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Abstract
Social media has quickly established itself as an important means that people, NGOs and governments use to spread
information during natural or man-made disasters, mass emergencies and crisis situations. Given this important role, real-
time analysis of social media contents to locate, organize and use valuable information for disaster management is crucial.
In this paper, we propose self-learning algorithms that, with minimal supervision, construct a simple bag-of-words model
of information expressed in the news about various natural disasters. Such a model is human-understandable, human-
modifiable and usable in a real-time scenario. Since tweets are a different category of documents than news, we next propose
a model transfer algorithm, which essentially refines the model learned from news by analyzing a large unlabeled corpus of
tweets. We show empirically that model transfer improves the predictive accuracy of the model. We demonstrate empirically
that our model learning algorithm is better than several state of the art semi-supervised learning algorithms. Finally, we
present an online algorithm that learns the weights for words in the model and demonstrate the efficacy of the model with
word weights.

Keywords Machine learning · Text classification · Weakly supervised learning · Online learning · Transfer learning · Tweet
classification · Disaster management

1 Introduction

With the ever widening spread of computers, communica-
tions and the Internet, social media is becoming increasingly
important as a means of social interaction. In particular,
social media has quickly established itself as an important
means that people, NGOs and governments use to spread
information during natural or man-made disasters, mass
emergencies and crisis situations. In these scenarios, social
media is used to report first-hand (“ground zero”) experi-
ences including photos and videos, near-hand observations,
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contact relatives and friends, request help, disseminate
information about available help and other services, orga-
nize local search and rescue operations, monitor situation,
report status, damages or losses etc. Given this important
role, real-time analysis of social media contents to locate,
organize and use valuable information for disaster manage-
ment is an active research area; see Imran et al. (2015) for a
comprehensive survey.

In this paper, we propose a weakly supervised learning
algorithm to automatically detect social media content
having information about disasters. We include natural
disasters like earthquake, flood, hurricane, famine, forest
fire, volcano eruption, tsunami, land slide, disease epidemic
(e.g. H1N1, swine flu, ebola) and man-made disasters
like nuclear power plant accidents. We exclude crimes,
accidents, insurgencies, terrorist attacks and war.

Factual information about various kinds of disasters, as
expressed in, say, news stories, is often similar at a broad
level: they mostly include aspects like damage, injuries,
deaths brought about by a disaster, search, rescue, relief,
recovery, rehabilitation etc. We generalize this informal
observation to a natural principle, which might be called as
the principle of information correspondence: in a given

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-018-9830-2&domain=pdf
mailto:gk.palshikar@tcs.com
mailto:manoj.apte@tcs.com
mailto:dpandit2@ur.rochester.edu


950 Inf Syst Front (2018) 20:949–959

type of documents, similar events are expressed similarly.
The similarity of expression of information is essentially
at the level of semantics. Clearly, news and tweets are
two distinct types of documents. Thus we may expect that
different news items will broadly express information about
disasters in a similar manner; and different tweets will
broadly express information about disasters in a similar
manner, although information expression across news and
tweets need not be similar. Example text from news and
tweets related to two types of disasters: earthquake and
flood is shown in Table 1. Crimes, accidents, acts of
terrorism, and even weather reports, may sometimes contain
similar information as a disaster. Thus any technique for
automatically detecting disaster-related information should
reject such confounding pieces of information.

In this paper, our main goal is to build a model, with
minimal supervision, that can be used to quickly classify
tweets in an incoming stream as DISASTER-RELATED(+1)
or NOT-DISASTER-RELATED(−1). We require the model
to be simple, human-understandable (and even human-
modifiable) and usable in a real-time scenario. A reason for
this requirement is that the users of such a model (i.e., users
who read and analyze disaster related tweets for further
actions) find it easier to deal with word-based models in
order to act quickly and clearly. Our word-based models
have the advantage that these users can dynamically change
and update themwithout toomuch efforts, in order to align the
models with the drifts in the nature and content of tweets.

Toward this end, we propose self-learning algorithms
that, with minimal supervision, construct models of
information expressed in news about various natural
disasters. The constructed model is extremely simple and
basically consists of a set (bag) of characteristic words that
are often present in information expressed about disasters.

Table 1 Some example news and tweets related to earthquakes and
floods

A moderate earthquake with a magnitude of 5.5
struck Pakistan on Saturday, but no loss to
life or property has been reported so far.

