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Abstract In this paper we present Andromeda, a system for
processing queries and updates on large XML documents.
The system is based on the idea of statically and dynamically
partitioning the input document, so as to distribute the com-
puting load among the machines of a MapReduce cluster.

Keywords XML · Cloud computing · Map/Reduce

1 Introduction

In the last few years cloud computing has attracted much
attention from the database community. Indeed, cloud com-
puting architectures like Google Map/Reduce (Dean and
Ghemawat 2004) and Amazon EC2 proved to be very scalable
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and elastic, while allowing the programmer to write her own
data analytics applications without worrying about interpro-
cess communication, recovery from machine failures, and
load balancing. Therefore, it is not surprising that cloud
platforms are used by large companies like Yahoo!, Face-
book, and Google to process and analyze huge amounts of
data on a daily basis.

The advent of this novel paradigm is posing new chal-
lenges to the database community. Indeed, cloud computing
applications might also be built upon parallel databases,
that were introduced nearly two decades ago to manage
huge amounts of data in a very scalable way. These sys-
tems are very robust and very efficient, but for the following
reasons their adoption is still very limited: (i) they are very
expensive; (ii) their installation, set up, and maintenance are
very complex; and, (iii) they require clusters of high-end
servers, which are more expensive than cloud computing
clusters.

In this paper we present the formal specifications,
implementation details, and experimental results about
Andromeda, a system for processing queries and updates
on very large XML documents, usually generated and pro-
cessed in contexts involving scientific data and logs (Choi
et al. 2012). Andromeda supports a large fragment of
XQuery (Boag et al. 2010) and XUF (XQuery Update Facil-
ity) (Robie et al. 2011), and exploits dynamic and static
partitioning of input documents in order to distribute the
processing load among the machines of a Map/Reduce clus-
ter. The proposed technique applies to a class of queries and
updates called iterative.

1.1 System Overview

The basic idea of our system is to dynamically and/or stat-
ically partition the input data to leverage on the parallelism
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of a Map/Reduce cluster and to increase the scalability. The
architecture of our system is shown in Fig. 1, and described
next.

Andromeda supports the execution of iterative XQuery
queries and updates, i.e., queries and updates that i) use
forward XPath axes, and ii) first select a sequence of sub-
trees of the input document, and then iterate, on each of the
subtrees, the same operation.
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Fig. 1 Andromeda system architecture

As an example of iterative query, consider the fol-
lowing query on XMark documents (Schmidt et al.
2002) (assume $auction is bound to the document node
doc(“xmark.xml”)).

for $i in $auction/site//description

where contains(string(exactly-one($i)), “gold”)
return $i/node()

The query iterates the same operation on each subtree
selected by $auction/site//description and, hence, is
iterative.

This property is enjoyed by many real world queries:
for instance, in the XMark benchmark 13 out of the 20
predefined queries are iterative.1 Non iterative queries are
typically those performing join operations on two indepen-
dent sequences of nodes of the input documents, although
iterative queries may perform join operations, as in:

for $i in $auction/site//description,

$x in $i//keyword,

$y in $i// listitem

where $x = $y

return x

Iterative updates are also of practical interest and char-
acterized in the same spirit, and include the wide class
of updates that modify a sequence of subtrees, and such
that each delete/ rename/insert/replace opera-
tion does not need data outside the current subtree. As an
example of iterative update, consider the following one:

for $x in $auction/site/regions//item/location

where $x/text () = “United States”
return (replace value of node $x with

“USA”)

This update iterates over location elements and replaces
each occurrence of “United States” with “USA” and does
not require information outside the subtrees rooted at
location elements.

The following update, instead, is not iterative as it
accesses all description elements (in the if clause), but
deletes nodes in a distinct fragment of the input document.

if $auction//description//text () = “word”
then delete nodes

$auction/site/regions/australia//item

Andromeda handles query and update execution as fol-
lows. When a user submits a query or an update to the sys-
tem, the STATIC ANALYZER parses the input query/update
to extract the information required for checking the itera-
tive property, and for partitioning the input document D.

1Queries from Q1 to Q5, and from Q13 to Q20 are iterative.
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This information is essentially the set of paths used in the
query/update, enriched with details about bound variables. It
is passed to the PARTITION MANAGER, which uses it to cre-
ate, from the input document, a set of subdocuments called
parts. These parts are well-formed XML documents that are
independently processed by multiple instances of the query
processor to generate the final result.

To illustrate, consider the following iterative query:

for $x in /a, $y in $x/b

where $y/c/d

return < res >$y/c/e < /res >

For this query the STATIC ANALYZER extracts the fol-
lowing set of paths:

{ /a{f or x}, /a{f or x}/b{f or y},
/a{f or x}/b{f or y}/c/d, /a{f or x}/b{f or y}/c/e}
The set of paths inferred by the STATIC ANALYZER com-

prises the paths contained in the for, where, and return
clauses; however, for the sake of simplicity of the formal
approach, only paths used in for iterations are taken into
account as possible partitioning paths.

The STATIC ANALYZER processes theses paths and iden-
tifies /a/b as the path on which the query iterates; this path,
called partitioning path, is used during the partitioning pro-
cess to appropriately build documents parts, and to ensure
that information that should not be split among multiple
parts is kept in the same part. Intuitively, if a node matches
the partitioning path, then the subtree rooted at this node is
required to be kept entirely in a single part. This indivisibil-
ity property is necessary to distribute the evaluation of the
query over the document parts and recover the result of the
query over the input document by a simple concatenation.

In the case of updates, the STATIC ANALYZER works
in a similar way. The system distinguishes between sim-
ple updates, i.e., updates consisting of a single delete,
rename, insert, replace operation without for-iter-
ations, and updates containing iterations. As in the case of
queries, partitioning paths are used to recognise subtrees
that should not be split. Again, this indivisibility property is
necessary in order to ensure semantics preservation once the
update is distributed over the elements of the partition.

When a document is partitioned for the first time, the
PARTITION MANAGER uses the partitioning paths to per-
form the actual partitioning. It also computes the input
document DataGuide (Goldman and Widom 1997), which
serves to check if an existing partition can be reused for a
newly issued query or update. During the partitioning pro-
cess, parts are encoded as EXI (Efficient XML Interchange)
files2 through the streaming encoder of Exificient (2015)

2EXI is a binary format, proposed by the W3C, for compressing and
storing XML documents.

to significantly reduce the storage space required and, most
importantly, to cut network costs.

The MapReduce-based query/update evaluation proceeds
as follows. Once the STATIC ANALYZER has extracted path
information from the input query/update, and the PARTI-
TION MANAGER has found an existing partition or created a
new one for processing the query/update, parts are assigned
to mappers for query/update processing.

When processing a query, each mapper not only receives
the address of each assigned part, but also the paths
extracted by the STATIC ANALYZER, to further optimize
query evaluation by projection/pruning. The query is exe-
cuted on each pruned part by a local instance of Qizx-open
(2013), a main-memory query engine, which exports the
results, encoded in XML format, to the distributed file
system.

When processing an update, each document part must
be kept whole and thus projection/pruning is irrelevant.
The local instance of Qizx-open executes the update on
each part, and stores the updated part in the distributed file
system, encoded in the EXI format.

The query/update evaluation final step constructs the
result from the partial ones. This step works a bit differently
for queries and updates. Indeed, partial results of a query are
simply concatenated, while partial results of an update must
be merged.

Paper Outline The paper is organized as follows. Section 2
introduces preliminary definitions over which we develop,
in Section 3, the static analysis for iterative queries and
updates. Section 4 is dedicated to the presentation of the
partitioning algorithms for iterative queries and updates as
well as the final result construction. For sake of simplicity,
this is done in a DOM-oriented fashion although the actual
implementation of these algorithms complies with a SAX-
based streaming approach presented in Section 5. Section 6,
next, describes and analyzes the experiments that have been
performed in order to validate these algorithms. The paper
concludes with a discussion on related works in Section 7.

2 Preliminaries

Following (Benedikt and Cheney 2009), we represent an
XML document as a store. Figure 2 describes a store σ asso-
ciated to an XML tree3 in order to illustrate the following
notions. A store σ associates to each node location (iden-
tifier) l either an element node a[L] or a text node text[s].

3In the following, we will use XML tree to denote any rooted, well-
formed XML document, while XML forest will denote a collection of
rooted, well-formed XML documents.
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When σ(l)=a[L] (also written l ← a[L]∈σ ), a is the node
element tag and L=(l1, . . . , ln) is the ordered sequence of
the child locations for l. When σ(l)=text[s] (also written
l ← text[s]∈σ ), s is the textual content of the text node.
For instance, the XML tree of Fig. 2 would be represented
by a store containing a location l1, describing the tree root,
locations l2, l3, and l4, describing root children, etc.

An XML tree t is a pair (σ, lt ), where lt is a distinguished
location in σ which is associated to the root element of the
XML tree. We denote by dom(σ ), resp. dom(t), the set of
locations of the store σ , resp. of the tree t . Given a location
l∈dom(σ ), σ@l denotes the subtree of σ rooted at l. For
simplicity, for t=(σ, lt ), we abusively use t instead of σ and,
write l ← a[L]∈t instead of l ← a[L]∈σ .

In order to compare query and update results, we need
to define the notion of equivalence among XML trees. Two
trees t and t ′ are equivalent, denoted t ≡ t ′, iff they are
isomorphic, i.e., they possibly differ only in terms of loca-
tion names. When σ and σ ′ are forests, i.e., collections
of XML trees, and L=(l1, . . . , ln) and L′=(l′1, . . . , l′n) are
sequences of locations, we write (σ,L) ≡ (σ ′,L′) to state
that σ@li ≡ σ ′@l′i , for i=1 . . . n. Finally, when σ and σ ′
have no common location, the concatenation (σ,L) ·(σ ′,L′)
is the store defined by (σ ∪σ ′, (L,L′)), where L,L′ denotes
the concatenation of L and L′.

Below, () denotes the empty sequence of locations, while
{L} denotes the set of locations of the sequence L. We say
that L′ is a projection of L, denoted L′ � L, when L′ is
a subsequence of L. For instance, l1, l3 � l1, l2, l3, while
l3, l1 �� l1, l2, l3.

Definition 1 (XML Projection) A tree t ′=(σ ′, lt ′) is a pro-
jection of a tree t=(σ, lt ), noted as t ′ � t , if lt ′=lt , and for
each location l∈dom(σ ′):

l ← a[L′]∈σ ′ ⇒ (l ← a[L]∈σ ∧ L′ � L)

Note that projection preserves tree root and that the
projection of a tree is obtained by pruning some of its sub-
trees. Figure 2 shows a projection of a simple XML tree
and its associated store. Projection is used to define XML
partitions.

