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Abstract
Model-based synthesis allows to generate plans to achieve high-level tasks while satisfying certain properties of interest.
However, when such plans are executed on concrete systems, several modeling assumptions may be challenged, jeopardizing
their real applicability. This paper presents an integrated system for generating, executing and monitoring optimal-by-
construction plans for multi-robot systems. This system unites the power of Optimization Modulo Theories with the
flexibility of an on-line executive, providing optimal solutions for high-level task planning, and runtime feedback on their
feasibility. After presenting how our system orchestrates static and runtime components, we demonstrate its capabilities
using the RoboCup Logistics League as testbed. We do not only present our final solution but also its chronological
development, and draw some general observations for the development of OMT-based approaches.

Keywords Multi-robot systems · Optimal task planning · Planning as satisfiability · Online execution · Production logistics

1 Introduction

With the advent of Industry 4.0, factories are moving
from static process chains towards the introduction of
autonomous robots in their production lines. As the abilities
and the complexity of such systems increase, the problem
of managing and optimizing the in-factory supply chain
carried out by (fleets of) autonomous robots becomes
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crucial. This paradigm shift also opens up a number of new
research challenges for the AI community. A significant
challenge is to create methods to generate plans that
can achieve high-level tasks while satisfying properties of
interest.

The RoboCup Logistics League (RCLL) (Niemueller
et al. 2015) has been proposed as a realistic testbed to
study the above mentioned problems at a manageable scale.
There, groups of robots need to maintain and optimize the
material flow according to dynamic orders in a simplified
factory environment.

Though there exist successful heuristic methods to solve
the underlying planning and scheduling problem, e.g.,
(Hofmann et al. 2016; Niemueller et al. 2013), a major
disadvantage of these methods is that they provide no
guarantees about the quality of the solution, as observed in
Bensalem et al. (2014). A promising solution to this issue
is offered by the recently emerging field of Optimization
Modulo Theories (OMT), where Satisfiability Modulo
Theories (SMT) solving is extended with optimization
capabilities – see, e.g., Nieuwenhuis and Oliveras (2006),
Sebastiani and Tomasi (2015), and Sebastiani and Trentin
(2015b).

In this paper we present an integrated system for ge-
nerating, executing and monitoring optimal-by-construction
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plans for multi-robot systems within the RCLL scope. In
particular, we employ OMT to synthesize high-level task
plans with optimality guarantees and integrate our approach
into an on-line execution and monitoring system based on
CLIPS (Wygant 1989), a rule-based production system
using forward chaining inference. The system described in
the following builds on our previous work Leofante et al.
(2017) and extends it in several directions:

– We shift our attention towards the production phase,
where robots receive orders dynamically and cooperate
to deliver finished products within fixed deadlines. With
similar methods as used in Leofante et al. (2017),
we encode the underlying planning and scheduling
problem as a Boolean combination of linear constraints
over the reals, and compute optimal plans using OMT
solvers such as Z3 (Bjørner et al. 2015), SMT-RAT
(Corzilius et al. 2015) and OptiMathsat (Sebastiani
and Trentin 2015a).

– We present an integrated system that unites OMT
synthesis with online execution and monitoring based
on CLIPS. We describe how our architecture manages
the integration between plan synthesis and online
execution, the data structures involved and solutions
achieved to obtain seamless integration.

– We detail the recent achievements obtained regard-
ing the execution of intrinsically concurrent plans. We
extend previous work by adding to our system synchro-
nization mechanisms to manage multiple robots.

– We extend our comparison with heuristic approaches by
considering both anytime and oneshot planning. This
allows us to check whether any improvement can be
expected if a planner can use additional time to further
optimize the first-found feasible solution.

– We show how our architecture can be extended to provide
explanations about the decision-making process under-
lying our synthesis procedure in a human-readable fash-
ion. We elucidate specific features of OMT that have
the potential to facilitate such explanations, and provide
illustrative results along this direction.

After presenting some theoretical preliminaries in
Section 2, we describe the salient features of a game in the
RoboCup Logistics League in Section 3. In Section 4 we
provide a general formalization of our approach together
with insights on the integration of our approach into an
on-line execution and monitoring system based on CLIPS.
Our solutions for the exploration and production phases,
together with their experimental validation, are presented
in Sections 5 and 6 respectively. Section 7 introduces the
problem of generating human-readable explanations for
plans generated with OMT, together with some preliminary
results. Finally, we draw some general conclusions and
discuss future directions of research in Sections 8 and 9.

2 Preliminaries

2.1 Mixed-Integer Arithmetic

Problems considered in this work are encoded as mixed-
integer arithmetic formulas. Syntactically, arithmetic terms
are constant symbols, variables, and sums, differences or
products of terms. Arithmetic constraints compare two
arithmetic terms using <, ≤, =, ≥ or >. Quantifier-
free arithmetic formulas use conjunction ∧ and negation
¬ (and further syntactic sugar like disjunction ∨ or
implication =⇒ ) to combine theory constraints. A
formula in conjunctive normal form (CNF) is a conjunction
of disjunctions of theory constraints or negated theory
constraints (see Eq. (1) for a simple example formula in
CNF). An arithmetic formula is called linear if it does
not contain any multiplication, and non-linear otherwise.
Semantically, each variable is interpreted over its domain
– either the reals R or the integers Z – by an assignment,
assigning to each variable a value from its domain; we use
the standard semantics to evaluate formulas.

2.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) solving aims at
deciding the satisfiability of (usually quantifier-free) first-
order logic formulas over some theories like,e.g., the
theories of lists, arrays, bit vectors, real or (mixed-)integer
arithmetic. To decide the satisfiability of an input formula
ϕ in CNF, SMT solvers proceed as depicted in Fig. 1.
Typically, a Boolean abstraction abs(ϕ) of ϕ is built first
by replacing each constraint by a fresh Boolean variable
(proposition), e.g.,

ϕ = x ≥ y ∧ ( y > 0 ∨ x > 0 ) ∧ y ≤ 0
↓

abs(ϕ) = A ∧ ( B ∨ C ) ∧ ¬B

where x, y ∈ R, and A, B, C ∈ B = {0, 1}.
A Boolean satisfiability (SAT) solver searches for a

satisfying assignment S for abs(ϕ), e.g., S(A) = 1, S(B) =
0, S(C) = 1 for the above example. If no such assignment

Fig. 1 The SMT solving framework
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exists then the input formula ϕ is unsatisfiable. Otherwise,
the consistency of the assignment in the underlying theory
is checked by a theory solver. In our example, we check
whether the set {x ≥ y, y ≤ 0, x > 0} of linear inequalities
is feasible, which is the case. If the constraints are theory-
consistent then a satisfying solution (model) is found for
ϕ. Otherwise, the theory solver returns a theory lemma
ϕE giving an explanation for the conflict, e.g., the negated
conjunction of some inconsistent input constraints. The
explanation is used to refine the Boolean abstraction abs(ϕ)

to abs(ϕ) ∧ abs(ϕE). These steps are iteratively executed
until either a theory-consistent Boolean assignment is
found, or no more Boolean satisfying assignments exist.

2.3 OptimizationModulo Theories

Optimization Modulo Theories (OMT) – see for example
Nieuwenhuis and Oliveras (2006), Cimatti et al. (2010),
Bjørner et al. (2015), Corzilius et al. (2015), Sebastiani
and Trentin (2015a), and Sebastiani and Trentin (2015b) for
related solvers – extends SMT solving with optimization
procedures to find a variable assignment that defines an
optimal value for an objective function f (or a combination
of multiple objective functions) under all models of a
formula ϕ. As noted in Sebastiani and Tomasi (2015), most
OMT solvers implement a linear-search scheme, which can
be summarized as follows. Let ϕS be the conjunction of all
theory constraints that are true under a satisfying assignment
S and the negation of those that are false under S. A local
optimum μ for f can be computed under the side condition
ϕS , and ϕ is updated as

ϕ := ϕ ∧ (f 	
 μ) ∧ ¬ϕS , 	
∈ {<,>}
This forces the solver to find a new assignment under
which the value of the objective function improves, while
discarding all previously found assignments. Repeating this
procedure until the formula becomes unsatisfiable will lead
to an assignment optimizing f under all models of ϕ.

