike prior studies that used the CDC data at the regional
level on a weekly basis, the clinical data used in this study was
acquired from Cerner Center Health Facts ™. The Cerner
Data Warehouse (DW) is one of the largest de-identified, lon-
gitudinal electronic health records (EHR) databases with more
than 58 million unique patients across the US. It contains
comprehensive demographic, clinical, laboratory, pharmaceu-
tical, admission and billing data that are geo-tagged, time-
stamped and sequenced at a fine level of granularity (i.e.,
inpatient/outpatient encounter). More importantly, the Cerner
DW includes both the patient’s residential address and the
facility address for every encounter. The final dataset is also
identified at a fine level of granularity where the patient was
admitted to a healthcare facility. At the time of data collection,
the size of the Cerner DW was about 2.5 terabytes. We used
big data technologies to extract 9.25 gigabytes from the DW,
which roughly corresponded to over eight million flu-related
medical visits. Sqoop was used to transfer this dataset to the
Hadoop cluster.

The Twitter data crawler continuously streams tweets using
the open-source Flutrack Twitter Streaming Application
Program Interface (API) (Talvis et al. 2014) and forwards it
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to the Hadoop. A Flume program perpetually creates new files
from the incoming tweet stream and stores them in the
Hadoop Distributed File Systems (HDFS). The monitoring
words used as tags were influenza and flu like symptoms.
These included body or muscle aches, chills, cough, fever,
headache, and sore throat. The Flutrack API filters out tweets
with false or nonexistent location coordinates. Our Twitter
dataset consists of over 26,000 public tweets that contained
the influenza-like symptoms-related keywords generated by
more than 20,700 unique users between May 06, 2013 and
March 15, 2015. As a data storage system, we used HDFS,
which is also a part of BigInsights Hadoop platform, to store
the data collected from Twitter, as well as the Cerner Center
Health Facts sub-dataset, where all the analyses were
parallelized through MapReduce.

3.2 Data Manipulation

As is common with most data mining initiatives, data extrac-
tion, preparation, and cleaning stages constituted a significant
amount of our work. Creating the flu dataset from the Cerner
data repository included several steps. Cerner Health Fact data
warehouse includes a database management system storing
eight database Tables. A complete list of these tables along
with their descriptions is provided in Table 1.

The encounter number is common among the tables. We
joined all the fact tables and created one database to be used in
our analyses. Since influenza-like symptoms are well known,
we queried the Cerner health fact database to include those
encounter records that were diagnosed with influenza, flu,
fever, chills, headache, sneezing, sore throat, runny nose,
cough, and dry cough. We removed all the duplicates and
ensured that there is only one record per patient per flu activity
in the table. Since there is one record per encounter number, a

single person can have more than one record (visit) in this
table over time. To make the dataset more manageable, we
only included five columns: encounter ID, patient ID, admis-
sion date and time, location and diagnosis description. A list
of the variables in the final Cerner Flu dataset, along with their
descriptions and primary tables is provided in Table 2.

A large volume of flu-related tweets was collected from
Twitter using Flutrack API and was ingested into a Hive table
on the Hadoop cluster. Once the data was successfully
imported, the JSON Query Language (JAQL) tool was used
to manipulate and parse semi-structured data into a structured
format. For each tweet, such information as username, time-
stamp, geographic location, and text were recorded. Twitter
text is noisy, with linguistic errors and idiosyncratic style. We
performed various cleaning and transformation processes such
as stemming, spellchecking, and stop-word filtering to assure
some reasonable quality. The Flutrack API itself classifies
tweets as being related or not related to influenza (flu-posi-
tive/negative) (Chorianopoulos and Talvis 2016). Upon ana-
lyzing the collected tweets, we observed that some tweets
were related to flu but did not report an infection. These tweets
were not from influenza-infected users, but rather concerned
with other flu-related activities such as fear of getting the flu,
preventive vaccines (e.g. flu shots) and awareness of increased
infections as opposed to infection. Similar to (Lamb et al.
2013), a further linguistic filtering process was designed to
identify the tweets that were related to infections. We created
a set of word class features (i.e. infection, possession, concern,
vaccination, past vs. present tense, self vs. other) and trained a
support vector machine (SVM) classifier to classify infection
tweets. We used 1000 tweets as the training data, and another
200 tweets for testing. The SVM classifier demonstrated a
classification accuracy of 94% as shown in Table 3 and was
subsequently used to classify tweets that report infections. In

Fig. 1 High level architecture of
the proposed system
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addition, to validate the quality of the tweets (as being related
to flu infection), 100 tweets were randomly sampled from the
dataset in the previous step and were given to two medical
experts for further evaluations. The experts were asked to
label each of the tweets accordingly if they believed the tweets
did or did not represent a flu infection. The experts approved
98% of the tweets to be related to flu infections. Table 3 sum-
marizes the performance of the supervised classifier on the test
dataset.