Record flooding from rain-swollen rivers has
washed out hundreds of structures in Missouri,
Illinois, Arkansas and eastern Oklahoma,
forcing thousands to flee their homes, and 9.3
million Americans still face flood warnings. At
least 28 people have died in the U.S.

Two tremors jolt central, southeastern Iran
#Earthquake

#France - Seine River peaked on Saturday.
Flood killed four. Thousands forced from homes

The algorithm constructs a single model for all disasters i.e.,
it does not differentiate among different classes of disasters,
although our approach is easy to use for learning a model
for a specific disaster type.

Since tweets are a different type of documents than
news, we next propose a model transfer algorithm, which
essentially refines the model learned from news by
analyzing a large unlabeled corpus of tweets. We show
empirically that model transfer improves the predictive
accuracy of the model. We demonstrate empirically that
our model learning algorithm is better than several state
of the art semi-supervised learning algorithms. Once the
word model is deployed to classify a stream of tweets, we
often find that the model needs to be adjusted to handle
drifts in the vocabulary used to report disasters. As a first
step toward dynamically adjusting the word model for tweet
classification, we propose an online algorithm that learns
and automatically adjusts weights for each word in the
initial word model.

The paper is organized as follows. Section 2 con-
tains related work, Section 3 contains learning algorithms,
Section 4 contains baselines, Section 5 contains experi-
ments, Section 6 presents an online algorithm that learns
weights for words in a model, and Section 7 outlines
conclusions and further work.

2 RelatedWork

In this section, we summarize the work related to disaster
detection, focusing primarily on semi-supervised learning
and transfer learning. Imran et al. (2015) surveyed the
computational methods to process social media messages
and map them to the problems like detection of events,
creation of actionable and useful summaries etc. Zhao et al.
(2007) has used textual, social and temporal characteristics
to detect events on social streams. Social text streams are
represented as multi-graphs with nodes as social actors
and information flows as edges. Events are detected by
combining text-based clustering, temporal segmentation,
and information flow-based graph cuts of the dual graph
of the social networks. Sakaki et al. (2010) has built an
earthquake reporting system based on event detection. They
have used a classifier based on the keywords in tweet, the
size of tweet based on number of words and the context
to detect earthquake like event. Once an event is identified
a probabilistic spatio-temporal model is built for finding
the center and trajectory of the event. LITMUS (Musaev
et al. 2014) is a landslide detection system which integrates
USGS seismic data, NASA TRMM Rainfall network with
Twitter, Instagram and Youtube. Social media data is filtered
using keyword-based filtering, geo-tagging, classification
and relevance score is computed to detect landslides.



Inf Syst Front (2018) 20:949–959 951

Ritter et al. (2015) cast seed-based event extraction as a
weakly supervised learning problem where only positive and
unlabeled data is available. They regularize the label dis-
tribution over unlabeled examples toward user-specified
expectation of the label distribution for the keyword.
Zhou et al. (2012) presented a self-training algorithm
that decreases the disagreement region of hypotheses. The
algorithm supplements the training set with self-labeled
instances. The instances that greatly reduce the disagree-
ment region of hypotheses are labeled and added to the
training set. Yang et al. (2009) developed a technique to
identify evolution of relationships between the news events
within a same topic. Event evolution identification tech-
nique automatically identifies event evolution relationships
and represents as Event Evolution Graph (EEG). EEG helps
to understand how events evolve along the timeline.

Our work is similar in spirit to query expansion, where the
idea is to add suitable words to the user’s initial query so as to
improve the retrieval results.We do not survey thoseworks here,
except for Zhao et al. (2014), who present a query expan-
sion algorithm, which they use to create a tweet graph and
then present an anomaly detection method to specifically
for detecting civil unrest related tweets in this graph.

There is a large amount of work in semi-supervised
classification which uses a large amount of unlabeled
data and a small amount of labeled data to build better
classifiers. Nigam et al. (2000) introduced an algorithm
for learning from labeled and unlabeled text documents
based on the combination of Expectation-Maximization
(EM) and a naive Bayes classifier. A classifier is trained
using the labeled documents and probabilistically labels are
predicted for unlabeled documents. Then a new classifer is
trained using the labels for all the documents and iterates to
convergence. We use a simplified version of this approach
as a baseline. Davidov et al. (2010) utilized the semi-
supervised sarcasm identification algorithm of Tsur et al.
(2010) and proposed SA SI algorithm that successfully
captures sarcastic sentences in twitter and other domains.
The algorithm employs two modules: semi supervised
pattern acquisition for identifying sarcastic patterns that
serve as features for a classifier, and a classification stage
that classifies each sentence to a sarcastic class.