2.4 Planning with SMT in Robotics

SMT solvers are nowadays embedded as core engines in
a wide range of technologies – see e.g. Ábrahám and
Kremer (2016) for some examples. In the area of robot-
ics several interesting applications of SMT can be found.
For instance, Nedunuri et al. (2014) and Wang et al. (2016)
use SMT solving to generate task and motion plans starting
from a static roadmap, employing plan outlines to guide
the synthesis process. The authors of Dantam et al. (2016)
perform task and motion planning leveraging incremental
solving in Z3 to update constraints about motion feasibility.
The work presented in Saha et al. (2014) defines a motion
planning framework where SMT solving is used to combine

motion primitives so that they satisfy some linear temporal
logic (LTL) requirements. In Cashmore et al. (2016) the
authors present a framework to translate planning languages
into SMT encodings.

In contrast to the above works, (i) we do not use prior
knowledge (e.g., motion primitives, plan outlines) to seed
the search performed by the solver and (ii) we exploit OMT
solving to synthesize plans that are not only feasible but also
optimal.

2.5 Online Execution

The online execution of plans is a very intricate problem.
When plans are executed on concrete systems, several
modeling assumptions may be challenged, jeopardizing
their real applicability. Examples of such challenges may be
slack during execution, or uncertainty, e.g., in travel times
due to other agents in the environment. In the multi-robot
case, issues of synchronization and mutual exclusion may
be relevant.

Several execution systems have been proposed in the
past. Most executives mentioned in Verma et al. (2005b)
are associated with a specific modeling language. For
example, the Universal Executive (Verma et al. 2006) is
a general processor for the PLEXIL (Verma et al. 2005a)
language. It allows to describe the execution flow as a
number of hierarchically structured nodes consisting of
a set of conditions when to execute and a body that
describes what to execute. The Universal Executive then
ties these descriptions with interfaces to actual actors.
While PLEXIL is more of a control language, Procedural
Reasoning Systems (Ingrand et al. 1996) lean more towards
a knowledge-based representation with an explicit fact
base, a notion of goals to achieve or maintain, and
activation conditions for procedures. An advantage here is
a less constrained execution flow, however, this gain in
expressiveness may easily come with unintended execution
orders without the required caution.

A more recent system integrating planning and execution
is ROSPlan (Cashmore et al. 2015). It provides a general
framework for execution where the individual components
can be exchanged (with a varying degree of effort). One of
the available dispatchers uses a representation of the plan as
an Esterel (Berry and Gonthier 1992) program. There, a plan
is described as a set of modules interconnected with signals
and receiver slots. However, at this point the translation and
execution is opaque and no influence can be exerted on the
formulation of the program. There is currently only a limited
form of concurrency available. A slightly different approach
that has been compared to Esterel is RMPL (Ingham et al.
2001). Instead of a signal flow, it models the flow more as
an evolution of states. Both provide primitives for sequential
or parallel execution of code blocks, and conditionals.
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An earlier system to provide an extensible planning
system based on the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998) was TFD/M with semantic
attachments (Dornhege et al. 2009). However, the executive
was a C++ program which had to be augmented each time
for the respective available actions and did not provide a
flexible specification language. A more unified approach
was recently taken through integrating continual planning
in Golog (Hofmann et al. 2016). The overall domain
model and execution specifics are encoded in Golog.
For planning (sub-)problems the model is translated into
PDDL and a planner is called. The specification contains
assertions to deal with incomplete knowledge and improve
planning efficiency. However, the modeling in Golog can be
somewhat tedious and it is often deeply intertwined with its
Prolog implementation.

In this work, we propose a new formulation of the execu-
tion as a rule-based system. With the experience of model-
ing the decision making, multi-robot coordination, and task
execution for the RoboCup Logistics League (Niemueller
et al. 2016b), we intend to generalize the framework to be
applicable with various planning, reasoning, and decision
making components. This decoupling between synthesis
and execution comes at the cost of having to link two sepa-
rate models in a consistent way. However, it provides a great
flexibility for the executive to choose the appropriate plan-
ning system and to add domain-specific interpretations of
the plan easily.

3 The RoboCup Logistics League

The example domain chosen for evaluating our approach
is based on the Planning and Execution Competition for
Logistics Robots in Simulation1 (Niemueller et al. 2016a),
which provides a simulated Smart Factory environment
shown in Fig. 2. There, autonomous robots compete to
handle the logistics of materials through several dynamic
stages to produce final goods according to a dynamic order
schedule known only at run-time. Each game sees two teams
of three robots each competing against each other during
two phases, the exploration and the production phase.

In the exploration phase, robots must roam the environ-
ment and determine where the team’s own machines are
positioned. For this, the playing field is divided into 24 vir-
tual zones, of which 12 belong to each of the two teams
(operating at the same time in the environment increas-
ing execution duration uncertainty considerably). However,
only 6 of these zones will contain machines. Therefore, the
task is to efficiently assign the three robots to the 12 zones
and identify the zones which contain a machine.

1http://www.robocup-logistics.org/sim-comp

Fig. 2 RCLL factory environment as seen in the simulator (Zwilling
et al. 2014)

In the production phase instead, robots have to handle
the logistics of materials through several (dynamic) stages
to produce final goods to fulfill orders. Products to be
assembled have different complexities and usually require a
base, 0 to 4 rings to be mounted on top of it, and a cap as
a finishing touch. To increase complexity, orders not only
fix the components to be used, but also specify colors to be
used, and in what order. Bases are available in three different
colors, four colors are admissible for rings and two for caps.

Several machines are scattered around the factory shop
floor, each of them completing a different processing step
such as providing bases, mounting colored rings or caps.
Based on such differences, it is possible to distinguish four
types of machines:

– Base Station (BS): acts as dispenser of base elements.
There is one single BS per team.

– Cap Station (CS): mounts a cap as the final step in
production on an intermediate product. CS have a slide
to store at most one cap piece at a time. At the beginning
of the game this slide is empty and has to be filled as
follows. A base element with a cap must be taken from
a shelf in the game arena and fed to the machine; the cap
is then unmounted and buffered in the slide. The cap
can then be mounted on the next intermediate product
taken to the machine. There are two CS per team.

– Ring Station (RS): mounts one colored ring (of a
specific color) onto an intermediate product. Some
ring colors require additional tokens to be “unlocked”:
robots will have to feed a RS with a specified number of
bases before the required color can be mounted. There
are two RS per team.

– Delivery Station (DS): accepts finished products. A DS
contains three conveyor belts, robots have to prepare the
proper one as per specific order. There is one DS per
team.

The challenge for autonomous robots is then to trans-
port intermediate products between processing machines
and optimize a multistage production cycle of different

http://www.robocup-logistics.org/sim-comp
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Fig. 3 Example of order configuration for the competition (Niemueller et al. 2015; RCLL Technical Committee 2017)

product variants until delivery of final products. A sample
production trace is shown in Fig. 3.

Orders that denote the products which must be assembled
with these operations are posted at run-time by an
automated referee box (RefBox) broadcasting information
via Wi-Fi and therefore require quick planning and
scheduling. Orders come with a delivery time window
introducing a temporal component into the problem.