Definition 2 (XML Partition) A collection {t1, . . . , tκ} of
trees is a partition of a tree t if we have ti � t , for each tree
ti and for each location l∈dom(t):

l ← text[s]∈t ⇒ ∃ ti . l ← text[s]∈ti
l ← a[L]∈t ⇒ {L}= ⋃

l←a[Li ]∈ti

{Li}

An element of the partition, for instance the tree ti , is
called a part, and is a projection of t . Properties above say
that each text node has to belong to at least one part, and that
element nodes are partitioned such that no child is left out.
Figure 3 shows two partitions of the document in Fig. 2.

Since we have defined the formal representation of XML
documents, and introduced the notions of XML projection
and XML partition, which form the theoretical foundations
of our approach, we are now ready to describe the query and
update languages supported by our system.

2.1 Queries

We use the fragment of XQuery described by the grammar
below. It comprises for, let, and return clauses as well
as if-then-else statements, and allows one to spec-
ify self , child, and descendant − or − self XPath axes
(Berglund et al. 2010). Next, descendant − or − self is
abbreviated by dos.

Queries Q ::= () | Q,Q | <a>Q</a> | Exp |
|if (Q) then Q else Q

|for x in Q return Q

|let x := Q return Q

XPath expressions Exp ::= x | x/Step | /Step

Step expressions Step ::= Axis :: NT
Axis Axis ::= self | child | dos
Node tests NT ::= a | node() | text()

In this grammar, we only consider queries in canonical
form; this means that any clause of the form

for x in /a/b/c

Fig. 2 Representation of XML
trees as stores and projection
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Fig. 3 Two possible partitions
of the XML tree t in Fig. 2
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is represented as

for x in /a

return for y in x/b

return for z in y/c

In the following, we say that a query is well − f ormed

if and only if i) it does not contain free variables (i.e.,
variables with no corresponding let/for binders), and
ii) no variable name is used twice in for-let bind-
ings. Property i) ensures that well − f ormed queries
start navigating documents from their root: for instance,
for y in x/Step return Q is not well − f ormed,
while for y in /Step return Q is. Property ii) sim-
plifies the formal treatment, and can be always obtained by
α-renaming.

In this work, we focus on queries working on a sin-
gle document. Indeed, multiple document queries are
likely to be not iterative, and their treatment goes far
beyond the scope of this paper. Also, we focus on
for/let expressions using element construction only on
the return clause of a for/let expression, as hap-
pens in most practical cases (e.g., all XMark queries are of
this form, provided that in some queries let bindings are
inlined).4

The evaluation of a query Q on an input tree t=(σ, lt ),
denoted by Q(t), yields a pair (σQ,LQ), where the store
σQ is a forest which extends the initial store σ with the
new nodes built by Q, while LQ is the sequence of loca-
tion nodes returned by the query and defined in σQ. Due to
lack of space, we do not report here formal semantics of this
XQuery fragment (a concise and elegant formalization can
be found in Benedikt and Cheney (2009)).

2.2 Updates

Concerning updates, we address XQuery update expres-
sions obeying the following grammar, where Q refers to the
query grammar of the previous section, and ε denotes the
empty path. The resulting language is a significant fragment
of XUF and comprises for, let, and return clauses,
as well as the if-then-else conditional statement. The

4For instance, inlining is needed for Q10.

language also supports all elementary XUF update expres-
sions (delete, insert, rename, and replace).

Path P ::= ε | Step/P
Target Path Ptg ::= /P | x/P
Simple Query Qs ::= ()|b |/P| x/P|<a>Qs</a>| Qs ,Qs

Target Position Pos ::= as first into | as last into
| before | after

Node Case N ::= node | nodes
Updates U ::= deleteN Ptg

| renameN Ptgas a
| replaceN PtgwithQs

| insertN QsP osPtg

| U,U

| if Q then U else U

| for x in Q return U

| let x := Q return U

The main restrictions on updates are the following:

– simple query expressions Qs , used as source expres-
sions in replace/insert, can only use element and
sequence construction, plus path navigation to select
nodes in the input document;

– query expressions Q used in for/let and conditional
updates are defined by the query grammar.

As already said, these restrictions have the purpose
of ensuring a smooth formal characterization of iterative
updates. At the same time, our update language is expressive
enough to cover most of the needs of practical scenarios. For
instance, several update expressions used in W3C XQuery
Update Facility 1.0 (Robie et al. 2011) strictly respect the
syntax of our update language, while other updates use
function calls, conditions, and arithmetic operations that are
not supported by our grammar. However, as we will illus-
trate, our approach can be easily extended to deal with
these mechanisms by means of simple query rewritings.
As other examples, all update expressions used in Baazizi
et al. (2011) and Bidoit et al. (2013) meet our restrictions.
Examples of basic and complex (e.g., nested updates inside
query iterations) expressions are shown below, where /a

abbreviates /child :: a.

U1 = delete nodes $doc/a/f

U2 = insert node <n/> as first into
$doc/a/b

U3 = rename node $doc/a/f as “new”
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U4 = for $x in $doc/a/b

return insert node <m>“toto”</m>

after $x

Due to lack of space, we do not report the formal seman-
tics of update expressions. An elegant formalization can be
found in Benedikt and Cheney (2009).

3 Iterative queries and updates

The purpose of this section is to formally characterize itera-
tive XQuery queries and updates, and prepare the reader to
the presentation of the partitioning algorithms of Section 4.
For both queries and updates, the iterative property is
defined based on extracting relevant paths from the input
query or update. Intuitively, these paths capture the traver-
sals that are necessary for evaluating the query/update.
These paths are central to our approach as they are analysed
(i) for checking the iterative property, and also used (ii) for
partitioning and, possibly, projecting the input document.

Extracted paths obey the following grammar:

P ::= ε | /S | P/S S ::= Step | Step{f or x}
where ε denotes the empty path.

Intuitively, for a query Q, if a path P′{f or x}/P′′ is
extracted from Q, then it indicates that a subquery of Q has
the shape for x in Q1 return Q2, where P′ is extracted
from Q1, and P′′ is extracted from Q2, as a suffix of P′.

Variable information ({f or x}) is important to iden-
tify iterative queries/updates and partitioning paths, while
ignored for the purposes of partitioning and projection.
Thus, in the following ErV(P) denotes the path obtained
from P by removing any variable information.

Definition 3 ErV(P) Given an extracted path P, ErV(P) is
defined as follows:

ErV(P) =
⎧
⎨

⎩

P ifP = ε

/strip(S) ifP = /S

ErV(P′)/strip(S) ifP = P′/strip(S)

strip(S) =
{

S if S does not end with {f or x}
S ′ if S = S′{f or x}

3.1 Iterative queries

Path extraction for queries captures query navigation and is
used to determine, for a given query Q if it is possible to
split any input document t into a collection {t1, . . . , tκ}, so
that Q(t) ≡ Q(t1) · . . . · Q(tκ).

Our path extraction approach, defined by means of the
function Eq(Q, �, m) of Fig. 4, resembles that of Marian
and Siméon (2003) and Benzaken et al. (2006), although
paths extracted according to Eq(Q, �, m) carry a richer

information, i.e., variable information. This function takes
as input a query Q, a variable environment �, and a flag m,
and returns a set of path extracted from Q and enriched with
variable information.

For queries of the form for x in Q1 return Q2 (rule
11), the function first extracts paths from Q1; they are then
enriched with variable bindings and added to the environ-
ment � used for the recursive extraction of paths from Q2.5

In particular, � is used to associate the paths to each free
occurrence of the variable x in Q2 (rules 4 and 5). Rules for
let expressions are similar, except that they do not keep
track of variable information.

In these rules, we use a bivalued flag m to distinguish
between subqueries that generate fragments of the result for
the outer query (m=1) and subqueries that are only used
for binding variables or filtering results (m=0). This dis-
tinction is introduced because extracted paths are also used
for projection, so it is important to know in which case a
subtree selected by a path must be kept in the projection.
When m=1, the terminal rules 5, 7, and 9 extend extracted
paths with a dos :: node() step, so as to capture the fact that
descendants of nodes selected by the extended paths must
be projected.

Please, observe that paths without variable information,
as those returned by ErV(P), could be directly computed by
removing, from rules 3, 4, 5, 8, 9, 10, and 11 of Eq(Q, �, m),
any occurrence of {f or x}.

Example 1 Consider the following query Q:

for x in /a return for y in x/b return(y/d, y/e)

Paths are extracted from Q by evaluating Eq(Q,∅, 1), and
are reported below:

P1 = /a{f or x} P2 = /a{f or x}/b{f or y}
P3 = /a{f or x}/b{f or y}/d/dos :: node()
P4 = /a{f or x}/b{f or y}/e/dos :: node()

Intuitively, the issue here is to discover, from the
extracted paths, if the query could be evaluated by first i)
selecting a sequence L of nodes in the input XML tree, and
then ii) iterating, in isolation, the same subquery over the
subtrees rooted at these nodes. This sequence L should be
selected by a path extracted from the query. For an iterative
query, there may be more than one such path.6 These paths
are called candidate partitioning paths because they are also
used to partition the XML tree. Below, we say that the path

5In Rule 11, Eq(Q1, �, 0){f or x} is a shorthand for {P {f or x} | P ∈
Eq(Q1, �, 0)}.
6The iterative property definition is based on the query syntax and does
not deal with query rewriting issues which are beyond the scope of this
article.
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1 Eq m 2 Eq Q1 Q2 m Eq Q1 m Eq Q2 m

3 Eq l Q m P f or x P f or x Eq Q 1

4 Eq x 0 P f or x P f or x 5 Eq x 1 P f or x dos :: node P f or x

6 Eq P 0 P 7 Eq P 1 P dos :: node

8 Eq x P 0 P f or x P P f or x 9 Eq x P 1 P f or x P dos :: node P f or x

10 Eq Q Q1 Q2 m Eq Q 0 Eq Q1 1 Eq Q2 1

11 Eq x Q1 Q2 m Eq Q1 0 f or x Eq Q2 m where P f or x P Eq Q1 0

12 Eq x : Q1 Q2 m Eq Q1 0 Eq Q2 m where P P Eq Q1 0

Fig. 4 Path extraction for queries

P∈Eq(Q) is maximal if no other path in Eq(Q) contains P as
a prefix. In the following, unless otherwise noted, we will
use Eq(Q) as a shorthand for Eq(Q,∅, 1).

Definition 4 (Candidate Partitioning Paths) The set of
candidate partitioning paths for a well − f ormed query Q,
denoted Cand(Q), is defined as the set of paths ErV Pcand

with Pcand∈EqQ satisfying:

(i) Pcand is of the form P0{f or x};
(ii) Pcand does not contain text() node-test conditions;

(iii) for each maximal path P′∈Eq(Q), ∃P′′ |
P′=Pcand/P′′.