Transfer learning involves leveraging knowledge learnt
from source domain/task to improve learning in target
domain/task. Dai et al. (2007) has proposed a transfer-
learning algorithm for text classification based on an EM-
based Naive Bayes classifier. First the initial probabilities
under a distribution of labeled data set are estimated
and then an EM algorithm is used to revise the model
for a different distribution of the unlabeled test data.
This approach has been used by Zhao et al. (2013) for
crowd-selection on twitter. Guerra et al. (2011) analyzes
sentiments by using opinion holder bias prediction. First,

the bias of a social media user toward a specific topic
is measured by solving the relational learning task over
a network of users connected by endorsements. The
sentiments are analyzed by transferring user biases to
textual features. They show that even when the topic
changes its profile as new terms arise and old terms change
their meaning, the user bias helps in building more accurate
classification models due to consistency over time.

Roy et al. (2012) have proposed SocialTransfer -
a cross domain real time transfer learning framework.
SocialTransfer uses topic space learned in real time via
Online Streaming Latent Dirichlet Allocation and real time
cross domain graph spectra analysis based transfer learning
method. The Transfer Graph captures the relationships
between videos and topics which cannot update itself due to
the data constraints. The social social streams relationships
with the topics are updated using the streaming social media
data to mark the change in the topic profile. The updated
transfer graph is then used for video recommendation and
query suggestion for video search.

Online learning of classification is fast emerging as a new
and practically useful setting for classification. Many online
learning algorithms for classification assume an ensemble
(or committee of experts setting) (Mohri et al. 2012). In our
paper, we have followed and modified the classic perceptron
algorithm for online learning, although our classification
model is not a linear model.

Each tweet is a very short and a rather noisy document.
Computing similarity (say, for clustering) between short
text segments is a challenging problem, because simple
document representations such as TF-IDF suffer due
to the short sizes of the documents. Even semantic
representations, such as word embeddings, suffer from
similar problems, when constructed from a corpus of
short documents. De Boom et al. (2016) propose a
specialized representation learning method for short texts
that creates a more semantic representation by weighing
word embeddings created from Wikipedia and Twitter. A
common way to measure similarity between two texts is to
measure the similarity between their mean vectors - where
the mean vector of document is computed as the mean of the
embeddings of the words in that text. This simple approach
has several limitations, and Kenter and de Rijke (2015)
proposes a way to address some of them, by creating bins of
the dimensions and measuring similarity over these bins.

3 Learning Algorithms

3.1Weakly SupervisedModel Learning fromNews

Our approach is two-fold. In the first learning phase,
we learn a one-class classification model for identifying
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documents of class +1 (which are disaster reporting news),
as against any other kind of document (class = −1). The
learnt model is in the form of a word set W , consisting
of words which characterize only the class +1. We are
not interested in characterizing class −1, and in that sense
this is a one-class classification problem. The model W

is learnt in a weakly supervised manner - the only “help”
given to the model learning algorithm is in the form of a
small labeled seed set D, where each document in D is
labeled with class = +1 (i.e., each document is a known
to be related to disaster), and a small set W0 of known
seed words which partially “characterize” class +1 (i.e.,
are related to disasters). In addition, a large corpus U of
unlabeled documents is given i.e., none of the documents
in U are labeled with any class label (either +1 or −1).
Since the text in news is significantly different than that in
tweets, we need to transfer this model to learn to classify
tweets. That part is discussed in Section 3.2. Finally, in the
prediction (operation) phase, we use the final model (i.e.,
the news domain model transferred to the tweets domain) to
dynamically classify any incoming tweet as having class =
+1 or not.

We represent each input document Ui as a word tuples
sequence (WTS) σi , which is an ordered sequence of word
tuples: σi = 〈wt1, wt2, . . . , wtNi

〉, where Ni is the number
tokens in the document Ui and each wtj , 1 ≤ j ≤ Ni ,
is a word tuple. Each word tuple has the form wtj =
(wj , tj , cj , fj ), where wj is a word token, tj is its POS tag
(using Stanford POS tagger), cj is the term frequency i.e.,
the number of times this token occurs in the current input
document irrespective of its POS tag, fj is its document
frequency i.e., the number of documents in the entire
corpus U in which this token occurs irrespective of its
POS tag. Thus each word tuple is essentially a feature
vector for each word token in the document. Word tokens
are considered after stop-word removal and stemming.
We insert a dummy word tuple to mark the sentence
boundaries. Note that if a word w occurs multiple times in
the same document, σi will contain multiple word tuples
corresponding to w; these word tokens may differ in the
POS tag component, but otherwise they would be identical.
If N denotes the number of documents in the corpus U ,
then one way to to compute the TFIDF for a word wj