4 SystemOverview

The system we present in this work unites the power of
Optimization Modulo Theories with the flexibility of an on-
line executive, providing optimal solutions for high-level
task planning, and runtime feedback on their feasibility. The
proposed architecture is depicted in Fig. 4. The CLIPS
agent controls the overall process, from the generation
of a plan, to its execution and monitoring. When a new
plan is needed, the agent triggers the OMT module to
synthesize a plan. To start synthesizing, the world model,
with all relevant information, must be encoded in a way
accessible to the OMT solver. We have opted for Google
Protocol Buffers (protobuf) to handle communications
to and from the OMT solving module. Once a plan is
computed, CLIPS retrieves it and distributes it to the robots
for execution. Robots then execute their respective partial
plans by invoking the appropriate basic behaviors through
the behavioral and functional components of the Fawkes2

software framework (for instance, BE in Fig. 4 represents
the Lua-based Behavior Engine (Niemueller et al. 2009) that
provides the basic skills to execute plans). Only through
this framework does the reasoning system interact with the
simulation.

Several challenges can arise during execution, as original
modeling assumptions might not hold in the real system
due to, e.g., action failure, plan failure due to ignorance
or change in a dynamic environment. If this happens,
plans might become inconsistent and lead to undesired
behaviors. In our framework, we rely on the interplay
between the synthesis module and the on-line executive
to tackle this problem. Once plans have been synthesized,
CLIPS automatically starts the appropriate tasks. Updates
on execution (e.g., if a certain task is currently in

2Fawkes is a component-based software framework for robotic real-
time applications. URL: www.fawkesrobotics.org

progress, task failures) are always distributed in the world
model, therefore the executive is constantly informed about
execution progress. When inconsistencies with the model
are detected, the executive can ask for a new plan, and our
encoding allows to compute this starting from any arbitrary
initial world state.

In the following, we describe the main components of our
system and show how they operate together in our pipeline.

4.1 Optimal Plans with OMT

The approach used is based on symbolic reachability
techniques used to solve the SMT-based bounded model-
checking problem, which we extended to OMT – see Biere
et al. (1999) for the original formulation.

We consider state-based planning defined as follows.
World states are described using an ordered set of real-
valued variables x = {x1, . . . , xn}; we also use the
vector notation x = (x1, . . . , xn) and write x′ and xi for
(x′

1, . . . , x
′
n) and (x1,i , . . . , xn,i) respectively. There is a

special variable A ∈ x which encodes the action to be
executed next, and a variable rew ∈ x which encodes the
reward achieved when executing action A in the current
state. A state s=(v1, . . . , vn) ∈ R

n specifies a real value
vi ∈ R for each variable xi ∈ x.

The RCLL domain is represented symbolically by
mixed-integer arithmetic formulas defining the initial states
I (x), the transition relation T (x, x′) (where x describes
the state before the transition and x′ the state after it) and
a set of final states F(x). Executions (paths) of length
p are sequences s0, . . . , sp of states such that I (s0) and
T (si, si+1) hold for all i = 1, . . . , p − 1. Thus, paths are
solutions for the formula:

I (s0) ∧
∧

0≤i<p

T (si, si+1) (1)

Fig. 4 The overall architecture (Niemueller et al. 2017)

www.fawkesrobotics.org
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The total reward rewtot associated to such a path is specified
by:

rewtot =
∑

0≤i<p

rewi (2)

The optimal bounded synthesis problem, defined by a tuple
OBSR=(I, T , F, rewtot, p), poses the problem to find a path
of length p that reaches a target state and achieves thereby
the highest possible reward, i.e., to maximize rewtot under
the side condition:

I (x0) ∧
⎛

⎝
∧

0≤i<p

T (xi, xi+1)

⎞

⎠ ∧
⎛

⎝
∨

0≤i≤p

F (xi)

⎞

⎠ ∧

rewtot =
∑

0≤i<p

rewi (3)

4.2 CLIPS Rules Engine

The “C” Language Production System (CLIPS) (Wygant
1989) is a rule-based production system developed at NASA
which uses forward chaining inference based on the Rete
algorithm (Forgy 1982). CLIPS consists of three building
blocks (Giarratano 2007): a fact base, a knowledge base and
an inference engine.

The fact base can be seen as a global memory where
data is stored in the form of facts, high-level statements
that encode pieces of information about the world state. The
knowledge base instead, is used to represent knowledge.
More specifically, CLIPS provides heuristic and procedural
paradigms for representing knowledge in the form of rules
and functions respectively.

Rules specify heuristics to decide which actions to
perform in what situations. An example of a CLIPS rule
is shown in Listing 1. Formally, rules are composed of an
antecedent and a consequent. The antecedent is defined as
a set of conditions expressed over facts (lines 2–6), while
the consequent consists of a set of actions to be performed
(lines 8–16) when the rule is applicable. Actions in CLIPS
are represented by functions (lines 8–14, omt-create-*
calls are functions), pieces of executable code which can
return values or perform side-effects (e.g., interact with the
low-level control layer for robots).

The inference engine is the mechanism that CLIPS
provides to control the overall execution of rules. At system
initialization, the inference engine is instructed to begin
execution of applicable rules. To determine whether a rule is
applicable, the inference engine checks for each rule in the
knowledge base whether their antecedent is met by the facts
initially asserted in the fact base.

If all conditions specified in the antecedent of a rule are
satisfied then the rule is activated and added to the execution
agenda. If more than one rule is applicable, the inference

Listing 1 CLIPS rule to trigger synthesis

engine uses a conflict resolution strategy to select which rule
should have its actions executed. The actions of the selected
rule are executed (which may affect the list of applicable
rules) and then the inference engine selects another rule
and executes its actions. This process continues until no
applicable rules remain.

4.3 Communication Infrastructure

For plan synthesis, the world model, with all relevant
information, must be encoded in a way accessible to the
solver. In this work, we have used Google Protocol Buffers3

(protobuf) to encode the world state when synthesis is
triggered, as well as the resulting plan. Protocol buffers
define a language-independent mechanism for serializing
structured data. To use them, one needs to specify the
structure of the data to be serialized (i.e., specify the
data type). Once this is done, the protocol buffer compiler
needs to be run to automatically generate data access
classes in the language of interests – C++ in our case.
Protobuf buffers provide a convenient transport, exchange,
and storage representation that is easy to create and read.
They also have powerful introspection capabilities which
are particularly useful for generic access from reasoning
systems. For example, the CLIPS-based access requires
only the message definition files and not any pre-generated
code. We use the exploration problem as a working example
to show the interaction between the solving module and the
CLIPS agent. The rule to trigger the synthesis process is
shown in Listing 1. Once the game is started (lines 2–4), the
first robot (line 6) will create a data structure initialized with
all relevant information needed to compute a plan (lines 8-
14), and pass it over to the OMT solver to request a plan
(line 15).

3https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/
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The OMT side uses this data to build an encoding defined
as per Section 4.1. If solving completes successfully, the
OMT plug-in notifies the executive that a solution is ready
for retrieval. An excerpt of the message specifications for
plan representation is shown in Listing 2. First, a list of
actor (robot) specific plans is defined in lines 1–3, where
the keyword repeated specifies that the field may be
repeated multiple times. Each plan (lines 4–11) requires the
actor for the plan to be defined (required keyword) and
either a sequential or a temporal plan (oneof keyword). In
this example, we show how a message for sequential plans
is defined (lines 12–14). A sequential plan simply consists
of a series of actions (lines 15–18), each of which is defined
by a name and parameterized by a number of key-value
pairs (lines 19–22). Listing 3 shows a concrete example of a
plan for two robots – ‘‘R-1’’ and ‘‘R-2’’ – with two
‘‘move’’ action commands.

4.4 Execution andMonitoring

Once a plan has been retrieved, it must be translated into a
native CLIPS representation. Each action specified by the
OMT module (see Listing 3) is added to the fact base by
means of facts which identify tasks and steps to be executed
on the CLIPS side. Rules are defined to process such tasks
and steps, defining the actions to be executed. Listing 4
shows an example of such translation for Listing 3, lines 1–
19. First, a task fact is added (lines 1–2) to specify robot
actor and steps to be executed. Step facts are specified in
lines 2–8, where more details about the low-level robot
actions needed are added.