Next we analyzed tweet texts from the social network
analysis perspective. We transformed the term-document
matrix, built in the previous step, to a term-term adjacen-
cy matrix. The term-term adjacency matrix was used to
build a network of flu symptoms. In summary, all of these
efforts relied on natural language processing (NLP) algo-
rithms to analyze tweet contents and classify them as be-
ing related or not related to flu. This process is supported
by the attachment motivation theory. As the public per-
ceive benefits from social media as a means of quick
communication, individuals are more willing and motivat-
ed to share their health concerns or conditions with others
on social media, especially during a crisis such as an
outbreak of flu. However, their information should be
evaluated for credibility. A list of the variables along with
their descriptions is provided in Table 4.

In this study, the initial Cerner dataset contained the
US flu incidences since 2009; however, our Twitter

dataset included tweets from all over the world between
2013 and 2015. We created a subset of each dataset so
that both subsets relate to the same period of time and
location (i.e., US). This allowed us to compare the two
subsets based on time and geolocation. Both datasets
contained geo-tagged and time-stamped flu-related activi-
ties as specified in Tables 2 and 4. Consequently, the size
of the datasets decreased to 1.5 GB for the Cerner data
and to less than 1 GB for the Twitter data.

3.3 Data Modeling

In this work, all the statistical and data mining analyses of
the data residing in HDFS were done through the R inter-
face. The regular R installation is constrained by the size
of the main memory and cannot scale up to large datasets.
We used the package BBigR^ released by IBM, to submit
our R scripts over the data stored in HDFS. This package
enabled us to benefit from the parallelism and scalability
of HDFS, as well as in-database R analytics libraries to
operate on big datasets that would otherwise not fit in
memory (Lara Yejas et al. 2014).

We performed spatio-temporal big data analysis and
visualization within a Geographic Information System
(GIS). In the temporal analytics, we examined if Twitter
data could indeed be adapted for nowcasting of influenza
outbreaks. We tracked and compared clinical flu

Table 1 List of tables included in the Cerner Health Fact Database

Table name Description

Encounter facts The Bencounter fact table^ contains all of the information that is specific to a certain visit.
The encounter number is unique within this table.

Diagnosis facts The Bdiagnosis fact table^ has one record per diagnosis code, priority and type.

Procedure facts The Bprocedure fact table^ has one record per procedure code and priority.

Medication facts Each row in the Bmedication fact table^ has information about the pharmacy orders.

Laboratory facts Each record in the Blab procedure fact table^ has a different result.

Microbiology facts Each row in Bthe microbiology fact table^ has information about the microbiology orders and results.

Microbiology susceptibility facts Each record in the Bmicrobiology susceptibility fact table^ has a different order, antimicrobial,
and result/interpretation.

Clinical event facts Each record in the Bclinical event fact table^ has a different event per event time and result.

Table 2 List of variables included in the Cerner Health Fact Flu Dataset

Variable name Description

Encounter_ID The visit identifier for the patient that this record is associated. This number is unique to the encounter (visit).

Patient_ID The unique id used within the Cerner Health Facts Data Warehouse and created as a new person is introduced
to the database. It is possible that the same Bperson^ will have encounters.

Admitted_DT_TM The date and time when the patient was admitted to the healthcare facility.

Location The location (latitude and longitude) where the patient was admitted to the healthcare facility.

Diagnosis_Descript The description associated with the ICD-9-CM diagnosis code.
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encounters and flu-related activities on Twitter during the
outbreaks. Rather than using the Pearson correlation,
which assumes a zero lag between online and real-world
activities, we used point processes analyses to obtain the
temporal-spatial cross-correlations between the two
trends. In spatial analysis, by the use of Google’s maps
API (an open-source API available to developers), we
mapped flu outbreaks to geo-spatial property of Twitter
data to identify influenza hotspots, i.e., public locations
from which a majority of posts initiated. We assumed that
flu-related social media traffic exhibits a congruence with
actual flu outbreaks.

Spatial and temporal correlations fall into two categories:
autocorrelation and cross-correlation. Cross-correlation is re-
lated to how the measures affect each other, using precedence
and the contemporaneous relationship between them.
Autocorrelation studies the relationship between one measure
and itself, known as the intra-sample relationship. These types
of correlation can be applied to both natural and human phe-
nomena throughout a variety of fields, specifically in regard to
GIS and their spatial analytical technology (Chen 2015).
Figure 2 shows the roadmap from simple cross-correlation
to the temporal-spatial cross-correlation introduced in this
study.

Unlike prior studies that compare Twitter data with CDC
data on a weekly basis, our Cerner Health Fact data is finely
geo-tagged and time-stamped to the exact moment and loca-
tion at which the patient record was created in the Cerner
database due to an influenza-like illness. Thus, it allowed us
to statistically examine the simultaneous relationship between
actual flu incidence and social media activity, looking at both
the temporal-spatial precedence and the contemporaneous
relationship.