is: cj · log N
fj
, where N = |U | is the total number of

documents.
The simplest way to select a set of words characterizing

disasters from a corpus U would be based on TFIDF.
Unfortunately, since the documents in U are not labeled,
this method selects all sorts of words, very few of which
are disaster related. Hence we need a different method. The
algorithm learn disaster model (Fig. 1) initializes the
model W with the given set W0 of characteristic keywords,
plus words that frequently occur “around” words in W0

Fig. 1 Algorithm to learn the disaster word model

in the known disaster reporting documents D. Initially, all
documents inU are marked as−1. The algorithm iteratively
examines each document in U (among those which are still
marked as −1), and checks if the label for this document
can be changed to +1, as follows. If the set W1 of frequently
occurring words in this document does not have a significant
overlap with the current model W , then this document is
ignored currently i.e., its label continues to be −1. If the
set W1 does contain a significant overlap with the current
model W , then this document is marked as +1 and is never
considered again. But before going to the next document,
the algorithm selects those words (if any) from W1, which
occur in WordNet but whose corpus count in WordNet
is not “too high”, and adds them to the current model.
After finishing the examination of all documents in U , the
algorithm continues to the next iteration, because the labels
of some more documents may now change, if new words
were added to W in the previous iteration. The algorithm
stops after a user-specified number of iterations or if no
words were added to W in the previous iteration.

The subroutineGetContextWords(W0, nD, window, S)

works as follows. For every word w in the given seed
list W0, compute the set X of all words (nouns or verbs
only) which occur before or after w in a window of given
size in any sentence in the documents in the given set of
documents S. For each word x in X, find the number of
documents in S in which x occurs and remove x from X if
this frequency is less than the given threshold nD . So far,
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the output model is just a set of words. We later present
another algorithm that “learns” a weight for each word wi

in the model. Alternatively, for the weight of a word wi in
the model, we could use its TFIDF score, or the conditional
probability P(wi |class = +1).

3.2 Model Transfer Algorithm

Suppose we have a model Wnews learned from news. The
simplest approach would use the model learned from the
news corpus as it is on tweets, to predict which tweets are
related to disasters. We will show in Section 5.2 that this
approach has less accuracy, because news and tweets are
different types of documents in terms of the vocabulary
and style of writing. We need to refine the model Wnews ,
by removing and adding words, to construct a new model
Wtweet (we focus on adding new words only). We propose a
new transfer learning algorithm, augment model (Fig. 2),
to augment the model from a source domain (e.g., news)
by examining the unlabeled corpus from the target domain
(e.g., tweets). For this, we assume that we have an unlabeled
corpus of tweets available (dataset D4).

A new word is added to the model if it co-occurs with
“sufficient” frequency with a word in Wnews . Pointwise
mutual information (PMI) between two words u and v is

defined as PMI (u, v) = log
(

p(u,v)
p(u)p(v)

)
where, p(u, v) is

the probability of co-occurrence of u and v, p(u) and p(v) is
the probability of co-occurrence of u and v respectively. Out
of several available alternatives, we use PMI as a measure
of similarity between a word in the model and any other
word in the unlabeled corpus. We select top N0 (we used
N0 = 25) having the highest PMI with any word in the
model Wnews and remove words not present in WordNet

Fig. 2 Transfer learning algorithm to augment a source model

(unless they begin with #), or are named entities person,
location, organization etc. We add the remaining words from
this list to Wnews to get Wtweet .

One issue with tweets is the prevalence of informally
written words. We have found that most of the important
disaster related words are not written informally in a tweet.
Also, informally written words in a tweet (such as plz,
pls, lol, thx etc.) do not tend to come into the
model for the following reason. While we do remove some
stopwords from tweets, we have used the presence of a
word in WordNet as a major constraint for words in a
model, which rejects such informal words creeping into the
model.

3.3 Model-based Classification

Let a given document (a news or a tweet) d contain words
(nouns or verbs) Wd = {v1, v2, . . . , vk}. We have a simple
and efficient real-time algorithm identify disaster tweet

that can use the given model W to predict the class label for
any given document d. Basically, if the similarity between
the set Wd and the given model W is more than a user-
specified threshold θ1 then the algorithm predicts class =
+1 (disaster related) else it predicts class = −1 (not
disaster related). We use the Jaccard similarity between W

and Wd , which is just
|W∩Wd |
|W∪Wd | .