Condition (i) states that each candidate path is used
for iterating a sub-query. Condition (ii) rules out candi-
date paths that would iterate on text nodes (as in the query
for x in /dos :: text() return Q′).7 Condition (iii) is
the most important one: the restriction on maximal paths
is needed since, otherwise, the minimal common prefix of
Eq(Q) paths would be the only candidate.

Going back to Example 1, ErV(P1) and ErV(P2) are
candidate paths, while ErV(P3) is not, as it violates condi-
tions (i) and (iii) wrt P4. Note that, if we alter the query
by considering a new return clause return (x/child :: d,
y/child :: e), then the only candidate path is ErV(P1).

Clearly, in order for a query Q to be iterative, there
must be at least one extracted path of the query identifying
the sequences of nodes over which the same sub-query is
iterated. This is reflected in the following definition.

Definition 5 (Iterative Queries) A well − f ormed query
Q is iterative iff Cand(Q) �= ∅.

7The technical reason is that projection of text nodes which are sib-
ling produces a single text node (the concatenation of the text nodes)
rather than a sequence of text nodes, and this would introduce several
complications that we preferred to avoid. Queries with these forbidden
paths are quite infrequent.

The query of Example 1 is iterative. Iterative queries are
quite common in practice and, as concrete examples, 13 out
of the 20 XMark queries are iterative: namely, queries from
Q1 to Q5, and from Q13 to Q20.

When it is known that the query Q is iterative, one of
the candidate paths is going to be selected and used to
opportunely partition the input document and distribute the
evaluation of Q over the document parts. The partitioning
path, denoted PP, is defined as follows.

Definition 6 (Partitioning Path) Given an iterative query
Q, the partitioning path PP for Q is the maximum length
candidate path in Cand(Q).

For Example 1, we have PP=/a/b. Picking up the
longest candidate as the partitioning path is motivated by
minimizing the size of the trees selected by the path, and
thus maximizing the likelihood that each part yielded by
partitioning fits in the available main memory.

3.2 Iterative Updates

As for queries, path extraction for updates captures update
navigation and is meant to check whether, for a given
update U, it is possible to split any input document t into a
collection of parts {t1, t2, · · · , tκ}, such that

U(t) ≡ �(U(t1), . . . ,U(tκ )) (1)

where � is a fusion operator, slightly more complex than
concatenation for queries used to obtain their final results.
More details about � will be introduced next.

Before the formal presentation of update path extrac-
tion and the notion of iterative updates, we illustrate by
examples several issues raised by updates wrt their possible
partitioned evaluation.

We start the discussion with the case where partition-
ing is impossible. Typical updates of this class are such
that the evaluation of the update source expression needs
the whole input tree. This entails that, if the document is
partitioned, then the source expression cannot be safely
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evaluated in each part, as this misses pieces of the whole
tree. To illustrate consider the elementary update below:

U1 = replace node/a/b/c with /a/f/g

The source expression /a/f/g makes the update not iter-
ative. Similarly, the update U2 below is not iterative as
it performs an insert operation in terms of a sequence of
subtrees determined by visiting the whole input.

U2 = for $x in /a/b

return insert node /a/f/g as last
into $x

On the other hand, a class of updates that can be safely
distributed over a partitioned tree is that of elementary
updates whose source expression does not perform any kind
of navigation, and whose target expression consists of a sim-
ple path expression. This kind of updates is frequently used
in practice. Consider the following update, which resem-
bles U1 except that the source expression is now a constant
value.

U3 = replace nodes / a/ b/ c with < n/ >

For such updates, their target path (/a/b/c for U3) is used
as a partitioning path, thus ensuring that the content of sub-
trees selected by the target path is not spread over multiple
parts.

Among iterative updates, we can also consider updates
of the form for $x in Q return U, while ensuring,
roughly speaking, that the embedded query Q and update
U is iterative and moreover that their partitioning scheme is
compatible (i.e., in some sense that paths in the U compo-
nent have the partitioning path of Q as a prefix). The same
holds for updates of the form let $x := Q return. These
cases will be made more formal shortly, by reusing the char-
acterisation of iterative queries (Definition 6). To illustrate
consider the following update.

U4 = for $x in /a/b

return insert nodes $x/f/g as last
into $x

For this update the following paths are extracted: P1 =
/a/b{f or x} and P2 = /a/b{f or x}/f/g. So, if we use the
same reasoning as for iterative queries, the partitioning path
is P1 and, as already seen, this ensures that subtrees selected
by this path are not split, thus gathering all the needed data
to correctly evaluate each insert update. It is interesting to
note that, according to this approach, update U1 is not itera-
tive as it has no candidate partitioning path: extracted paths
are P1 = /a/b/c and P2 = /a/b/d and these have no
common prefix including a {f or x} element (indicating a
common top level iteration).
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Fig. 5 An XML document t and two different kinds of partition

In order to further motivate the iterative update definition,
we now introduce an example showing that, while partition-
ing the input tree, subtrees selected by the target expression
of an update should not be split. Otherwise the update sub-
operation could be performed mistakenly more times than
needed.

U5 = for $x in /a/f

return insert node <n/> as last
into $x

This update inserts a new empty node <n/> as the last child
of the target nodes selected by the path P1=/a/f . So, in
order to safely distribute this update, the full sub-tree rooted
at a target node is required, because of the as last into
clause.8 As illustrated by Figs. 5 and 6, if the subtree rooted
at a P1 target node is split, say, in two parts like in {t ′1, t ′2}
of Fig. 5, the <n/> insertion occurs twice: U5 inserts a new
n-node as last of each subtree rooted at f-node in the parts
t ′1 and t ′2 and thus two n-nodes appear in �(t ′1, t ′2) which is
of course incorrect wrt U5(t).

Instead, the partition {t1, t2} of Fig. 5 ensures safe dis-
tribution, since U5(t) ≡ �(U5(t1),U5(t2)) now holds (see
Fig. 7).

To summarise, we can conclude that, in order to enforce
Eq. 1 for a given update U, our partitioning update sce-
nario can be applied only when U performs many times the
same operation on subtrees selected by a path expression,
and, moreover, when each of these subtrees contains all the
information for evaluating the update. Our examples also
illustrate that these subtrees should absolutely not be split by
partitioning. Updates satisfying this requirement are called
iterative updates.

Path extraction for updates is specified by the function
Eu(U , �, m) in Fig. 8, that takes as input an update U , a
variable environment �, and a flag m, and returns the set of
paths extracted from U . As it can be seen, it strictly resem-
bles path extraction for queries, especially in the use of
parameters � (variable environment) and m. Also, note the
use of query path extraction for extracting paths from path

8The same phenomenon would take place in case of a as first
into update target position.
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Fig. 6 Non-equivalence between U5(t) and U5(t
′
1) � U5(t

′
2)

updates including queries as sub-expressions. In the follow-
ing, for the sake of simplicity we use Eu(U) as a shortcut of
Eu(U, ∅, 1)

Example 2 Consider the update below:

U5′ = for $x in /a/f

return rename node $x/g as “n”

For this update, path extraction through Eu(U5′) leads to
{P1, P2} below.

P1 = /a/f {f or x}
P2 = /a/f {f or x}/g/dos :: node()

We are now ready to provide a formal characterization
of iterative updates, based on the previous introductory
discussion and on Eu(U).

Definition 7 (Iterative Updates) Iterative updates are
defined according to the following case analysis:

– if U is an elementary update, then it is iterative if and
only if one of the following holds:

1. U = delete N Ptg;
2. U = rename N Ptg as a;
3. U = replace N Ptg with Qs;
4. U = insert N Qs P os Ptg;
where Qs does not use any XPath expressions;

– if U is either a let-update or a for-update expression,
then it is iterative iff Cand(U) �= ∅ where this set of
candidate paths is defined by Definition 4 based on the
set of extracted paths Eu(U).

– if U=U1,U2, · · · ,Un, then it is iterative if each Ui is.

In the above definition, the first case has been already
motivated by our examples. In particular, the condition on
Qs ensures that no global visit is needed to evaluate the
source expression. The second case relies on, and strictly
resembles, the characterisation of iterative queries (Defini-
tion 5), as discussed before, while the third case captures a
sequence of updates, and relies on the two preceding cases
for each update Ui in the sequence.

Before continuing with the formalization, it is worth
noticing that let-updates are iterative only if the let
binding does not use paths. For instance, the following
update is not iterative.

U6 = let $x := /a/b return
if $x/c then delete node $x

This is because the let binding performs a global
visit of the document before evaluating the inner update
which, for reasons explained earlier, prevents any possible
partitioning-based evaluation. Instead, the following update
is iterative:

U7 = let $x :=<c/> return
for $y in /a/b return insert $x after $y

It is worth to observe that, in the second item of Def-
inition 7, if-expressions are not considered. Indeed, these
expressions may occur as inner sub-expressions of iterative
updates, like in the following example, a variant of U7.

U8 = let $x :=<c/> return
for $y in /a/b return
if $y/d then insert $x after $y

Once again, the reason why if-expressions are excluded
as top-level expressions is that, in general, the if-condition

Fig. 7 Equivalence between
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1. Eu delete N Ptg 1 = Eq Ptg 1 2. Eu rename N Ptg as a 1 = Eq Ptg 1

3. Eu replace N Ptg with Qs 1 = Eq Ptg 1 Eq Qs 1 4. Eu insert N Qs Pos Ptg 1 = Eq Qs 1 Eq Ptg 1

5. Eu U1 U2 m = Eu U1 m Eu U2 m

6. Eu Q U1 U2 m = Eq Q 0 Eu U1 1 Eu U2 1

7. Eu x Q U m = Eu U m where P f or x P Eq Q 0

8. Eu x : Q U m = Eu U m where Eq Q 0

Fig. 8 Path extraction for updates

query may require a global visit of the document, which
prevents iterativeness.

We now deal with identifying partitioning paths for
updates. In order to specify the partitioning algorithm, as
already explained, we need to identify the subtrees of the
document over which some update operation operates and,
therefore, that should be kept in single parts. To this end,
we proceed in a way similar to queries: if the update U is
iterative and elementary, we use the target paths Ptg of U,
otherwise we use the partitioning path (Definition 6).

As an update can be a sequence of updates, the partition-
ing process has to consider a set of partitioning paths, as
illustrated by the following example.

Example 3 Consider the update U9.

U9 = (for $x in /a/b return delete node
$x ),

(for $x in /a/f return rename node $x

as “n” )

The set of partitioning paths for U9, denoted PP(U9), is
{P1,P2} with P1=/a/b and P2=/a/f .

Definition 8 (Partitioning Paths for Updates) The set
of partitioning paths PP(U) for an iterative update U is
defined as follows:

– if one of the following holds:
1. U = delete N Ptg;
2. U = rename N Ptg as a;
3. U = replace N Ptg withQs;
4. U = insert N Qs P os Ptg;

then PP(U) = {Ptg};
– if U is either a let-update or a for-update expression,

then PP(U) = {PP}, where PP is the partitioning
path of U according to Definition 6, where Cand(U) is
determined as already specified in Definition 7;

– if U=U1, . . . ,Un, then PP(U) = ⋃n
i=1 PP(Ui ).