The dependence is inherent in many (if not most) spatial
data and in most instances, spatial data can be viewed as a
realization of a stochastic point process where the observed

spatial pattern (or space-time pattern) yields information on
the characteristics of that process (Anselin 2013). In this pa-
per, we propose a flexible framework based on Hawkes point
process capable of modeling such spatio-temporal patterns
and specifying the spatial and temporal dependencies of flu
outbreaks with a branching structure. We demonstrate that a
spatio-temporal extension of Hawkes’ point process, the
ETAS (Epidemic Type Aftershock Sequence) model (Ogata
1988), is a suitable framework to model the cascading behav-
ior of a contagious outbreak with conditions spreading infec-
tion to other locations. In addition, drawing on spatial-
temporal dependence theories using point processes approach,
we examine mutual and causal dependence between the two
point processes under study, i.e., flu-related activities on
Twitter and clinical flu encounters in Cerner medical records
during the outbreak seasons.

A point process is a type of random process that can
generate times and locations of events. Point process
models have long been used to describe real-world phe-
nomena occurring at random locations and/or random
times. It is well-known that human activity is not uni-
formly distributed in space or time and the spatio-
temporal dynamics of human interactions, which forms
dynamic spatio-temporal hotspots, can be modeled using
spatio-temporal point process models (Anselin 1989;
Gonzalez et al. 2008; Mohler 2014). A point process is
characterized by its conditional intensity function that al-
lows us to describe the underlying dynamics of the pro-
cess in a convenient way. The self-exciting point process
was first introduced by Hawkes (1971) to structure tem-
poral dependencies between earthquake events. Later, a
spatio-temporal extension of Hawkes point process, the
ETAS model, was formulated by Ogata (1988) to accom-
modate both temporal and spatial factors. The same
framework was also used to study the link between be-
havior and spike patterns of neurons in order to under-
stand brain functions (Brillinger et al. 1976). The follow-
ing section provides more details about the point process
method employed in this paper.

Model Development We built two point processes based on
the Epidemic Type Aftershock Sequence (ETAS) model (one
corresponding to flu activity on Twitter and the other to Cerner

Table 4 List of variables
included in the Twitter Flu
Dataset

Variable name Description

Username It is a name associated with the user who posted this tweet.

Time-stamp It is a long integer that represents the number of seconds between the Unix Epoch
(January 1 1970 00:00:00 GMT) and the time of Tweet generation.

Location It indicates the tweet’s location according to the spherical coordinates of longitude-latitude.

Text It is a short text message limited to 140 characters in length posted by a user.

Table 3 Classifier performance summary

Classifier Precision Recall F-Measure

Support vector machine 0.938 0.905 0.921
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flu data during the 2013-2014 flu outbreak). The conditional
intensity of each of the ETAS spatio-temporal point process is
formulated as a function of time and space coordinates:

λ t; x; yjHtð Þ ¼
E N

�
dtdxdyjHt

h i
dtdxdy

¼ μ t; x; yð Þ þ ∑i:ti< tg t−tið Þ f x−xi; y−yið Þ

Where i is an index of flu activities occurred during the
outbreak period, and (xi, yi, ti) denote the spatial location and
time of event i, respectively.Ht = {(xi, yi, ti : ti < t} represents the
history of events prior to event i, and the expectation represents
the number of events occurring in an infinitesimal space, dt dx
dy. μ(x, y) denotes the background intensity corresponding to
the baseline spatial and temporal patterns of outbreak. It corre-
sponds to flu cases that were not necessarily caused by the flu
outbreak, but exogenous factors (e.g. seasonality, vaccine avail-
ability, population density) independent of the history of the
epidemic process. We assume the background events occur
independently according to a Poisson process with their num-
bers varied by location and time.

The summation component of the ETAS model represents
the epidemic proportion of the intensity process. It describes
the proportion of events triggered by previous events. g(t) is a
power-law function that allows us to simulate the occurrence
times of the triggered events and f(x, y) is an exponential dis-
tribution of the locations of the triggered events. In other
words, each of the (background) flu events elevates the risk
of outbreak such that elevated risk spreads in space and time
according to the kernel functionG(t, x, y) = g(t − ti)f(x − xi, y −
yi). The kernel function represents the intensity of triggered
events (i.e. flu-infected people) from the background events.