We have found that disaster related documents some-
times look similar to those related to crime, accidents, war,
terrorism or weather forecasts. To reduce this confusion, we
can use the corpus to create separate models for each of
these class of documents. We then modify our model-based
classification algorithms to use these negative models as fol-
lows. If the similarity between the set Wd and any given
negative model Wneg is more than a user-specified threshold
θ2 then predict class = −1 for d. If d is not similar to any
of the negative models, only then we use the previous rule
to predict whether d is disaster related or not.

4 Baseline Methods

We have created some baseline methods to compare
our approach with. Starting with a given set W0 of
“seed” keywords characterizing disasters, the algorithm
wordset expansion (Fig. 3) detects and adds other words
(only nouns or verbs) in a given unlabeled corpus, which
are very similar to those in W0 i.e., it creates a single
“cluster” of words, starting with a set of cluster prototype
or representative words. The algorithm does not use the
set of known disaster documents, nor does it impose any
restrictions on the frequencies of the words to be added.
The cosine similarity uses the word embeddings produced
by GloVe (Pennington et al. 2014).
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Fig. 3 Algorithm to expand a set of given seed words

We designed a second baseline method which uses
topic modeling (topic based). We extracted 300 topics
using the mallet toolkit (McCallum 2002) on dataset D1
and manually labeled the topics as disaster-related or not.
We found 7 topics (out of 300) to be related to disasters.
For example, following are some words in one of the
topics: earthquake, ocean, warning, quake,
tsunami, tremor, magnitude, strike,
damage. For any given document, mallet gives a topic
distribution within that document. We used a simple clas-
sification rule that if the most frequent topic within a
document D is one of the disaster related topics, then label
D as +1 else as −1. We use this topic-based classification
scheme as a baseline because, it is also weakly supervised,
like our approach.

We used the semi-supervised classification method of
Transductive SVM (Joachims 1999) as the third baseline;
we used the SVM-Lite tool to train a Transductive SVM
using dataset D1.

Our fourth baseline algorithm is a self-training algorithm
NB iterative, which takes the same set of unlabeled and
positive examples as given to learn disaster model, along
with a small set NegSet of known negative examples. In
each iteration, it trains a simple Naive Bayes classifier on
the current sets of positive and negative examples, and
predicts a class label Ld for each document d ∈ U with
confidence c. If Ld = +1 and c is “sufficiently high” then
it adds d to D and removes it from U ; else if Ld = −1
and c is “sufficiently high” then it adds d to NegSet and
removes it from U ; otherwise, d remains in U without any

class label. After a specified number of iterations, the final
Naive Bayes model is tested. This algorithm is also weakly
supervised and it does not use the user-specified set of seed
keywords.

5 Experimental Studies

5.1 Datasets

Training News Dataset D1 This dataset contains 9983
documents. Out of these, 10 earthquake related documents
are explicitly labeled as +1 (DISASTER-RELATED), and
are used as seeds. Among the 9973 remaining unlabeled
documents, we know that there are 50 documents related
to other disasters (e.g., hurricanes and floods), 60 each for
crime, accidents and weather, although this information is
not passed to the disaster model learning algorithm. The
remaining 9743 unlabeled documents are randomly selected
news items from the FIRE corpus, some of which may be
related to disasters, crime, accidents or weather, but we do
not know which ones. The FIRE (Forum for Information
Retrieval Evaluation) corpus1 contains 392,577 English
news items from Indian newspapers such as The Telegraph
and BDNews.

Test News Dataset D3 This fully labeled dataset consists of
2537 news items, out of which 162 are labeled +1 (they are
related to several natural disasters) and 2375 are labeled −1.
Among the latter, 2225 news items (labeled −1) are from
the BBC news website (Greene and Cunningham 2006)
corresponding to stories in five topical areas (business,
entertainment, politics, sports and technology) from 2004-
2005, and 50 each are news related to crime, accidents and
weather.

Labeled Tweets Dataset D2 This dataset contains 1344
disaster related tweets (labeled +1) and 2696 non-disasters
tweets (labeled −1), among the latter 100 tweets related
to crime, 100 tweets related to accidents and 100 tweets
related to weather. The tweets were labeled manually by us.
The tweets labeled +1 were related to a variety of natural
disasters, such as avalanche, cyclone, drought, flood, forest
fire, landslide, tsunami, volcano as well as nuclear accidents
and biological disasters.

