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Abstract Service-Oriented Computing promotes building
applications by consuming and reusing Web Services. How-
ever, the selection of adequate Web Services given a client
application is still a major challenge. The effort of assess-
ing and adapting candidate services could be overwhelming
due to the “impedance” of Web Service interfaces expected
by clients versus the actual interfaces of retrieved Web Ser-
vices. In this work, we present a novel structural-semantic
approach to help developers in the retrieval and selection
of services from a service registry. The approach is based
on a comprehensive structural scheme for service Interface
Compatibility analysis, and WordNet as the semantic sup-
port to assess identifiers of operations and parameters. We
also empirically analyze, compare and contrast the perfor-
mance of three service selection methods: a pure structural
approach, a pure semantic approach, and the structural-
semantic (hybrid) approach proposed in this work. The
experimental analysis was performed with two data-sets of
real-world Web Services and a service discovery support
already published in the literature. Results show that our
hybrid service selection approach improved effectiveness
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in terms of retrievability of Web Services compared to the
other approaches.
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1 Introduction

Web Services is the common technological choice for mate-
rializing the Service-Oriented Computing (SOC) paradigm
(Papazoglou et al. 2007; Erl et al. 2008). Basically, Web
Services enable service providers to implement their ser-
vices using well-known interoperable Web protocols, such
as HTTP (HyperText Transfer Protocol) or SOAP (Simple
Object Access Protocol). A Web Service contract (usually
specified in WSDL1 (Curbera et al. 2002)) exposes pub-
lic capabilities to potential clients as operations without any
ties to proprietary communication frameworks.

However, the broad use of the SOC paradigm requires
efficient approaches to enable service discovery and con-
sumption from within applications (McCool 2005). Discov-
ery implies querying a registry to retrieve the most relevant
candidate services, and then refine the set of candidates by
picking up (selecting) one from them, while consumption
means integrating the selected service into the client appli-
cation so it can be actually called. In practice, developers
manually search for candidate services mainly exploring
registries or Web catalogs, and then assemble their client
application components and selected services.

1Web Service Description Language - http://www.w3.org/TR/wsdl
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As such, service discovery requires investing a large
effort into service retrieval, i.e., obtaining candidate ser-
vices from registries or catalogs, and service selection, i.e.,
assessing a set of retrieved services to find the most suitable
one according to certain criteria. Even with a reduced set
of services, such effort may overwhelm developers. Then,
assessing services includes envisioning the required adapta-
tions for their correct integration into the client application.
Without properly analyzing meaningful information from
interfaces, selection of the most suitable candidate service
resembles to fortune-telling.

In this context, the aims of this paper are twofold. On
the one side, we present a novel hybrid service selection
approach, which improves service retrieval and selection
through gathering and assessing structural and semantic
information from services interfaces. On the other side, we
compare the hybrid approach against other structural and
semantic approaches for service selection.

In a previous work, we have presented an approach for
structural service selection (Garriga et al. 2013). In this
work we empower the service selection approach by also
considering semantic information present in service inter-
faces, through the use of the WordNet lexical database
(Miller et al. 1990) – thus resulting in a hybrid approach.
Based on the structural and semantic information, the ser-
vice selection approach measures the adaptability degree
of candidate services upon a (potentially partial) required
functionality at the client side. The required functional-
ity is typically provided by the developers as an example
of their needs in their preferred programming language
(Crasso et al. 2011a) to guide the search engine to select the
most adequate candidate service. In this paper, we focus on
Java, a language very popular in SOC development. Alter-
natively, we also study a purely semantic service selection
approach based on the notion of information content (Pirró
2009), which is also compared with the aforementioned
approaches.

Additionally, we performed a set of experiments to com-
pare the performance of the hybrid approach against other
service selection approaches upon the original results of a
service registry called EasySOC (Crasso et al. 2014). For
comparison purposes, we also consider the Stroulia algo-
rithm (Stroulia and Wang 2005), a foundational approach
in the field of Web Service retrieval and selection. Results
were measured in terms of retrievability, by means of
well-known metrics from the Information Retrieval (IR)
field (Recall and Discounted Cumulative Gain). Thus, we
assess to what extent these service selection approaches also
improve retrievability of suitable services according to the
aforementioned metrics.

This paper is organized as follows. Section 2 explain
two baseline service selection approaches: purely structural
and purely semantic. Then, Section 3 presents the novel

structural and semantic (a.k.a. hybrid) service selection
approach. Section 4 presents the experiments comparing
these Web Service selection approaches using two data-sets
of real Web Services and the EasySOC service registry, and
the Stroulia algorithm as the baseline. Section 5 presents
related work and explains how our approach improves over
them. Finally, Section 6 outlines conclusions and future
work.

2 Baseline approaches for service selection

During the development of a SOC application, specific parts
of a system may be implemented in the form of in-house
components, whereas some (non-implemented) software
pieces could be fulfilled by associating them to external
Web Services. In this case, a list of candidate Web Ser-
vices could be obtained by making use of a service registry.
Nevertheless, even with a wieldy candidate list, a devel-
oper must be skillful enough to select the most appropriate
service for the client application. Therefore, a reliable and
practical support is required to help them making these
decisions. In this section we describe two baseline service
selection approaches. Section 2.1 presents the structural-
based service selection method introduced in our previous
work (Garriga et al. 2013). Section 2.2 presents a semantic-
based service selection method, developed in the context of
this paper, based on a semantic similarity metric developed
in (Pirró 2009), which combines features and the intrinsic
information expressed by identifiers.

2.1 Structural service selection

Let IR be the interface of certain required functionality,
and IS the interface of a candidate Web Service S. For
each pair of operations (opR, opS), a likely equivalence is
foremost based on structural conditions for some signature
elements – namely, return type, parameter types and excep-
tions. Notice that elements are named according to Java
terminology, rather than using WSDL conventions for Web
Service interfaces. The reason is that structural assessment
is performed upon Java interfaces previously derived from
WSDL specifications.

Constraints are based on individual conditions for each
element comprising operations signature: the Return type
(R), the operation Name (N), the Parameters list (P), and the
Exceptions list (E). Table 1 summarizes the set of operation
matching conditions.

Particularly, in a purely structural service selection
approach, conditions for operation matching depend upon
type equivalence and subtyping rules, summarized in
Table 2 for the case of built-in types in the Java language.
The counterpart of the subtype equivalence is precision loss,
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Table 1 Structural-based selection: operation matching conditions for Interface Compatibility

Return Type R0: Not Compatible R1: Equal return type

R2: Equivalent return type (subtyping, Strings or Complex types) R3: Non equivalent complex types or precision loss

Operation N0: Not compatible N1: Equal operation name

Name N2: Equivalent operation name (substring) N3: Distinct operation names

Parameters List P0: Not compatible P1: Equal number, type and order for parameters

P2: Equal number and type for parameters, but different order P3: Equal number of parameters, with compatible types

P4: Non equivalent complex types or precision loss

Exceptions List E0: Not compatible E1: Equal number, type and order for exceptions

E2: Equal number and type for exceptions E3: if the original exception list is non-empty, then

the candidate’s list is non-empty

which implies that smaller types convey less information
than greater types; e.g., casting a long type to an int type
implies precision loss according to Table 2. Thus, to achieve
operations matching, it is expected that types of operations
in a required interface have at least as much precision as
types on operations in a candidate service.

For example, if opR ∈ IR includes an int type, a cor-
responding operation opS ∈ IS should not have a smaller
type (among numerical types) such as short or byte
to be compatible. However, the String type is a special
case, which is considered as a wildcard type – it is gener-
ally used in practice by programmers to allocate different
kinds of data (Pasley 2006). Thus, we consider String as a
supertype of any other built-in type. Besides, complex types
imply a special treatment: each field of a complex type from
an operationopR ∈ IR must match a field from a complex
type in opS ∈ IS , considering the aforementioned notions
of type equivalence. Extra fields (if any) from the complex
type in IS may be initially left out of any correspondence
without causing incompatibility, provided that all required
fields in IR were matched.

Return type Return Type equivalence is then straightfor-
wardly calculated according to the notions of type equiv-
alence. Given two operations opR ∈ IR and opS ∈ IS ,
the highest compatibility (R1) implies equal return types in

opR and opS . Then, R2 implies equivalent types according
to the rules in Table 2. Examples are an int type in opR

and a long type in opS , or two complex types with equiv-
alent types in their fields. R3 implies two complex types
with (certain) non-equivalent fields, or precision loss; e.g.,
an int type in opR and a short type in opS . Finally, non-
equivalent return type (R0) implies not compatible types;
e.g., an int type in opR and a boolean type in opS .

Operation name Operation names (identifiers) do not pre-
sent structural information to be analyzed. Thus, name
equivalence conditions are based upon substring similar-
ity, by considering common naming conventions (Elish
and Offutt 2002), as presented in Table 3. In general,
developers combine terms in the form <verb> + <noun>
for denoting an operation name, such as getQuote or
get_quote, from where the name can be decomposed
into words (get and quote) and a likely string coin-
cidence could be found. Therefore, given two operations
opR ∈ IR and opS ∈ IS , condition N1 implies identical
operation names. N2 implies a substring equivalence, e.g.,
get_quote and get_user. N3 implies completely dis-
tinct operation names, according to a substring analysis. N0
implies not compatible operation names. It is worth noting
that this condition is included for completeness but it is not

Table 2 Subtype equivalence

opR type opS type

char String

byte short, int, long, float, double, String

short int, long, float, double, String

int long, float, double, String

long float, double, String

float double, String

double String
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Table 3 Rules for decomposing operation names

Notation Rule Source Result

Java Beans Split when changing text case getZipCode get Zip Code

Special Tokens Split when “_” occur get_Quote get Quote

applied in practice, to avoid discarding a potentially com-
patible candidate service only due to a different operation
name.