The power-law component of the kernel

g t−tið Þ ¼ β
t þ cð Þp

represents the temporal lag between the occurrence times of
triggering and triggered flu events. The exponential compo-
nent of the kernel

f x−xi; y−yi;Mið Þ ¼ eα M−M0ð Þ

x2 þ y2 þ dð Þq

describes the decay in intensity of triggered events in accor-
dance with the spatial lag, which represents a distance be-
tween locations of a future event and a past event. Mi repre-
sents the magnitude of the event and implies how the event
influences the occurrence of future events. In the context of
seismology, Mi is associated with each event (ti, xi, yi) and
represents the magnitude of the earthquake. It is computed
according to such scientific theories as the Gutenberg-Richer
and the Omori laws. However, in our case, the functional form
of how flu infection affect the virus spread is unknown. We,
therefore, computed M empirically from the data by counting
for each event the number of occurrences of consecutive
events within the same region during a week. This is support-
ed by the evidence that an adult infected with flu may be
contagious up to 7 days after becoming sick. In addition,
M0, α and β are parameters that control the number of trig-
gered events (i.e. flu-infected people), p and c are parameters
that control the (power law) rate of decay according to the
temporal lag and q and d are parameters that control the spatial
behavior of the outbreak. These parameters are estimated via
the maximum likelihood estimation (MLE) method. In the
ML step, the vector of parameters θ = (μ,α, β,M0, c, p, d, q)

Zero-Lag Cross-Correlation

(Pearson Correlation)

Temporal Autocorrelation

(Regression Analysis)

Spatial Autocorrelation

(Moran’s Index)

Spatial Cross-Correlation

(Extended Moran’s Index)

Temporal Cross-

Correlation

(Time Series Analysis)

Temporal-Spatial Cross-

Correlation

(Point Processes Analysis)

Fig. 2 The roadmap from simple
cross-correlation to the spatio-
temporal cross-correlation used in
this study
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is computed by maximizing the log-likelihood function of the
ETAS point process:

L θð Þ ¼ ∑
n

i¼1
logλ ti; xi; yi; θð Þ−∫T0 ∫∫Sλ t; x; y; θð Þdtdxdy:

Here, S × [0,T] is the space–time window and i is an index
for each flu activity occurring in region S and time interval [0,
T]. In this study, S represents U.S., and T corresponds to
181 days of the 2013-2014 flu outbreak.

3.4 Forecasting

We built two point processes dealing with Twitter flu activities
and clinical flu encounters in Cerner medical records. Table 5
summarizes the parameter estimates of the two ETASmodels.

We used Kolmogorov-Smirnov (K-S) test to examine
goodness-of-fit for each model separately. We summarize
the results of the K-S tests in Table 6 demonstrating how well
eachmodel performs on the observed data. It contains the K–S
test statistic value (D) corresponding to each model.

The results of the K-S tests indicate that an epidemic-type
Hawkes process with a power law response function exhibits
similar spatial and temporal characteristics of the flu outbreak
in both Twitter and medical datasets. We subsequently used
the R package BMPPA^ (Rubin-Delanchy and Heard 2014) to
examine the lag or lead dependence between the two point
processes, and hence, to assess the spatio-temporal relation-
ship between the actual flu cases and the social media activity.

In this study, with geo-tagged and time-stamped Twitter
and clinical data at hand, we developed mashup applications
to derive valuable insights from such diverse data sources. In
doing so, Google’s maps API libraries (Gesmann and de
Castillo 2013; M Gesmann et al. 2013) were employed to
identify several public locations from which a majority of
tweets were originated over the course of time. In the next
section, we will present and discuss the results of our
temporal-spatio forecasting analysis.

4 Results

4.1 Temporal Analysis

The goal of temporal analysis was to examine whether
online activities on Twitter reflect the occurrence of flu

outbreak. Our assumption was that people post tweets
about flu more often when the flu outbreak is imminent.
Figures 3 and 4 respectively show histograms of the
Cerner’s flu encounters data and the Twitter flu activity
data during the 2013-14 outbreak season. Figure 4 indi-
cates that ‘influenza’ and ‘flu’ appear more frequently on
Twitter as the flu moves through the population each win-
ter. To examine the correlation between the clinical flu
encounters and flu-related activities on Twitter during
the flu outbreaks, rather than using the Pearson correla-
tion, which is widely used in prior research and assumes a
zero lag between online and real-world activities, we first
used a time-series analysis approach to obtain the tempo-
ral cross-correlation between the two trends. In time series
analysis, a temporal cross-correlation is a measure of sim-
ilarity of two-time series as a function of the lag of one
relative to the other. We found that clinical flu encounters
lag 1 month behind online posts, and the number of
unique users posting about flu per month is a good mea-
sure of the number of patients who visited a healthcare
facility for ILI symptoms and were diagnosed with flu
based on the Cerner data. Furthermore, we observed that
the cross-correlation coefficient can be as high as 0.90
between the clinical flu encounters and Twitter flu activ-
ity. These results support that flu-related traffic on social
media is closely related with actual flu outbreaks. This
relation can be characterized by the theory of social ex-
change in which the discussions around flu has become
somewhat of a phenomenon and that the utilization of
social media to spread information about flu has changed
the way people respond to the disease outbreak. It is per-
tinent to mention that this result does not imply that same
individuals who tweet about their flu symptoms would
visit a healthcare facility after 1 month. Rather, it simply
points out to the lag between the trends that are observed
in these two worlds. Figure 5 illustrates the cross-
correlation test.

