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Abstract Resource allocation in process management focus-
es on how to maximize process performance via proper re-
source allocation since the quality of resource allocation de-
termines process outcome. In order to improve resource allo-
cation, this paper proposes a resource allocation method,
which is based on the improved hybrid particle swarm opti-
mization (PSO) in the multi-process instance environment.
Meanwhile, a new resource allocation model is put forward,
which can optimize the resource allocation problem reason-
ably. Furthermore, some improvements are made to stream-
line the effectiveness of the method, so as to enhance resource
scheduling results. In the end, experiments are conducted to
demonstrate the effectiveness of the proposed method.
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1 Introduction

Workflow comes from the computer-supported business process
automation. It enables the coordination between each process
link, and ultimately successfully achieves the overall business
objectives. From the 90’s, more and more scholars began to pay
attention to and research the field of business process, and also
established the related subject fields of process management and
process mining. The quality of the whole process can not only
determine the performance of enterprises, and even directly affect
the competitiveness of enterprises. How to improve the process
quality and thus enhance the competitiveness of enterprises is a
long-term problem faced by the enterprises (Zhao 2014).

In the workflow system, resources are defined as necessary
entities for the execution of activities. The resources can be enti-
ties such as software systems, printers, fax machines, or person-
nel. In the runtime, actors usually have access to some resources,
and before the implementation of activities, they must get all the
resources needed. If two activities simultaneously require the
same resource exclusively (the resource can only execute one
activity at one time), then both of the activities compete for the
resource, causing a conflict. However, if the resource is randomly
assigned to one of the activities and the other is delayed due to
the lack of available resources, it may violate the time constraint
and affect the overall workflow performance.

The purpose of process resource allocation is to allocate
resources to the most appropriate activity (Cheng et al. 2013;
Jin et al. 2011; Huang et al. 2012). Business process resource
allocation method can be divided into single instance resource
allocation and multi instance resource allocation according to
the applicable environment. At present, the resource optimiza-
tion research, which is based on process mining under a single
instance environment is mainly rely on the mining resource
allocation rules to optimize resource models. Such as Huang
and others set the participants, the start time of the activity, the
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completion time and other activities related data as input, set the
logical sequence of activities as the constraint conditions, and
mined association rules of resource allocation from process logs
(Huang et al. 2011). Ly and others considered the resource
allocation rule as a classification problem, set the activity par-
ticipants and activity types as input, set whether the participants
were involved in activities as a result of classification, then used
the decision tree algorithm to find activity assignment rules
from the historical data and the organization structure of the
running process, to improve the resource redistribution of the
process (Ly et al. 2006). On this basis, Senkul and Toroslu
(2005) and Yang et al. (2008) proposed a more sophisticated
resource allocation model, which is to select the most appropri-
ate resources by mining the matching relationship between the
resources and activities in the process log.

Due to the fact that a large number of process instances exist
at the same time is very common in daily operation, the resource
allocation method of multi-process instances is more close to
reality, but this problem has not gained much focus in previous
research. When analyzing the process resource allocation model,
choosing multi-process instances over single-process instances
can show the work situation of the resource set from the overall
perspective. But it also brings a lot of difficulties in the manage-
ment of resource allocation as well as showing flexibility. In the
environment of multi-process instances, the resource scheduling
has become the core issue in workflow management. It is very
important to allocate related resources effectively in the multi-
process instances so that each process instance can obtain the
appropriate resources at the appropriate time (Smanchat et al.
2011). Multi instance process systems are more complex, which
are composed of multi-process tasks and various kinds of re-
sources, and so on (Petkov et al. 2005).