Parameters list The rationale behind structural assessment
of parameters is similar to the return type assessment,
as it is based upon type equivalence notions and com-
plex types analysis, as discussed at the beginning of this
section. However, the complexity of parameters assessment
is increased by the number and order of parameters. As
shown in Table 1, given two operations opR ∈ IR and
opS ∈ IS the most compatible case (P1) implies equal num-
ber, type and order for parameters. Similarly, P2 implies
equal number and types of parameters, but defined in dif-
ferent order for both operations; e.g., the parameters in
opR are (int, long), while in opS are (long, int).
However, most common situations imply a weaker corre-
spondence between parameter lists: equal number of param-
eters, with compatible types (P3) – e.g., (int,long)
and (double,double); and non-equal complex types
or precision loss (P4) – e.g., opR requires two param-
eters (long,long), while opS provides (int,int).
Finally, non-equivalent parameters (P0) implies that at least
one parameter is not compatible; e.g., (int, long) and
(int, boolean).

Exceptions In the context of Web Services, fault defini-
tions have not become a common practice: undercovering
fault information within standard messages is an anti-
pattern found in public WSDL interfaces (Rodriguez et al.
2013), which consists in (mis-)communicating error infor-
mation in output messages from services to invoking clients.

However, by assuming software development best prac-
tices, exceptions or faults must be analyzed accordingly. In
the structural approach, any operation opR ∈ IR may define
exceptions as a name and an associated set of fields (simi-
larly to Java Beans or records in C++), while an operation
opS ∈ IS may define a fault as a message that includes
a specific attribute which stands for the exception name,
and other specific elements that describe the structure of the
fault message. Fault messages are detected by the library
that parses the WSDL document: the SoaMembrane API.2

We opted for SoaMembrane because other popular libraries

2http://membrane-soa.org/soa-model-doc/1.4/java-api/
parse-wsdl-java-api.htm

such as Axis23 and EasyWSDL4 either introduce higher
noise in the generated Java interface (in the form of RPC
calls and configuration burden) or miss certain information
of identifiers and types.

The most compatible case for exceptions (E1) implies
equal number, type (considering the comprising fields) and
order for exceptions. Condition E2 implies equal num-
ber and type of exceptions in opR and opS . Condition E3
implies that if the exception list in opR is non-empty, then
the exception list in opS is non-empty – i.e., at least one
exception is defined in the required and candidate opera-
tions. Finally, condition E0 implies that either opR defines
exceptions and opS does not; or both define exceptions
whose types are not compatible.

Compatibility gap value The final outcome of the Struc-
tural Assessment for two interfaces IR and IS is a matching
list that captures each pair of potentially compatible opera-
tions. For example, let us consider IR with three operations
opRi

1 ≤ i ≤ 3 and IS with five operations opSj
, 1 ≤ j ≤ 5.

Thus, the matching list after the structural assessment might
result as follows:

(opR1 , [opS1,opS5]);(opR2 ,[opS2 ,opS4]), (opR3 , [opS1 , opS3])
Additionally, for each pair (opR, opS), the equiva-

lence values obtained for the different signature element
[R, N, P, E] convey a numeric information about the com-
patibility degree between these two operations; e.g., the
value of an exact equivalence [R1, N1, P1, E1] is 4, as a
result from adding the value 1 of each condition. We will
refer to this value as compV al. Upon this value, an aver-
age appraisal value named Compatibility Gap (Garriga et al.
2013) was defined to synthesize the best equivalence value
for a pair of interfaces (IR, IS) according to their compatible
operations.

The Compatibility Gap is calculated according to For-
mula 1, where:

– the numerator Min(compV al(opRi
, IS)) is the mini-

mum value among the compatibility cases found for
the operation opRi

– only the best equivalence (lowest
value) is considered for each operation opRi

∈ IR; and
– the denominator N ∗ 4 is the number of operations in

IR multiplied by 4, i.e. the value of the exact (best)

3http://axis.apache.org/axis2/java/core/
4http://easywsdl.com/
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equivalence. This implies that the best compatibility
gap value will be 1 (when all operations present an exact
matching).

compGap(IR, IS) =
∑N

i=1 Min(CompV al(opRi
, IS))

N ∗ 4
(1)

Example Let us consider the required interface IR with
one operation opR: long sum(long,long) and a can-
didate service interface IS with one operation opS : long
add(int, int). By means of the structural assessment,
the resulting conditions for each signature element are
[R1,N3,P4,E1]: both operations have the same return type
(long), distinct names (considering substring equivalence),
precision loss in the parameters (opR requires two long
parameters, while opS provides int) and no exceptions.
Finally, the resulting Compatibility Gap for this example is
calculated according to Formula 1 as: compGap(IR, IS) =
(1 + 3 + 4 + 1)/4 = 2.25

2.2 Semantic service selection

The Semantic-based service selection approach is based on
the Semantic Similarity Metric (Pirró 2009). The seman-
tic similarity metric combines the feature-based theory of
semantic similarity – a well-known theory in the psycholog-
ical field proposed in (Tversky 1977) – and the information
theory domain. The abstract model of similarity calculates
the set of features that is common to two terms, and also the
set of differentiating features. Then, the similarity of a term
t1 to a term t2 is a function of the features common to t1
and t2, those in t1 but not in t2, and those in t2 but not in t1.
To add the notion of Information Content (IC) – a measure
to quantify the amount of information expressed by a con-
cept – to the compared terms, the author proposes to use the
msca (Most Specific Common Abstraction) calculated as
the intersection of features from t1 and t2. Then, the seman-
tic similarity metric is calculated according to Formula 2.

sim(t1, t2) = 3 ∗ IC(msca(t1, t2)) − IC(t1) − IC(t2) (2)

The IC of term t1 in relation to t2 is obtained by sub-
tracting from t1 the common features. The metric relies in
the meaningful and structured organization of its underlying
lightweight ontology. We group under the term lightweight
ontologies or lightweight semantics, approaches such as
Microformats5 and RDF6 tagging, which can be built with
minimal tooling, at low cost and a low adoption barrier.

5http://microformats.org/
6https://www.w3.org/RDF/

Fig. 1 A small excerpt of the WordNet taxonomic organization

In contrast, heavyweight ontologies or heavyweight seman-
tics such as OWL-S7 (Martin et al. 2007) and WSMO8

(Roman et al. 2005) are formal and rigorous, allowing
further machine reasoning and ontology/schema matching
upon services and compositions. However, heavyweight
ontologies still involve high costs in service interface and
query specification, causing service designers to be alien-
ated from their use in practice (Kokash 2006; Garriga et al.
2015). In this context, we adopt lightweight ontologies as
they can exploit the semantic information in textual service
descriptions (typically WSDL) that are always available in
practice.

For the Semantic service selection approach, the light-
weight lexical structure to calculate the msca is WordNet,
where concepts with many hyponyms convey less informa-
tion than leaf concepts.

WordNet is a large lexical database of the English lan-
guage. It stores semantic relations that are used to calculate
the metric. Figure 1 shows an excerpt of the nouns taxon-
omy of WordNet. WordNet groups terms in synsets (syn-
onym sets) that represent the same lexical concept. Several
relations connect different synsets, such as hyperonymy/
hyponymy, holonymy/ meronymy and antonymy (Miller
et al. 1990). The Semantic Similarity Metric is based on the
levels of hyperonymy/ hyponymy, since they are the most
common “Is a” relations that connect synsets. For example,
according to Fig. 1, squirrel cage is a first-level hyponym
of cage, which in turn is a first level hyponym of enclosure.
Thus, squirrel cage is a second-level hyponym of enclosure.

The Semantic Similarity Metric is implemented in the
Java WordNet Similarity Library9 (JWSL) suite of met-
rics that allows calculating the semantic similarity between
two concepts or between two sentences. It exploits the

7Ontology Web Language for Services
8Web Service Modeling Ontology
9http://grid.deis.unical.it/similarity
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Fig. 2 Example of Semantic Similarity calculation

Lucene10 indexing framework and includes the WordNet
folder structure to avoid installing WordNet separately.

Figure 2 shows an example of intrinsic IC calculation,
where the nodes (concepts) in the tree-shaped ontology
structure are [root,a,f,p,w,u,x,r,n] and the corresponding
intrinsic IC value is shown in each node. The Semantic Sim-
ilarity metric between two leaf concepts t1 and t2 results in
sim(t1, t2) = 3 ∗ IC(msca) − 2. In this case, if the msca is
near the root in the lightweight ontology (it receives a low
IC) the metric returns a lower similarity value than when the
msca is near the leaves. In particular, if the msca is very high
(i.e., very near to the root concept) the metric gives a nega-
tive value near 2, which can be interpreted as the maximum
dissimilarity value. Thus, the similarity value for the pair of
terms (f,w) can be calculated as:

sim(f, w) = 3 ∗ IC(a) − IC(f ) − IC(w)

= 3 ∗ 0.04 − 0.1 − 0.052 = −0.032

which can be interpreted as a slight similarity between the
pair of concepts (f,w) since they share an hyperonym (a) that
is near the root.

Following the rationale explained in the example, sen-
tence similarity is represented as the assignment problem
and then solved through the Hungarian algorithm (Kuhn
1955). This algorithm accepts as input an n x m cost matrix,
where n and m are the number of words of the two sentences
under analysis. Then, the algorithm solves the assignment
problem by comparing all the words to find their best
assignment according to the Semantic Similarity metric.

2.2.1 Semantic similarity for operation identifiers

The calculation of semantic similarity for service identi-
fiers (operation and parameter names) is supported by the
rationale of sentence similarity. Let opR and opS be two

10http://lucene.apache.org

operations, then the semantic similarity matrix S stores the
similarity between all pairs of terms from operation names.
A cell Sij from the similarity matrix S contains the seman-
tic similarity value sim(ti , tj ) between the i-th term of opR

name and the j-th term of opS name. Finally, the matrix S
is used as input to the Hungarian algorithm, which returns
the higher possible semantic similarity value between the
identifiers.