Table 5 Parameter value estimates

Process μ α β p d q

Twitter (A) 0.000853 0.182900 0.109900 0.909970 2.381454 1.115473

Cerner (B) 0.055419 0.936570 0.709437 1.874560 1.836540 1.306577

Table 6 The K-S goodness-of-fit test

K-S test values for the ETAS models

Twitter (A) Cerner (B)

D= 0.1336, p value = 7.84e-4* D=0.2687, p value = 1.29e-2*

*Significant at 0.05
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4.2 Spatial Analysis

The goal of the spatial analysis was to track the geographic
spread of influenza activities using information gathered from
microblogging websites such as Twitter. Our Twitter dataset
contains all the flu-related tweets that have conterminous US
geographic coordinates. We excluded all tweets originated
from outside of the US; and also ignored those users who
generated flu tweets with invalid geo-location information.
Figure 6 shows the tweet density for the US. The red
Bhotspots^ indicate that a high number of people, normalized
by zip code, tweeted about flu from that location. Guided by
the critical mass theory, Fig. 6 presents a snapshot of critical
mass achievement at locations across the US. The larger, red
markers indicate locations that achieved critical mass of
hotspots during the 2013-2014 outbreak. Overall, we can ob-
serve that people from different places in the US tweet about
their flu, and a majority of these tweets originate from the
eastern US; while the highest density of tweets in the western

US are in California. Mid-eastern US has also very high den-
sity of flu tweets; however, people from mid-western US do
not tweet as much about flu. Southern part of the US, such as
Texas and Florida, also shows high a density of tweets. The
density of tweets in other states is roughly even. It is important
to acknowledge that normalization by Twitter subscriptions,
while more appropriate, is not possible due to lack of such
data. Therefore, normalization by population is an
approximation.

Next, Moran’s spatial autocorrelation (Moran 1950) was
used to test the overall spatial randomness of flu activities
within both Twitter and Cerner data at a 5% significance
level. The Moran’s I statistic is designed to analyze pat-
terns occurring across the space and ranges from −1 to +1,
with zero being the expected value for no spatial autocor-
relation. This statistic is useful because it measures the
spatial dependence between neighborhood property values
compared to what would be expected to occur by chance.
Moran’s spatial index integrates space and spatial

Fig. 4 Flu-related Twitter
Activity during the 2013-14
outbreak

Fig. 3 Flu Activity in Cerner flu
encounters data during the 2013-
14 outbreak
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relationships directly into its mathematics through values
called spatial weights. Weights are a measure of geograph-
ic proximity and reflect how connected two areas are.
While there are many ways that can be used to specify
spatial weights such as fixed distance, inverse distance,
K-nearest neighbors, binary contiguity or some other
criteria reflecting the alternative spatial relationship, we
used an inverse distance function to calculate weights
based on geographic distance. This is a reasonable model
to use when one is interested in detecting contiguous areas
with similar patterns in continuous data. In addition, no
specific threshold distance or cutoff point is assumed and
hence, the default setting ensures that each observation has
at least one neighbor and will still have a minimal impact
on far away areas. With our matrix of weights, we then
calculated a single (global) Moran’s I statistic to test for
spatial autocorrelations in both Twitter and Cerner
datasets. The results of the Moran’s spatial auto-
correlations are significant at p value <0.05 (see Table 4).

These results prove the existence of a correlation between
the geographical spread of flu within both datasets. For
purpose of this analysis, we aggregated our Twitter and
Cerner medical data to the state-level during the
integration/fusion phase, so that both subsets are at the
same geographic unit for our geo-spatial analysis.
Therefore, the Moran’s I spatial autocorrelation coeffi-
cients reported in Table 7 were measured at the state level.

In order to determine areas with a high risk of flu-
related complications, i.e. hotspots, we identified public
locations from which a majority of flu-related tweets were
posted over the course of time. To find places from which
people tweeted more frequently, we aggregated the data
points by latitude and longitude and sorted them by num-
ber of tweets. Next, we normalized them on the basis of
population at the zip code level in order to account for
population density. Using Google Maps API tools, we
were able to zoom in to identify and inspect these loca-
tions. For example, we found that Forest Park, New York,

Fig. 6 GIS-based density map of
the US flu surveillance

Fig. 5 Cross-Correlation between
Twitter flu activity and clinical flu
encounters
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NY 10007 was one of the places from which many flu-
related tweets originated. This place is a non-residential
area with many shops and offices. Looking at the word
network of the tweets originating from this place (as
shown in Fig. 7) revealed that most of the tweets were
from people who were affected by flu. There were no
evidence of tweets advertising flu remedies and products
to people, as we had filtered out such non-flu-symptom
related tweets. More importantly, the word network dis-
plays flu symptoms that are mostly related to one another
based on the thickness of the link between the nodes.
Expectedly, being sick is the symptom that is central to
the network, as it is generally mentioned when users tweet
about flu.

The second location with the highest number of tweets
represents Sound Walk, a public entertainment place in New
York, US. As another example, the next location with the
highest number of tweets is Disney Adventure Park in
California. Interestingly, many people tweeted about their flu
symptoms while involved in pastime.

