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Abstract Early breast cancer recurrence is indicative of poor
response to adjuvant therapy and poses threats to patients’
lives. Most existing prediction models for breast cancer recur-
rence are regression-based models and difficult to interpret.
We apply a Decision Tree algorithm to the clinical information
of a cohort of non-metastatic invasive breast cancer patients,

to establish a classifier that categorizes patients based on
whether they develop early recurrence and on similarities of
their clinical and pathological diagnoses. The classifier pre-
dicts for whether a patient developed early disease recurrence;
and is estimated to be about 70% accurate. For an independent
validation cohort of 65 patients, the classifier predicts correct-
ly for 55 patients. The classifier also groups patients based on
intrinsic properties of their diseases; and for each subgroup
lists the disease characteristics in a hierarchal order, according
to their relevance to early relapse. Overall, it identifies patho-
logical nodal stage, percentage of intra-tumor stroma and
components of TGFβ-Smad signaling pathway as highly rel-
evant factors for early breast cancer recurrence. Since most of
the disease characteristics used by this classifier are results of
standardized tests, routinely collected during breast cancer
diagnosis, the classifier can easily be adopted in various re-
search and clinical settings.
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Classifier . Stroma . TGFβ

1 Introduction

Following surgery, breast cancer patients often receive adju-
vant therapy for at least 5 years, as a precaution against re-
lapse. However, many patients experience therapeutic failure
marked by disease recurrence, in the form of local and region-
al relapses or distant metastasis (Carlson 2010). These recur-
rent disease lesions often occur within the period of adjuvant
therapy, and indicate that residual tumor cells do not respond
to adjuvant therapy or have weak responses (Carlson 2010). If
recurrence does not happen during the administration of adju-
vant therapy, the incidences of recurrence afterwards tend to
be sporadic (Carlson 2010; Brewster et al. 2008). These
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sporadic incidences are believed to be due to tumor cells
exiting dormancy over time. While late disease recurrence is
indicative of some levels of responses to the adjuvant therapy,
early breast cancer recurrence poses serious threat to patients’
lives. As such, methods that predict whether or not breast
cancer patients will develop early recurrence, using disease
attributes collected at the time of initial diagnosis, could prove
very useful to help determine disease prognosis and the mak-
ing of clinical decisions.

A widely-explored approach to develop prediction models
is to calculate an arbitrary prognostic score established by
multivariate regression models, using disease characteristics,
immunohistochemistry, gene expression profiles, alone or in
combination (Campbell et al. 2010; Galea et al. 1992; Zhang
et al. 2013; Barton et al. 2012; Parisi et al. 2010). While these
regression models are well curated, they also have a few lim-
itations. They take account of every case in the same manner,
even when dealing with highly heterogeneous populations.
Moreover, the good performance of a regression model de-
pends on carefully selecting relevant disease characteristics,
thus requiring extensive prior knowledge. In addition, it is not
always possible to interpret the contribution of individual
characteristics from the mathematical formula describing the
model. Finally, regression models yield either a score related
to an outcome or a probability of an outcome, rather than the
outcome itself. To overcome these limitations, we use an al-
ternative approach to build a Decision Tree classifier. The
classifier groups patients based on similar disease attributes
and outcomes, list the disease attributes in a hierarchical order
based on their relevance to the outcomes, and predict for the
status of whether or not a patient will develop early breast
cancer relapse.