For example, let us consider the operation iden-
tifiers opR = setAccountSequence and opS =
changeInvoiceNumber. The semantic similarity
matrix S for opR and opS is shown in Table 4, where each
cell sij = sim(ti ∈ opR, tj ∈ opS). The higher the value in
sij , the more related the terms. Then, the Hungarian algo-
rithm determines the best pair-wise assignment for the terms
in the operations (which in this example is the diagonal of
the matrix) and returns an overall similarity value.

3 Hybrid service selection

The structural service selection method presented in
Section 2.1 only considers structural aspects from types in
the signature elements of operations. In this paper, the asso-
ciated Interface Compatibility analysis was conveniently
extended to consider not only structural but also semantic
aspects from each identifier included in service operations,
in particular for operation names, complex return types,
parameter names and exception names. Firstly, we discuss
the identifiers evaluation algorithm (Section 3.1). Then we
detail the structural and semantic assessment for return
types (Section 4), parameters (Section 3.3), and excep-
tions. Application of the identifiers evaluation algorithm for
operation names is straightforward, as operation names are
simply identifiers. Finally, we introduce a complementary
value that reflects the required adaptation effort to integrate
a candidate service into a client application, called Adapt-
ability Gap (Section 3.5). Again, “semantic” in this context
should be understood as relying on not heavyweight but
lightweight ontologies.

3.1 Identifiers evaluation

The Identifiers Evaluation Algorithm semantically com-
pares the identifiers of an operation opR of the required

Table 4 Semantic similarity matrixS for the setAccount
Sequence and changeInvoiceNumber operations

Term set account sequence

Change 0.33 5 × 10−4 3 × 10−4

Invoice 1 × 10−4 0.65 2 × 10−4

Number 0.37 0.29 0.60
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interface IR and the name of an operation opS from the can-
didate service interface IS . Figure 3 depicts the main steps
of the algorithm, which are described below.

Term Splitting and stop words removal Identifiers are
usually restricted to a sequence of one or more letters
in ASCII code, numeric characters and underscores (“_”)
or hyphens (“-”). The algorithm supports the rules pre-
sented for the structural selection method (Section 2.1),
and considers cases that do not strictly follow the conven-
tions described in Table 3. The term splitting step analyzes
the operation identifiers. It stores potentially representative
terms split by text case changing and special characters.
Then, WordNet is used to analyze all the potential terms
and to determine the most adequate term separation. When
an identifier does not strictly follow naming conventions,
some assumptions are made, e.g., an uppercase sequence
represents an acronym, to find potentially representative
terms.

For example, let us consider the identifier SQLLogin.
This identifier does not follow the Java Bean naming con-
vention. The preliminary analysis of potentially represen-
tative terms gives an uppercase sequence (’SQLL’) and a
lowercase sequence (’ogin’). Then, according to the term
splitting algorithm, the sequences (1) and (2) are analyzed
with WordNet. As they are not valid words, the algorithm
analyzes the last uppercase letter along with the lowercase
sequence: L + ogin = Login. As this latter is an existing
word in the WordNet dictionary, then Login is a term and
SQL is considered an acronym (which actually stands for
Structured Query Language) that is also a term.

Furthermore, stop words are words which are filtered out
prior to, or after, processing of natural language data (text)
(Rajaraman and Ullman 2011). We defined a stop words list
containing articles, pronouns and prepositions from known
stop words lists, and each letter of the alphabet. This avoids
including each letter of an acronym as a term during term
separation. The stop words removal step simply takes a list
of terms as input and removes any occurrence of a word
belonging to the stop words list.

Stemming Is the process of reducing inflected (or some-
times derived) words to their stem, i.e., base form or
root form. Initially, we considered a standard stemmer
such as the Porter’s Algorithm (Willett 2006). However,
such stemmers generate incorrect data, since they merely
remove word suffixes. We considered prohibitive the accu-
racy decrease when using a standard lexical (or syntactical)
stemmer, and then we implemented a semantic-aware stem-
mer based on WordNet. The ad-hoc stemming algorithm
receives as input a list of terms. For each term in the
list, it verifies whether the term belongs to the WordNet
dictionary or not. If found, the corresponding stems are

stored. Otherwise, the original term is stored in the result
list, thus abbreviations and acronyms will be present in the
comparison.

Semantic comparison of term lists After generating the
terms lists, the information to calculate their compatibility
value must be extracted using the Java Wordnet Interface11

(JWI) library. This information includes: (1) Number of
exact (identical) terms between both lists; (2) Number of
synonyms (words with the same meaning); (3) Number
of hyperonyms (parents); and (4) Number of hyponyms
(children).

To evaluate synonyms, hyperonyms and hyponyms we
considered the following aspects. First, we use a single level
of hypo/ hyperonymy, to avoid overly altering word mean-
ings. For example, house is a first-level hyponym of build-
ing (thus that relationship is considered by the algorithm)
and a third-level hyponym of thing (thus that relationship
is not considered). Second, we considered total synonymy,
where two terms are synonyms if they are interchangeable
in the same context without affecting the semantics. For
example, land and ground are total synonyms since they are
semantically interchangeable.

Identifiers compatibility calculation At this stage, the
following information is available to calculate name com-
patibility:

– terms: total terms between both terms lists.
– exact: Number of identical terms.
– syn: Number of synonyms among the terms in both lists.
– hyper: Number of hyperonyms.
– hypo: Number of hyponyms.

Using these values as input the name compatibility is cal-
culated according to Formula 3. Notice that hyperonyms
and hyponyms are given a weight w with 0 < w < 1.
In this work, we empirically adjusted w = 0.5 – i.e., first
level hyponyms and hyperonyms are given half the weight
of exact terms and synonyms, since the former imply a
slightly different semantics between terms than the latter.
Then, following the same rationale, it is possible to con-
sider n-level hypo/hyperonyms, where each level is given
half the weight of the previous one: wn = wn−1 ∗ 0.5 –
i.e., w = 0.5, w2 = 0.25, w3 = 0.125, etc. The values
of nameComp range between 0, with no identical terms,
synonyms or hypo/hyperonyms; to 1, with all terms being
identical or synonyms.

nameComp = exact + syn + w ∗ (hyper + hypo)

terms
(3)

11http://projects.csail.mit.edu/jwi/
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3.2 Return type

Primitive return types only imply a structural assessment.
However, for complex return types, the semantic aspects
of identifiers should also be considered – i.e., name of the
complex type and its fields. Thus, for a pair of operations
opR and opS with complex return types, the structural and
semantic assessment aggregates two values:

– Fields compatibility (fieldsComp). Fields in complex
types are defined by a name and a type. Thus they are
processed similarly to parameter lists (which also are
characterized by a name and a type). The procedure is
detailed in Section 3.3.

– Name compatibility (nameComp). The name of com-
plex return types is assessed through the identifiers
evaluation algorithm defined in the previous section.

Finally, the compatibility value between return types of a
pair of operations (opR ∈ IR, opS ∈ IS) is calculated
according to Formula 4. When the return types are both
primitive, the calculation is done according to Table 1, thus
retComp = −R. For complex return types we add 1 to the
nameComp value, to avoid generating an incompatibility for
the return type (retComp = 0) only based on the semantics
of the identifiers. The case of a complex return type and a
primitive return type is considered as not compatible.

retComp

⎧
⎪⎪⎨

⎪⎪⎩

− R when comparing primitive

types

f ieldsComp∗ when comparing

(1 + nameComp) complex types

(4)

Fig. 4 Steps of the Parameters Matching algorithm of the hybrid
service selection approach

3.3 Parameters list

The structural service selection approach presented in
Section 2.1 only considers types from operation parameters,
but not their names. Moreover, the structural and seman-
tic parameters list evaluation consists of calculating three
matrices with parameters information: Type Matrix, Name
Matrix and Compatibility Matrix, as shown in Fig. 4. For
the three matrices, the cell mij represents the compatibility
value between the i-th parameter of the required operation
opR and the j-th parameter of an operation opS from a candi-
date service. The main steps of the algorithm are described
below.

The Name Matrix stores the compatibility values
between the name of each parameter from opR and the

Fig. 3 Steps of the identifiers evaluation agorithm
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name of each parameter from opS . The cell nij from the
name matrix N contains the compatibility value between the
name of the i-th parameter of opR and the name of the j-
th parameter of opS . This value is the result of applying the
name compatibility algorithm presented in Section 3.1. For
implementation purposes, we used the Paranamer library12

to access parameter names of Java methods from compiled
files.

The Type Matrix stores the similarity between all pairs of
parameter types from operations opR and opS . The notions
of type equivalence and subtype equivalence implemented
in the structural service selection approach (presented in
Table 2) are used to assess parameter types. Then, a cell
tij from the type matrix T contains the compatibility value
between the type of the i-th parameter of opR and the
type of the j-th parameter of opS . These values comple-
ment the name compatibility values (explained above) as a
weighting factor based on type similarity. Let Pi and Pj

be two parameters under analysis, belonging to opR and
opS respectively. The cells of T can store three different
values:

– If Type(Pi) is identical to Type(Pj ) then tij = 2. Identi-
cal types increase the name compatibility value for the
pair of parameters (Pi, Pj ) by a factor of two.

– If Type(Pi) is subtype of Type(Pj ) then tij = 1.5. Sub-
types increase the name compatibility value for the pair
of parameters (Pi, Pj ) by a factor of 1.5.

– Otherwise, tij = k, with 0 < k < 1. Non-related types
affect negatively the name compatibility value for the
pair of parameters (Pi, Pj ), by a factor between 0 and 1
(not included).

Moreover, the goal of the compatibility matrix is to store
the compatibility value of all pair-wise combinations of
parameters from operations opR and opS . The compati-
bility matrix is generated from the type matrix and the
name matrix, thus considering both structural and semantic
aspects from parameters. The cell cij from the compati-
bility matrix C stores the product between cells tij and
nij from the type matrix and the name matrix respectively.
Thus,

cij = tij ∗ nij

After calculating the compatibility matrix, the best pair-
wise combination of parameters must be selected, i.e., the
combination of parameters from opR and opS that maxi-
mizes their compatibility. Each possible matching is com-
puted taking each row from the compatibility matrix (i.e.,

12https://github.com/paul-hammant/paranamer

opR parameter) and choose a column (i.e., opS parameter),
without repeating columns – i.e., matching each parameter
only once. In this way, it is ensured that each parameter from
opR corresponds to one and only one parameter from opS .