Obviously, multiple process instances running at the same
time will lead to a problem: when a resource is used, other
activities which need this resource have to be in waiting state.
In addition to the activities in parallel execution of the same
process may occur in resource conflict, the resource conflicts
between different activities in concurrent process of multiple
instances also can’t be ignored (Delias et al. 2010). At present,
there are few studies which discussed concurrent operation of
multiple process instances. From the perspective of messag-
ing, these researches are divided into two types of methods:
synchronous and asynchronous message, respectively using
activate - stop multi instances process and running nested
processes in the exclusive method. These methods can reduce
the access conflicts of the process instance to the resources.
From the perspective of process performance, resource allo-
cation can be regarded as a multi-objective optimization prob-
lem, minimum time or minimum cost is the common optimi-
zation objectives. But the efficiency of these methods needs to
be further enhanced. To solve the many to many problems
mentioned above of multi-process instances. Proclet theory
arises at the historic moment. Each Proclet is a process and

can be represented by activating the message between the
Proclet into multi acting examples (Van Der Aalst et al.
2001). This method can’t achieve single activity synchroniza-
tion under multiple instances, because it may need to run an
instance first, then to activate or copy a single or multiple
acting instances to run repeatedly or simultaneously.

Many enterprises have complex business and organization
structures, the number of process instances increases corre-
spondingly. They may have the situation of seasonal business
or stage surge of the task volume. However, in order to control
the process cost of the enterprise, the existing resource alloca-
tion method is difficult to meet the peak demand on the number
of tasks, and the resource allocation problem in the multi-
process instance environment is still not well solved.
Currently the heuristic algorithm has very good effect when
solving this kind of problem, in which the particle swarm opti-
mization (PSO) has obvious advantage in solving this kind of
multi-process instance scheduling assignment problem. It has
fast convergence speed, high efficiency of dealing with multi-
targets and multi-process instances. And it can easily computed
in a distributed way, overcome early puberty, obtain the optimal
solution under dynamic environments (Salman and Ahmad
2002; Blackwell 2007). But the ordinary PSO may be easy to
fall into the optimal solution and so on, needs to be improved on
the basis of the algorithm. Therefore, this paper focuses on
efficient resources allocation problem in multi-process instance
concurrency, introduces PSO to achievemulti-objective optimi-
zation of global search strategies, improves the algorithm on the
basis of PSO and combination of partial mapping crossover
algorithm, and finally solves the resource allocation problems
effectively in case of constrained business process resources.

2 Multi-process instance resource allocation model
and particle swarm optimization

Multi-process instance resource allocationmethod can be seen as
a multi-objective optimization problem. It may have multiple
competing objectives in the multi-process instance environment,
which is different from the resource allocation optimization of
single process instance. The optimization results obtained on this
basis are a set of feasible solutions. Multi objective optimization
problems are usually accompanied with high dimensional search
space. If traditional optimization algorithms are used to solve the
resource allocation problem under the multi-process instances
environment, it will lead to high time complexity. Therefore, it
is necessary to optimize the algorithms.

2.1 Multi-process instance resource allocation model

The multi-process instance resource allocation model is more
complex than single process instance resource allocationmod-
el, so the former should be considered overall, and then
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refined to the various aspects to make specific analysis. The
multi-process instance resource allocation model needs to
meet three basic constraints:

(1) The sequence of each process activity is non preemptive
constrain. Process activities can be triggered only after
executing all the precursor activities. In the same process
instance, the resource can be allocated only after executing
all the precursor activities, otherwise errors will occur.

(2) Multiple process instances should avoid resource conflict
constraints in the parallel operation. The resource capac-
ities are limited, For example, a resource is implementing
an activity of certain process instance and has no idle
time to receive new tasks from other concurrent process
instances, or resources are too overloaded to complete
the tasks of multiple process instances in a specified
time, which will lead to unavailable resources. The avail-
ability of resources at various time points must be guar-
anteed in parallel multiple process instances; otherwise it
will cause resource conflicts.

(3) The overall cost of multiple processes must be limited to
a certain extent. Time and cost are the two most impor-
tant indicators to measure the performance of business
processes. Except execution time of activities, there ex-
ists waiting period between activities. The cost will often
change while controlling the completion time. The pur-
suit of shortening process time is likely to result in in-
creased cost. In order to avoid such situations, it is need-
ed to control the cost no more than certain set of con-
straints in the process of minimizing the process time.

(4) The resource allocation follows the priority rules of the
activity. Every activity has its own priority, so resource
allocation should also consider dynamic changes in the
priority of each activity. Affected by the activity’s attri-
butes, the priority value of each activity is also deter-
mined by waiting and delay time. Generally, the longer
waiting time of an activity is, the greater its priority is.