Listing 2 Plan data type specfication in protobuf. Each field requires
a numerical tag, that identifies the field in the binary encoding

Listing 3 Plan represented through the messages from Listing 2
(shown in augmented JavaScript Object Notation)

After a plan is added to the fact base, it must be distributed
to all robots for execution. To do so, our system relies on the
communication infrastructure used to share world model
updates among the robots. This encapsulates fact base
updates in protobuf messages and broadcasts them to the
other robots. A (dynamically elected) master generates a

Listing 4 Task representation in CLIPS
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consistent view and distributes it to the robots. On each
robot, the CLIPS executive has rules that automatically start
tasks when applicable. Basic behaviors in our framework
are provided by a Lua-based Behavior Engine, but could
in principle be provided by other sources. A step in a task
is executed by triggering the execution of an asynchronous
durative procedure. Then, information about the execution
of the state is read and asserted in the fact base. Updates on
task execution (e.g., whether a task is currently in progress)
are distributed in the world model, making sure that the
on-line executive is informed about the status of execution.

During execution, the modeling assumptions may be
challenged and, in general, actions may fail or produce
an unexpected result. For instance, an object might be
misplaced, or slack during execution could make a plan
invalid, for example if a specified deadline cannot be met.
As explained above, steps of a task are triggered non-
blocking, i.e. , rule evaluation continues normally. This can
be used to implement execution monitoring, where rules
can be defined to identify situations where a step should be
skipped or a task be aborted.

5 Exploration Phase

In this section we show how to construct plans for the
exploration phase of a game in RCLL. Although exploration
does not play a major role in determining the outcome
of a competition, we decided to start with this phase
because of the easy formulation of the underlying problem.
As explained in Section 3, in the exploration phase the
robots must roam the environment and determine where
the team’s own machines are positioned. Each team is
assigned 12 virtual zones to explore, out of which only
6 contain machines. However, even though the problem
formulation looks simple, computing an optimal solution (in
terms of fastest execution) proved to be challenging: optimal
exploration is a variant of the multiple traveling salesman
problem, which is known to be NP-hard. As we learned, the
combinatorial nature of this problem poses a great challenge
to the OMT solver: naive encodings fail to cope with the
complexity of the domain.

This section, based on the work presented in Leofante
et al. (2017), shows the chronological development of
our synthesis approach. We examine how different design
choices can affect the solving process and draw general
observations which we then applied when encoding the
production problem of Section 6.

The experimental analysis presented here has been
carried out using the Z3 solver4 (Bjørner et al. 2015).

4Running on a machine running Ubuntu Mate 16.4, Intel Core i7 CPU
at 2.10GHz and 8GB of RAM

Though most of the encodings we present in the following
generate linear arithmetic problems, due to the Boolean
stucture of these formulas we could not use any linear
programming tools. We considered also the OMT solvers
SMT-RAT (Corzilius et al. 2015) and OptiMathsat
(Sebastiani and Trentin 2015a). The latter specializes
in optimization for real arithmetic problems, whereas
SMT-RAT is tuned for the satisfiability check of non-
linear real arithmetic formulas. However, the nature of
our problems rather requires combinatorial optimization
at the Boolean level and therefore the strengths of these
two solvers could not be exploited to their fullest. Z3
was the tool which could solve all the instances proposed,
therefore it was chosen as best candidate for our empirical
analysis.

First encoding (A) We encode the high-level task to explore
Z zones by 3 robots as shown in Fig. 5. Robots start from a
depot, modeled by some fictitious zones −3, −2, −1. Each
robot i ∈ {1, 2, 3} starts at zone −i, moves over to the zones
−i+1, . . . , 0, and explores, from the start zone 0, at most
Z of the zones 1, . . . , Z. The distance between two zones i

and j is denoted by D(i, j). Here we assume the distance
that a robot needs to travel to reach the start zone to be 0,
but it could be also set to any positive value (see Fig. 6).

The movements of robot i are encoded by a sequence
posi,−i , . . . , posi,Z of zones it should visit, with posi,j ∈
Z. The variables posi,−i , . . . , posi,0 in ϕdepot in Eq. (4)
represent the movements from the depot to the start zone.

For j > 0, if the value of posi,j is between 1 and Z

then it encodes the j th zone visited by robot i. Otherwise,
posi,j = −4 encodes that the robot stopped moving and
stays at posi,j−1 for the rest of the exploration (i.e., the plan
does not require robot i to explore any more zones). The
total distance traveled by robot i to visit zones until step
j is stored in di,j ∈ R. These facts are encoded by ϕmove

in Eq. (5): for each robot i ∈ {1, 2, 3} we set di,0 = 0
and for each j ∈ {1, . . . , Z}, we make sure that, at each
step j , either the robot moves and its travel distance is
incremented accordingly, or the robot stops moving. Notice
that in this second case, we can immediately determine
the total travel distance for the robot at the last step in
the plan and, furthermore, the above constraints imply that
once robot i stops moving (posi,j= − 4) it will not move
in the future (posi,j ′= − 4 and di,j ′ = di,j ′−1 for all
j ≤ j ′ ≤ Z).

For each zone k ∈ {1, . . . , Z} we enforce that it is visited
exactly once by requiring ϕeach in Eq. (6).

Finally ϕmax in Eq. (7) uses for each robot i ∈ {1, 2, 3}
a Boolean variable mi to encode whether the robot has the
smallest index under all robots with maximal total travel
distances at the end of their plans (note that there is exactly
one robot with this property).
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Fig. 5 SMT encoding A for the exploration phase

Our optimization objective is to minimize the largest total
travel distance:

minimize
∑3

i=1mi · di,Z (8)

subject to ϕdepot ∧ ϕmove ∧ ϕeach ∧ ϕmax

Results We consider four benchmarks with 6, 8, 10 and
12 zones to be visited. Encoding A allowed us to compute
optimal plans, but it does not scale with the number of
zones to be visited. The solving time 286.7 seconds listed in
Table 1 for the optimal objective 12.6 for a benchmark with
Z = 12 zones claims a large part of the overall duration of
the exploration phase.

Tackling loosely connected constraints (B) By analyzing
solver statistics we noticed that the number of theory
conflicts was quite large, and theory conflicts typically
appeared at relatively high decision levels, i.e., at late stages
of the Boolean search in the SAT solver. One reason for this
is that during optimization, violations of upper bounds on
the total travel distances can be recognized by the theory
solver only if all the zones that a robot should visit are

Fig. 6 Initial robot configuration

already decided. In other words, the constraints defining the
total travel distance of a robot build a loosely connected
chain in their variable-dependency graph. Furthermore,
explanations of the theory conflicts blamed the whole plan
of a robot, instead of restricting it to prefixes that already
lead to violation. As a result, the propositional search tree
could not be efficiently pruned. To alleviate this problem,
we added to the encoding A the following formula, which
is implied by the monotone increment of the partial travel
distances by further zone visits:

3∧

i=1

Z∧

j=1

di,j ≤ di,Z (9)

Results As Table 1 shows, adding the above constraints led
to a slight improvement, but the solving time of 255.55
seconds for 12 zones is still too long for our application.