For each possible pair-wise parameter assignment
between opR and opS the compatibility value is obtained
from the corresponding cell of the compatibility matrix. The
value of each possible parameter matching is the sum of
all pair-wise assignments that compose it. The matching
with the highest value will be the most compatible. Such
matching is obtained through the Hungarian algorithm.

The matching that maximizes the compatibility value
will be recommended as the best matching and then used to
calculate parameter compatibility according to Formula 5,
where mij are the selected cells of the compatibility matrix
that maximizes the compatibility values, and α is a config-
urable constant value that penalizes the number of unused
parameters from opS .

paramComp =
∑

mij

#(opRParam)
−α*#unusedParamsOps

(5)

The value for the constant α can be tuned to penal-
ize the number of unused parameters in the opS operation
from the candidate service. Each of them represents cer-
tain information loss and squandered processing, since it
requires adaptation logic to fulfill such parameter when
calling the service. Thus, we penalize that situation by the
α value, which is initially set to 0.5. With two or more
unused parameters, this penalization increases the chance
that the candidate service is not compatible. Overall, the out-
come of this step is a list of ordered pairs (Pi, Pj ) where
the first component is a parameter from opR and the sec-
ond component is the opS parameter which maximizes the
compatibility between the operations. The advantages of
this detailed analysis of parameters lists is twofold. First, it
exposes the best possible parameter pairs in terms of inter-
face compatibility. Second, these parameter pairs suggest
the needed parameter transformations to adapt the client
application, considering the required interface to the inter-
face exposed by the candidate service. For example, given
a pair of operations [opR(int pa , int pb); opS(long pc,
double pd )], the outcome of the parameters evaluation is
a list of the potentially compatible parameters in the form
[(pa , pd ); (pb, pc)]. Since the parameter types in opR are
both int, this suggests that (pa , pd ) and (pb, pc) have
compatible names, and the required transformations consist
on casting the int type of pa to a double type, and the
int type of pb to a long type. Finally, with these pairings
and transformations, the required operation opR could be
successfully adapted to safely call the service’s operation
opS .
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3.4 Exceptions

The structural service selection method defines equivalence
conditions for exceptions (Table 1) that were also extended
by adding lightweight semantics. Firstly, any required oper-
ation opR may define default exceptions – i.e., through the
Exception type – or ad-hoc exceptions. The ad-hoc excep-
tions defined by developers or third-party libraries should be
accessible to analyze their information. Likewise, an opera-
tion opS from a Web Service may define a fault as a message
with specific parts (fields).

Thus, similarly to parameters evaluation, exceptions
evaluation consists of calculating three matrices: type
matrix (T), which allocates the likely correspondences
between exception types (according to structural conditions
defined in Table 1) from opR and opS , name matrix (N),
which allocates the likely correspondences between excep-
tion names, and compatibility matrix (C), which allocates
collated information from names and types. For the three
matrices, the cell mij represents the compatibility value
between the i-th exception of the required operation opR and
the j-th exception of an operation opS from the candidate
service. After calculating the compatibility matrix, the best
pair-wise combination of exceptions must be selected. The
matching with the highest value will be the most compati-
ble. Again, this matching is obtained through the Hungarian
algorithm. Finally, exceptions compatibility is calculated
according to Formula 6.

excepComp =
∑

mij

#excepOpR

(6)

3.5 Adaptability gap

The hybrid selection method allows us to calculate a value
that reflects the required adaptation effort to integrate a can-
didate service with interface IS into a client application with
required interface IR . This value is called Adaptability Gap,
and it is calculated according to Formula 7, where N is the
number of operations in IR and adapMap is the best value
among the equivalence values adapV alue(opRi

, opSj
).

Notice that the adaptability gap extends the compatibil-
ity gap value introduced in Section 2.1, by considering
structural and semantic information gathered from required
interfaces and candidate service interfaces. This informa-
tion includes the analysis of semantic aspects from each
identifier defined in service operations through WordNet,
in particular operation names, complex return types, param-
eter names and exception names. Also, the adaptability
gap is a comprehensive value that indirectly foresees the

adaptability effort to integrate the candidate service into the
client application.

adapGap(IR, IS) =
∑N

i=1 max(adapMap(opRi
, IS))

N
(7)

The adaptability value adapValue between an operation
opR and a potentially compatible operation opS is calcu-
lated upon the structural and semantic compatibility values
obtained for the signature elements of operations (identi-
fiers, return type, parameters and exceptions), according to
Formula 8. In particular, nameComp is the value obtained
from the identifiers evaluation algorithm with operation
names from opR and opS as input.

adapV alue(opR, opS) = nameComp + retComp (8)

+parComp + excComp

The lower the adaptability gap value between a required
interface and a candidate service, the less the effort a devel-
oper has to invest into modifying (adapting) his/her client
application to invoke the service.

4 Experiments

In this section, we describe the experiments carried out to
evaluate the hybrid service selection method presented in
Section 3. For the first experiment (Section 4.1), we gen-
erated two experimental scenarios by using two data-sets
to populate the EasySOC service registry. EasySOC maps
queries and services onto vectors in the Vector Space Model
(VSM) and uses a query-by-example search engine (Crasso
et al. 2011a). The first data-set comprised 1,985 services
from the literature (Mateos et al. 2011; Heß et al. 2004;
Al-Masri and Mahmoud 2007). The second data-set com-
prised 1,239 services crawled from the Mashape.com public
API repository.13 Then we compared the retrievability of
relevant services according to different service selection
approaches (structural, semantic, hybrid, and the Stroulia
algorithm).

For the second experiment (Section 4.2), we populated
two versions of the EasySOC service registry with the data-
set of 1,239 services crawled from Mashape.com to assess
the retrievability of relevant services of the hybrid service
selection method. Details of the experimental validation are
presented in the following sections.

13http://www.mashape.com
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Table 5 Service selection approaches compared in the experiments

Approach Structural assessment Semantic assessment

Structural Interface Types in parameters, None

Compatibility return, exceptions

Semantic Interface None Information content of

Compatibility terms in identifiers

Hybrid Interface (Complex) types in parameters, Similarity of identifiers through WordNet

Compatibility return, exceptions (synonyms, hyponyms, hyperonyms)

Stroulia Recursive similarity analysis of types, None

Algorithm messages, operations and services

4.1 Experiment 1 – Benchmarking service selection
approaches

Methodologically, the first experiment consisted in the fol-
lowing steps. First, a data-set of WSDL specifications was
used to populate the EasySOC service registry. A set of
531 syntactic queries was automatically generated from
65 services, randomly selected as relevant services for
the data-set and then used to inquiry the service registry.
Then, the queries were mutated to add structural infor-
mation (return types, parameters) by means of mutation
operators applied to the original operations from relevant
services (see Section 4.1.1). This allowed us to repre-
sent each query as a fully-described single-operation Java
required interface (IR). Then, we executed several service
selection approaches, described in Table 5, to compare the
queries (required interfaces) against the candidate services
in the data-set. Assessed selection approaches include the
structural, semantic and hybrid approaches described in this
paper and a foundational algorithm in the field of Web
Services discovery and selection: the Stroulia algorithm
(Stroulia and Wang 2005).

Finally we replicated the experiment following the same
steps with the second data-set crawled from Mashape.com,
generating another experimental scenario. Clearly, the rea-
son of using more than one service data-set is to make the
results as much data-set independent as possible.

For this experiment, Java interfaces of candidate services
(IS) were generated through the SoaMembrane API. Soa-
Membrane provides facilities to parse WSDL specifications
capturing almost all of their information. As discussed ear-
lier, other popular libraries such as Axis2 and EasyWSDL
either introduce higher noise in the generated Java interface,
or miss key information of identifiers and types.

To analyze the results of the experiment (Section 4.1.3),
we used a suite of metrics from the IR field – particu-
larly Recall and Normalized Discounted Cumulative Gain
(NDCG).

The Stroulia algorithm This work provides a suite of
methods to assess Web Service similarity. Given a tex-
tual description of the desired service, a structural IR-based
method identifies and ranks the most relevant WSDL speci-
fications according to certain structural notions. If a (poten-
tially partial) specification of the desired service behavior is
also available, this set of candidates can be further refined
by a semantic matching step. For this experiment, we imple-
mented the Stroulia algorithm according to the guidelines
given in (Stroulia and Wang 2005).

The structure matching method involves the comparison
of the operation sets offered by services based on the struc-
ture of the operations input and output messages, which,
in turn, is based on comparing the types communicated by
these messages. The overall process starts by comparing
types in two WSDL specifications. The result of this step
is a matrix representing the matching scores, i.e., the sim-
ilarity degree of all pair-wise combinations of source and
target types. The next step in the process matches service
messages. The result is a matrix representing the matching
scores of all pair-wise combinations of source and target
messages, which are computed on the basis of parameter
lists similarity in terms of their types. The third step of the
process matches service operations. The result of this step
is a matrix representing the matching scores of all pair-wise
combinations of required and candidate (retrieved) opera-
tions. The overall score for two services is computed as the
maximal pair-wise correspondence of their operations.

4.1.1 Query set generation

The first step to generate the queries was to extract all the
operations defined by the relevant services (531 in total).
Then, an interface mutator14 (developed by our group) was
used to generate different structural information about the
return type, parameters and exceptions according to several

14http://code.google.com/p/querymutator/

1329

http://code.google.com/p/querymutator/


mutation operators, by using as input the original structure
of the aforementioned operations. Thus, queries consisted
in the original operation names and structural information
generated by mutating existing return types, parameters and
exceptions. Queries for the semantic algorithm imply a spe-
cial case since they do not include structural information.
Thus, an ad-hoc mutation operator was defined for this
particular case.