The multi instance resource allocation model is as follows:

Sequence vð Þ > Sequence v:precurserð Þ; v∈SA ð1Þ

Resourceconflict tm; sð Þ ¼ ture; s∈SP
∑p∑vcost s; v; v:precurserð Þ < costlim; v∈SA; s∈SP; p∈P

ð2Þ

D Pð Þ ¼ min∑p∑v Time vð Þ þWtime v:precurserð Þð Þ ð3Þ

k vð Þ ¼ Dn*Wtime v:precurserð Þð Þ= Vn−Vfnð Þ; v∈SA ð4Þ

In Formula (1) and (2), SA represents the set of process
activities; SP represents the set of process resources; P repre-
sents the process set. Sequence (v) represents the scheduling

order number of the activity v, v. precurser is the precursor
activity of v. Resourceconflict(tm, s) represents the availability
of the resource s in the time tm cost(s , v , v . precurser), is the
cost of s executing v and the waiting cost before executing v.
costlim represents the given process cost constraint. In Formula
(3), D(P) represents the performance of P. The model perfor-
mance metric is processing time, of which Time (v) represents
the consumed time v taken in business processes. v. precurser
is the precursor activity of v.Wtime(v.precurser) represents the
interval between v and its precursor activity. Process perfor-
mance is the final measure of using the following algorithm to
allocate multi-process resources, which the optimal solution
obtained by the final algorithm should minimize the total pro-
cess time. k(v) represents the priority of v, Dn represents the
total number of delays before execution, Vn represents the
total number of activities in the process, and Vfn means the
number of activities which has been completed in the process.

2.2 Particle swarm optimization

Particle swarm optimization (PSO) is a simplified model
based on swarm intelligence, and it is a kind of bionic algo-
rithm which imitates the flock of birds flying to a habitat in a
multidimensional space. The PSO model is similar to the ge-
netic algorithm, which controls the search behavior by
updating the individuals (particles) in the swarm. Each particle
represents a candidate solution to the problem. Similar to the
chromosome in the genetic algorithm, a particle is considered
as a point in the multi-dimensional space, and the state of the
particle is described by its position and velocity (Eberhart and
Shi 1998; Zhang and Gong 2013).

Compared with the traditional multi-objective optimization
methods and other evolutionary optimization algorithms, the
arithmetic coding of PSO is relatively simple and has a faster
convergence rate. PSO is parallel in nature, and the re-
source allocation of multi-process instances is often in the
distributed and concurrent application scenarios, so it is
feasible to use the PSO to optimize resource allocation of
multi-process instances.

For PSO has better performance in multi objective optimi-
zation, activity scheduling, combinatorial optimization and
other NP-complete problems, properly setting the evaluation
function of the particle can solve the problem of the diversity
of processor velocity (Wang et al. 2011; Gao and Li 2010; Liu
et al. 2015). In this paper, the improved particle swarm opti-
mization algorithm is used to generate the resource allocation
strategy in consideration of the resource allocation conflict of
multiple process instances and the characteristics of variable
work load. On the basis of general PSO, the improved algo-
rithm redefines the representation and updating methods of
particles in the process of resource allocation, which makes
the improved PSO converge faster and more efficient. Faster
convergence to the optimal solution in the finite iteration is
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more suitable for the resource allocation model of multi-
process instance resources in the business process.

3 Resource scheduling based on PSO

In this paper, the PSO crossover operation is introduced to
realize the resource scheduling in the multi-process instance
environment. The detailed description of the specific improved
optimization algorithm of PSO is given as the following.

(1) First, initialize a particle swarm, all the particles in the
particle swarm are randomly generated, according to the best
position (local optimal) experienced by the particle and the
best position (global optimal) all the particles found so far,
along the trajectory to regulate the following direction and
position of the particles. For the M-dimensional vector, the
position of the j-th iteration of the i-th particle can be
expressed as Pi(j)={pi1( j), pi2( j),..., piM (j)}. Similarly, the
velocity of the j-th iteration of the i-th particle in the M-
dimensional vector can be expressed as VEi(j)={vei1(j) , vei2(-
j) , … , ve

iM
(j)}. The updating mechanism of particles during

flight can be denoted by Formula (5) and (6):