Unlabeled Tweets Dataset D4 Using the Twitter Streaming
API, we downloaded a corpus of 7,555,000 English
language tweets from 12 to 19 September 2016. All tweets
are unlabeled.

1http://fire.irsi.res.in/fire/data

http://fire.irsi.res.in/fire/data
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5.2 Results

We trained the algorithm learn disaster model on
dataset D1. We started with the following seed words:
disaster, die, death, ruin, earthquake,
quake, avalanche, landslide, cyclone,
famine, flood, forestfire, fire,
tsunami, volcano, H1N1, flu, ebola,
epidemic, outbreak, radiation, nuclear.
We fixed the values of the parameters as follows:
n0 = 2, n1 = 4, nD = 5, ninv = 10000, cnoun =
6, cverb = 39, window = 10, θ0 = 0.085, θ1 = 0.025.
This specific model (M1) contained 40 words. Some of the
words in the model (not present in the seed words) were:
aftershock, tremor, magnitude, rain,
storm, damage, kill, collapse. We used this
model to predict disaster related tweets on dataset D2,
which gave F = 0.703 (entry M1 in Table 2).

So far, these results do not use our transfer learning
algorithm. Next, we started with the model M1 (as created
by learn disaster model on D1) and used our transfer
learning algorithm augment model on D4, which led to
the addition of these words to the model erupt, lava,
#prayforkorea. We tested this augmented (transferred)
model on D2 (with θ1 = 0.025), which gave a higher F -
measure of 0.734, indicating the advantage provided by the
transfer learning even in the unsupervised setting (entry M2
in Table 2).

Note that the model M2 does not use any negative
models, such as the one for Accident. Hence, we started
with an initial seed list of 29 words for Accident (e.g.,
accident, crash, wreck, collide, sink,
drown, injure, die, capsize), trained on D1
with θ0 = 0.07, which resulted in a new model for
Accident containing 38 words. Then we transferred this
model to the tweets domain, using dataset D4, which
resulted in a model containing 43 words. Finally, we
used the model M2, along with this negative model for
Accident with θ1 = 0.07, to modify the predictions of
M2 as mentioned earlier on dataset D2 (entry M2b in

Table 2 Experimental results on dataset D2

Algorithm P R F

wordset expansion 0.535 0.051 0.092

NB iterative 0.753 0.434 0.551

transductive SV M 0.485 0.598 0.536

topic based 0.893 0.474 0.619

M1 0.804 0.625 0.703

M2 0.812 0.670 0.734

M2b 0.815 0.670 0.735

Table 2). Since this model M2b has a better performance
than M2, albeit only slightly, this validates our proposi-
tion that negative models have the potential to improve
the prediction accuracy by reducing false positives of the
Disaster model. As an example, the model M2 classifies
the tweet pakistan train crash deaths and
injuries reported collision kills at
least six people and injures more than
as class +1 (Disaster), but the model for Accident correctly
recognizes this tweet as belonging to the Accident class,
and hence it is not classified as Disaster by the model M2b.
Finally, Table 2 also shows the results obtained to predict
disaster related tweets on D2 using the various baselines
discussed earlier.

6 Online Modification of WordModel

6.1 Online Learning of Weights of Words

The word model obtained after the Model Transfer from the
news domain to the tweets domain is static in terms of the
words and also, no weight (i.e., importance) is associated
with the words in the model. There is a need for an online
learning algorithm that can dynamically adapt and modify
this model, to cope with the wide variety of text in the
incoming real-life tweets text, far wider than the limited
corpus from which the word model is learnt. The changes to
the word model are of three kinds: add new words, remove
older words or change the weights of the words already in
the model. In this section, we only examine the problem of
dynamically adapting the weights of the words in the model.

We define a weighted word model as a set of words with
a real number as a weight for each word: Mwt = {u1 :
w1, u2 : w2, . . . , un : wn}; here, wi ∈ R, and can be
positive, negative or even 0. Note that the model learnt
using the previous algorithm is not a weighted word model
i.e., it has no weights attached to any word. So we need
to first convert this model to a weighted word model. And
then we need to adapt this initial weighted word model
to cope with the variations in the text in the incoming
tweet stream. We use a common algorithm (algorithm
learn weights online) for both these purposes (Fig. 4),
which is a slightly modified version of the perceptron
algorithm.