Interface Mutation is a technique to evaluate how well
the interactions between various units have been tested
(Delamaro et al. 2001). In this experiment, these units are
candidate services and required interfaces (queries). Inter-
face Mutation extends mutation testing and is applicable, by
design, to software systems composed of interacting units.
In a call from a unit C to a unit S, data can be exchanged in
four ways: (1) Data can be passed to S via input parameters
– i.e., passed by value; (2) Data can be returned to C through
return values – as in return commands in S; (3) Data can
be passed to S and/or returned to C through input/ output
parameters –i.e., passed by reference; and (4) Data can be
passed to S and/or returned to C through global variables.

In the service integration scenario, let C be the client
component invoking a service and S the invoked service,
thus data can be exchanged according to (1) and (2). (3) and
(4) are not applicable since global variables and parameters
by reference are not shared between a service and its client.
When applying Interface Mutation, unlike traditional muta-
tion, the syntactic changes are made only at the interface
related points or connections between units (Delamaro et al.
2001). In this experiment, such points are the parameters,
return types and exceptions from the queries, which act as
the client interface C.

In a previous work, we manually expanded the syntac-
tic queries to include structural information (Garriga et al.
2013). In the present experiments, the interface mutation
procedure automatizes query generation and (probabilistic)
mutation. This means, each mutation operator has a con-
figurable constant p, with 0 ≤ p ≤ 1 that indicates the
probability of applying that operator to mutate a particular
operation. This emulates the (potentially partial) specifi-
cation of the desired functionality defined by developers
during the service discovery process (Stroulia and Wang
2005). After applying the mutation operators, each mutated
query can be encapsulated as a Java (required) interface
with only one operation, which acts as the required inter-
face (IR). The mutation operators were defined to generate
queries prior to the execution of the three service selection
mechanisms, as follows:

Encapsulation A random number of parameters in the
parameter list of the interface are encapsulated as fields of
a new complex type. The name of the complex type is the
concatenation of the name of the operation and the word

Table 6 Built-in direct supertyping for java

Type Direct Supertype

byte short

short int

int long

long float

float double

“Request” as typically done by WSDL generator APIs such
as Axis2. The name of the complex parameter is a con-
catenation of the encapsulated parameters. This operator
is analogous to the Introduce Parameter Object15 refactor-
ing proposed by Fowler (Fowler 1999), which is popular in
object-oriented programming.

Example Let us consider the operation AddUser
(String userName, String password, int
sessionId). The two first parameters can be encap-
sulated as AddUser(AddUserRequest user-
Name_password, int sessionId), where the
complex type AddUserRequest is composed of two
String fields – userName and password.

Flatten A random number of complex type parameters in
the parameter list of the interface are flattened, generating as
many parameters as fields in the complex type. The result-
ing parameters can be primitive or complex type, according
to the types of the fields in the original type.

Example Let us consider the operation AddUser
(UserData userData, int sessionId) with the
complex type UserData containing two String fields
user and password. The mutated interface after apply-
ing the flatten operator could be AddUser(String
user, String password, int sessionId).

Upcasting The return type and/or a random number of
parameters of numeric types are upcasted to a direct
numeric supertype in the Java language, according to
Table 6. This operator is similar to the Encapsulate Down-
cast16 refactoring.

Example Let us consider the operation void
AddUser(String userName, String password,
int sessionId). The int parameter can be
upcasted to long, generating void AddUser
(String userName, String password, long
sessionId) as the mutated signature.

15http://www.refactoring.com/catalog/introduceParameterObject.html
16http://www.refactoring.com/catalog/encapsulateDowncast.html
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Wildcard Supertype The return type and/or a random
number of parameters can be casted to the wildcard super-
type String, including void return types. As stated
earlier, the String type is generally used as a wildcard in
practice to allocate different kinds of data. This is a special,
naïve case of the Fowler’s Layer Supertype17 pattern. This
operator is similar to the Upcasting operator, but upcasting
only applies for numeric types, and both operators can be
applied with different probability.

Example Let us consider the operation void
AddUser(String userName, String password,
int sessionId). The Wildcard Supertype operator
could generate String AddUser(StringuserName,
String password, String sessionId), where
both the return type and the parameter sessionId have
been casted to String.

Concatenation The semantic service selection method
implies a special case, as it does not consider structural
information in the queries. In this case, we defined an
ad-hoc mutation operator, which was configured with prob-
ability p = 1, to generate queries based only upon
semantic information. In this case, queries were constructed
by obtaining terms from identifiers of original operations
using term separation (Section 3.1). Then, the concatenation
operator creates a sentence by concatenating the operation
name with the parameter names, which are separated by
commas, and using the word “with”. Finally, the “query”
sentence and the “candidate” sentence can be compared
using the semantic similarity metric, which was explained
in Section 2.2.

Example Let us consider the operation void AddUser
(String userName, String password, int
sessionId). The Concatenation operator generates a
sentence in the form “Add user with user name, password,
session Id”.

4.1.2 Experiment execution

To execute the experiment, two scenarios were defined by
combining:

– The two experimental data-sets,
– Original queries (considering only operation names)

extracted from the randomly selected relevant services,
– The mutation operators, applied randomly over the sig-

nature of original operations to generate queries with
unique structural characteristics,

– The EasySOC service discovery registry,

17http://martinfowler.com/eaaCatalog/layerSupertype.html

– The structural, semantic and hybrid service selection
approaches, and the Stroulia algorithm as the alterna-
tives under analysis.

For this experiment we considered an initial ranked list
of the first 10 candidate services retrieved per query by
the EasySOC discovery registry. When the relevant service
is not retrieved by the discovery registry, it is given the
11th position as input for the other algorithms. The ser-
vice selection approaches and the Stroulia algorithm were
then executed comparing the Java interfaces of candidate
services (IS) and the mutated queries as required interfaces
(IR). Thus, the goal of this experiment is to analyze how the
different selection approaches could improve the visibility
and retrievability of suitable candidate services in a result
list.

Example For example, let us consider the query getUser
extracted from service AccountingService. Thus,
AccountingService is the relevant service for that query,
and should be retrieved in the topmost positions. Then, the
results list (ordered by position) retrieved by the EasySOC
registry could be:

{(1,VomsAdminService),

(2,VomsTrustedAdminService),

(3,Service6.Accounts),

(4,Service7.Accounts),

(5,AccountingService), . . . }
As can be seen, the relevant service was retrieved in the

fifth position. The first four services also provide an oper-
ation named getUser, which satisfies the query. Services
in position 1 and 2 are from the data-set of relevant services,
and the following two services are from the noise data-set.
Through the alternative service selection methods and the
Stroulia algorithm, this list is reordered considering struc-
tural and/ or semantic information both from the mutated
query and the services in the list. Thus, the relevant service
could be ranked in a better position in the list – e.g., among
the first three. In this case, the reordered list obtained by a
certain service selection method could be as follows, where
the relevant service is in the second position:

{ (1,VomsAdminService), (2,AccountingService),

(3,VomsTrustedAdminService),

(4,Service6.Accounts),

(5,Service7.Accounts), . . . }

4.1.3 Results

For the two experimental scenarios, we queried the
EasySOC registry with the syntactic queries. Then, we
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executed the structural, semantic and hybrid service selec-
tion methods and the Stroulia algorithm using as input
the mutated queries plus the initial service candidate list
returned by the registry. We measured and compared results
according to two well-known IR metrics, namely Recall and
Normalized DCG. Formally, Recall is defined as:

Recall = relevant retrieved

total relevant

In particular, for each query in this experiment the numer-
ator of the Recall formula could be 0 (when the relevant
service is included within the retrieved results) or 1 (when
the relevant service is not included within the retrieved
results). The denominator (total relevant services per query)
is always 1.

Then we calculate the average Recall for the 531 queries
in each position of the results list, considering a window size
of 10 results:

Average Recall =
∑

relevant retrieved

531
On the other hand, the DCG is a measure for ranking

quality (Kessel and Atkinson 2016). It measures the useful-
ness (gain) of an item based on its relevance and position in
the provided list. As the DCG increases, the ranked list of
results is better. Formally, DCG is defined as:

DCG =
p∑

i=2

reli

log2i

where p is the size of the candidate list, and reli indicates
if the candidate retrieved in the i-th position of the list was
relevant. The DCG values for all queries can be averaged to
obtain a measure of the average performance of a ranking
algorithm, named Normalized DCG (NDCG).

Coming from the IR area, these two metrics have been
broadly used in the context of Web Service discovery and
selection (Fragoso et al. 2006; Rodriguez et al. 2010). Other
well-known metrics such as Precision and F-measure are
not computed for this experiment, due to their particu-
lar characteristics. Having exactly one relevant service per
query implies that the outcome at each position in the result
list is binary: either the relevant service is retrieved, or it is
not. Under this condition, Precision and Recall are analo-
gous. Similarly, as F-measure is calculated as the weighted
harmonic mean of Precision and Recall, its calculation gives
no information in this context.

A service containing the needed operation (one per
query) was selected and associated to the query as the rele-
vant one in order to evaluate the results. Finally, an average
of each metric was generated over the total number of
queries.

Scenario 1 - Academic data-set In Scenario 1, the
EasySOC registry was populated with the first data-set of

1,985 services and queried with the 531 queries. Figure 5
depicts the Recall values for the original service registry
(EasySOC), the service selection methods and the Stroulia
algorithm, by smoothing these results using Bézier curves.

Results show that applying any structural-aware service
selection method improves the Recall up to 34 % for the
first position of the results list. In the figure, lines above the
solid line improved original results and the lines under the
solid line decreased original results, for the given positions
of the results list.