VEi jð Þ ¼ w jð Þ VEi j−1ð Þ þ c1r1 PL
i −Pi j−1ð Þ� �þ c2r2 PG−Pi j−1ð Þ� � ð5Þ

Pi jð Þ ¼ VEi jð Þ þ Pi j−1ð Þ ð6Þ

where i ε{1,2, ... , n}, n is the total number of particle swarm,
called the population size; j∈{1,2,...,J}, J is the limit of
the iteration, as well as the maximum value; PL

i

={pLi1; p
L
i2;…; pLiM } represents the best local location obtained

by the particle i iterates after j-1 times. PG={pG1 ; p
G
2 ;…; pGM }

represents the global best position of all the particles so far. c1
and c2 are normal values, represent learning factors; r1 and r2
are random numbers between 1 and 0; w( j) is the inertia
weight, which is used to show the influence degree of the
previous velocity on the current velocity.

Formula (3) calculated the new velocity of particles accord-
ing to the previous velocity,current position, best global posi-
tion and distance between the local optimal positions. w ( j)
VEi( j − 1) stands for the extent of maintaining the original
velocity to continue to explore the solution space, the inertia
weight w( j) is the extent of following the original velocity;
c1r1ðPL

i -Pi( j − 1)) stands for the degree of how close the
optimal solution is to the local optimal solution while updating
velocity, and the random variables are introduced to prevent
the part icles from fal l ing into the local optimal
solution; c2r2(P

G-Pi(j − 1)) represents the particle shares infor-
mation beyond self-bound with other particles in the particle
swarm, namely close to the global optimal solution in the
whole environment. Lack of this item means particles lack
communication, then the probability of obtaining the optimal

solution will be reduced. Formula (4) is used to calculate the
new position of the particles, which can be obtained by mul-
tiplying new particle velocity with the unit time and summing
its previous position.

3.1 Particle representation

The goal of the heuristic algorithm is to coordinate the limited
resources. The resource allocation model of multi-process in-
stances is needed during scheduling and allocation of each
resource.

In the PSO algorithm, the position which each particle goes
through represents a possible solution. In the set of multi-
process tasks, there are several resources to be allocated from
sorted business processes with the number H, then each par-
ticle Gi can be represented by the multi-dimensional vector
Gi = (Q1 , 1,Q1 , 2, … ,Qj ,N),where every element Qj ,N in the
vector means that the resource Qj , N performs the N-th
activities( j ∈{1, ... H}) in the j-th industry business process
instance. In the multidimensional vector, the sort between the
elements represents the sequence of resource allocation.

Assuming that there are three process instances for a total
of 10 activities (process instance 1 has 3 activities, process
instance 2 has 3 activities, process instance 3 has 4 activities)
waiting for the resource allocation. By the improved PSO
algorithm, the optimal solution particles Gi with the particle
representation are as follows:

Q1 , 1 Q2 , 1 Q1 , 2 Q1 , 3 Q3 , 1 Q3 , 2 Q3 , 3 Q2 , 2 Q2 , 3 Q3 , 4

1 3 2 1 4 5 5 1 3 2

10 activities are allocated by 5 resources, namely Q1 ,

1=1,Q2 , 1=3,…,Q3 , 4=2. For instance, Q2 , 3=3 represents that
in the resource allocation results represented by the optimal
solution particle Gi, the activities of process instance 2 are
completed by resource 3, and the sequence of all elements
denotes the sequence of resource allocation, which corre-
sponds with the relationship between the resources and the
distribution of activities.