The principle of a Decision Tree algorithm is to continu-
ously partition a group of heterogeneous examples, using the
values of several descriptors (feature attributes), to obtain sub-
groups that are homogeneous of pre-defined classes (class
attribute) (Lee and Hsu 1990; Quinlan 1993). As dividing a
group based on a feature attribute results in at least two sub-
groups, which are relatively more homogeneous than the pa-
rental group, a decrease in system disorder (or entropy) can be
calculated using a probability-based formula and denoted as
Information Gain. Partitioning the examples using a feature
attribute with higher Information Gain results in a better-
organized system with respect to the class attribute. As such,
Information Gain serves as a criteria to evaluate the relevance
between individual feature attributes and the class attribute
(Quinlan 1993; Mitchell 1997). The algorism iteration starts
by partitioning examples using the feature attributes that yield
the biggest Information Gain; and stops when a subgroup is
homogeneous or when the Information Gain of remaining
attributes falls below a certain threshold (Lee and Hsu 1990;
Quinlan 1993). This results in a tree-like structure with the
feature attributes showing as the Bbranches^ and the

subgroups showing as the Bleaves^. By tracing the feature
attributes of an incoming example, one can make a prediction
for the status of the target attribute of that example.

We were particularly interested in using a Decision
Tree classifier to study whether stroma percentage and
TGFβ signaling biomarkers are relevant to early breast
cancer recurrence. Piling studies using regression models
show that these factors have different or even contrasting
associations with breast cancer recurrence in subgroups of
patients. As such, their implications in breast cancer pa-
thology are context-dependent. However, these contexts
remain to be defined in a systematic manner. By grouping
patients based on their similar outcomes and disease char-
acteristics, a Decision Tree classifier is capable to achieve
this goal.

Stroma percentage in tumor core is an emerging prognostic
indicator for several types of cancer (Gujam et al. 2014;
Downey et al. 2014; Huijbers et al. 2013; Moorman et al.
2012; de Kruijf et al. 2011). In breast cancer, the prognostic
value of stroma percentage is context dependent. While high
stroma percentage is associated with shorter times of relapse-
free survival and overall survival in triple negative breast can-
cer patients (Moorman et al. 2012), it is associated with longer
times of relapse-free survival and overall survival among pa-
tients with ER+ breast tumors (Downey et al. 2014). In a
mixed population of various subtypes, intra-tumor stroma
loses its prognostic value, as determined by a multivariate
analysis (Ahn et al. 2012), likely because this method fails
to highlight differences within a highly heterogeneous
population.

The canonical TGFβ/Smad pathway is also implicated
in breast cancer pathology in a context-dependent manner
(Massague 2008; Lebrun 2012). In normal mammary
gland and early stage, low-grade breast carcinomas,
TGFβ functions to maintain homeostasis and this effect
is largely due to its growth-inhibitory and pro-apoptotic
functions (Mazars et al. 1995). However, in advanced-
stage breast tumors, TGFβ promotes aggressive behaviors
such as cell migration, cell invasion and homing at distant
metastatic sites (Muraoka et al. 2002; Padua et al. 2008).
Binding of the TGFβ ligand to its two serine/threonine
kinase receptors, results in the recruitment and subsequent
activation of specific downstream signaling molecules,
called Smads (Smad2, 3 and 4), which then translocate
to the nucleus to regulate gene transcription (Shi and
Massague 2003).

The Decision Tree classifier that we generated identifies
the status of lymph node involvement, intra-tumor stroma
percentage, and percentages of tumor cells expressing compo-
nents of TGFβ-Smad signalling to be highly relevant to the
status of early breast cancer relapse. It is estimated to be about
70% accurate, and correctly predicted for 55 out of 65 patients
in an independent validation dataset.
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2 Materials and methods

2.1 Dataset

The dataset contained the following types of information of
574 patients of non-metastatic invasive breast cancer who
received surgeries in the Leiden University Medical Center:
age, pathological grade, TNM (tumor, node, metastasis) stage,
local and systemic therapy, recurrence status (local, regional
and distant), time of recurrence following initial treatment and
overall survival. Tumor cores were subjected to Haematoxylin
and Eosin (H&E) staining for scoring percentages of intra-
tumor stroma by two investigators. In addition, percentages
of cells expressing the following factors were determined by
standard immunohistochemistry procedure: estrogen receptor
(ER), progesterone receptor (PgR), epidermal growth factor
receptor 2 (HER2) and Ki-67. A tissuemicroarray (TMA) was
constructed from tumor cores of these patients, subjected to
immunohistochemistry (IHC) and scored for percentages of
tumor cells expressing the following factors: TGFβ type I and
type II receptors (TGFΒR1 and TGFΒRII, respectively), nu-
clear Smad4 and nuclear phospho-Smad2.