All top ten locations in terms of the frequency of flu-
related tweets were such public, non-residential places as

parks, restaurants, hotels, universities and shopping stores
(See Table 8). Regarding the number of people who visit
these places every day, they play a significant role in the
spread of the flu virus. Therefore, public health agencies
can benefit from these findings by tracking and locating
high-risk places, and highlighting Bmust-know^ facts dur-
ing the outbreaks. This information can help people who
plan to visit such locations to take appropriate measures.
Note that hotspots are meant to be places where many flu-
related tweets originated.

It goes without saying that our primary goal is to ex-
amine if there is any association between social media and
flu behavior at the aggregated (state) level. Once we
found out that there is a strong correlation between the
flu trends in both datasets, we dug into the Twitter dataset
to identify suspicious flu-infected spots at the zip code
level. We were not interested in testing the relationship
between flu activity in both datasets at the zip code level
and probably it would not make sense to perform such an
analysis. Flu infected people would not visit a healthcare
facility necessarily in the same zip code where they
tweeted about their flu. For example, people tweeting
about their flu in Disneyland, a university or an airport
may not necessarily go to a healthcare facility at the same
zip code to get the treatment. Even if we tested their
relationship at the zip code level, it would not give us
any useful insights.

4.3 Spatio-Temporal Analysis

As outlined in the method and data section, we proposed a
new statistical measure to identify lag or lead correlations
between events that contain both temporal and spatial com-
ponents (at 5% significance level). Our measure uses a
point processes approach that aims to the test lag or lead
dependence between two spatio-temporal patterns, in our
case, i.e. flu-related activities on Twitter (A) and clinical
flu encounters in Cerner medical records (B) during the

Table 8 Top 10 locations with the largest number of tweets about flu

Location Type

Forest Park, NY Non-residential/Park

Sound Walk, NY Entertainment

Disney Adventure Park, CA Entertainment & Resort

Shopping mall, OH Shopping, Dining and Hotel

Community College, KS Campus

Niagara Falls, NY Tourism

Disney World, FL Entertainment

Airport, IL Airport

Convention Center, TX Non-residential

Public Library, CA Central library

Table 7 Spatial Autocorrelation of Twitter and Cerner Flu datasets,
U.S. 2013-2014, as measured by Moran’s I Statistic

Moran’s I values for the U.S. Flu Outbreak

Cerner (C) Twitter (T)

NC= 50 NT= 50

IC=0.415* IT=0.669*

*Significant at 0.05; N: Sample size

I: Moran’s I coefficient.

Fig. 7 Word network of the highest tweet activity place: Forest Park,
New York, NY
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outbreak season. Using the Multiple Point Process
Analysis (MPPA) approach (Rubin-Delanchy and Heard
2014), we developed a generalized likelihood ratio test
statistics to examine the hypothesis that the relative pro-
portion of events in A trigger the intensity of B. Under the
null hypothesis, the events in B are assumed to follow
process A. In the next subsection, we test this hypothesis
empirically using the point processes we built in the model
development section.

Statistical Inference and Hypothesis Testing In this section,
we explain the Multiple Point Process Analysis approach used
to examine the spatio-temporal relationship between the flu
trends in social media and medical records within each region.
Let process A = {a1 <… < am}, m ≥ 1 represent the occur-
rence times of all the flu-related activities on Twitter and pro-
cess B = {b1 <… < bn}, n ≥ 0, b1 ≥ a1 be a set of event times
corresponding to all the flu cases in Cerner medical records
during the outbreak season (Note: both A and B are simulated
using estimated ETAS parameters outlined in Table 6). Using
the time transformation theorem (Daley and Vere-Jones 2007)
(p.421), the intensity function of process B λB(t, x, y) can be
formulated as follows:

λB t; x; yð Þ ¼ λ1r t; x; yð Þ t−a t; x; yð Þ≤τ
λ2r t; x; yð Þ t−a t; x; yð Þ > τ

�
t∈ 0; L½ Þ;

ð1Þ

where a(t, x, y) is the most recent event in process A occur-
ring prior to t, λ1 ≥ λ2 ≥ 0 are unknown parameters and r is a
non-negative measurable intensity function satisfying

∫L0r vð Þdv ¼ 1. Given eq. (1), the following hypothesis test is
used to examine whether events in A cause an increase in the
intensity of B (triggering behavior both in time and space):

H0 : λ1 ¼ λ2 H1 : λ1 > λ2

where the test statistic is the generalized likelihood ratio

T ¼ sup L B; τ ;λ1;λ2ð Þ : τ > 0;λ1 > λ2≥0f g
sup L B; τ ;λ1;λ2ð Þ : τ > 0;λ1 ¼ λ2≥0f g

Here L is the likelihood of B under model (1). Under the
null hypothesis, A and B are functionally independent,
whereas under the alternative hypothesis, the relative pro-
portion of events in A is higher than can be explained by r
alone. In other words, events in A trigger the intensity of B.
We found that the statistical test for causal and mutual
dependence between A and B (B events are caused/
triggered by A) become significant at p value <0.05 for
all regions. It supports that flu-related activities on social
media can lead to an early detection of influenza outbreaks
within each region. We summarize the results of the depen-
dence test in Table 9.