In this scenario, the hybrid approach outperformed the
other alternatives for the first positions of the list, with
Recall results up to a 86 % for the third position. This means
that, in average, 8.6/10 queries will return the relevant ser-
vice between the first 3 positions in the list when using the
hybrid approach. Although Recall tends to converge when
n approaches to 10, the improvements in the first positions
are significant since, in general, users first inspect and hence
potentially select higher ranked search results, regardless of
their actual relevance (Agichtein et al. 2006).

Figure 6 summarizes the results for NDCG in Scenario
1. The figure shows that structural and hybrid approaches
improved original NDCG (7 % and 19 % respectively). The
Stroulia algorithm presents a NDCG 2 % lower than orig-
inal. Semantic service selection presents a NDCG 22 %
lower than the original. We relate this phenomenon with the
underlying rationale of the service registry, since EasySOC
considers for discovery structural information of services
by comparing terms in elements that are present in the
query and the candidate services – e.g., operation names
or input/output messages. In the context of this experiment,
EasySOC only compares terms in syntactic queries against
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Fig. 6 NDCG for Scenario 1

operation names of candidate services in the two data-sets.
Thus, a purely semantic service selection method consid-
ers less information than the original discovery mechanism,
and then retrieves less services – i.e., more queries fail
in retrieving their relevant service, decreasing Recall and
NDCG.

Scenario 2 - Mashape data-set In Scenario 2, the Easy-
SOC registry was populated with the second data-set
of 1,239 services crawled from Mashape.com, and then
queried with the 531 queries. Figure 7 depicts the average
Recall-at-n values (i.e., Recall with a window size of n) for
the original service discovery registry (EasySOC), the ser-
vice selection methods and the Stroulia algorithm, again by
smoothing these results using Bézier curves.

For this scenario, results show that applying any service
selection method improved the Recall up to 41 % for the
first position of the results list. In particular, for each service
selection method it can be noticed that hybrid, structural and
semantic service selection improved original results (by a
+41 %, 25 % and 12 % respectively for the first position of
the list), and the Stroulia algorithm presents a slightly lower
(-1 %) Recall.

In this scenario, the hybrid approach outperformed the
other alternatives for the first positions of the list. Figure 8
summarizes the results for NDCG in the second scenario.
The figures show that all alternatives for service selection
improved original NDCG results up to a 25 %.

4.2 Experiment 2 - Hybrid approach with manual
query generation

In this experiment, we evaluated the Hybrid selection
approach using manually generated, multi-operation queries
and the Mashape.com data-set to populate the EasySOC
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service discovery registry. In this case, rather than generat-
ing queries automatically by mutation, two groups of expert
software engineers manually generated the queries by ran-
domly selecting operations from services in the data-set.
The procedure is detailed below.

4.2.1 Query set generation

The WSDL specifications of the whole data-set were given
to two teams of software engineers. The teams consisted of
researchers and PhD. students, both with experience in the
industry. Each team randomly selected 15 services as tar-
get services. Then, these teams of experts exchanged their
selected services. Following, the queries were generated

Fig. 8 NDCG for Scenario 2
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from the 15 services that each team received (selected by
the other team). For this, the engineers completely rewrote
the signature of the operations in the selected services. The
engineers were asked to preserve the intended semantics of
the operations while altering the identifiers (i.e., names from
operations, parameters and fields in complex types, among
others) and data types (in parameters, return and fields
in complex types). Then, they splitted these operations in
groups of three operations, to generate the queries, since
in practice an average Web Service presents three opera-
tions (Kil et al. 2006). Thus, each query consisted in up to
three related operations, in contrast to the single operation
queries in Experiment 1. Each query was associated with the
original service from which it was generated as its relevant
service (thus having a gold-standard for evaluation).

4.2.2 Experiment execution

In this experiment, we defined the execution scenario as
follows. We used two versions of the EasySOC service
discovery registry as baseline: the VSM-based original ver-
sion (Crasso et al. 2008) and a recent version adding query
expansion techniques (Crasso et al. 2014). Both versions of
the registry were populated with the Mashape.com data-set,
which comprised 1,239 services. From the 42 queries with
multiple operations generated by experts, a corresponding
set of syntactic queries was generated as input to the discov-
ery registries, by concatenating the operation names in each
expert query, using the space character as separator. These
syntactic queries were then used as input to the service dis-
covery registries. Finally, we performed the hybrid service
selection procedure upon the original results obtained from
the registries.

4.2.3 Results

For this experimental scenario, we queried both versions of
the EasySOC registry with the syntactic queries. Then, we
executed the WordNet-JWI implementation of the Interface
Compatibility procedure with the experts’ queries. Finally,
we compared the results against the gold-standard according
to the Recall metric.

Figure 9 depicts the average Recall-at-n values for the
two versions of the service discovery registry EasySOC and
the Hybrid Selection method. The latter increases the Recall
results between 19 % and 34 % for the first three positions
of the window (i.e. n ∈ [1, 3]).

In this experiment, we used the Mashape.com data-set
with a significantly different query generation approach that
introduced two teams of software engineers to manually
generate multi-operation queries. Results with this config-
uration confirms the insights of the previous experiments,

Fig. 9 Recall for Experiment 2

showing that the hybrid selection method substantially
improves original results for Recall in the first positions of
results lists.

4.3 Threats to validity

In this section we discuss the threats to validity for
the experimental procedures and results presented along
Section 4.

Internal Threats to validity EasySOC considers structural
information of services by comparing terms that are present
in the query and the candidate services – e.g., operation
names or input/output messages. This could introduce a bias
in favor of structural mechanisms, since certain structural
information is considered to compare queries against candi-
date services from the initial discovery step. Thus, a purely
semantic service selection method is disadvantageous in this
context, since it assesses less information than the origi-
nal discovery mechanism, and then retrieves less services
– i.e., more queries fail in retrieving their relevant service,
decreasing Recall and NDCG. However, improved service
discovery registries are commonplace nowadays (Crasso
et al. 2011b), being a baseline for selection. A possible
solution is to combine the information obtained through the
semantic approach with a certain structural support – i.e., an
hybrid approach.

In addition, the Stroulia-based algorithm did not present
significant improvements over original results. The reason
for this is twofold. First, EasySOC already uses some con-
cepts of the VSM to represent Web Service descriptions and
queries, making the EasySOC registry more efficient with
respect to traditional discovery methods, as mentioned in
the previous paragraph. Thus, the advantages of using VSM
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in the Stroulia-based algorithm are overlapped in the service
discovery step of the experiment. Second, to perform the
experiment, we implemented the Stroulia algorithm accord-
ing to the guidelines given in (Stroulia and Wang 2005).
It is possible that our implementation of the Stroulia algo-
rithm introduced slight differences w.r.t. the original, which
may decrease the performance in terms of retrievability.
However, the results obtained in this experiment are simi-
lar to those published originally by the authors, thus it is
arguable that our implementation did not introduce a sig-
nificant variation. Additionally, as stated by their authors,
similarity assessment methods in the Stroulia algorithm are
neither precise nor robust enough to discover the desired
service without developer’s intervention.

One limitation of this experiment is that, as we men-
tioned earlier, the second data-set of WSDL documents was
automatically generated by a crawler using the informa-
tion extracted from Mashape.com. In this process, certain
identifiers were automatically generated from others. For
example, message names were generated using operation
names, concatenated to “input/output message” . Therefore,
these WSDL documents present two particular properties:
on the one hand, they convey less semantic information than
the WSDLs from the first data-set, as certain identifiers are
a copy of others. However, on the other hand, they are more
cohesive as different parts of a WSDL use very similar iden-
tifiers. Fewer terms improve the efficiency of the semantic
approach, since the Hungarian algorithm receives as input a
smaller matrix of terms. This contributes to a better seman-
tic similarity results for Scenario 2 – as shown in Figs. 5 and
6, since the combinations of identifiers to be analyzed are
substantially reduced.

It is worth mentioning that a possible threat to the valid-
ity of an experiment involving people, such as the one
described in Section 4.2, is demand characteristics (Orne
2009). Demand characteristics result from cues in the exper-
imental environment or procedures that lead participants to
make inferences about the purpose of the experiment and
to respond in accordance with (or in some cases, contrary
to) the perceived purpose. Software engineers are inher-
ently problem solvers. When they are told to perform a
task, the majority will try to figure out what is expected
from them and perform accordingly. Demand characteristics
influence a participant’s perceptions of what is appropriate
or expected and, hence, their behavior (Kirk 1982). In the
context of this experiment, the participants may figure out
the notion of structural and semantic “similarity” or “differ-
ence” among WSDLs. Thus, the participants may generate
queries that are too similar to the given WSDL documents,
without substantially altering data types identifiers. In order
to reduce the learning effect, only a subset of the WSDLs are
assigned to each team of experts, and then these WSDLs are

exchanged between teams. Thus, this mitigates the afore-
mentioned deduction. Another experimental threat may be
the language: even when all participants had some formal
English knowledge, they were not native English speakers.
The data-set and queries are implemented using concepts of
the English language, which could generate a slight noise
to understand the WSDL documents and generate mutated
queries.