Details on the patient cohort, methods of stroma percentage
scoring and materials and methods of IHC are reported in
previous studies (de Kruijf et al. 2011, 2013; Dekker et al.
2013). These procedures are in accordance with those listed
in REporting recommendations for tumour MARKer prog-
nostic studies (REMARK) (LM et al. 2005). Names and brief
descriptions of the attributes used are included in Table 1.

2.2 Decision tree

We defined the class attribute as the status of breast cancer
recurrence in the first 3 years after diagnosis (disease free or
tumor recurred). We arbitrarily chose this endpoint as these
patients had minimal benefit from adjuvant therapy.
Therefore, their disease outcomes help to predict for patients
who likely do not respond to adjuvant therapy.

We used 55 breast cancer disease characteristics as feature
attributes (Table 1). Most of them are well-established disease
characteristics, used by physicians worldwide to describe
breast tumors and form treatment plans such as pathological
grades, clinical stages and expression ofmolecular markers. In
addition, we also included several characteristics whose roles
in breast cancer recurrence are controversial, as determined by
linear regression methods. These characteristics include stro-
ma percentage in tumor core and percentage of cells express-
ing TGFβ signaling components.

We used Rapidminer 6.0 to implement the Decision Tree.
Rapidminer’s Decision Tree operator is derived from
Quinlan’s C4.5 Decision Tree (Quinlan 1993). We chose to
rank attributes based on Information Gain-Ratio. This is a
modified Information Gain method, which normalizes

Information Gains of all attributes to minimize bias towards
attributes that contain large numbers of unique values (distinc-
tive yet non-relevant information) (Mitchell 1997). We set the
minimum size of split as 4, minimum leaf size as 2, the min-
imum gain ratio to split with an attribute as 0.1. We grew the
tree for up to 10 steps and do post-pruning.

2.3 Estimation of accuracy

To estimate the accuracy of the Decision Tree classifier during
the building step, we coupled the model building process
with 2 different resampling validation methods: 10-fold
bootstrapping validation with a 0.9 sampling ratio and 10-
fold cross validation with stratified sampling. As such, these
two methods are comparable, that each round of repeating
validation uses 90% of the available data to build a model
and then uses the remaining to test the accuracy of the model.
Results show an estimated accuracy with standard deviation
obtained from the 10 slightly different models.

2.4 Validation after model building

In the model building process, we excluded a dataset of 69
patients with missing Smad4 values (Smad4 null). This
dataset served as an independent validation dataset, because
it was excluded from model building and estimation process-
es. We eliminated 4 patients in this cohort, as they died within
3 years of diagnosis but did not develop disease recurrence.
The prevalence rates of early breast cancer relapse in the orig-
inal cohort, in the cohort that we used to build the classifier
and in the Smad4 null cohort were comparable as 22.47%,
23.4% and 23.08%, respectively. Using the standard truth ta-
ble, we calculated the sensitivity, specificity, positive predic-
tive value (PPV) and negative predictive value (NPV) with
predictions for patients of this dataset.

3 Results

3.1 Data pre-cleaning

The original dataset contained missing values for every TGFβ
signaling components, due to tissue falling off from slides
during the immunohistochemistry process. To maximize the
utilization of real data in the algorism training process, we did
not fill missing values. Instead, we excluded 69 cases that had
missing values for nuclear Smad4 (Smad4 null), since this
attribute contained the most missing values. We then com-
bined local recurrence, regional recurrence and distant relapse
into one status, and defined the time of recurrence as the ear-
liest time when any of the recurrence event occurred.