Symmetry breaking (C) Although the robots start from
different zones, all move to the start location 0 at cost 0
before exploration. Thus, given a schedule for the three
robots, a renaming of the robots gives another schedule with
the same maximal travel distance. These symmetries result
in the solver covering unnecessarily redundant search space,
significantly increasing solving time. However, breaking
these symmetries by modifying the encoding and without
modifying the solver-internal algorithms is hard. A tiny part
of these symmetries, however, can be broken by imposing
on top of encoding B that a single, heuristically determined
zone k (e.g., the closest or furthest to zone 0) should be
visited by a fixed robot i:

Z∨

j=1

posi,j = k (10)
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Table 1 Running times (sec) and #conflicts for encodings A-F (Z: number of zones to be visited, TO: 5min)

Z A B C D E F Optimum

Time Conf Time Conf Time Conf Time Conf Time Conf Time Conf

6 0.40 4841 0.25 3206 0.18 2525 0.17 2069 0.29 3416 0.16 1103 10.9

8 2.07 14400 1.91 15248 1.16 9237 1.62 14355 5.32 30302 1.23 3876 11.4

10 80.06 225518 59.71 184685 26.71 91648 21.72 89785 TO – 8.97 27811 12.1

12 286.70 486988 255.55 449485 81.64 198249 54.17 161134 TO – 36.21 101308 12.6

Results This at first sight rather weak symmetry-breaking
formula proved to be beneficial, resulting in a greatly
reduced number of conflicts as well as solving time (81.64
seconds for Z = 12 zones, see Table 1). However, this
encoding just fixes the robot that should visit a given single
zone, thus the computational effort for Z zones reduces only
to a value comparable to the previous effort (using encoding
B) for Z − 1.

Explicit scheduler choice (D) In order to make the domain
over which the variables posi,j range more explicit, we
added to encoding C the following requirement:

3∧

i=1

Z∧

j=1

(posi,j = −4 ∨
Z∨

k=1

posi,j = k) (11)

Results This addition led to some performance gain. With
a solving time of 54.17 seconds for 12 zones, our approach
could be successfully integrated in the RCLL planning
framework.

Partial bit-blasting (E) To reduce the number and size
of theory checks, we also experimented with partial bit-
blasting: the theory constraints posi,j=k in encoding C were
replaced by Boolean propositions posi,j,k∈B, which are true
iff robot i visits zone k at step j . For each i∈{1, 2, 3}
and j∈{−3, . . ., Z} we ensure that there is exactly one
k∈{−4, . . ., Z} for which posi,j,k is true by bit-blasting
for the Z+5 possible values (using fresh propositions
pi,j,k ∈ B):

posi,j,0 ⇐⇒ (¬pi,j,
log (Z+5)� ∧ . . . ∧ ¬pi,j,0)

posi,j,1 ⇐⇒ (¬pi,j,
log (Z+5)� ∧ . . . ∧ pi,j,1) . . . (12)

Results As shown in Table 1, partial bit-blasting did not
introduce any improvement. On the contrary, an optimal
solution for 12 zones could not be computed within 5
minutes. We made several other attempts to improve the

running times by modifying encoding D, but they did not
bring any major improvement.

Explicit decisions (F) Even though encoding D could be
integrated in the RCLL framework, we investigated ways to
further reduce the solving times.

To this purpose, we developed a new encoding shown in
Fig. 7, in which we made some decisions explicit by means
of additional variables.

In particular, for each k ∈ {1, . . . , Z} we introduced an
integer variable mk to encode which robot visits zone k, and
an integer variable ni,k for each i ∈ {1, 2, 3} to count how
many of the zones 1, . . . , k robot i has to visit. The meaning
of these variables are encoded in ϕvisits in Eq. (13).

We keep the position variables posi,j to store which zone
is visited in step j of robot i, but their domain is slightly
modified: knowing the number ni,Z of visits for each robot,
the fictitious location posi,j = −4 is not needed anymore.
Instead, we will simply disregard all posi,j assigned for
j > ni,Z .

We also keep the variables di,j , but with a different
meaning: di,j stores the distance traveled by robot i from
its (j−1)th position posi,j−1 to its j th position posi,j .
We add the constraints Eq. (14) for defining the positions
up to the start zone and additionally the constraints in
Eq. (15). Note that we replaced di,j = D(k, l) with a weak
inequality constraint. As we discuss later in this section, this
was possible as the minimization of travel distances will
anyways enforce the equality, but solving inequalities seems
to be easier for Z3.

A new variable di for i ∈ {1, 2, 3} is used to store the
total travel distance for each robot in ϕtot in Eq. (16), which
ensures that, if robot i has to visit k zones (ni,Z=k) then its
total travel distance di is (at least equal to) the sum of the
distances traveled from posi,0 to posi,k . If robot i does not
move at all (i.e., ni,Z = 0) then di will be (at least) zero.

The formula ϕall in Eq. (17) makes sure that each robot
visits all zones it has been assigned to by means of variables
mk: if robot i is assigned to zone k then this zone will
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Fig. 7 SMT encoding F for the exploration phase

be visited at some step j (within the upper bound on the
number of zones to be visited ni,Z).

Furthermore, in ϕbounds in Eq. (18) we introduce bounds
on integer variables so that the solver can represent integers
as bit-vectors and internally perform bit-blasting.

Finally, we replace the nonlinear objective function specified
in Eq. (9) by a linear one: since all robots start from the
start zone, we exploit symmetry and require an order on the
total travel distances in Eq. (19). We can now minimize the
total distance for the first robot d1 under the side condition
that the conjunction of all formulas in Fig. 7 holds.

Results Table 1 shows a considerable improvement by
encoding F over previous solutions for the selected
benchmarks. In order to obtain statistically significant
results, we also tested encoding F on 100 most recurring
instances of the RCLL problem with 12 zones (see
Table 2). Especially the replacement of a non-linear
objective function with a linear one allowed us to reduce the
complexity of the optimization problem at hand.

To analyze the potential sources of improvement, we
made additional experiments with two variants of encoding
F : in encoding F1 we removed the bounds for integer
variables as specified in Eq. (18), and in encoding F2

we replaced the inequalities in Eqs. (15) and (16) with
equalities (while the constraints from Eq. (18) are kept in
F2). Table 2 and Fig. 8 show results for the previously used
100 benchmarks. While working with unbounded integers

in encoding F1 does not seem to significantly affect the
solving times, the solving time for the encoding F2 with
equalities is almost always higher, and a fewer number of
instances could be solved within the timeout.

6 Production Phase

Building on the results obtained for the exploration phase,
we moved on to consider the production phase of the RCLL as
anticipated in Leofante (2018). This part of the game poses
challenges to the OMT solver that are different in nature with
respect to the ones met before. One the one hand, production
tasks are more constrained and therefore present less sym-
metries than exploration. On the other hand, they require
more sophisticate robot-robot and robot-environment inter-
actions, which affect both plan synthesis and execution.

The methodology presented here has been fully inte-
grated in the system presented in Section 4 and tested using
the simulator developed for the the Planning and Execution
Competition for Logistics Robots in Simulation.5

6.1 Building a FormalModel for Production Processes

Given an RCLL configuration, our goal is to find a
bounded sequence of robot actions that maximizes the total

5Available at https://www.fawkesrobotics.org/projects/rcll-sim/

https://www.fawkesrobotics.org/projects/rcll-sim/
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Table 2 Average solving time (sec) and #instances solved for encodings F, F1 and F2 on 100 benchmarks (TO: 2min)

Z F F1 F2

Time #solved Time #solved Time #solved

12 54.78 66/100 57.02 66/100 66.84 46/100

reward achieved for delivering ordered products. Due to
the complexity of the RCLL domain, several challenges
arise when building a logical encoding of this optimization

Fig. 8 Comparison of solving times (msec) for encodings F, F1 and F2
(Z = 12, TO: 2min)

problem. The formal model needs to account for concurrent
robot motions, production processes and machine states,
order schedules, deadlines and rewards.

We assume that decisions on actions are made sequen-
tially for one robot at a time; the transitions in T will model
those decisions and their effects by updating the states of all
components of the model accordingly. Continuous variables
are used to keep track of time – e.g., when a robot starts an
action or a machine completes a production step – and are
used to ensure that decisions made locally during each step
are time-consistent at a global level.

Let M represent the total number of machines in the
arena, R the number of robots used and p the planning
horizon (number of robot actions) considered. The first
step towards defining a formal model for robot motions
and machine processes is to identify a set of variables that
encode all the relevant properties of the system’s state.
To be able to refer to the j th action and its effects, we
attach an index from the domain {1, . . . , p} to the variables.
Furthermore, since actions have preconditions and effects,
for each step we encode explicitly the state of the system
before and after an action is performed; we do so by
appending A and B respectively to the variable names.
Thus, if x is a variable describing the state of a component
then xAj and xBj encode the component state before and
after the j th action.