Note that the above two definitions directly provide the
conditions to deal with a workload of n iterative updates
U1, . . . ,Un. In this case the entire workload is iterative, and
partitioning paths can be extracted just as indicated above
for the sequence case.

4 Partitioning Algorithms

This section first provides a general algorithm that, given a
document t and a set of partitioning paths, builds a partition
of t . Roughly, the algorithm is strongly guided by the par-
titioning paths extracted from the input workload, as these
paths return the subtrees which should not be sliced. This
algorithm can be used for dealing with a workload including
multiple queries and updates.

Then we investigate, for iterative queries and updates
separately, additional processes that may be introduced
during or after the partitioning phase, in order to further
improve the efficiency of query and update evaluation.

4.1 Path alignment and residuation

This section presents two basic operations that will be used
in our algorithms for data partitioning. A common aspect
of these algorithms is that they rely on parsing and match-
ing XML documents against a set of paths. To this end,
these algorithms check whether a path in the parsed doc-
ument matches at least one path in the input partitioning
path set. This is done by means of a top-down traversing of
document paths, where query/update partitioning paths need
to be opportunely rewritten in order to get rid of the steps
that have already been matched in the traversal, and prepare
subsequent matching steps. To this end, the following two
functions are introduced: the level alignment function and
the residuation function.

The level alignment function Down(SPath) serves in our
algorithms to modify paths in SPath in order to prepare the
next parsing “down” moves:

Down(SPath) = ⋃
P∈SPathDown(P) where:

Down(self :: NT/P) = {/self :: NT/P} (path already aligned)
Down(child :: NT/P) = {/self :: NT/P}
Down(dos :: NT/P) = {/self :: NT/P} ∪

{/self :: node()/dos :: NT/P}
Down(ε) = {ε}

The residuation function Res(α, P) returns a path P′ and
a value M∈{ok t, ok nt, fail} respectively capturing that i)
α∈{a, text[s]} matches the final step of the path P -terminal
case-, ii) α matches the top step of the path with at least two
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steps -non terminal case-, iii) none of the previous two cases
holds.9 The residual of a path P is defined by distinguishing
the following cases:

Res(a, /self :: NT) = <ε ; ok t> if NT∈{a, node()}
Res(a, /self :: NT/P) = </P ; ok nt> if P �= ε ∧ NT∈{a, node()}
Res(text[s], /self :: NT) = <ε ; ok t> if NT∈{text(), node()}
Res(α, /P) = <ε ; fail> otherwise

The residual of a path set SPath={P1, · · · ,Pn} is then
defined as follows:

Res(α, τ )=<

n⋃

i=1

{P′
i};

n⊎

i=1

Mi> with Res(α, Pi )=<P′
i; Mi>

where the (commutative and associative) function  is
defined by:

ok t  − = ok t ok nt  fail = ok nt fail  fail = fail

ok nt  ok nt = ok nt, where − denotes any value.

When for a given node of an XML tree, path residudation
returns ok t, we say that the node is a terminal node for the path.

To illustrate these functions, the aligned and residuated
paths for 3 nodes of the tree in Fig. 9 are provided, according
to the document order.

– For P=/dos :: b, node=l1, α = a, we have:
Down({P})={/self :: b, /self :: node()/dos :: b},
Res(a, Down({P}))=<P; ok nt>

– For P=/dos :: b, node=l2, α = b, we have:
Down({P})={/self :: b, /self :: node()/dos :: b},
Res(b, P)=<P; ok t>

– For P=child :: b node=l7, α = f , we have:
Down({P})={/self :: b}, Res(f , P)=<P; f ail>

4.2 Generic Partitioning

Algorithm 1 is described in a DOM-oriented fashion and
provides a formal presentation of the general partitioning
process. This algorithm is recursive and takes as input a
tuple <l; SPath; cSize; pId> representing the current state
of the recursive process. Namely, this input tuple indicates
that (1) the current node to be matched against the current
paths in SPath is l; (2) the current size of the part being built
is cSize, denoting the number of bytes in the textual repre-
sentation of the part; (3) the current number of built parts is
pId.

9We assume that, if a path contains contradictory consecutive self
steps like in /self :: b/self :: c., then the path is discarded from
SPath. Concerning other non-contradictory consecutive self steps (like
/self :: b/self :: node()), these are simply rewritten in a single self
step (like /self :: b) by means of a simple rewriting. These operations
are routinely made before computing the residual path. We also assume
that paths may have a step Axis :: text() only as the last step.

The function Store size(σ ) is used to return the size of a
store σ in bytes. Its definition is obvious and avoided here.

The algorithm is initially invoked with cSize=0, pId=1,
the location l is the root of the input XML document (σ, l),
and SPath is the set of partitioning paths extracted from the
query or update workload. We also assume that the part size
threshold is known and given, in bytes, by pSize.

In Algorithm 1, the function RenameStore(σ , pId) produces
a new store from σ by renaming each location l to lpId. This
renaming is used (i) to avoid collisions of locations (any
two distinct parts of the partition σ P are disjoint in terms
of locations) that could arise when the sub-tree rooted at an
element node bound to l is split during partitioning, and at
the same time (ii) to keep track of the original location (lpId

is the copy of the input document node l) which is needed
for the fusion step.
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Thus, the algorithm Partition builds a store which con-
tains a partition of the store σ and whose parts have a size
determined by the threshold pSize.

The algorithm distinguishes two main cases:

– In the first case (lines 1-3), the current node l is the
target of some path p in SPath, that is, l is an answer
of the path query p. In this case, the subtree rooted at
node l, which is denoted σ@l, should be entirely kept in
the same part and indeed in the current part being built.
The subtree σ@l is simply copied in σ P while renam-
ing node labels with the current part number (line 2).
Then (line 3), the new size cSize′ of the current part is
calculated in the obvious manner.

– In the second case (lines 4-13), the current node l either
is a partial match wrt SPath meaning that there exists a
path p in SPath and a prefix pp of p such that the node l
is a target of pp, or l fails to answer any (prefix of) path
in SPath. In both cases, the computation iterates over the
children of the node l; for each child li , the algorithm
first aligns the paths in SPath to the new parsed tree
level, and, then, recursively partitions li’s subtrees (line
7-8). As a result, multiple parts may be built in σP .

Then (lines 11-12), the partition σP is enriched by
linking the node l as the root of each new parts gen-
erated by the previous phase. This process requires
to copy the node l with the adequate use of location
indexes. To this end, the function rename extr(L, i, D)

takes as input the children location sequence L, a
part identifier i, and the domain D = dom(σP )

of the recently created sub-partition. The function
rename extr(L, i, D) extracts the sub-sequence of L
used to create part i in σP , and adorns each location of
this sub-sequence with p. More formally, we have:

rename extr(L, p, D) =
() if L = ()

lpi , rename extr(L′, p, D) if L = li ,L
′ and lpi ∈D

rename extr(L′, p, D) if L = li ,L
′ and lpi /∈D

After the recursive calls on child location li have been
completed, and the partitioning store is built adequately,
the new size cSize′ of the current part is calculated (line
13).

– In both of the above cases, the partitioning call ends
(lines 14-17) by preparing the next step wrt part com-
pletion and thus checking whether the size of the current
part exceeds the threshold cSize: if this is the case, a
new empty part is prepared by resetting the current size
cSize to 0 and by incrementing the current part number
pId.

Example 4 Assume that the input partitioning path PP is
dos :: b. Let us assume that the part size threshold pSize is
11 bytes, and that each single character takes a byte (recall
that for each element tag we need to take intro account both
start and end tags). Figure 9 displays a document t and the
output of applying Algorithm 1 on t . Note that the whole
document t could be easily rebuilt from the three parts of
the partition.

During the partition process, we first add the subtree
rooted at l2 to the first part because this node is a partition
path terminal node. This makes the cSize exceed the thresh-
old pSize and thus a new part is initialized. Notice that l7
is not matching the partition path, thus its subtrees may be
spread over several parts, which is the case here. After scan-
ning node l11, the second part size exceeds the threshold
pSize and thus a new part is started. The third part is first
filled with the third subtree of l7 and then, as the node l14 is
a partition path terminal node, the whole subtree rooted at
l14 is included in the third part. Note that, while building this
subtree, the threshold has been largely exceeded. However,
since this subtree is selected by a partitioning path, it cannot
be split. The process ends up with three parts, as indicated
in Fig. 9.

Of course, the part size threshold pSize plays a key role
in the whole process. It depends on many factors, such as
the input document, the query or update being processed,
the specific query processor being used, the hardware con-
figuration and the available main memory, the programming
language used for implementing the query processor, the
memory management technique adopted, and the operating

Fig. 9 Generic partition
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system running on the hardware. pSize, therefore, can be
determined only through a trial-and-error process depending
on the overall configuration, and cannot be formally predicted.

Note that if pSize is too large, it can happen that one
or more parts are too large to be loaded in main memory,
hence undermining the whole approach. A good trade-off is
a value that is close (but not too close) to the maximal document
size supported by the query engine being used. In our experi-
mental analysis (Section 6) we made this choice for pSize.

4.3 Partitioning wrt iterative queries

If we know that partitioning is used for supporting the
evaluation of iterative queries only, then we can improve
the generic partitioning algorithm (Algorithm 1) in a very
simple manner by splitting case 2 into two different cases:

– case 2a corresponds to the current node l being a partial
match wrt SPath and remains unchanged. This subcase
arises when Res(aSPath) = <SPath′; ok nt>.

– case 2b corresponds to the current node failing to
answer any path in SPath, and then, for iterative queries,
we know for sure that the subtree rooted at location l
is not relevant for query evaluation and can be ignored.
In that case, an empty part set σP of size cSize′ = 0 is
then returned. This sub case arises when Res(aSPath) =
<SPath′; fail>.

Algorithm 2 outlines the partitioning algorithm for iter-
ative queries and is displayed by a straightforward reuse of
Algorithm 1.

Example 5 Let us continue with the previous example and
now assume that the partitioning path PP=/dos :: b has
been extracted from the query Q below:

Q=for xin dos :: breturn(x/child :: c, x/child :: d).

Fig. 10 Query partition

Figure 10 displays the result of applying the query parti-
tioning algorithm on the document t . Note that this time the
initial document t in Fig. 9 is not entirely retrieved in the
generated parts of the new partition.

The partition process starts as in the generic case. The
main difference arises when, starting the second part, the
node l7 is processed. Recall that this node is not matching
the partitioning path. Thus, its subtree is not included in the
partition at all because it is known in advance that it contains
no relevant data for the query Q.