We further eliminated 22 patients who did not develop
disease recurrence but died of non-breast cancer causes within
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Table 1 A list of 55 attributes used as inputs of the Decision Tree

Attribute Descriptions Type Used by classifier

age age numerical *

BR total score of grading (sum of BR_MAI, BR_duct and BR_kern) integer *

BR_duct percentage of duct integer

BR_kern nuclear atypia grade integer

BR_MAI amount of mitogen integer *

CARatio carcinoma ratio integer

cMstag clinical M stage integer

cNStag clinical N stage integer *

cNstag2 clinical nodal stage in 5 scales integer

CT chemotherapy binominal

cTStag clinical T stage integer *

cTstag2 clinical tumor stage integer

ER Estrogen Receptor (ER) status binominal

ER_percpos mean percentage of ER stained numerical *

ER10 histological status of ER, border is 10 binominal

ER80 histological status of ER, border is 80 binominal *

ExtC clinical tumor type (early or local advanced) binominal *

ExtP pathological tumor type (early or local advanced) binominal *

GR tumor grade (I, II and III) integer

GR_2 tumor grade (I/II and III) integer

Gra tumor grade (I/II and III) binominal

Her2 Her2 status(normal and overexpressed) binominal

Her2_M mean Her2 histological score of 3 cores numerical *

HT Hormonal therapy binominal

inv status of lymphangioinvasion binominal

IT Immunotherapy binominal

Ki67_0 histological score of Ki67, border is 0 binominal

Ki67_10 histological score of Ki67, border is 10 binominal

Ki67_5 histological score of Ki67, border is 5 binominal

Ki67_Mean mean of Ki67 numerical *

loct2 surgery type (mastectomy or breast-conserving surgery) binominal

loct surgery type with radiotherapy (MAST + RT, MAST-RT or BCS) polynominal

MAI_Gr mitogen grade integer

OK status of receiving surgery binominal

PgR status of Progestrone Receptor (PgR), 10% and above = positive binominal

PgR_percpos mean percentage of PgR stained numerical *

PgR10 histological status of PgR, border is 10 binominal

PgR80 histological status of PgR, border is 80 binominal

pMstag pathological M stage integer

pN2 pathological nodal stage on 2 scales binominal

pNStag pathological N stage integer

pNstag2 pathological nodal stage on 5 scales integer

pSmad2_nt_perc percentage of cells expressing nuclear phospho-Smad2 integer *

pT3 pathological T stage into 3 groups (T1, T2 and T3/4) integer

pTstag pathological T stage integer *

pTstag2 pathological tumor stage on 3 scales (pT1, pT2 and other) integer

RT radiotherapy binominal

smad4_perc percentage of cells expressing nuclear Smad4 numerical *

stroma_perc stroma percentage in the tumor core numerical *
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3 years. Data pre-cleaning resulted in a dataset of 487 exam-
ples with less than 10% missing values for nuclear Smad2,
TGFβ type I and type II receptors. The missing values of each
attribute were then filled with the average of known values of
that attribute.

We assigned one of the following attribute types to each of
the 55 feature attributes. Numerical attributes contain values
of real numbers. Nominal attributes contain values of a cate-
gory. Integer attributes, such as clinical and pathological
stages, are orderly nominal attributes and therefore also have
a numerical nature. Of the target attribute (3-year relapse), we
assigned a binominal value for each patient. Patients who
were disease-free received 0, and patients who developed re-
lapse received 1.