External threats to validity For this experiment, the
hybrid service selection method outperformed the other
approaches. Considering that the selection of candidate ser-
vices is performed after a discovery process, this confirms
our hypothesis that increasing the visibility of most suit-
able candidates in a list of previously discovered services
may ease the development of client applications. It is impor-
tant to notice that results can depend on the data-set and
queries used, and cannot be merely generalized to other
experimental configurations. However, the empirical val-
idation is a common practice for the knowledge area of
Web Service discovery and selection. Similar experimental
configurations and data-sets were used not only in foun-
dational papers (Stroulia and Wang 2005; Heß et al. 2004;
Crasso et al. 2008) but also in recent papers of the field
(Mateos et al. 2015b; Tibermacine et al. 2013). For inter-
ested readers, our experimental tools18 and data-sets are
available online. The data-set for the Scenario 1 in Experi-
ment 1 was originally published in (Heß et al. 2004) and is
still available.19 The data-set of Scenario 2 is based on the
APIs published in the Mashape.com repository20, which we
crawled to generate the corresponding WSDL documents.21

The interface mutator is also available online.22

5 Related work

The idea of accelerating software development by reusing
existing code wrapped up in existing software artifacts has
been explored in the past. Years ago, Component-Based
Software Engineering (CBSE) emerged as the most promis-
ing solution to build systems from reusable pre-existing
commercial off-the-shelf (COTS) components, reducing
development costs and shortening time-to-market (Kung-
Kiu and Zheng 2007). However, in this context, it becomes
impossible to specify requirements and architectures with-
out asking if the marketplace provides COTS that can be

18https://goo.gl/qY5dkb
19https://goo.gl/ClZ4ko
20https://market.mashape.com/
21https://goo.gl/eSl6ZW
22http://code.google.com/p/querymutator/
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seamlessly integrated to it (George et al. 2008). Thus, COTS
selection became particularly important and challenging,
and a well-defined, repeatable and (semi-)automated selec-
tion process was mandatory. Different approaches strive to
solve the component selection problem, notably repository-
driven tools that gathered information in two different ways
(Hummel et al. 2008): reactive, in which a user actively
browses for components, and proactive, in which a tool
monitors the user’s activities and then suggests potentially
useful components according to the context.

From an architectonic perspective, a service-oriented
application can be seen as a component-oriented application
that is built by composing two different types of compo-
nents: internal, which are locally embedded in the applica-
tion, and external, which are statically or dynamically linked
to services (Zimmerman et al. 2005). These components
may fit into the definition of off-the-shelf (OTS) compo-
nents (for example, Java Beans), according to the CBSE
paradigm, but also may be shaped as common software
pieces in an architecture.

The approach presented in this work is based on a pre-
vious approach (Flores and Polo 2012; Flores et al. 2010)
originally developed to select the most suitable off-the-shelf
(OTS) software components as a solution for substitutability
of component-based systems. As discussed, Web Services
are a special case of software components (Kung-Kiu and
Zheng 2007), thus we were able to redefine the previous
component selection approach for Web Service selection.

5.1 Identifiers analysis

Identifiers in source code, interfaces and service descrip-
tions convey key information about the intended semantics
of an operation, a parameter or a data-type. Programming
conventions advise developers to choose meaningful identi-
fier names. Particularly, class names should be descriptive
nouns (Butler et al. 2011). Meanwhile, advanced practi-
tioner texts suggest a dedicated approach to identifier nam-
ing, following a variety of conventions as a result of praxis.
In this section we present several approaches for identifiers
analysis and their relation with ours.

The work in (Falleri et al. 2010) automatically classifies a
set of identifiers in a WordNet-inspired structure called lexi-
cal view, which leverages the hierarchical relations between
terms in identifiers. The process consists of several steps:
term separation, classification into lexical categories or part-
of-speech (POS) tagging, application of syntactical rules of
English to determine dominant words (those that convey
the meaning of the identifier), extraction of implicit impor-
tant words and organization of the identifiers in a lexical
tree. Several steps are similar to our identifiers evaluation
algorithm (Section 3.1). As an advantage, this approach
performs POS tagging and applies syntactical rules to

disambiguate terms, which is a point to be addressed in our
work. However, the approach assumes that identifiers are
well formed (i.e., that they follow common naming conven-
tions), which is not always the case – as discussed in Section
3.1. Additionally, constructing a lexical tree inspired in
WordNet may generate unnecessary overhead and com-
plexity, as WordNet itself is a complete lexical tree which
exposes the relationships among almost all words in the
English language.

POS tagging of program identifiers is also addressed in
(Gupta et al. 2013) along with a syntactic term separator
for identifiers in source code, which takes into account pro-
gramming naming conventions to understand the regular,
systematic ways a program element is named. The naming
conventions are adopted from the object-oriented paradigm
to identify different grammatical constructions that charac-
terize a large number of program identifiers; e.g., developers
combine terms in the grammatical form <verb> + <noun>
for denoting an operation name. POS tagging and syntac-
tical term separation are combined to improve each other,
using all possible POS tags and grammatical constructions
involving combinations of the basic lexical phrases in a
prioritized order, to determine the most appropriate gram-
matical form of the identifier. This work, as the previous
one, provides tools that could be combined to our hybrid
approach: POS tagging and improved term separation com-
bined to determine semantics of terms in identifiers more
accurately.

Finally, the work in (Butler et al. 2011) combines POS
tagging and a hierarchical analysis of words to empirically
determine Java naming conventions. The origin of words
used in class names is tracked within the name of any
super class and implemented interfaces to identify patterns
of class name construction related to inheritance. Through
the analysis of open source projects, authors found both
common and project-specific naming conventions. Then,
an automated analysis of class names determines if uncon-
ventional named classes are candidates for refactoring, and
the kind of refactoring needed – i.e., refactor to a common
name or a project-specific name. Although the analysis of
related identifiers in a hierarchy of classes is interesting, it
is restricted only to class names. Such coarse-grained view
hinders the usability of the approach, as it would be desir-
able to analyze class fields and methods. Also, this kind
of hierarchical analysis is restricted to certain languages
supporting inheritance (e.g., Java) and is not applicable to
others.

5.2 Service selection approaches

The surveys in (Kokash 2006; Crasso et al. 2011b) provide
a comparative analysis of existing approaches to improve
Web Service discovery considering the typical scenario
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where users perform queries against a service registry. This
is closely related to service selection, since any discovery
method which considers structural and/or semantic aspects
performs a partial, preliminary selection among candidates
in a registry. Moreover, a service has to be retrieved before
it can be selected. Particularly, several discovery approaches
use IR techniques in an effort to increase precision of
Web Service discovery without involving any additional
semantic markup. Although such approaches report con-
crete improvements, they seem insufficient for automatic
retrieval if applied without any complementary technique.
To cope with this shortcoming, a strategy based on seman-
tics can consist of formal ontology-based methods, which
yet involve high service interface and query specification
costs making service designers be alienated from their use
in practice (Kokash 2006; Garriga et al. 2015). Indeed,
one of the main differences is what such approaches con-
sider/ require as service descriptions. Semantic approaches
depend on shared ontologies and unambiguously annotated
services, whereas IR-based ones depend on (lighter) tex-
tual service descriptions. Although those service discovery
systems strive to solve the same problem, they may be
appropriate in different environments (Crasso et al. 2011b).

The rest of this section present structural, semantic and
hybrid service selection approaches. We consider that IR-
powered hybrid approaches are both widely applicable and
effective, since they are typically based on available func-
tional descriptions of services and lightweight semantics,
which are commonplace. For these approaches, we discuss
the similarities and differences with our work.

5.2.1 Structural service selection approaches

The problem of service discovery/ selection may be
assessed at structural level in different ways. The work
in (Plebani and Pernici 2009) relies in UDDI registries
enriched with query by example features. The approach in
(Wu and Wu 2005) enrich structural description of services
with QoS specifications and other desirable properties that
are also considered for service selection. Finally, the Strou-
lia algorithm which was implemented for the experiments in
Section 4 presents a structure matching method that recur-
sively compares the structure of operations, i.e., input and
output messages, which is in turn based on comparing the
types communicated by these messages (Stroulia and Wang
2005).

However, structural approaches do not leverage the
semantic information that is always present in service
specifications, in the form of identifiers (e.g., parameter
names, operation names), documentation and comments.
As suggested by the experimental results in Section 4,
this decreases the retrievability of potentially compatible
candidate services in structural approaches.

5.2.2 Semantic service selection approaches

At the semantic level, service selection approaches can be
broadly divided in two research lines: Semantic descrip-
tion languages for Web Services and IR-powered service
selection approaches. The main efforts for defining a stan-
dardized semantic description language for Web Services
are OWL-S, WSMO and WSDL-S. OWL-S (Martin et al.
2007) is an ontology to automatically discover, invoke,
compose and monitor Web Services offering particular
properties. WSMO (Roman et al. 2005) represents a con-
ceptual model for Web Services that comprises ontolo-
gies, Web Services, goals and mediators. Lastly, WSDL-
S (Sivashanmugam et al. 2003) is a semantic extension
to WSDL. Leveraging these meta-models, many seman-
tic service selection approaches are supported by ontology/
schema matching techniques. These techniques receive as
input two ontologies/ schemes (in this case, meta-models
of desired and actual Web Services) and produce as out-
put the relationships holding between them (Shvaiko and
Euzenat 2013). Different surveys in the topic of semantic
discovery and selection (Cabral et al. 2004; Rambold et al.
2009; Noy 2004) show that most approaches exploit similar
ideas, although they use different meta-models (mentioned
above). For example, the work in (Li et al. 2006) is based
upon WSDL-S, where semantically annotated services are
published into a UDDI registry and can be dynamically
discovered using ontological concepts.

On the other side, IR-powered approaches – which are
mainly syntax-based – augment Web Service descriptions
and registries with text mining techniques (Crasso et al.
2011b). These techniques enhance the performance of IR-
based approaches by exploiting lightweight semantic infor-
mation (as opposed to the inherently heavier ontology-based
semantic information), for example by means of WordNet
to assess terms similarity. For example, the semantic-aware
version of the algorithm presented in (Stroulia and Wang
2005) was developed upon the Vector Space Model (VSM)
(Salton et al. 1975) and WordNet. This version expands
queries and WSDL specifications with WordNet relations:
synonyms, direct hyperonyms, hyponyms, and siblings.

5.2.3 Hybrid service selection approaches

Hybrid approaches, as the one presented in this paper, com-
bine structural and semantic aspects to assess Web Services
for discovery/ selection.