In summary, the findings of this study have the poten-
tial to create awareness about general patterns of public
behavior and social interactions/buzz that indicate the
emergence of certain flu pandemics. Our results can also
increase the accuracy of locating flu hotspots. Moderating
influenza levels in these areas leads to the greatest spill-
over effects to nearby areas. Our findings are in line with
theories of critical mass, social exchange, and attachment
motivation in that how spatio-temporal dynamics of infor-
mation exchange affect the decisions of both patients and
health professionals. Above all, this paper aimed to pave
the ground for such research work towards the use and
implementation of big data technologies for analytical
purposes.

This study provides theoretical, empirical, and methodo-
logical advances that help policymakers use location-based
social media platforms as a source of spatio-temporal infor-
mation to detect the spread of various diseases. The point
process approach outlined in this paper allows us to quantify
spatial and temporal dependencies among events that arise as
a result of cascading behaviors. It computes cross-correlation
of two point process directly without any binning of the input.
Our approach takes two sets of data points as input, that are at
the lowest possible level of granularity (i.e. the timestamp and
geo-location level) and automatically measures spatio-
temporal associations between the two observed patterns at
the lowest level.

5 Discussion and Limitations

With social media continually generating vast amounts of da-
ta, big data analytics is coming to the forefront of ways to turn
this data into useful information for uses ranging from health
promotion and education to crisis management systems and
public health surveillance. In this paper, we asserted that
location-based social media, as a big health data source, can
be leveraged as a feasible geo-specific monitoring tool to pro-
vide strategic insights for planning, execution and measure-
ment of effective and efficient public health interventions. We
showed that by integrating two sets of flu activity data, i.e.,
Twitter posts and real encounters, flu outbreaks can be
nowcasted and consequently, better decisions can be made
inmanaging such pandemics. The results of this study showed
that online posts add a great value to the location-based
nowcast of flu outbreaks. Combining and analyzing locations
of such tweets will allow healthcare professionals to locate,

Table 9 The results of
interaction or
dependence analysis

Dependence test

T = 0.1105, p value <2.2e-16*

*Significant at 0.05
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with much greater accuracy, where flu pandemics originate
and implement behavioral interventions if needed. This en-
ables the public to take safety precautions when traveling to
flu ridden locations. Overall, these findings confirm that the
current flu (or any infectious disease or pandemic) surveil-
lance systems can be improved with the integration of real
time social media posts. This positively impacts the general
public and pinpoints specific geographic locations that are in
need of greater resources to fight off flu during an outbreak.
Even though big data has been shown to give a better idea of
real-time flu trends compared to traditional data sources, it is
considered to be more of an integration tool than a replace-
ment to the existing disease surveillance systems. It is impor-
tant that the right data is analyzed and processed when ana-
lyzing such large stores of data, which allows for informed
decision making and more timely actionable intelligence for a
prompt reaction from healthcare organizations during an
emergency or outbreak. In this effort, the largest challenges
appear to be legal, political and economic obstacles (Sane and
Edelstein 2015).

We anticipate that our findings will inform clinical practice
and public health policy. Location-enabled social media plat-
forms have the potential to provide clinicians with real-time
and geo-located data about contagious diseases, such as the
seasonal influenza. This system will enable clinicians to plan
interventions and proactive actions early enough to minimize
an immense burden a flu outbreak can trigger. In addition, the
Twitter Influenza Surveillance system increases the ability of
state and local health officials to identify most flu-infected
places in order to respond expeditiously and take appropriate
actions. Last, but not the least, a similar system, based on a
mobile app, can alert individuals about the suspicious loca-
tions they should avoid during those periods. Together, the
findings of our study provide a proof-of-concept for the use
of geo-located social media platforms to support public health
initiatives at individual, local and national levels targeted at
quickly discovering trends of contagious diseases before they
escalate into epidemics. Our study provides theoretical, em-
pirical, and methodological advances that can help researchers
and practitioners use location-based social media platforms as
a source of spatio-temporal information to detect the early
spread of infectious diseases.