3.2 Performance of the decision tree classifier

We generated a Decision Tree classifier to predict for breast
cancer recurrence within 3 years of the initial diagnosis, using
a patient dataset containing information on clinical diagnosis,
pathological diagnosis, stroma percentage and expression
of TGFβ signaling components (Table 1). The Decision
Tree operator nested with bootstrapping validation or
cross validation generated similar tree structures and sim-
ilar estimated accuracy, even if the sampling methods dif-
fered. Table 2 shows the estimated accuracy, estimated
sensitivity (class recall) and estimated specificity (class
precision) of the classifiers. Furthermore, Bayesian
Boosting, which generated 9 additional tree structures ev-
ery round during model building to vote for consensus,
did not remarkably improve model accuracy (data not
shown). We also found that growing the tree to the depth
of 10 was ideal for this dataset. Neither growing the tree
deeper nor not pruning the tree changed the major struc-
ture of the tree (data not shown). Altogether, these results
suggest that the classifiers that we obtained captured major
properties of the dataset.

Figure 1 shows the decision tree validated by cross valida-
tion. The classifier presents patients in 66 leaves. Each leaf
represents a subset of breast cancer patients with similar dis-
ease characteristics. Even though 2 different leaves could have

the same patient outcome, each leaf is independent and can be
summarized with a distinct subset of attributes. As such, the
classifier grouped breast cancer patients into different subsets
based on their intrinsic properties.

Out of 66 leaves in total, 60 leaves contained patients
only with or only without recurrence (no mix), indicating
that in most cases, the combined attributes that describe a
group of patients were sufficient to predict for a finite
outcome. Six leaves contained mixed populations of pa-
tients, indicating that for these subgroups, additional attri-
butes are required to further distinguish the disease-free
and disease-recurred status.

Independent validation of the classifier’s performance
was achieved using a set of 65 patients for whom the values
for the Smad4 attribute were missing. In the event that a
prediction process reaches a branch with a missing Smad4
value (or any other missing value), the classifier assigned the
consensus results of all lower branches as the final predic-
tion. Interestingly, the classifier predicted correctly for 55
out of the 65 patients, an accuracy of 85%. Table 3 summa-
rizes the predictions, sensitivity, specificity likelihood ratios
and predictive values. For the disease-relapsed status, the
classifier achieved 40% sensitivity (95% CI: 16.43% -

Table 1 (continued)

Attribute Descriptions Type Used by classifier

Surg type of surgery (mastectomy or conserving surgery) binominal *

T_type tumor type (ductal, lobular and other) polynominal

T_Type2 tumor type in 2 status(ductal and other) binominal

T2 tumor stage in 2 status (T1/2 and T3/4) integer

TGFRI_perc percentage of cells expressing TGFbRI numerical *

TGFRII_perc percentage of cells expressing TGFbRII numerical *

The Decision Tree classifier identified 19 of them to be relevant to early breast cancer recurrence (marked with asterisk)

Table 2 Estimated accuracy of the decision tree classifier

true disease-free true recurred Precision

predicted disease-free 298 77 79.47%

predicted recurred 75 37 33.04%

Recall 79.89% 32.46%

Cross Validation: 68.8−/+6.3% mikro 68.79%

predicted disease-free 1183 297 79.93%

predicted recurred 333 178 34.83%

Recall 78.03% 37.47%

Bootstrapping Validation: 68.28−/+4.63% mikro 68.36%

The accuracy of the classifier was estimated with cross-validation (top)
and with bootstrapping validation (bottom). For each class, the perfor-
mance was also evaluated with Precision (percentage of the predictions
that are correct) and Recall (percentage of an outcome that is correctly
predicted)
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67.67%). For the disease-free status, the classifier achieved
92% specificity (95% CI: 80.75% - 97.73%). Respectively,
these values are notably higher than the penetrance (23.08%)
and percentage of disease free patients (76.92%). These re-
sults suggest that the classifier was capable of distinguishing
disease outcomes for most patients in the independent vali-
dation set.

3.3 Pathological nodal stage, stroma percentage
and TGFβ signaling are predictive attributes of early
breast cancer recurrence

Among the 55 attributes that we used, the Decision Tree clas-
sifier selectively presented 20 disease attributes on 9 levels.
These attributes are marked with an asterisk (*) in Table 1.