Actions. Each action has a unique integer identifier. For
j ∈ {1, . . . , p} we use

– Aj to store the identifier of the action performed in
step j ,

– tj is the time when the execution of the action of step
j starts and

– rdj is the time needed to complete the action of step
j .

Robots. The identity and state of the robot executing the
action of step j ∈ {1, . . . , p} will be described using the
following variables:

– Rj stores the integer identifier of the robot executing
step j ,

– holdAj and holdBj tell whether the robot is holding
something before respectively after the action at step
j and
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– posj specifies the position where the robot needs to
be to execute the action assigned at step j .

Machines. The identity and state of the machine used
in step j ∈ {1, . . . , p} is encoded by the following
integer-valued variables:

– Mj tells what machine is involved in the action
performed at step j ,

– mdj specifies the action duration,
– state1Aj and state1Bj encode whether the machine

used in step j is prepared before resp. after the step,
– state2Aj and state2Bj encode whether a CS used at

step j is loaded with a cap or not and
– state3Aj and state3Bj encode whether the slide of a

CS used in step j is full or not.

Initial state. We introduce dedicated variables to describe
the initial state before the first step. Though the game
always starts in a fixed initial state, such variables give
us the flexibility to synthesize plans on-the-fly during
the game. We define for all i ∈ {1, ..., R} and k ∈
{1, . . . , M}:
– initPosi and initHoldi to encode initial conditions for

robot i and
– initState1k , initState2k and initState3k to store the

initial state for machine k.

Rewards. To define the objective function to be optimized
as specified in Eq. (2), we use for each j ∈ {1, . . . , p}
– a real-valued variable rewj to store the reward

achieved for executing step j .

Using the above variables, we define the encoding of
plans as shown in Fig. 9. In the following, products are
encoded by integer values – e.g., “no product” is represented
by 0, black base by 1, etc. We start with defining sub-
formulas to encode the initial system state, the preconditions
and effects of the possible actions and the rewards that can
be achieved.

Initialization For the initial state of the game we define the
formula ϕinit in Eq. (20), meaning that robots start from
the depot and do not hold objects, while machines are not
prepared nor loaded for production.

Making initial states consistent Formula ϕstart in Eq. (21)
ensures that the above initial values are propagated to the
initial states for robots and machines. If robot i is active at
step j and it has never been active before, then j is its first
step and it must start in the robot’s initial state. Moreover,
for each step, the robot timer is incremented by at least
the travel time, which is encoded using constants Dist(u, v)

Fig. 9 SMT encoding for the transition system underlying the RCLL domain
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Fig. 10 Production steps necessary to produce a C0 product (left). The first step for the robot is to move to feed a cap in to the Cap station
(right). Niemueller et al. (2015) and RCLL Technical Committee (2017)

for the travel time between the machines u and v. Similar
requirements are imposed on the machines.

Making successor states inductively consistent The for-
mula ϕid in Eq. (22) ensures that when a robot or machine
is not involved in an action then the action does not change
the robot’s resp. machine’s state. The formula states that if
robot i is active at step j ′ and it has not been active since
step j < j ′, then we ensure that its hold state is propa-
gated to j ′ (we say that effects of previous step j are equal
to the preconditions at j ′). The robot moves to the location
required by the action assigned at j ′. The robot timer will
be incremented by at least travel time plus action duration.
A similar interpretation holds for the machines.

Action rules Eq. (23) defines ϕa that specifies the precondi-
tions and effects of action a. The formula means that when
an action a – encoded by its integer identifier – is selected,
the appropriate preconditions are checked and effects are
propagated. For instance, the rule for the delivery action will
have the following definition:

Aj = 11 =⇒ (Mj = 2 ∧ state1Aj = 8 ∧ state1Bj = 0∧
state2Bj = state2Aj ∧ state3Bj = state3Aj ∧ mdj=15∧
posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

Reward scheme Finally, we need to specify a reward
scheme for actions. As already mentioned, by means of
rewards we can drive the synthesis towards optimal plans.
We chose to assign positive rewards to the delivery action
only, while all other actions bring no rewards. The reward
is defined in Eq. (24) by the formula ϕrew where dl is the
deadline for delivering a specific product and tj + mdj

indicates the instant when the appropriate station completes
the delivery process. Such reward strategy yields plans that
minimize the makespan of the plan executed by robots.

Plans Plan synthesis can now be encoded by the
problem to maximize rewp under the side condition
ϕinit ∧ ϕstart ∧ ϕid ∧ (

∧
a∈A ϕa) ∧ ϕrew, where A is the set of

all actions needed to produce the requested product.

6.2 Experimental Evaluation

To evaluate plans synthesized by our system, we consider
the production process shown in Fig. 10. We generated
100 problems, determined by a unique machine placement
and order set each. This allows for qualitatively validating
plan generation and determining costs of plans generated.
We vary the complexity through the number of robots
participating in the task. We limited our experiments to a
single product of the lowest complexity C0 (cf. Fig. 10).
Note that 10 only shows the production steps needed to
assemble the product and not yet their logical formalization
(i.e., causal dependencies, time relations).

We compare our solutions with domains encoded using
the well-known Planning Domain Description Language
(PDDL2.1) (Fox and Long 2003). We consider both,
temporal domains with durative actions (T) and the same
domains without (NT). We run planners and solvers6 on
the benchmark files we generated, and we validate results
generated by our approach using the simulator developed
for the Planning Competition for Logistics Robots in
Simulation shown in Fig. 2.

6.2.1 Evaluation of OMT Solvers

Again we compared performances of Z3, SMT-RAT and
OptiMathsat on this benchmark. A timeout for solving
is set to 60 seconds, which is the time teams can afford
spending in planning during an RCLL game without

6We use a machine running Debian 9, Intel Core 2 Quad CPU Q9450
at 2.66 GHz.
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Fig. 11 Boxplots for solving times using Z3 for 1, 2, 3-robot
teams. Red lines represent median values of 0.78s, 6.76s and 18.67s

respectively

compromising their chances to win. Solving for the domain
considered proved to be challenging, however plans could
be successfully synthesized with our approach. Z3 was the
only tool which could solve all the instances proposed,
therefore it was chosen for our analysis.

We investigated how the solving time varies with the
number of robots used. As Fig. 11 shows, the solving time
increases with the size of the team of robots used, moving
from an average solving time of 0.79s with only one robot,
to 19.45s for three robots. A natural explanation for this
could be that having more robots increases the size of the
search space and therefore the number of solutions, which
are equivalent up to renaming but do not improve the quality
of the plan. Still, the solver will perform an exhaustive
check when computing an optimal plan and this results in
a harder solving process. In any case, the times obtained
are well within the suggested desirable limits for the RCLL
competition.

6.2.2 Off-line Comparison with other Approaches

In the off-line comparison, we consider the POPF (Coles
et al. 2011) planner and SMTPlan (Cashmore et al. 2016), a
tool that compiles PDDL domains into SMT encodings and
solves them by calling Z3 internally. We choose the former
as it comes readily integrated with ROSPlan, a framework
for task planning and execution used in the validation (cf.
Section 6.2.3). SMTPlan, instead, was selected because it
represents an interesting solution building a bridge between
AI planning and SMT solving. Both tools are evaluated on
non-temporal (NT) and temporal (T) domains.