3.2 Particle update mechanism

Suppose that particle swarm is ∃ = {G1,G2 , … ,Gi , … ,
Gn },(1≤i ≤ n), where n represents the size of the particle
swarm. As mentioned above, each particle Gi corresponds to
a resource allocation method. And for any i and j (i≤ j), the
process performance which usesGi as resource allocation way
is less than one uses Gj as resource allocation way perfor-
mance, at this time the population ∃ maintain orderly. The
particle velocity calculated by formula (3), which essentially
is used to measure the distance between the current and
to-be updated position of the particle. By the formula (3) we
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can also know that if the distance between one element from
the array of particle’s current position and one element from
the array of particle’s best position (including the local best
position and the global best position) is too large, then the
absolute value of the element corresponding to the updated
velocity array will be relatively larger. Hence, the updated
particles will not necessarily move toward the direction of
the optimal solution. Therefore, the introduction of PMX (par-
tially mapped crossover algorithm) in the particle update
mechanism, which refers to the particle update process, the
two individual particles based on the probability of cross-
exchange of some elements, so as to achieve better update
results. In this way we can convert the value of each element
of the N-dimensional velocity to absolute one, and then cal-
culate the ratio α of the absolute value of each element to that
of the particle element at the optimal position. α indicates the
possibility of selecting the particle element as the base point
under the PMX operation (partial mapping crossover algo-
rithm). After getting the probability that each element is se-
lected as the base point of the crossover operation and the
concept of PMX operation, we can carry out the cross opera-
tion of particle elements.

We can randomly select two elements in particles as the
reference point of cross-operation according to the ratio of α,
the two particles make cross-operation, and produce new re-
source allocation results. It can be seen that the larger the dif-
ference between the elements is, the greater the probability of
the PMX operation is selected. The purpose of this method is to
optimize the iterative updating mechanism, and the update and
exchange between similar particles can effectively avoid the
updated results away from particle motion, prevent the particles
from evolving rapidly into local optimal solutions and help to
generate the optimal resource allocation result. After the whole
population is updated, the particles remove and re calculate the
velocity and position to obtain the optimal solution. Each par-
ticle’s position represents a possible solution. According to the
solution, we can allocate specific resources to the correspond-
ing activities (Wang Wang et al. 2015).

3.3 Resource allocation process based on PSO

The steps of resource allocation based on the PSO are as
follows:

Step 1: Initialize the iteration j = 0.
Step 2: Randomly generate the particle swarm with n parti-

cles and get initial position Pi(0)and initial
velocity VEi(0). The population size of the particle
swarm is n, initial position Pi(0)={pi1(0) , pi2(0) ,
… , p iM ( 0 ) } , i ∈ {1 , … X} a r e r andomly
generated,initial velocity VEi(0) = {vei1(0) , vei2(0)-
, … , ve

iM
(0)},i ∈ {1 , …X} are randomly generat-

ed as well. Noted that each element in the M-

dimensional array of particle positions is a positive
integer, and the range of values is in [1, M], any
element value over this range will be adjusted: if
pii‘(j)>M, then pii‘(j)=M; if pii‘(j)<1, then pii‘(0)=1.
M-dimensional particle velocity arrays also have a
limitation of [−VEmax , VEmax] to ensure that parti-
cles do not deviate from the range of particle position
when moving according to the updated velocity.
When the value of the element in the velocity array
exceeds that range, it will be adjusted: if VEix(j) >
VEmax, then VEix(j) = VEmax;if VEix(j) < − VEmax,
then VEix(0) = − VEmax.

Step 3: Set the initial position of the particle as the initial
local optimal PL

i , analyse the position of all the par-
ticles to get the initial global optimal PG.

Step 4: Enter the next round of iteration j = j + 1.
Step 5: Update the particle velocityVEix(j). Using the for-

mula (3) with the consideration of the inertia of
the original velocity and the distance between the
current position and the local optimal position
(the global optimal position), calculate the up-
dated velocity.

Step 6: Step 6: update the position of the particle Pix(0). The
particle has introduced the partial mapping crossover
algorithm. The particle update mechanism is as
follows:

① Use formula (3) to update the velocity.
② Then calculate the probability that each dimension may be

selected to cross substitute by the velocity.
③ According to this probability, randomly select two suitable

elements to substitute each other, then form particles infor-
mation on a new resource allocation method.

④ According to the updated velocity and the position infor-
mation after substitution, use formula (4) to update the
position of the particle information and complete the up-
date and iteration of the particles.