Fig. 1 Structure of the Decision Tree classifier. A cohort of 483 patients
was continuously divided into 67 subgroups, based on intrinsic
similarities of their diseases. The branches of the tree showed the

disease characteristics used to divide the patients. And each subgroup
was labeled with the outcomes of the patients 3 years after diagnosis: 1
as recurrence and 0 as disease-free

Table 3 Predictions for the
Smad4 null dataset (top) and a
truth table showing the perfor-
mance of this prediction (bottom)

Predictions:

true disease-free true recurred

Predicted disease-free 46 6

Predicted recurred 4 9

Results:

Sensitivity 40.00% 95% CI: 16.43% - 67.67%

Specificity 92% 95% CI: 80.75% - 97.73%

Positive Likelihood Ratio 5 95% CI: 1.62–15.42

Negative Likelihood Ratio 0.65 95% CI: 0.43–0.99

Positive Predictive Value 60% 95% CI: 26.37% - 87.6%

Negative Predictive Value 83.64% 95% CI: 71.19% - 92.22%

Prevalence: 23.08%
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The structure captured several well-documented traits of
breast cancer recurrence. The first attribute used to divide
patients was the status of lymph node involvement (pN2),
highlighting lymph node positivity as the most relevant attri-
bute to early breast cancer recurrence. The classifier splits
patients into 2 groups; defined as pN2 = 0 (not spreading to
lymph node) and pN2 = 1 (containing all patients with lymph
node involvement, regardless of the level of involvement).
This is highly consistent with clinicians’ emphasis on lymph
node involvement when making prognosis for breast cancer
recurrence.

In addition, we also observed that stroma percentage
(Fig. 1, stroma_perc) was the only secondary attribute
appearing on both branches, following the division based on
pathological node status. This indicates that, alongside lymph
node status, stroma percentage was an utmost relevant attri-
bute for all cases. For both branches, the classifier divided
patients into multiple groups based on stroma percentage,
suggesting that tumor-stroma interaction levels define differ-
ent subgroups of breast tumors, with respect to early breast
cancer relapse. Notably, the classifier identified a subgroup of
11 disease-free patients who had no lymph node involvement
(pN2 = 0) and low stroma percentage (stroma_perc = 0% or
10%). This is consistent with the notion that patients with low
grade, well-encapsulated tumors tend not to develop early
relapse (Esposito et al. 2009).

Aside from lymph node status and stroma percentage, the
classifier also highlighted several molecular characteristics,
commonly used in the clinic for defining breast cancer sub-
types and prognosis, as being determinant for status of early
breast cancer relapse. These include the Estrogen Receptor α
(ER_percpos), Progesterone Receptor (PgR_percpos), HER2,
Ki67 (Ki67_Mean) and clinical tumor stage (CTstag) (Table 1
and Fig. 1). In multiple branches of the tree structure, we also
found TGFβ receptors (type I and type II) as well as nuclear
Smad4 and phospho-Smad2. In particular, TGFβ receptor II
and Smad4 were the third level attributes of their respective
branches. These results highlight the subgroup-specific prog-
nostic values of TGFβ signaling components. Equally impor-
tantly, these results also indicate that TGFβ signaling compo-
nents are better attributes than many of the commonly used
clinical criteria (those not shown in the tree, Table 1) when
predicting for early breast cancer relapse.

4 Discussions

In this study, we took a data mining approach to generate
a Decision Tree classifier that can predict for breast can-
cer relapse status within the first 3 years following diag-
nosis. The tree classified patients into disease-free or
disease-relapsed categories. The tree subdivided patients,
using disease characteristics that display a defined and

relevant threshold for disease recurrence (Information
Gain Ratio = 0.1), and listed these characteristics in hier-
archy order. As such, the model building process was also
a Bfeature selection^ process that helped identify impor-
tant disease characteristics.