4.4 Partition and Projection for Iterative Queries

Projection is a well known technique allowing one to
increase XML query evaluation efficiency both in terms
of memory consumption and time evaluation (Marian and
Siméon 2003; Baazizi et al. 2011; Benzaken et al. 2006).
In our setting, projection can be performed either at par-
titioning time (projection is then merged in the partition
algorithm) or after partitioning and then applied over each
part of the partition. In Bidoit et al. (2012), the first approach
has been adopted because developed in a centralized set-
ting (no distribution). Here, we choose to perform projection
after partitioning. This ensures a faster (centralized) par-
titioning process plus the possibility to project parts in
parallel during the map phase.

Projection is made wrt paths extracted from the iterative
queries.

Definition 9 (Query projector) Given an XML query Q,
the projector τ of Q is the set τ={ErV(P) | P∈Eq(Q)}.

In the general case, several paths are used during pro-
jection: each path is handled as indicated in the exam-
ple, through the path rewriting functions Down(τ ) and
Res(α, τ ) defined in Section 2.

Differently from Marian and Siméon (2003), we provide
here a formal specification of the projection algorithm.
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Algorithm 3 presents the code of the Projection algo-
rithm in a DOM-oriented fashion. It takes as input a store
σ , a current location l, and a projector τ . It outputs the
projection σ ′ of the tree σ@l rooted at l wrt the projector τ .

Note that L|π denotes the location sequence obtained
from L by keeping only locations in π while preserving the
π ordering (we have L|π � L).

The algorithm is organized wrt two main cases.

– When the current node location l contains a text node
(lines 1-4), if residuation does not fail, then for at least
one path in the projector the last step matches the node
l (recall that only the final step in a path can use the text
node condition).

– When the current location, instead, contains an element
node (lines 5-18), a more complex analysis is neces-
sary. If residuation fails (lines 6-7), then the output is
the empty store. If the current node is an intermediate
match for the current projector, and the node has no
child (lines 8-9) then the node is added to the projec-
tion; this is necessary because this node can be later on
matched as a terminal node after residuation of the pro-
jector, during the recursive process.10 Otherwise, (lines
12-13) projection is recursively propagated on children
nodes. Then (lines 14-16), if the current element node is
a terminal match for the projector, this node is added to
the projection together with its projected subtrees; if the
current element matches an intermediate step of a path
in the projector, then the node will be added to the pro-
jection if at least one of its descendant will match a final
step in the projector. If none of the above conditions
holds (lines 17-18), the empty projection is output.

Projection is designed in such a way that, given a query
Q, its projector τ and an XML tree t=(σ, lt ), assuming that
Projection(σ , lt , Down(τ ))=(σ ′, lt )=t ′, we have:

Q(t) ≡ Q(t ′).

In Section 5 we will provide some detail about our SAX-
based streaming implementation, which has a negligible
memory footprint.

The following example illustrates how projection works
and, although very simple, it gives a flavor of the memory
optimization.

Example 6 Let us go back to our running example and
project the parts, displayed in Fig. 10, produced by the par-
titioning algorithm for the iterative query Q. The projector
for this query is the set of paths τ = {/dos :: b, /dos ::

10For instance, consider a projector including /a/b/self :: node() and
a tree where the root a has an empty b element as child.

b/c/dos :: node(), /dos :: b/d/dos :: node()}. Let us
consider the part t ′′1 of Fig. 10. Its projection wrt τ is pre-
ceded by a level alignment step, leading to consider the set
of paths:

τ1 ={/self ::b, /self ::b/c/dos ::node(), /self ::b/d/dos ::
node()} ∪ [1]
{/self :: node()/dos ::b, /self :: node()/dos :: b/c/dos ::
node(), [2]
/self :: node()/dos :: b/d/dos :: node()}.[3]

We can then check that the node l11 matches the first step
of any simple path of lines [2] and [3]. As a side effect,
these paths are rewritten into the residual paths (which
produces τ again) in order to prepare the next tree level
examination. Before analyzing the node l12, a new alignment
operation is performed which leads to produce τ1 again.
The node l12 matches the first step of any simple path of
lines [1], [2], and [3]. The residual paths obtained from
τ1 are:

Resτ1 = {ε, /c/dos :: node(), /d/dos :: node()} ∪ τ
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Once again, the examination of the children of the node l12,
that is nodes l13, l14, l15, and l16, is prepared by the level align-
ment of Resτ1 which contains all the path in τ1 plus the
following paths: ε, self :: c/dos :: node(), self :: d/dos ::
node().

It is then obvious to see that node l13 matches the first
step of the path self :: c/dos :: node(). Residuation and
alignment leads to the simple paths ε, self :: node()/dos ::
node(). Because node l13 has no children, the empty path
is matched, hence leading to the projection of the concrete
path l11l12l13.

The same arises for node l14 although path matching will
fail for the siblings l15 and l16. The projection of t ′′1 is given in
Fig. 11 as well as the projection of t ′′2 .

As it can be seen in Fig. 10, projection entails size reduc-
tion of parts, which, in turn, entails optimisation in terms
of time, as the amount of data to be processed by the query
processor is decreased. As we will see next, in the case of
updates we do not adopt projection as this would make the
fusion process very complex and inefficient, due to com-
plex and time consuming operations that would be needed
to recover/identify pruned subtrees, and to put them in the
final result.

4.5 Partitioning wrt iterative update

The generic partitioning algorithm (Algorithm 1) can also
be customized for anticipating the evaluation of iterative
updates. Clearly, for iterative updates, it is forbidden to dis-
card or project some of the parts. However, the partitioning
process may provide information about which parts may
be potentially modified by the update and which part will
remain unchanged. Thus the idea is to mark the parts of the
partition in the scope of the update (Case 1 of Algorithm 1).
This will be used at update evaluation time to skip unmarked
parts.

Algorithm 4 outlines the partitioning algorithm for itera-
tive updates and is displayed by a straightforward reuse of
Algorithm 1. Notice that the input and output of the algo-
rithm are enriched by a list of part identifiers collecting the
marked parts. The initial call to Algorithm 4 will be done
with an empty ListpId list.

Fig. 11 Projection after partitioning for iterative queries

Example 7 Consider the following update: U =for $x

in /dos :: b return insert node <n/ > as last
into $x, whose partitioning path is still PP=/dos :: b.

Then, the partitioning Algorithm 4 proceeds as the
generic one and produces the parts displayed in Fig. 9 and
the list ListpId ′=[1, 3] as the second part contains a portion
of the document t on which the update has no impact at all:
U(t ′2) = t ′2. At execution time, the update U will not be per-
formed over t ′2. This part is only used for building the final
updated document from updated parts.

The next section provides the details of how the final
query or update result is composed from the evaluation of
the query or update over the parts of the partition.

4.6 Result Combination

Result combination for iterative queries is straightforward.
After document partitioning, part projection and query
evaluation over each part providing partial results, the final
result of the query for the input document is built by con-
catenation of the partial results. This applies immediately to
iterative query workload as follows.

Let pSize be the part size threshold value, let Q1, . . . ,Qm

be iterative queries with their resp. partitioning path
PPj and projector τj . Assume that SPath=∪m

1 {PPj } and
τ=∪m

1 τj . Let us consider an XML document t=(σ, lt ).
Then:

Qj(t) ≡ Qj(τ(t1)) · . . . · Qj(τ(tpId))

where (t1, . . . , tpId) is the output of the partitioning algo-
rithm for iterative queries (Algorithm 2) run with, as input,
the location lt , the partitioning path set Down(SPath), the
current part size 0 and current part number 1.

The last step of our partitioning update scenario, as illus-
trated in the Section 2.1, relies on a fusion operation. This
operation takes as input the set of updated parts U(ti) and
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returns U(t). A particular issue in the fusion process con-
cerns the copies of a same location in distinct parts. For our
running example, copies of location are:

– l11, l21 and l31 are three copies of the root, and
– l27, l37 are also copies of the same node l7.

Fusion, denoted by �, has to be carefully specified in
order to ensure that copied locations collapse to a unique
location, as illustrated in Fig. 12, where the final update
result U(t ′1) � t ′2 �U(t ′3) contains no copy of the root l1 nor
of the node l7.

Indeed, in Fig. 12 and next, locations l⊥ are intended to
capture the new nodes created by the update.

Fusion uses the two following functions:

– Given an indexed location lji , the function ErInd(lji )

removes the index j: ErInd(lji ) = li and ErInd(l⊥) = l.
– Assuming that C = {t1, · · · , tκ} is a collection of trees,

the function F(li , C) takes all copies of the subtrees in
C whose root lji is a copy of li and pull them together
again by removing their part numbers. Thus:

F(li , C) = {li ← a[L]} where L = ErInd(Ln) ·
ErInd(Ln+1) · . . . · ErInd(Lm) and lji ← a[Lj] ∈ tj for
j = n . . . m, and for some n and m with 1 ≤ n ≤ m ≤
κ .

For instance, if C is the collection of the three updated
parts of Fig. 12, and if we consider the node l7, then F(l7, C)

simply builds the single subtree rooted at node l7 in the final
result given in Fig. 12.

Fusion is presented below in a very general setting
although it should be understood that it is intended to be

Updated parts

Result of updated Part Fusion

Fig. 12 Fusion scenario on distinct (updated and non-updated) parts

applied on the collection C of updated parts, where the parts
are generated by the partition algorithm.

Definition 10 (Fusion �) Let C = {t1, t2, · · · , tκ} be a col-
lection of trees with tj = (σ j, lj0), where the root node lj0 is a
copy of some node l0, and, moreover, assume that any node
in σ j is indexed by j. Let D = dom(C) − New(C) where
New(C) collects locations of the form l⊥ in C. The fusion
�(C) is the tree (σ, l0) such that:

σ =
⋃

li∈D

F(li , C) ∪ {l ← a[ErInd(L)] |l⊥ ∈ New(C)}

We are now ready to put together the 3 steps of our par-
titioning scenario for iterative updates and we do so for
the general case of an update workload. Without loss of
generality, we consider a workload with two updates only.

Let pSize be the part size threshold value, let U1,U2

be iterative updates with their resp. partitioning path sets
SPathj . Let SPath=∪2

1{SPathj }. Let us consider the XML
tree t=(σ, lt ). Then we have:

U2(U1(t)) ≡ �(∪i∈List ′U2(U1(ti)) ∪i /∈List ′ ti ).

where (t1, . . . , tpId) and the list of part indexes List ′ are
output by the partitioning algorithm for iterative updates
(Algorithm 4) run with, as input, the location lt , the parti-
tioning path set Down(SPath), the current part size 0, the
current part number 1 and the empty list ListpId of part
identifiers.

Recall that List ′ captures the document parts potential
targets of the updates U1 or U2 and that, above, at combina-
tion time, the untouched parts are captured by i /∈ List ′.