Step 7: To evaluate the position coordinate array of the par-
ticle, obtain the new local optimal PL

i and global
optimal PG. We assess the fitness of the original
and updated particles. The fitness is the total time
of multiple process instances after the resource allo-
cation. Different particles represent one kind of re-
source allocation, and unreasonable resource alloca-
tion will cause that the activities cannot be
suspended in a timely manner, resulting in different
total process time. The shorter the cost of total pro-
cess time is, the higher adaptation of the process is.
Every time the particles in the swarm updates, the
particle fitness will be evaluated. If the particle fit-
ness is greater than that of the locally optimal PL

i
(global optimal PG), then the location information
will be replaced by local optimal (global optimal)
location information.
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Step 8: Determine whether to stop iteration. If you meet one
of the following situations, the PSO particle update
iteration process will be terminated:

①When the global optimal PG remains unchanged after N times
iterations, the iteration is stopped andN is themaximum num-
ber of iterations. If no updated global optimal solution PG is
generated after N times iterations, it can be explained that the
PSO algorithm has found the global optimal solution.

②Achieve the maximum number of particle iteration times. If
there is no such particle update iteration above, then loop to
step 4 and continue next round of particle swarm iteration.

Step 9: Set the global optimization PG as the best solution to
resource allocation. When the iteration stops, remark
the number of iterations as Dmax. The global
optimal PG is the global optimal solution, and the
activity resource allocation in the position vector is
the optimal activity resource allocation.

The calculation of this algorithm mainly consists of the
updated particle velocity, position of the basic algorithm,
and the fitness value and the improved PMX operation. As
mentioned above, given the conditions that the population size
of the particle swarm is n, the number of iterations isDmax, the
size of the problem is S,initial position Pi(0) and initial veloc-
ity VEi(0), we can get the time complexity of the basic algo-
rithm is Dm*ax ∗O(n ∗ 3S); and the time complexity of PMX
is Dmax ∗O(n ∗ S), so the total time complexity of the algo-
rithm is Dmax ∗O(n∗4S) ≈Dmax ∗O(n ∗ S).

4 Experiments

Weobtained a total of 2262 customer compensation data from a
Shanghai airplane company, and tested the data as input. The
data contained the number of customers for compensation, ap-
plication time, compensation process operators, tickets ID for
compensation etc. Analysis was carried out on the compensa-
tion process model of the airline company. In Fig. 1, the process
consisted of 7 activities, BX^ indicates the choice relationship,
B+^ indicates the parallel relationship. The process is composed
of several activities in parallel, but the total number of resources
is fixed, so in every steps of the process the resources were

mutually exclusive. For example, there are two customers
who apply for ticket check at the same time, ticket check staff
will check one of the tickets a time, and the other will be de-
layed. An appropriate resource allocation algorithm can provide
the system with the solution of less cost, less consuming time.

After customer compensation data is input in the compensa-
tion system and the process runs for some time, it can generate a
lot of event logs. The logs contain the compensation results,
operation time point of each activity, process operators, compen-
sation time and so on.We can compare process instance efficien-
cy through statistical analysis of these logs. Each process instance
consisted of some logs, which record activities, resources, con-
suming time and cost in detail, as shown in Table 1. In addition,
the waiting cost for the activity interval is 10 $/h.

4.1 Comparative analysis

The velocity updating in Formula (3) and the position update in
Formula (4) of the general PSO algorithm involve the inertia
weight w( j), which mainly indicates the inertia of the current
speed. Learning factors c1 and c2 mainly affect the closeness of
the particle to the history optimal point and global optimal point,
reflecting the communication between the particle and the
swarm, the value which is usually between 0 to 2. r1 and r2 are
random numbers, which are mutually independent between 0
and 1. As to the influence of the fixed weight of the PSO, ac-
cording to the study of Trelea (2003), when the maximum speed
Vmax is less than 2, taking the inertia weight as 1 is more appro-
priate. But when the maximum speed is greater than 3, the inertia
weight usually takes 0.8. And at this time the learning factors c1
and c2 are both set to 1 (Trelea 2003; Chen et al. 2012). The size
of the particle swarm(the number of particles in a particle
swarm)is commonly close to the general category of activities
in the business process. Of course, bigger particle swarm size
means increasing probability of obtaining the optimal solution,
but also means the need to update more particles. Different from
the ordinary PSO, the position Pi( j)and velocity VEi( j) of the
particle are the factors which influence the particle swarm algo-
rithm, thus continuously update them towards the local optimal
solution to obtain the global optimal solution. In this paper, the
hybrid particle swarm optimization algorithm, on the basis of
general particle swarm optimization algorithm, redefines particle
representation and updating method in the resource allocation

start register
request

Examine
thoroughly

X +

X

Examine
causually

Check
ticket

decide

Pay
compensation

Reject request

+

X

X endX

Fig. 1 Airline company
compensation process
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process, and makes the improved PSO has stronger convergence
and greater efficiency.