Table 3 shows the results of this comparison, carried
out using a timeout of 60 seconds, a typical time still
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acceptable in the RCLL. A total of 100 different domain
instances were run for each approach for 1, 2 and 3 robots
respectively, resulting in a total of 900 runs. For POPF
anytime we report the time needed for the planner to
compute an improved solution, although the tool still ran for
the whole 60 seconds allocated. SMTPlan is not listed, as
it timed out for all the instances considered. We conjecture
that this may be due to the way PDDL domains are compiled
to SMT, resulting in unnecessarily redundant encodings that
are difficult to solve. We can observe in Table 3 that only
OMT could solve all benchmarks within the given timeout.
While POPF could always compute solutions for domains
where only one robot was used, it failed to do so when the
number of robots increased. Furthermore, our approach is
able to solve the synthesis problem in less time, when the
comparison is possible, and produces solutions with average
makespans that are always smaller than other approaches7.
Furthermore, giving POPF additional time to optimize on
the first feasible solution (anytime) did not seem to lead to
major improvements compared to the oneshot evaluation.
We should mention that all models (OMT and PDDL-based)
use approximate values to represent action durations. In
particular we assume for the navigation actions that the
robot moves at 1 m/sec, i.e., using distance as time. While
this is unrealistic for actual execution, the values remain
comparable among the approaches.

6.2.3 Validation of Results

Plans generated with our approach were validated in the
Planning Competition for Logistics Robots in Simulation
using the framework described in Section 4.

We tested the robustness of our solutions under realistic
competition settings by having two teams of robots
competing against each other, one being controlled with our
approach. If we had tested using one team of robots only
(that is, our team), we would have reduced the uncertainty
present in the game due to the strategies adopted by
the opponent. To control the other team, we considered
two approaches: (i) a PDDL-based approach that embeds
POPF into ROSPlan, a framework for task planning and
execution and, (ii) a purely rule-based approach based on
CLIPS (Niemueller et al. 2013), currently used by the
RCLL world champions. It must be noted that the execution
engine currently used in our framework supports concurrent
execution of actions on multiple robots, ROSPlan does not.

We therefore decided start our experimental campaign
with plans synthesized for single robots, and have them
compete with ROSPlan using a single robot. Figure 12

7Makespan for non-temporal POPF with single robot is computed as
follows. We read the sequence of actions contained in the plan and
assign to each the same duration specified in the temporal models used
by other approaches.

Fig. 12 Game statistics for a single robot, OMT playing against
ROSPlan combined with POPF using non-temporal (a) and temporal
(b) reasoning (20 seconds timeout)

shows statistics for 100 simulations, where our approach
competed with ROSPlan combined with non-temporal
(left) and temporal (right) reasoning. We plot delivery times
for both approaches and for each game.

Confirming our off-line results, our plans were able to
control the robot to deliver the order requested. However,
for some simulations, plans computed by OMT or ROSPlan
failed to be executed – we set the corresponding delivery
time to 900 seconds. For what concerns our approach, we
suggest this may be due to the fact that we assume all
machines in the shop-floor are correctly working, however
sometimes machines are out of order for a limited time
to simulate real world failures. Since we do not capture
this uncertainty in our logical encoding, it may happen
that the assumptions about the world state made during
synthesis become inconsistent during execution. During the
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first batch of games (Fig. 12, left) we can observe that our
plans failed 5 times, while the opponent failed 12 times.
In all other cases we could deliver products successfully
within the deadline of the game (15 minutes). Comparing
delivery times between the two approaches would not be
fair in this case, as ROSPlan did not perform any temporal
reasoning during these games. We therefore proceeded
with a comparison with ROSPlan combined with temporal
reasoning (Fig. 12, right). There, our approach failed 11
times, while ROSPlan failed 7. However, we can observe
that when successful, our team had a median delivery time
of ∼ 332 s, against ∼ 490 s of the other team. Such
simulations reflect the results we obtained during our off-
line evaluation, where our approach could compute plans
with the smallest makespans.

We then proceeded with the evaluation of plans
synthesized for multiple robots. Synthesizing global plans
for multi-robot teams could, in principle, increase the
chances of failure due to,e.g., synchronization issues. To
test the robustness of our plans, we ran 100 games where
ROSPlan (again, single robot) competed against our
approach, where multiple robots were used.

Figure 13 shows results obtained after 100 games.
Interestingly our plans proved to be as robust as sequential
plans computed for a single robot. Indeed, our approach
failed 9 times while ROSPlan failed 12. Given that our
approach employed multiple robots, median delivery times
for our team are always lower than the opponent’s.

Finally, we compared the performances of our plans
with the rule-based approach used by the RCLL world
champions. This approach employs the full team of robot,
allowing a fair comparison between solutions for multi-
robot systems. Figure 14 shows the results obtained after

Fig. 13 Game statistics for OMT plans (multi-robot) versus ROSPlan
combined with POPF using non-temporal reasoning (single robot)
(timeout 20 seconds)

Fig. 14 Game statistics for OMT (multi-robot, timeout 20 seconds)
playing against the rule-based approach presented in Niemueller et al.
(2013) (multi-robot)

100 games. Results obtained show that, when successful in
delivering, our approach guarantees a shorter delivery time,
with a median delivery time of ∼ 235 s against ∼ 302 s of
the rule-based approach. On the other hand, the rule-based
agent proved to be more robust, failing only 4 times against
9 times of our approach.

7 Explaining Plans

The problem of generating explanations for decisions taken
by autonomous robotic systems is a very pressing one.
The effectiveness of these systems is limited by their
current inability to explain their decisions and actions
in a human-readable way. Several initiatives have been
launched recently to tackle this problem. For instance,
DARPA started the Explainable AI program8 with the
aim to develop new machine-learning techniques that will
produce more explainable models that could be translated
into understandable and useful explanation dialogues for
the end user. In the same spirit, Explainable Planning is
proposed in Fox et al. (2017), where the authors consider
the opportunities that arise in AI planning to form a familiar
and common basis for communication with the users.

In this section we discuss how OMT-based synthesis
implemented in our system could be leveraged to generate
explanations for the plan synthesis process. While we
acknowledge the existence of a gap between the way OMT
solving proceeds and human problem-solving, here we wish
to show that OMT solvers exploit techniques that have the
potential to ease explaining and facilitate understanding of
the underlying decision process.

8https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf

https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
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Fig. 15 Example of plans with minimum makespan for the production of a C0 piece, using two (red) and three (black) robots. The makespan of
both plans is 58.52s . Action are encoded by integer ids as in Fig. 10

In particular, we discuss explanations that can be used to
understand (i.) why a certain plan should be preferred, or
(ii.) why no plans could be produced for a given scenario.
The discussion that follows is intended to provide initial
ideas for achieving the objective of providing effective
explanations in OMT synthesis. Examples discussed are
specific to the RCLL domain, however we expect that
our results can provide a basis for general synthesis of
explanations supporting OMT-based decision making.

Explaining why a plan should be chosen The first question
we wish to consider is explaining why a solution computed
by the solver should be preferred over different ones. To
the best of our knowledge, there exists no planner able
to optimize for a metric different than minimizing plan
makespan. Therefore, while answering such a question
could prove challenging, if not impossible, in other AI-
based solutions, OMT could provide useful answers.

As introduced in Section 2, OMT differs from SMT
solving in that it produces solutions that are not only
feasible, but also optimal. The key point here is that OMT
allows to specify different metrics to measure the quality
of a plan. Modern OMT solvers support combinations
(lexicographic, pareto, box) of objective functions that
can be specified by the user. In this framework, a valid
explanation could be to point out the differences in the
metrics and show the different effects they have, e.g., in
terms of the obtained final reward.

Example Let us consider a simple example based on the
production process of Fig. 10. Let us assume a plan has been
requested by the user and the reward scheme of Eq. (24)
– which yields plans with minimum makespan – has been
used. A sample plan as produced by one of our plans might
have the structure depicted in black in Fig. 15, where three
robots are used.