5 Implementation Issues

While Andromeda is not a full-fledged database manage-
ment system, it is still a complex system and its implemen-
tation poses several challenges. In the following we will
focus on the most prominent issues we faced during the
development and implementation of Andromeda.

5.1 Partitioning

In Section 4 we described a general-purpose partitioning
algorithm as well as two optimized versions specifically
designed for query-only workloads and for updates. These
algorithms were specified by assuming a DOM-like model
based on locations, and, given an input document, they
return a set of parts, each one being a well-formed docu-
ment; if Algorithms 1 and 4 are used, these parts can be later
on merged to obtain a new XML document.
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The use of this model, however, while easing the for-
mal development, is not realistic when dealing with large
XML documents, as it would require the system to load the
entire XML document in main memory before partitioning.
Therefore, in our system we implemented our partitioning
algorithm (in particular, Algorithm 1) in a streaming fashion
by relying on the Java SAX parser.

Preliminaries and data structures Our partitioning algo-
rithms and, in particular, Algorithm 1, exploit a represen-
tation of the input document as a store of locations, and
partition the document recursively. In our actual implemen-
tation, based on SAX, our code receives as input a stream
of events and must process them in a non-recursive fash-
ion. To this end, as usual, our actual implementation of
the partitioning algorithm is based on the use of a double-
ended queue11 statusStack, which records the status of
the algorithm while processing each element of the docu-
ment. statusStack contains status objects, each one
describing the tag of the element being processed (a string),
its attributes (a SAX AttList type), as well as the match
value (a MatchValue object) and the set of partitioning
paths after residuation (an array-list); these object fields cor-
respond to the parameters of the recursive call to Partition

in line 8 of Algorithm 1 (cSize is not needed to be stored
as only one part can be open at a time, unlike what hap-
pens in Algorithm 1). The implementation, in the form of
a SAX handler, also exploits several global variables, such
as currentMatch, which describes the current match
value, and partSize, which indicates the size of the part
currently open.

These data structures allow the system to correctly split
the input document in multiple parts, but cannot help the
system in understanding when an element has been repeated
in multiple partitions: indeed, as shown in the previous
section, there are many elements that are shared among mul-
tiple consecutive parts. To keep track of these elements and
ease the fusion of parts, as a consequence of an update oper-
ation, the system marks these elements, during the partition-
ing phase, with unique identifier, stored in a special-purpose
XML attribute artID, and called artificial ID; repeated
elements, hence, are deemed as artificial.

Artificial IDs are used as keys for accessing a hash map
artSet that associates to each artificial element the last
part in which the element has been closed.

SAX handler Our partitioning SAX handler takes as
input an XML document and a list of partitioning paths

11A flexible Java equivalent of a stack.

pathList. The SAX parser creates a stream of SAX
events, generated by performing a DFS of the XML tree.
In particular, five major kinds of events are generated:
startDocument, when the header of the XML doc-
ument has been read; endDocument, when the parser
reaches the end of the document; startElement and
endElement, when a tag is open or closed, respectively;
and characters, when the textual content of an element
is read.

Before reading the SAX stream, the handler creates and
initializes all data structures: in particular, statusStack
is created empty and currentMatch is set to ok nt.

When processing a startElement event, the parti-
tioner first inspects statusStack: if statusStack
is empty, hence meaning that the element being pro-
cessed has no father in the XML tree (i.e., it is just
the root), then the partitioner sets currentMatch to
ok nt; otherwise, it peeks the top of statusStack, hence
retrieving the status object generated by its father ele-
ment, hence restoring the status of the algorithm just
after the current event. In particular, it sets pathList to
status.pathList and currentMatch to status.
currentMatch. In both cases, the partitioner residuates
pathList.

If currentMatch = ok t, then the father element was
part of an indivisible tree, i.e., a tree that cannot be split,
and, hence, the current element must belong to the same
tree; therefore, the startElement event is passed to the
output serializer, partSize is increased by the number
of bytes needed to store, in their textual form, the opening
and closing tags of the current element, and a new status
object is pushed on top of statusStack.

If currentMatch = fail, then the father element fails in
matching the partitioning paths, which implies that the cur-
rent element too cannot match pathList. Therefore, the
system forwards the startElement event to the output
serializer, updates partSize, and pushes a new status
object on top of statusStack.

If currentMatch = ok nt, then we have two subcases,
that are related to the match value value generated as
result of pathList residuation. If value = ok t, then
the partitioner has reached a switch node, i.e., a node on
which currentMatch changes its value, and proceeds as
for currentMatch = ok t. If value = ok nt or value =
fail, then the handler marks the current element as (possibly)
artificial by associating to it a unique artificial identifier,
sends the event to the output serializer, updates partSize,
and, finally, pushes a new status object on the top of
statusStack.

When processing an endElement event, the system
first pops the status object on top of statusStack,
storing it in a variable currentStatus, and, then,
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peeks the object on top of statusStack, storing it
in a variable fatherStatus; currentStatus and
fatherStatus describe the status of the algorithm after
the startElement events for the element currently being
closed and its father element have been processed, respec-
tively.

Afterwards, the system forwards the endElement
event to the output serializer and inspects both
currentStatus and fatherStatus. If
fatherStatus.currentMatch = ok nt and
currentStatus.currentMatch = ok t or fail, then
the system checks whether partSize > pSize (the max-
imal part size); if the check is not successful, then the
system does nothing. Otherwise, it first looks if the element
currently being closed is artificial, and, in the positive case,
the handler maps its artificial ID to the current part number
in artSet; then, the system closes the current part and
creates a new one, by iterating on statusStack and
closing/opening repeated elements as needed.

If both fatherStatus.currentMatch and
currentStatus. currentMatch are equal to fail,
then the system works as in the previous case. No other
case is possible.

Example 8 Consider again the XML document of Fig. 9
and, as in Example 4, assume that pathList = {dos :: b}
and pSize = 11. The textual representation of this document
is shown below.

Each open tag generates a correspondingstartElement
event, while a closed tag raises an endElement event.
When the startElement event corresponding to <a> is
generated, statusStack is empty, pathList = {dos ::
b}, and currentMatch is undefined. As statusStack
is empty, the handler sets currentMatch to ok nt and
residuates pathList. As shown in Section 4.1, the resid-
uation of {dos :: b} returns <{dos :: b}; ok nt>; hence,
the handler marks the current element as possibly artifi-
cial, by adding an attribute artID = ‘1’ to <a>, sets
partSize to 7, creates a status object <a; ok nt;
{dos :: b}>, and pushes status on top of statusStack.
The event, enriched with the newly created attribute for
<a>, is finally passed to the output serializer.

After this event, the handler processes the
startElement event for <b>. Since statusStack
is not empty, it peeks the top of statusStack, retriev-
ing the object <a; ok nt; {dos :: b}>, sets pathList
to {dos :: b} and currentMatch to ok nt. Again, as
currentMatch = ok nt, the handler residuates {dos :: b}
and inspects the results. In this case, as previously shown
in Section 4.1, the residuation returns <{dos :: b}; ok t>;
hence, the event is passed to the output serializer,
partSize is set to 7 + 7 = 14, and the object <b; ok t;
{dos :: b}> is pushed on top of statusStack.

The handler, then, processes the startElement
event corresponding to <c>. By peeking the top of
statusStack, currentMatch is set to ok t and
pathList to {dos :: b}; this implies that the handler has
to update partSize, to forward the event to the serializer,
and to push the object <c; ok t; {dos :: b}> on top of
statusStack without residuating pathList. Immedi-
ately after this event, the handler receives an endElement
event for </c>, that is processed by processed by popping
the previously pushed object <c; ok t; {dos :: b}>, by
peeking the object <b; ok t; {dos :: b}>, and, since the
the match values for these objects are both equal to ok t
being closed is not artificial, by sending the event to the
output serializer.

The events generated by the remaining elements nested
inside <b> and </b> are processed in the same way. When,
finally, the endElement event for </b> is issued, the
handler pops the object status = <b; ok t; {dos ::
b}> and peeks the object fatherStatus = <a; ok nt;
{dos :: b}>. Since fatherStatus.currentMatch =
ok nt and status. currentMatch = ok t, the handler
looks at partSize; as partSize = 42 > 11, the han-
dler closes the current part and creates a new one, having
<a artID = ‘1’> as the root opening tag.

At the end of the partitioning process, the handler creates
the following three parts.
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The SAX handler also returns the artSet hash map
described in Table 1.

5.2 Partition catalog

Andromeda processes queries and updates by distributing
the computing load among the machines of a MapReduce

Table 1 artSet hash map

ID Part Number

1 3

2 2

3 2

4 2

5 2

6 2

7 3

8 3

cluster. Given the hierarchical nature of textual XML doc-
uments, document parsing and partitioning is an inherently
sequential activity that cannot be easily distributed among
multiple machines (see Sonar and Ali (2015) for a brief
analysis of the problem). Therefore, it is important to main-
tain a catalog of existing partitions and to have some form
of partition reuse.

In Andromeda the partition catalog is a persistent hash
map, implemented by relying on the persistence services
offered by MapDB (2015) and stored in the local file sys-
tem of the master machine, that associates to each document
a collection of Partition objects as well as a DataGuide
(Goldman and Widom 1997) summarizing its structure.
Each Partition object contains a list of part URIs, that
denote the location of parts inside the distributed file sys-
tem, as well as a list of useful parts, i.e., parts that contain
indivisible trees. The Partition object also stores the
artSet hash map.

While a distinct Partition object is created for each
new partition during the partitioning phase, the DataGuide
associated to a document is created once for all. Indeed,
during the very first partitioning of a document D, the
system infers a DataGuide DG ; after parts have been cre-
ated by applying the partitioning algorithm of Section 5.1,
the system re-evaluates the partitioning paths on DG and
marks the nodes matching these paths, describing the switch
nodes of the previous section, with a partition unique iden-
tifier. When a new query or update is submitted, the system
evaluates its partitioning paths pathList on DG ; if there
exists a partition identifier j such that all matching nodes
of pathList are descendant of or equal to nodes marked
with j , then the partition identified by j can be reused
for processing the input query/update. If no compatible
partition can be found, then the system re-partitions the
document according to pathList, creates a Partition
object and a partition identifier j ′ for the new partition, and
marks the matching nodes of pathList in DG with j ′.

5.3 Compression

Document partitioning requires the system to read an input
document from the distributed file system and to write
parts in the DFS; furthermore, as described in the Introduc-
tion, the system processes queries and updates by reading
parts deployed on HDFS and storing intermediate results or
updates parts in the DFS.