Our study is not without limitations. First, social media as
sources for data do not contain detailed geolocation informa-
tion for in-depth geographical analysis, because not all users
have their GPS enabled or declare their location in their social
media profiles. Without knowing the location of all users,
spatial analysis of social media may be biased (Tsou 2015).
As such, it is critical to use various techniques to identify and
correct for such biases in data. Second, there still are sources
of noise in social media, including robots, and non-relevant
conversations. More advanced classification techniques or
machine learning approaches should be used for deeper

content analysis of social media posts. In addition, our analy-
sis can be extended to study the epidemic spread of flu within
different subpopulations by leveraging socio-economic and
demographics data, resulting in a more targeted approach,
and therefore, more effective course of detection and preven-
tion. The point processes model outlined in this research is
capable of incorporating the observed temporal patterns, spec-
ifying the spatial and temporal dependencies and predicting
future outbreaks using the background processes of flu in both
Twitter and medical datasets. Therefore, it could be a useful
future research direction to build a mutual-exciting version of
our proposed Hawkes processes (Hawkes 1971) that may pre-
dict the flu occurrences more accurately. Finally, it is impor-
tant to acknowledge the Modifiable Areal Unit Problem
(MAUP) as it pertains to this study. The fact that the data are
aggregated into larger spatial units such as zip codes, census
tracts, counties, or states may affect how the data are
interpreted (Fotheringham and Wong 1991; O'Sullivan and
Unwin 2014). The present study was limited in its ability to
examine the modifiable areal unit problem as the scale and
selection of the geographic unit of analysis was constrained by
the format of the data available in the Cerner data warehouse.

6 Conclusions

Nowcasting with social media has become a major topic of
interest to researchers and policy makers, assisting them in
understanding public opinion and trends and in forecasting
early detection of disease outbreaks, thus allowing timely re-
sponse and intervention, which reduces the impact of the out-
break on public health. In this study, we demonstrated
location-based nowcast of flu outbreaks using social media
data. We used a big data analytics approach to integrate two
sets of flu data. One was obtained from flu-related tweets and
the other was the Cerner’s clinical encounters. We analyzed
extensive datasets consisting of daily activities of hundreds of
thousands of people across the US from both Twitter and
Cerner clinical records. We found that incorporating such dy-
namic information on public behavior could be a valuable
addition to bolster the capacity of existing models to explain
and nowcast the flu activity. We used a series of spatio-
temporal analyses to describe the early spread of flu. In the
temporal analysis, we examinedwhether Twitter data could be
used for the nowcasting of influenza outbreaks. We tracked
and compared clinical flu encounters and flu-related activities
on Twitter during the outbreaks. In the spatial analysis, by the
use of mashup applications, we mapped flu outbreaks to the
geo-spatial property of Twitter data to identify influenza
hotspots.

Drawing on the lead-lag theory in time series, we demon-
strated the application of point processes as an integrated
framework to study lag-lead relationship and spatio-temporal
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cross-correlation in a location-based social network context.
We examined not only the co-incidence of flu activity on
Twitter and clinical health records, but also whether one pre-
ceded the other. A series of models were developed to exam-
ine the spatio-temporal relationship between the flu trends in
social media and medical records. Our results supported that
flu-related traffic on social media is closely related with actual
flu outbreaks. We found that clinical flu encounters lag one
month behind online posts. We observed that the online flu
conversation tends to spike a month earlier than actual flu
cases. Also, we identified several public locations from which
a majority of posts originated. These findings show that
location-based social media platforms can assist healthcare
policymakers by providing spatio-temporal information for
disease surveillance systems. Our result shows the integration
of social media and medical records data, equipped with spa-
tial big data tools and supported by geographic information
systems, can facilitate early detection and rapid development
of behavioral interventions that can assist public health agen-
cies to control and prevent epidemics of such infectious dis-
eases. Such efforts can be extended to a personalized location-
based application and adopted by individuals to inform loca-
tions that are infected during those periods.

Social media could add value to existing disease surveil-
lance systems in several ways. First and foremost, it improves
the timeliness, temporal and spatial resolution of surveillance
information. It also expands the surveillance coverage by
adding surveillance to places with no existing systems where
scarcity of resources or other constraints limit the availability
of direct clinical or laboratory data. Furthermore, it measures
aspects of the spreading process (i.e. behavior, perception,
dynamics) that may not be captured by traditional surveil-
lance. For example, our study illustrated that flu-related activ-
ities on social media can be used to identify high-risk places
for flu infection, which cannot be otherwise detected via the
existing physician and laboratory surveillance systems. There
is no doubt that enhancing the surveillance systems with real-
time visibility brought by social media can give public health
officials the insight and details needed to operate quickly,
accurately, and more effectively than ever before. Public
health agencies can benefit from our analyses by tracking
and locating high-risk places in real-time, and by developing
more effective behavioral intervention approaches to improve
the inspection process in order to minimize the spread of dis-
eases in the affected areas.

In summary, the utility of social media as a behavioral
intervention platform has the potential for profound impact.
Examples include the US Centers for Disease Control and
Prevention (CDC) Twitter feeds and the Skin Cancer
Foundation Facebook page where bidirectional communica-
tion channels exist between patients and health care providers.
Such platforms are of great value to public health agencies
when the purpose of the intervention is to be able to generate

conversations, answer participant questions, alter patients’ be-
havior and attitudes and/or provide behavioral counseling in
the in the face of a disease outbreak (Pagoto et al. 2016).
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