The algorithm learn weights online takes a weighted
word model Mwt as input. It examines tweets in an
incoming stream in a sequential manner: if the incoming
tweet has a true label, then it modifies the weights of words
in the model (explained shortly), else it leaves the model
unchanged. For every incoming tweet t (which has a true
label y), the algorithm computes S which is the intersection
of t and Mwt . It then computes the sum of the weights of
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Fig. 4 Algorithm to learn weights of model words online

the words in S, as per Mwt . If this sum is positive then the
predicted label ŷ for t is +1, else it is 0. If the predicted
label does not match with the true label of t (i.e., y �= ŷ),
then the weights of only the words in S are modified by the
magnitude of learning rate γ (γ is constant and is given as
an input to the algorithm). If the weight of a word in Mwt

becomes negative, it indicates a word that whose presence
indicates some evidence of the tweet being a non-disaster
tweet.

Let M2 denote the word model learnt using the model
transfer algorithm. Since words in this model have no
weights, we assume that each word in it has weight 0. We
pass this initial weighted word model (with all weights 0) as
input to the algorithm learn weights online, along with a
finite dataset D5 of labeled tweets, where the ground truth
label for each tweet is the one predicted by M2 (along
with the negative models for Accident and Crime). Then the
output of this algorithm is a new weighted word model M3,
in which each word has a sensible weight. In this case, each
iteration of the algorithm processes all tweets in D5, and the
algorithm stops either after a maximum number of iterations
is reached or when there are very few weight updates. Note
that the algorithm includes an extra feature to capture bias
i.e., the intercept.

In the next stage, we use the same algorithm in the true
online setting, where the weights of the words in M3 keep
getting updated whenever it receives a tweet with a ground-
truth label. We could use some active learning strategy (such
as uncertainty sampling) to pick tweets for labeling by the
user at run time.

6.2 Baselines

For experimental validation, we will use the new
weighted word model (modified using the algorithm
learn weights online) to predict the class label for each
tweet in a test dataset. For comparison, we have created sev-
eral baseline methods, which also produce a class label for
each tweet in our test dataset.

The first baseline method wordpair similarity com-
putes the pairwise cosine similarity between each word in
a tweet and each word in the model M2, using the word
embeddings from GloVe (Pennington et al. 2014). Then
it selects top 5 word pairs, computes the average of their
cosine similarity and predicts class label +1 if this average
is above a given threshold and 0 otherwise. We searched for
several values of the threshold and report the best result.

We used Generalized Expectation Feature Labeling
(GEFL) (Druck et al. 2008) as another baseline. This
approach treats words in a document as features, and trains
the maximum entropy document classifier with expectation
constraints that specify affinities between words and class
labels. For each word in our model M2, we provided a
high probability value (0.9999) for that word belonging
to the class +1 and a low probability value (0.0001) for
that word belonging to the class 0. We then trained the
MaxEnt classifier using our labeled dataset, with these
probability values as constraints. To be fair, note that our
constraints refer to only the class +1; we have not provided
probabilities for any words outside the model (being too
numerous). We are not using any standard classifier as a
baseline, since we are working in an online setting.

As another baseline, we used the semi-supervised
Label Propogation algorithm (LPA) (Zhu et al. 2003). We
constructed a directed graph, where each word in a corpus
(only if it was present in WordNet) formed a vertex and
two words u, v were connected by two directed edges (uv

and vu), each labeled with the pairwise mutual information
(PMI) value between the two words computed from the
corpus. We added an edge between a word pair only if the
two words co-occurred in at least 5 tweets. We labeled the
vertices (corresponding to the 40 words from the model M2)
as +1 and we manually selected 40 non-disaster words and
labebeled the corresponding 40 vertices as −1. We used the
D5 corpus (explained below) to construct this graph, which
had a total of 11,755 vertices and 2,11,444 edges.
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6.3 Dataset for Online Learning

Unlabeled Tweets Dataset D5 This is a subset of 755,427
tweets randomly selected from D4. D5 is used for learning
the weights of words in the model M2 (phase 1 as discussed
above). For each tweet t in D5, we produce a ground-truth
label as follows: use model M2 to predict the label of t ; if
any of the negative models (say, for Accident) predicts label
+1 for t then we make the label of t as 0; else we keep the
same label as predicted by M2. Thus D5 is now a labeled
dataset (the labels are not ground truth, but are produced by
our algorithms). Since D5 is only used for initializing the
weights in the model, we have chosen not to use the entire
D4 dataset for this purpose.

Labeled Tweets Dataset D6 This is a separate, manually
labeled, dataset containing 2250 tweets, out of which 658
are disaster related tweets (labeled +1) and 1592 are non-
disaster tweets (labeled 0).