The classifier identified pathological nodal status as the
most relevant feature to disease recurrence. While we sup-
plied 3 different ways to categorize lymph node statues to
the algorism, including pN2 (binary attribute of lymph
node involvement), pNstag2 (integer attribute denoting
pN0, pN1, pN2, pN3 and pNx), pNstag (integer attribute
further subdividing each pNstag2 stage), the Decision
Tree classifier identified pN2 as the only attribute among
the three that was relevant to early breast cancer relapse.
This indicates that, lymph node involvement is relevant to
predicting early breast cancer relapse, independently, of
the number of nodes involved. This is also highly consis-
tent with the longstanding notion that pathological lymph
node status is the most significant predictor of breast can-
cer recurrence (Aubele et al. 1995). As such, this fact
validates the capacity of the Decision Tree classifier to
identify and hierarchically present important features in
our dataset.

Stroma percentage showed as the only second level attri-
bute of all branches while TGFβ signaling components
showed in various branches on lower levels. Current literature
suggests that stroma percentage and TGFβ signaling compo-
nents are relevant to breast cancer recurrence, but their predic-
tive values differ, or even contrast, depending on the context.
The Decision Tree classifier not only identified these attributes
to be highly relevant, but also provided detailed description of
the individual contexts.

With respect to the model performance, the classifier
achieved over 80% precision for predicting a disease-free
status, but only 34.15% recall for predicting early recur-
rence. This suggests that additional attributes are needed to
better describe patients with early recurrence. Potentially,
including immunohistochemistry scores of additional on-
cogenic or tumor suppressive signaling pathways, such as
those of PI3K-AKT-mTOR, EGFR, p53 or Rb, could im-
prove the classifier.

Nevertheless, the performance is comparable and potential-
ly better than existing methods. For the Smad4 null indepen-
dent validation set, the Decision Tree classifier predicted cor-
rectly for 85% of the patients in the Smad4 null validation set.
In particular, 40% of the patients predicted to have early re-
lapse within 3 years indeed had relapse. By comparison, an-
other study using the Breast Cancer Index (BCI), a well-
curated method to predict outcomes for ER+, lymph node
negative (LN-) patients, classified patients in 3 groups of in-
creasing risks of distant recurrence; using a combination of
HOXB13:IL17BR gene expression ratio and molecular grade
index (Jerevall et al. 2011; Ma et al. 2008). In 2 different
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patient cohorts, the estimated percentage of patients classified
into high-risk group by BCI, and developed distant relapse
within 5 years are 2.6%–21% and 14.6–33.3%, respectively
(Zhang et al. 2013). BCI and the Decision Tree classifier have
different advantages. BCI is capable of predicting for distant
relapse and overall survival for various endpoints, but only for
ER+, LN- patients. The Decision Tree classifier can be applied
to all types of patients but predicts for 3-year relapse as its
current design stands. However, predicting for other endpoints
can be easily done, as it only requires creating a new target
attribute for that endpoint. As such, the Decision Tree classi-
fier could potentially be a powerful prognostic tool.
Especially, the classifier can be easily adopted in different
academic and clinical settings, as the attributes that we used
are empirical and easy to assess. All nominal attributes, such
as stage and grade, are assessed based on established quanti-
tative methods in clinical practice at the time of diagnosis. All
numeric attributes are established from quantitative immuno-
histochemistry staining.

In summary, we generated a Decision Tree classifier that
hierarchically organizes breast cancer disease characteristics
based on their relevance to early breast cancer relapse. One
can easily trace down the tree structure to obtain the descrip-
tion of the intrinsic similarity of each subgroup of patients.
The classifier also highlights the prognostic values of patho-
logical nodal status, stroma percentage and TGFβ signaling
components. To our knowledge, this is the first Decision Tree
model that utilizes standardized disease characteristics that
can be easily obtained by different clinics.
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