When the inertia weight of the particle swarm algorithm is not
fixed, we get another PSO algorithm,which is the PSO algorithm
with dynamic inertia weight (Pluhacek et al. 2013). The inertia
weight ( j) is set to one random number in line with randomly
distributed numberswithin a certain range, so to some extent, this
dynamic inertia weight will not only help the local search, but
also help to increase the search scope later. Herein, the inertia
weight is set to w( j)=w( j)max+[w( j)max-w( j)min][ rand()−0.5],
where w( j)max is represented as the maximum value of the ran-
dom inertia weight, andw( j)min represents theminimum value of
the random inertia weight, and rand() is the random number
artificially set between 0 ~ 1 with evenly distribution.

When the learning factor c1 and c2 are non-fixed, the particle
swarm optimization algorithm with dynamic learning factor is
introduced (MAO et al. 2010). At this time, the two learning
factors c1 and c2 will change with time. Herein, the change of
dynamic learning factor is set as the following formula:

c1 ¼ c1s− C1s−C1eð Þ*cos w jð Þð Þ; c2 ¼ c2s− C2s−C2eð Þ*cos w jð Þð Þ

At this point, c1s and c2s represent the initial values of the
two learning factors respectively, while c1e and c2e represent
their end values respectively.

We compare the effectiveness of three different resource
allocation algorithms: hybrid particle swarm optimization al-
gorithm, PSO with dynamic inertia weight and PSO with dy-
namic learning factor. Through analysis of the logs, we can
compare the effect of the algorithm. Firstly, we discuss the
effectiveness of each resource allocation algorithm. Herein,
we select seven airline ticket refund service: applications reg-
istration for compensation service, examine thoroughly, ex-
amine casually, check ticket, decide, pay compensation, and

reject request. We got total time of each activity. The results
are shown in Fig. 2. In it, 1 to 7 stand for applications regis-
tration for compensation service, examine thoroughly, exam-
ine casually, check ticket, decide, pay compensation, and re-
ject request, separately.

As can be seen in Fig. 2, the average time of the hybrid
particle swarm optimization algorithm is significantly less
than the other dynamic particle swarm optimization algo-
rithms. Because of various specific activities, time consuming
of the algorithms is also different. In the activity of thorough
examination and decision, because of computational com-
plexity, the hybrid particle swarm algorithm can make the
particles iterate quickly towards the optimal solution
through cross-mapping, so the average time was more
outstanding than that of the other two algorithms, which
only changed their own attributes dynamically, lack of
information exchange among particles, so they easily fell
into the local optimal solution and were time-consuming.
It can be seen that the hybrid particle swarm optimization
algorithm can effectively reduce the total time in the
multi-instance process.

We further verify the effectiveness of the algorithm by
changing the number of resources and keeping the algorithm
unchanged. Doubling the number of compensation lines in the
experiment above. Input the compensation data obtained from
the airline system, and got the results in Fig. 3.

It can be concluded from Fig. 3 that after doubling the
activity resources, the restriction of the system was reduced
and the average time of each activity was obviously reduced.
On the whole, the hybrid particle swarm algorithm descended
more in the whole. Especially in the most time-consuming,
resource-consuming thorough review phase, the average time-
consuming of the mixed particle algorithm declined more ob-
vious. The hybrid particle swarm algorithm converges faster

Table 1 Excerpt from compensation process logs

No. CustomerName Start time End time Activity Operator Cost ($)