Now suppose we want to know whether a better
makespan could be achieved using less robots. One simple
way to check this could be to extend our optimization

problem by including an additional objective, e.g.,

maximize

p∑

j=1

Rj

which implicitly forces the solver to select robots whose
integer ids have higher value – e.g., robot 3 will be preferred
over robot 1. The result is shown in red in Fig. 15. As we
can see, it is sufficient to ask the same robot – robot 2 in this
case – to perform actions 7 and 6 to obtain a plan that has the
same makespan as the original one, but uses only two robots.
So in this case, by pointing out the differences in the metrics
used to drive the synthesis procedure, one could produce a
reason as to explain to the end-user why the second solution
should be preferred over the first one.

Explainingwhy a plan can not be synthesized This question
arises when the solver fails to synthesize a plan for the
problem at hand. AI planners are typically not very effective
at proving unsolvability of a plan. In contrast, OMT-based
approaches are well positioned to address this challenge.
Our system frames plan synthesis as a bounded model-
checking problem, therefore if the solver states that the
desired objective can not be met within a given deadline
(and/or within a planning horizon) then this is a proof that
no plan can be produced to accomplish the task.

Besides proving the non-existence of a plan, modern
OMT solvers also allow to extract unsatisfiable cores
that additionally provide a reason for unsatisfiability.
Formally, given an unsatisfiable input formula ϕ = ∧n

i=1ϕi ,
an unsatisfiable core of ϕ is an unsatisfiable formula
ψ = ∧i∈I ϕi for some I ⊆ {1, . . . , n}. In other words, an
unsatisfiable core of ϕ is an unsatisfiable formula ψ which
is either ϕ itself or ϕ = ψ ∧ ψ ′ for some ψ ′.

Though smaller unsat cores typically provide more
compact information, minimal unsat cores (i.e., unsat cores
∧i∈I ϕi for which ∧i∈I ′ϕi is satisfiable for all I ′ ⊂ I ) are
computationally hard to compute. Therefore, most solvers
aim at generating small explanations but they seldomly
guarantee minimality. Since for practical problems unsat
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Listing 5 Unsat core generated when DS is down

cores might be too large to be analyzed by humans,
SMT/OMT solvers that follow the SMT-LIB standard9

require that the user specifies a label for each of the
conjunctive subformulas (also called assertions) of interest,
and only the labeled formulas in the unsat core are listed
as output (i.e., the provided explanation together with the
unlabeled assertions form an unsat core).

Example To illustrate how unsat cores can be used to
explain unsolvability, consider the following example. The
RCLL rules impose that machines can be out of service
for a given time at any point in the game. To capture
this information, we extend the encoding of machine states
of Section 6 by introducing the integer-valued variables
state0Aj and state0Bj . Such variables encode whether the
machine used in step j is fully functional before and after
action Aj respectively. If a machine goes down, then all
the actions involving that machine can not be performed
any more, making it impossible to complete the production
of pieces requiring the broken machine. To model this,
we extend each action rule (Eq. (23), Section 6) with the
additional precondition that the machine required at step
j must be working. For instance, the rule for the delivery
action will become:

Aj = 11 =⇒
(Mj = 2 ∧ state0Aj = 1 ∧ state0Bj = 1∧
state1Aj = 8 ∧ state1Bj = 0 ∧ state2Bj = state2Aj∧
state3Bj = state3Aj ∧ mdj = 15∧
posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

Furthermore, we label each constraint in order to enable
unsat core generation. Let us now assume our synthesis
procedure is triggered under the condition that the delivery
station DS is broken. This means that the actions involving
DS won’t be realizable, as a precondition for them to be
performed is that the machine has to be operational, i.e.,
state0Aj = 1.

Listing 5 shows the unsat core produced by Z3 when
we impose that the delivery station breaks at step 10, i.e.,
state0A10 = 0. The unsat core produced here shows that the
delivery station could not be prepared for delivery, therefore
making delivery impossible.

9https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf

8 Challenges, Observations
and Recommendations

As a result of the efforts put into solving the problem
presented in this work, we gained interesting insights on
the problem of synthesizing plans for robotics using OMT.
We detail in the following some observations and ideas that
could be useful for other researchers considering similar
problems and applications.

Domain-specific knowledge Incorporating domain-specific
knowledge in the encoding leads to considerable speed-up
in the solving process. This could be done, e.g., by explicitly
encoding partial orders on actions, where one specifies causal/
temporal relations between production steps (and actions).

Building efficient models To reduce the number and size
of theory checks, we also experimented with partial bit-
blasting. We directly encoded some states of the system
by means of bit-vector variables instead of integers. We
did so to help the solver to detect inconsistencies at the
propositional level without the need to call more expensive
theory checks. However, such hand-crafted encoding turned
out to be more error prone and less efficient than relying
on the bit-blasting some solvers perform internally – when
bounds on integer-valued variables are given. Furthermore,
when working with complex domains as the RCLL, dealing
with integer quantities instead of Boolean ones reduces the
modeling effort.

Solvers and optimization There exist efficient solvers for
different types of optimization problems like combinatorial
optimization or integer programming. However, there seems
to be room for improvements on problems where the
objective function is an arithmetic function but the search is
over a finite set of objects, i.e., where the problem seems to
involve optimization in the arithmetic domain but at its core
it is a purely combinatorial optimization problem. For our
application, the plan generation problem could be specified
as a Boolean combination of equalities between arithmetic
terms, i.e., only the combinatorial optimization plays a role.
However, the solvers do not recognize this fact and invoke
also arithmetic optimization. For the latter, equalities seem
to be more problematic, therefore we partially replaced them by
inequalities and forced equalities by the objective function.
This is an example where knowledge about the internal
solving mechanisms is needed to achieve better encodings.

Planning andOMT Encoding domains using PDDL is easier
for non-expert users, as the language provides a more
general and intuitive way to describe planning problems.
For this reason, we believe it would be interesting to study
how the two communities, AI planning and SMT, could

https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf
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benefit from each other. Empirical evidence shows that
general-purpose planners achieve impressive performances
when it comes to fast exploration of large state-spaces.
Starting from this observation, it would be interesting to
investigate whether planning heuristics can be imported as
tactics into OMT solvers to speed up the search.

Explaining OMT solutions We have introduced the problem
of computing understandabvle explanations for plans generated
with OMT. We showed the potential of OMT solving tech-
niques to ease explaining, and provided initial results in this
direction. We believe that these initial ideas open up several
interesting research directions in automated reasoning to
provide effective explanations. To do so, a full formalization
of what represents a good explanation is required.

Further technical challenges Several problems of technical
nature are to be faced when integrating OMT-based
solutions in planning and execution systems. Not all solvers
provide anytime solving in the context of optimization,
making it difficult to implement online synthesis strategies.
Furthermore, current software architectures in robotics do
not offer easily usable interfaces for the integration of
OMT solvers. Given the recent advancements in SMT
and OMT, solvers are now able to deal with rich and
complex models. Therefore, having interfaces with software
libraries for robotics such as the Robot Operating System
(ROS) (Quigley et al. 2009) would ease the process to
challenge solvers with concrete problems from that field.

9 Conclusions

In this work we presented an integrated system for generating,
executing and monitoring optimal-by-construction plans for
multi-robot systems. By combining the power of Optimization
Modulo Theories with the flexibility of an on-line executive,
we showed how to synthesize optimal solution for high-level
task planning, and provide runtime feedback on their feasibil-
ity. We also discussed how our system can be extended
to communicate in a human-readable fashion the decision-
making process underlying our synthesis procedure.

This work could be extended in several directions. First
of all, we would like to investigate how OMT could be used
to implement reactive control with fixed-step lookahead.
To do so, we will improve the on-line capabilities of
our approach by increasing the amount of information
exchanged between our OMT module and the execution
and monitoring system. The problem of providing effective
explanations will be further investigated, starting from a
sound formalization of what constitutes a valid explanation.
Finally, we would like to study how our module could be
integrated into a goal reasoning framework, where solutions

computed by the OMT solver could be used to make
informed choices on what goals to pursue in the future.
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