All these I/O activities generate a huge traffic on the net-
work, which may significantly slow down the system. To
limit the performance penalty induced by network flooding,
Andromeda stores parts as compressed EXI files (Schneider
et al. 2014) rather than plain XML files; EXI, which
stands for Efficient XML Interchange, is a binary compressed
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storage format for XML documents proposed by the World
Wide Web Consortium, that can nearly double the I/O band-
width wrt textual XML (Snyder 2010). In particular, we rely
on Exificient (2015), a Siemens open-source implementa-
tion of EXI, which allows the system to directly generate
compressed files by using a SAX API.

To avoid unnecessary decompression activities and to
leverage on EXIficient ability to create SAX streams from
compressed files, we also extended Qizx-open (2013) so that it
can directly take as input compressed XML files stored in
HDFS.

5.4 Result fusion

In Section 4.6 we described the algorithm used by the
RESULT COMBINER (see Fig. 1) to merge updated parts and
create a new document as output of a XUF update. Sim-
ilarly to what happens for partitioning, to implement this
algorithm we faced two major challenges: first of all, in
Section 4.6 the fusion process was illustrated by implicitly
assuming a DOM-like representation of XML trees, which,
unfortunately, cannot be used when processing large docu-
ments. Second, our partitioning technique is based on the
use of artificial elements to make each part a well-formed
XML document; artificial element tags, while transparent
to query result combination, must be properly managed to
guarantee the soundness of update evaluation.

To deal with these issues, the result fusion algorithm
of Section 4.6 has been implemented as a SAX handler
that processes compressed document parts one at a time.
This handler exploits two main data structures: an hash
set artificials, that is used to record artificial tags,
i.e., the tags of artificial elements, that have already been
opened; and a stack artificialStack that keeps track
of the structure of the document.

When processing a startElement event, the sys-
tem first checks if the tag lname being opened is arti-
ficial by inspecting its attributes. If lname is not arti-
ficial, then the event is forwarded to the output serial-
izer and the tag, together with its attributes, is pushed
on artificialStack. Instead, if lname is artificial,
the system extracts its artificial ID artID and looks for
(lname, artID) in artificials: if the check is suc-
cessful, then the artificial tag has already been opened,
and the system just pushes it on artificialStack;
otherwise, the system removes the artID attribute
from the lname element, forwards the startElement
event to the output serializer, adds (lname, artID)
to artificials, and, finally, pushes the element
artificialStack.

When processing an endElement event, the sys-
tem removes the tag lname being closed from the top
of artificialStack and checks if it is artificial. If

lname is not artificial, then the event is forwarded to the
ouput serializer. If lname is artificial, instead, the system
uses its artificial ID to retrieve from artSet the identifier
of the part in which the tag must be closed: if this identifier
is equal to that of the current part, then the event is pushed
to the output serializer.

5.5 Workload processing

As shown in Sections 4.2 and 5.1, our partitioner takes as
input an XML document as well as a list of partitioning
paths. This is motivated by the fact that path residuation
can generate multiple paths from a single path, hence our
partitioner must be able to cope with this situation.

This requirement for the partitioner made easier the sup-
port for multiple concurrent queries evaluated on the same
document. Indeed, to evaluate a workload W of multiple
queries, our system just collects the partitioning paths of
each query in W , and passes the path list to the partitioner.
During query evaluation, each mapper evaluates all queries
on its assigned parts, and stores query results in a different
HDFS directory for each query.

6 Experimental evaluation

In this section we evaluate the performance and the scala-
bility of Andromeda. Our experiments aim at i) proving the
efficiency of the system in processing queries and updates
on large documents, and ii) showing how the system scales
with the document size and the number of nodes in the
cluster.

6.1 Experimental setup

We performed our experiments on a multitenant cluster. For
these experiments we used a single master machine and 100
slave machines. The master has two Intel Westmere (Hex-
core) CPUs (24 cores total), 96 GB of RAM, and 6x136 GB
drives (RAID5); slave machines have two Intel Westmere
(Hex-core) CPUs (24 cores total), 48 GB of RAM, and 12x2
TB drives (7200 rpm). Each cluster node runs 64-bit RHEL
6.4, Java 1.7, and Hadoop 2.2.0. Cluster nodes are connected
through an Infiniband network. We assigned 3 GB (pre-
cisely, 3200MB) of main memory to each mapper and 1.5
GB (precisely, 1524 MB) of memory to each reducer; we
also set the maximum heap size for mappers to 2.5 GB (pre-
cisely, 2500 MB). Due to the complex memory management
policy of Hadoop 2.2, we had no real control on the memory
allocated by Hadoop to the application master container; by
inspecting at run-time the allocated memory, we discovered
that Hadoop 2.2.0 assigned to the application master a bit
less than 1 GB of main memory.
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Table 2 Query dataset

Name Factor Actual Size (GB)

10GB 100 10.95

15GB 150 16.43

20GB 200 21.92

25GB 250 27.41

30GB 300 32.89

To reduce issues related to independent system activi-
ties and other jobs in the cluster, we ran each experiment
five times, discarded both the highest (worst) and the lowest
(best) processing times, and reported the average processing
time of the remaining runs.

6.2 Datasets

We performed our experiments on two distinct datasets. The
first dataset is dedicated to query experiments, and com-
prises five XMark [(Schmidt et al. 2002)] XML documents
obtained by running the XMark data generator with fac-
tors 100, 150, 200, 250, and 300, respectively; the resulting
documents have approximate sizes ranging from 10GB to
32GB. These documents contain data concerning an auction
site, and only have textual content coming from Shake-
speare’s plays, without any binary object. To give an idea of
the nature of these documents, the 20GB document contains
about 650 million nodes, 74 distinct element and attribute
names, and has 13 nested levels.

The second dataset is used for update tests and contains
ten XMark documents whose size ranges approximately
from 1GB to 10GB. In Tables 2 and 3 we summarise the
characteristics of these datasets.

Table 3 Update dataset

Name Factor Actual Size (GB)

1GB 10 1.09

2GB 20 2.18

3GB 30 3.28

4GB 40 4.375

5GB 50 5.47

6GB 60 6.57

7GB 70 7.66

8GB 80 8.75

9GB 90 9.85

10GB 100 10.95

6.3 Evaluating queries

In our first battery of experiments we tested the performance
and the scalability of our system when processing queries.
In the first test we selected a subset of the iterative frag-
ment of the XMark benchmark query set, and, in particular,
queries Q1, Q2, Q3, Q4, Q5, Q14, Q15, Q17, Q18, Q19,
and Q20, and processed each query individually on the doc-
uments of the first data set; in this experiment we used parts
of 100 million bytes size, as this dimension is a good trade-
off between efficiency, Hadoop latency, and space overhead.
The results we obtained are shown in Fig. 13a. This graph
indicates that the evaluation time is only partially affected
by the size of the input document; this is motivated by the
fact that Andromeda filters out parts that do not structurally
match the input query, and processes the query only on those
parts that may give a contribution to the result; hence, even
for large documents, the number of machines actually used
by the system is below the cluster size.

Partitioning time for exemplifying queries Q1, Q2, Q5,
and Q14 is reported in Table 4, together with the number of
generated and used parts. As we mentioned before, unused
parts are discarded. We chose these queries as Q1 is simple
and very selective, Q2 selects textual content, Q5 contains a
nested query and an aggregation function, and Q14, finally,
has low selectivity and uses a full-text predicate.

As it can be easily observed, the partitioning time grows
linearly with the size of the input document and the number
of used parts is only a small fraction of the total number of
parts, with the only notable exception of query Q14, which
is not very selective. This explains why the processing time
of queries Q14 and Q19, that uses exactly the same par-
titioning scheme of query Q14, is bigger than that of the
remaining queries.

From this table we can also observe that partitioning
induces a modest space overhead wrt the size of the origi-
nal document. This overhead is related to artificial tags and
elements, that must be repeated in multiple parts; the use of
EXI compression helps us in tackling this problem, allowing
the system to cut the space requirements in half.

Impact of part size on query processing In our second
experiment we analyzed how the part size impact query
processing and partitioning time. Our intuition was that
smaller parts should improve the parallelism of the system
by increasing the number of map input records to be pro-
cessed, at the price of an higher space overhead. On the
contrary, bigger parts should lower the overhead and thus
the global number of writings to disk, hence improving the
I/O efficiency. To understand if our intuition was correct, we
evaluated queries Q1 and Q2 on the first dataset by using
three different part sizes: 50, 100, and 150 million bytes.
The results we collected are shown in Fig. 13b, c, d, and e.
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Fig. 13 Query experiments

Figure 13b shows the impact of part size on the process-
ing time of query Q1. This graphs confirms our intuition:
indeed, smaller parts result in lower evaluation times.

Figure 13c, instead, illustrates the behaviour of the
system when processing query Q2. As it can be easily
observed, the behaviour of system in this case is a bit
irregular and the gap among processing times seems to
narrow when document size increases. Actually, when per-
forming this experiment, we observed a heavy load on the
cluster, due to simultaneous activities by other research

groups, which explains the peaks corresponding to the
15GB and the 20GB documents.

Cluster load, however, does not explain why the differ-
ence in processing times is smaller than in the case of query
Q1. Indeed, in this case query selectivity comes into play.
Query Q2, actually, is less selective than query Q1, as it
can be observed from Table 4; this implies that the num-
ber of parts to be processed is greater than that for query
Q1. In particular, this number can easily exceed the cluster
size for parts of 50 million bytes, which implies that each

Table 4 Partitioning time (sec.), generated parts, and used parts

Size Q1 Q2 Q5 Q14

Time Gen. Used (%) Time Gen. Used (%) Time Gen. Used (%) Time Gen. Used (%)

10GB 851.686 142 13 (9.1 %) 706.45 138 31 (22.4 %) 813.448 144 17 (11.8 %) 810.014 138 59 (42.7 %)

15GB 1148 214 19 (8.8 %) 1060 207 47 (22.7 %) 1243 217 26 (11.9 %) 1250 208 89 (42.7 %)

20GB 1564 285 26 (9.1 %) 1461 277 62 (22.3 %) 1666 290 35 (12 %) 1700 277 118 (42.5 %)

25GB 2007 357 32 (8.9 %) 1808 347 77 (22.1 %) 2215 363 43 (11.8 %) 2299 347 148 (42.6 %)
30GB 2391 429 38 (8.8 %) 2147 417 93 (22.3 %) 2526 436 52 (11.9 %) 2534 417 177 (42.4 %)
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mapper must process more than one part; this may introduce
an additional overhead induced by Hadoop, which explains
the gap narrowing.

Figure 13d and e describe the impact of part size on parti-
tioning time for queries Q1 and Q2, respectively. In the case
of Q1, there is no big difference among partitioning times;
this difference, however, widens in the case of Q2, in par-
ticular for what concerns the 25GB and 30GB documents.
This phenomenon is probably related to higher garbage col-
lection times. In both cases, partitioning time grows linearly
with the document size.