1 Kai Lin 1–3-2016.08:00 1–3-2016.08:01 register request Carol Wang 60

1 Kai Lin 1–3-2016.08:03 1–3-2016.08:03 Examine thoroughly Sue Chen 165

1 Kai Lin 1–3-2016.08:04 1–3-2016.08:04 check ticket Andrew Jin 70

1 Kai Lin 1–3-2016.08:05 1–3-2016.08:05 Decide Ida Shi 325

1 Kai Lin 1–3-2016.08:06 1–3-2016.08:06 reject request Fir Lu 80

2 Tina Tsai 1–3-2016.08:00 1–3-2016.08:03 register request Carol Wang 60

2 Tina Tsai 1–3-2016.08:04 1–3-2016.08:05 check ticket Andrew Jin 70

…….. …….. ………. ………. ………. ……… ………

2192 Xiaoyun Chang 6–3-2016.16:25 6–3-2016.16:35 check ticket Carol Wang 70

2192 Xiaoyun Chang 6–3-2016.18:41 6–3-2016.19:22 decide Ida Shi 325

2192 Xiaoyun Chang 6–3-2016.19:36 6–3-2016.19:42 reject request Fir Lu 80

2193 Junbo Chow 6–3-2016.16:25 6–3-2016.16:26 register request Carol Wang 60

2193 Junbo Chow 6–3-2016.16:29 6–3-2016.17:35 examine casually Hubert Song 85

…….. …….. ………. ………. ………. ……… ………
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after optimization, and converged to the optimal solution in
the limited iterations.

4.2 Experimental analysis based on different resource
allocation model

It is important to solve resource conflict and cost control in the
multi-instance resource allocation model. Except the non-
preemptive constrain of activities and the dynamic changes
in weight, we also can focus on the process cost balance to
design multi-instance resource allocation model so as to im-
prove resource performance and so on. The minimum cost
resource allocation model Xu et al. (2008) found all the re-
sources with the lowest activity cost, checked the availability
of the resource, and then verify whether the total process time
exceeded the limit in condition of resource availability.

Average time consuming of different resource allocation
model in the same process are shown in Fig. 4.

In Fig. 4, as to the multi-instance resource allocation model
proposed by this paper, the average time-consuming of each
activity was lower than the resource allocation model.
Especially in the thorough examination and ticket checking
stage, the resource allocationmodel proposed by this paper paid
much attention to the weight of these two stages. Application
rejection is the final decision stage as all prerequisite aspects
needed to be completed. The model took into account the non-
preemptive constraints of the activity sequence of each process,
so it resulted in better results. The minimum-cost resource al-
location model focused more on the balance between costs,
considering resources availability after meeting the minimum
cost requirement, but ignoring the activity priority, which easily
led to the situation which meets a balance of costs but per-
formed unsatisfactorily. We took the cross-validation and kept
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two multi-process resource allocation model unchanged, but
change the number of resources. We got Fig. 5.

It can be seen from Fig. 5 that the average time of the two
resource allocation model was both reduced after the number of
resources increased. However, in the stage of compensation, the
average consuming time of the minimum resource allocation
model is improved obviously after replenishing the resource.
The airline’s backstage office finance department involved in
the compensation phase, so it was more important to focus on
the balance between the waiting cost and execution cost. But
the stages casual examination and thorough examination are
most resource-intensive. Therefore, we need to focus more on
superior activities rather than the balance of cost.

In all, the improved hybrid particle swarm optimization (PSO)
algorithm and the multi-process resource allocation model pro-
posed in this paper have a good effect on resource allocation. The

hybrid particle swarm algorithm has more efficient information
sharing mechanism, which is more obvious with the increase of
the number of resources. The cross-mapping mechanism of hy-
brid particle swarm optimization can make the particles update
towards the optimal solution quickly. As to the priority of process
activities, the model proposed in this paper can dynamically
change the priority according to the current status of resource
allocation and the number of postponed events, which can also
lead to better allocation results. In this way, it can improve pro-
cess performance and process structure.

5 Conclusions

In this paper, the PSO algorithm is introduced to find the global
optimal solution of resource scheduling. The algorithm is an
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effective method to solve the NP-hard problem, which can find
the global optimal solution. In addition, this paper proposes the
improved PSO to accelerate the convergence of the particle and
find the better way of resource scheduling. The resource alloca-
tionmodel proposed in this paper can fully consider the resource
cost, time and other process performance evaluation indicators.

With the increasing complexity of practical industry process-
es, we also need further combine control flow logic and organi-
zation view. Therefore, in the future, we will further discuss
various situations of scheduling and distribution of resources,
and integrate the organizational view of the process to conduct
more scientific resource allocation in amore comprehensiveway.
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