6.4 Experiments with Online Learning

As explained earlier, we start with the model M2 (in which
each each word has weight 0), and use the algorithm
learn weights online on D5 to create a new weighted
word model M3, with hyperparameter values as γ =
0.001, max iter = 200, min error count = 1. In
M3, some of the top and bottom words (with highest and
lowest weights) are: earthquake, damage, death,
disaster, and #prayforkorea. Thus M3 is the same
as M2. except that each word now has a weight.

Next, we use the algorithm learn weights online with
D6 and model M3 as input, with the same hyperparameter
values as above, to learn another model M4, in which
the weights of M3 are modified. We now use model
M4 to predict the class labels for the test dataset D7,
using the same prediction formula mentioned in algorithm
learn weights online. Baseline wordpair similarity is
used directly to predict class labels for tweets in D2 (we
report the best result for among various threshold values).
We train the GEFL baseline on dataset D6 (as explained
earlier) and use the trained MaxEnt classifier to predict
the class labels for the tweets in test dataset D2. We
also prepared the LPA model using the Label Propagation
algorithm, as explained earlier. Running the LPA algorithm
for 100 iterations and with ε = 0.00001, on the graph
constructed on D5 corpus, resulted in 192 vertices labeled
+1 (including the initial 40 vertices); we call this model
LPA. We used this word model to classify the tweets, as
explained earlier. Note that the performance of M3 and M4,
is better than all the three baselines (see Table 3). Note
also that M4 performs better than all models, M1, M2, M3,
indicating that the weighted version of the word model

Table 3 Experimental results for Online Learning on dataset D2

Model P R F

wordpair similarity 0.734 0.867 0.795

GEFL 0.333 1.0 0.499

LPA 0.647 0.464 0.541

M3 0.778 0.571 0.658

M4 0.901 0.810 0.853

works better. It also outperforms all the baselines. As seen,
there is a big jump in the accuracy of the models from M3
to M4, justifying our step of learning of the weights of the
words in the model.

So far, we have only tried to adapt the weights of the
words in the model, but we did not add any new words to
the model. We have also experimented with addition of new
words to the model using the following strategy. Suppose
we get a tweet t with a known ground truth (class label y),
which is misclassified by the current model. Then we add all
those words from t to the current model, with initial weight
= (y − ŷ) · γ , provided the words are not currently in the
model and each word satisfies our constraints as specified in
learn disaster model. The weights of these newly added
words then gets updated (as per the new model’s predictions
for subsequent tweets) just like any other word in the model.
We start with model M4 and simultaneously add new words
to the model and modify the weights of words in the model
to get another model M4b. Unfortunately, we found that the
word addition quickly diverges, and the model keeps getting
larger and larger. We are looking for a strategy (e.g., based
on word embeddings) which imposes a tight check on the
words before they get added to the model. One possibility is
to use similarity of a new word with the words already in the
model (e.g., using word embeddings). Another possibility is
to change the strategy for adding new words: add new words
only if y = 1 and ŷ = 0 i.e., focus on improving recall.

7 Conclusions and Further Work

In this paper, we proposed a weakly supervised algorithm
to learn a bag of words model for various disasters from
news corpus and then proposed a simple model transfer
algorithm that augments the news-based model from a
corpus of unlabeled tweets. Then we proposed a simple
online learning method to enhance this model in a dynamic
run-time setting. The proposed algorithms perform better
then several baselines based on semi-supervised learning
approaches. We also demonstrated the effectiveness of this
approach on completely unseen stream of tweets. The
learned model, being simply a bag of words, is easy for
humans to understand and modify.
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We are planning to use this approach to detect other
kinds of information, such as HIV/AIDS related tweets.
We are currently not allowing non-WordNet words to
enter into the model, which restricts the effectiveness of
the model, because tweets often contain domain-specific
words not present in WordNet including hashtags (e.g.,
H1N1, forestfire, ebola etc.). We need to lift this
restriction for wider applicability of this technique. Another
limitation of this approach is that the model structure is
very simple; we are investigating more complex model
structures to improve the performance. For example, one
can include phrases, rather than single words, in the model.
We have developed techniques (based on χ2-test and test
of proportions) to detect any decay in the importance of
words in the model (e.g., hashtags) over time. Online
learning setting here only modifies the word weights; we
are exploring an optimal way to add new words or drop less
useful words, based on emerging vocabulary. We are also
exploring other model modification mechanisms as well as
other online learning algorithms to modify the model on the
fly during operational deployment.
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