Processing workloads In our third experiment we eval-
uated the performance of our system when processing
a workload comprising all the queries of our query set.
Queries were processed on a single partition compatible
with each query, by exploiting the ability of Andromeda
to partition a document according to multiple paths. The
results we collected are shown in Fig. 13f and Table 5.

In Fig.13f we reported the total workload processing
time. It is worthy to note that workload processing time
grows linearly with the size of the input document. This is
implied by the fact that, even on smaller documents, the
parallel execution of the queries in the workload involves
the use of all the machines in the cluster, as confirmed by
Table 5, which reports the partitioning time, the number of
generated parts, and the number of map input records (parts
to process) for each input document: as shown in this table,
even on the 10GB document the cluster is fully exploited.

Horizontal scalability: changing cluster size In our last
experiment on queries we evaluated the horizontal scala-
bility of the system when processing queries Q1 and Q14:
we chose these queries as they are representative of high
selectivity (Q1) and low selectivity (Q14) queries; Q14

also contains a full-text predicate that is quite stressful for
XQuery engines. In particular, we increased the cluster size
as the size of the input document increases, as reported
in Table 6. The results of this experiment are reported in
Fig.13g. As expected, the system scales beautifully on query
Q1, as this exploits only a modest number of machines. Sur-
prisingly enough, we got a similar result for query Q14 too.

Table 5 Workload: partitioning time (sec.), generated parts, and map
input records

Size Time Gen. Map input records

10GB 694.342 120 1309

15GB 1070106 181 1980

20GB 1424.379 241 2618

25GB 1876.539 302 3289

30GB 2138.638 362 3938

Table 6 Horizontal scalability: cluster configuration

Size Machines

10GB 10

15GB 15

20GB 20

25GB 25

30GB 30

This shows that, even when fully loaded, the system scales
well and can efficiently process complex iterative queries.

6.4 Evaluating updates

In our second battery of experiments we evaluated the
performance of Andromeda when processing updates in
different scenarios. We evaluated each update in a set of iter-
ative updates (see Appendix A for more details) against the
documents in the second dataset of Section 6.2; in all tests
we used parts of 100 million bytes (about 95 MB).

Scalability of update processing In our first test we anal-
ysed the behaviour of Andromeda when individually exe-
cuting 16 iterative updates. All these updates return a new
document. Figure 14a illustrates the total execution time for
each update without partitioning time.

Unlike what happens for queries, update processing is
deeply influenced by the input document size, as execution
time grows linearly with it. This is motivated by the fact that
the system must produce an updated document by combin-
ing the updated parts with the parts of the original document
that were not touched by the update: this requires the system
to traverse all the document parts. To validate this claim we
reported in Fig. 14b the update processing time without part
concatenation; as it can be observed, in this case update pro-
cessing exposes a behavior close to that shown on queries
(see Fig. 13a).

To further validate the previous claim, we decomposed
the total processing time of updates for the 1GB and the
10GB documents, as shown in Fig. 14c and d; as it can be
noted, the impact of result concatenation becomes more and
more relevant as document size increases. In particular, for
the biggest document the execution time is largely domi-
nated by result concatenation, which counts for over a 90%
of the total time.

Processing mixed workloads In our second test we cre-
ated a random query/update workload and analyzed the
behaviour of the system when processing the workload on
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Fig. 14 Update experiments

documents of increasing size. The workload comprises 20
expressions randomly chosen by an initialization script, that
also chooses the execution order: queries and updates are
executed according to the reader/writer semantics, hence
queries can be evaluated simultaneously, while updates
have to be processed individually. Queries and updates are
selected by respecting a 80:20 ratio, hence the workload
contains 16 queries and 4 updates. The composition of the
workload we considered is reported below:

W = (U2, U12, [Q18, Q17, Q3, Q1, Q18], U4, U14,

[Q15, Q5, Q2, Q17, Q15, Q15, Q20, Q10, Q1, Q5, Q18])

Figure 14e describes the behaviour of the system when
processing the workload. As it can be observed, the work-
load execution time grows linearly with the input size,
despite the fact that 16 tasks out of 20 are queries. This is
caused by the presence of updates, which not only require
result concatenation, but also force the system to partition
the updated document for processing the next task, hence
making partition reuse much less effective.

6.5 Comparison with other systems

In this section we analyze the performance of other sys-
tems supporting XQuery queries and updates, and compare
it with that of Andromeda.

To the best of our knowledge, Andromeda is the only sys-
tem based on MapReduce able to process both queries and
updates. There are a few other systems, like HadoopXML
(Choi et al. 2012), that only support XPath, but have no
updating capabilities.

There are a few centralized systems, like Sedna (2011),
Monetdb (2013), and Basex (2015), that process both
queries and updates. However, Sedna and MonetDB are
written in C/C++ and, for security reasons, cannot be run
on our cluster, which accepts only pure Java executa-
bles. Hence, we evaluate here the performance of BaseX
only.

We warn the reader that any comparison between a cen-
tralized system and one based on Hadoop is unfair. The
centralized system, indeed, can exploit the resources of a
single machine only, while the other one is executed on top
of a cluster; furthermore, Hadoop introduces significant per-
formance penalties related to its latency and to the use of a
distributed file system, while a centralised system does suf-
fer these issues and can leverage on the local file system,
which is usually much faster than HDFS. Therefore, the
comparison we are presenting here has the only purpose of
highlighting the circumstances under which a given solution
is more suitable than the other one.

To make the comparison a bit less unfair, we assigned to
BaseX the same memory allocated to Andromeda.

The first BaseX experiment, whose results are shown
in Fig. 15a, replicates the first experiment of Section 6.3.
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(a) Single query experiment. (b) Andromeda partitioning time vs BaseX
database creation time.

(c) Single update experiment.
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Fig. 15 BaseX experiments

We took advantage here of the ability of BaseX to create
a database from an XML document; this database contains
several indices that are used during query evaluation. As
for Andromeda partitioning time, database creation and data
indexing times are not reported in Fig. 15a.

We can observe two main things. First of all, BaseX
was not able to complete the test and failed in indexing
the 20 GB document due to memory errors. Second, as
expected, BaseX is much faster than Andromeda in evalu-
ating selective queries, but its performance is close to that
of Andromeda on query Q19, and even much worse on
query Q14. These queries are not selective, as they access
a significant fragment of the input document; query Q14,
furthermore, contains a full-text predicate, which is not effi-
ciently evaluated by BaseX. In Fig. 15b we compare the
partitioning time of Andromeda with the database creation
and indexing time of BaseX. In this task Andromeda is
much faster than BaseX; this is not surprising, as BaseX
creates multiple complex indices.

In our last BaseX experiment, whose results are shown
in Fig. 15c, we executed each update of Section 6.4 on
the update dataset. This test reproduces the first one of
Section 6.4. As BaseX does not synchronize the inter-
nal representation of the document and the corresponding
indices, we created a fresh database before each update eval-
uation; as for queries, database creation and indexing times
were not reported in Fig. 15c.

As it can be observed from Fig. 15c, BaseX failed
in completing the experiment, as it exhausted memory
resources while processing the 4GB document. On smaller
documents BaseX proved to be faster than Andromeda, with
the only notable exception of update U12, whose naviga-
tional clauses are not selective at all and require BaseX to
access a large fragment of the input document.

To summarise, a system like Andromeda is best-suited
for non selective queries and updates on large documents,
while BaseX represents an effective and efficient alternative
for small documents and selective queries.

7 Related works

Query processing systems There exist only a few sys-
tems able to process queries on XML data in distributed
and cloud environments, e.g., ChuQL (Khatchadourian et al.
2011), MRQL (Fegaras et al. 2011), HadoopXML (Choi
et al. 2012), PAXQuery (Camacho-Rodrı́guez et al. 2014),
and VXQuery (Jr et al. 2015). Among them, HadoopXML
is the system that most closely resembles Andromeda as it
can transparently process XPath queries on an Hadoop clus-
ter. HadoopXML requires a preliminary document indexing
phase, close to Andromeda partitioning phase. Despite these
similarities, HadoopXML only supports XPath queries, and,
unlike Andromeda, cannot process XQuery queries or XUF
updates.

PAXQuery and VXQuery are systems for processing
XML queries on collections of (relatively) small XML doc-
uments scattered across a cloud computing cluster. While
very efficient even on small clusters, they were not designed
to evaluate queries on big documents. MRQL is a query pro-
cessing system that supports an SQL-like query language
that can be used to query XML and JSON data; MRQL
directly translates queries into Java code that can be exe-
cuted on top of Hadoop or Spark. While more powerful than
PigLatin, MRQL cannot process complex XQuery queries
and does not support updates. ChuQL, finally, is a lan-
guage embedding XQuery that allows the programmer to
distribute XQuery queries over MapReduce clusters. The
programmer has the duty to manage low-level details about
query parallelization, while Andromeda completely hides
the underlying processing environment.

To the best of our knowledge, there is no system support-
ing XUF updates on big XML documents.

Partitioning techniques The partitioning technique
employed by our system resembles that of Bordawekar
et al. (2009), where an horizontal partitioning technique has
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been proposed in order to ensure parallel execution of sin-
gle XPath queries. The partitioning technique proposed in
that work can be performed only on the main-memory rep-
resentation of the input document, and, as a consequence, is
not suitable for very large XML documents.

In Kling et al. (2010) a vertical partitioning technique has
been proposed still with the aim of parallel and distributed
execution of XPath queries. The technique can handle very
large documents, but, unlike our system, requires the use
of schema information on the input document. Both tech-
niques (Bordawekar et al. 2009; Kling et al. 2010) require
strong interventions inside a query engine, while our system
required only a minor extension of Qizx-open to support
EXI compression.

A recent work (Cong et al. 2012) proposes new efficient
algorithms for the distributed evaluation of XPath queries.
This work uses horizontal-vertical partitioning, and assumes
data have been statically partitioned according to some pre-
existing technique. Another recent work (Choi et al. 2012)
proposes an Hadoop-based architecture for processing mul-
tiple twig-patterns on a very large XML document. This
system is able to deal with a subset of XPath 1.0 queries, and
adopts static partitioning: the input document is statically
partitioned into several blocks and some path information
is added to blocks to avoid loss of structural information.
Differently, our system supports both dynamic and static
partitioning, and, importantly, supports mixed workloads
containing both XQuery queries and updates.

8 Conclusions

In this paper we described the architecture, the basic princi-
ples, and the algorithms used in Andromeda, and analysed
its performance and scalability. In particular, we described a
partitioning model that can be exploited to process, in a dis-
tributed way, both queries and updates, and we also showed
how this model can be improved for evaluating query-only
workloads; furthermore, we illustrated the main issues we
faced during the implementation of the system.

The experimental analysis confirms that Andromeda
scales with the document size and the number of nodes
in the cluster, and that it can efficiently process queries
and updates on very large XML documents, in particular in
the case of non selective queries and updates, unlike what
happens for other systems.
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