Web Service similarity to find relevant substitutes for
failing Web Services is addressed in (Tibermacine et al.
2013). This approach combines weighted lexical and
semantic similarity between identifiers (comprising ser-
vice names, operations, input/output messages, parame-
ters, and documentation) with structural similarity between
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message structures and complex XML schema types,
assessed through schema matching techniques and a sim-
ilarity flooding algorithm, representing complex types as
labeled directed graphs. As an advantage, apart from consid-
ering types and identifiers, this approach also includes docu-
mentation to perform the similarity analysis. The results are
promising, although the experimental scenario is restricted
to only 29 services. As a disadvantage, we believe that
a straightforward comparison of complex types similarity
can be performed without dealing with the complexity of
an XML schema (Garriga et al. 2013). Although schema
matching techniques bring better precision, they are costly
and depend upon the availability of the schemes, which is
not always the case (Bouchiha et al. 2012). In our approach,
the analysis of WSDL documents allows supporting the
comparison of complex data types exploiting a lightweight
semantic basis.

The work in (Cong et al. 2015) presents a service discov-
ery approach based on hierarchical clustering to tackle the
problem of linear complexity of traditional approaches (i.e.,
those that compare queries against each service published in
a registry), which is even worse when using semantic match-
making. A distance function defined upon the distances
between service elements in WordNet is used to divide the
repository in clusters. Then, the queries are structurally and
semantically compared to clustered services using WSDL
specifications and (if available), semantic descriptions in
OWL-S or WSMO. This approach prioritizes the accelera-
tion of service discovery in terms of time-per-query at the
expense of decreasing Precision/Recall (i.e., retrievability
of services). Instead, our approach prioritizes retrievability
over time consumption. Another disadvantage is that the
repository should be re-clustered when new services are
added, potentially disrupting retrieved results for identical
queries performed before and after re-clustering. Finally,
although the approach supports a wide range of service
descriptions (including WSDL), the validation is performed
using OWL-S descriptions which are richer in terms of their
semantic information, but not widely used in practice, thus
often unavailable (Funika et al. 2012; Bouchiha et al. 2012).

The Woogle search engine for Web Services is presented
in (Dong et al. 2004). Based on similarity search, Woogle
returns similar Web Services for a given query. The search
engine combines a clustering algorithm for grouping ser-
vice descriptions in reduced sets of terms, with structural
information about service operations and parameters. After
that, similarity between terms is measured using a classi-
cal IR metric such as TF/IDF. This approach shares the
problems of re-clustering from the previous approach. Addi-
tionally, the Woogle clustering algorithm heavily relies in
self-descriptive identifiers, particularly parameter names.
However, as described in (Mateos et al. 2011), ambiguous or
meaningless names are a typical anti-pattern when denoting

the main elements of a WSDL documents. The consid-
ered structural aspects are limited to name comparison of
analogous elements in services and queries (e.g., compar-
ing parameter names against each other and not against
operation names). Instead, our approach enhances the sim-
ilarity evaluation by exhaustively assessing both structural
and semantic aspects. In addition, not only service and
operation level are assessed, but also we evaluate similar-
ity between parameters (types and identifiers), return and
complex types. Performance of Woogle seemed competitive
in the experiments performed by the authors, which used
a public dataset of 431 services. Their results w.r.t. Recall
outperformed other approaches having a Recall of 88 %
for operation matching, while our hybrid approach averaged
85 %, although these numbers are not directly comparable
due to the different data-sets and experimental configura-
tions. Besides, Woogle allows only single-operation queries,
where our approach supports multi-operation queries with
competitive results, as shown in Section 4.2.

The structural algorithm in (Plebani and Pernici 2009)
features a semantic extension as WSDL specifications often
lack details on the real goal of the whole Web Service and
their constituting operations as well. The UDDI Registry
By Example (URBE), a Web Service retrieval algorithm
for substitution purpose, is based on WSDL as the model
to define the Web Service interfaces. To make substitu-
tion possible, a substitute Web Service has to expose an
interface functionally equal or richer than that of the failed
Web Service. The approach considers the relationships
between the main elements composing a WSDL specifica-
tion (portType, operation, message, and part). The similarity
function is calculated upon operation name similarity and
parameters data type similarity, and a maximization func-
tion. This function exploits linear programming (rather than
the hungarian algorithm) to solve the assignment prob-
lem and hence obtain the maximum similarity between
the aforementioned elements. The semantic-aware variant
of the algorithm (URBE-S) leverages Semantic Annotated
WSDLs (SAWSDL) since they are built upon WSDL (the
document structure remains the same) and simply add some
annotations which better describe operations and parame-
ters. Then, ontology matching techniques are used to com-
pare annotations against OWL descriptions, which results
in a hybrid approach when combined with the analysis of
data-types. Authors compared the URBE-S registry against
Woogle and the Stroulia algorithm, showing that URBE-
S outperformed other approaches considering different IR
metrics such as Precision and Recall. Although the dataset
and query set were smaller than ours, it was consider-
able (570 services and 27 queries). This is, to the best of
our knowledge, the best performing approach for service
retrieval based on similarity evaluation. The weak point of
URBE-S is, as we mentioned earlier, that providers do not
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annotate their services often in practice, since it is costly in
terms of time and effort. Even when introducing SAWSDL
annotations provides a more accurate description of the ele-
ments included in a WSDL description, this requires deep
knowledge of the OWL specification, thus increasing the
adoption barrier.

5.2.4 Non-functional aspects based service selection

From a non-functional point of view, developers may select
their Web Services according to different non-functional
aspects, as to what extent they can be trusted in social-
based recommendation (Malik and Bouguettaya 2009; Cao
et al. 2013; Al-Sharawneh et al. 2011), quality of experi-
ence of previous users (Lalanne et al. 2012), and traditional
QoS parameters (Oskooei and Daud 2014; Al-Masri and
Mahmoud 2007; Lacheheub and Maamri 2016).

The work in (Lalanne et al. 2012) presents an approach
to perform Web Service selection using Quality of Experi-
ence (QoE). QoE can be defined as the overall acceptability
of an application or service, as perceived subjectively by
the end-user. By establishing a correlation between the user-
perceived quality and traditional QoS parameters such as
execution time, availability and accuracy, value-added ser-
vice providers may be able to provide services which better
satisfy the user-expectation of quality. This approach does
not consider any functional (structural nor semantic) aspect,
but only QoE aspects of the services in their evaluation.
We believe that it is possible to complement our hybrid
approach with a QoE-based approach for service selection
to assess both functional and non-functional aspects.

The work in (Oskooei and Daud 2014) proposes a
QoS-based model to provide a mechanism for Web Ser-
vice selection. The model consists on an ad-hoc ontology
with information about several QoS attributes, including
maintainability, portability, efficiency, reliability and func-
tionality. Such information is contained in an XML-based
description linked to WSDL documents in a service repos-
itory. Although the approach seems promising, the work
does not address two crucial and related aspects: the impact
of manually annotating WSDL services, and the empirical
validation about the performance of the approach. Manually
annotating services to validate the model is mandatory, in
order to generate a WSDL-data-set including the extra QoS
information. As stated earlier, this task is costly in terms of
time and effort as it may force developers to construct their
own ad-hoc ontologies.

The work in (Al-Masri and Mahmoud 2007) proposes
a quality-driven discovery of relevant Web Services using
well-known QoS attributes such as response time, through-
put, availability, accessibility, interoperability analysis and
cost. Some of these attributes may be informed by the ser-
vice provider itself (e.g., cost) while others are measured

by a specialized module. Authors assume that, for a given
query, there is a set of relevant Web Services that share
the same functionality but with different QoS attributes.
However, it is not always the case, thus it is necessary
to assess functional aspects as well. Besides, our hybrid
approach could be weighted with QoS metrics such as the
one proposed in (Al-Masri and Mahmoud 2007).

Similarly, the work in (Jiang et al. 2015) combines tra-
ditional QoS attributes (specified by providers in published
WSDL documents), and user experience derived from the
actual usage of services in practice. To avoid users ranking
services maliciously, a message board system captures and
displays users opinions and suggestions. The main problems
of this approach are: functional aspects are not assessed;
providers have to define server-side QoS of their services
and annotate WSDL documents accordingly, which is costly
in terms of time and effort; finally, for the QoS derived from
user experience, the feedback obtained from the “wisdom of
the crowds” (likes, votes, messages etc.) may be sparse, sub-
jective, and slow to accumulate (Pelleg et al. 2016). Apart
from that, the messages may be ambiguous and not auto-
matically analyzable to obtain a discrete valuation of the
corresponding service.

Finally, the work in (Choi and Jeong 2014) combines
traditional QoS attributes with user-defined weights to
generate an overall quality measure that depends on both the
individual QoS and the priorities (weights) given to them
by each particular user. As determining the weights of each
attribute is a multi-criteria decision mechanism, it can be a
burden for the users. To reduce such burden, authors pro-
pose a quality evaluation system that applies a pairwise
comparison matrix and uses the eigenvector of the matrix
to determine the priority weight of each quality attribute.
Thus, the process assists users when assigning weights to
QoS attributes. When each Web Service is evaluated with
the weight reflecting a user’s quality preference, the evalu-
ation result for even the same Web Service can be changed
according to the preference of the user. This approach is
interesting and complete, providing simulation results that
confirm their hypothesis. As disadvantages we can mention
a) the approach does not consider any functional (structural
nor semantic) aspect, only QoS attributes, and b) it assumes
that several services are functionally equivalent. We believe
that it is possible to combine the detailed analysis of func-
tional aspects in our hybrid approach with the weighted QoS
notion to assess both functional and non-functional aspects.

5.3 Conclusions of related work

From the related work, we can broadly classify current
approaches for service selection based on functional aspects
in three groups: purely structural, IR-based and seman-
tic descriptions-based. Approaches based on non-functional
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aspects such as social-based recommendation, quality of
experience of previous users, and traditional QoS parame-
ters were also discussed for completeness but are not strictly
within the scope of this work for comparison. Compared to
our work, as suggested earlier, they represent complemen-
tary (not opposite) approaches.

Purely structural approaches are the baseline, as their
drawbacks (already discussed) were further addressed by
IR-based and semantic descriptions-based approaches. IR-
based approaches are mostly structural, but also allow to
gather some semantic information from functional spec-
ification of services, being WSDL the most widespread
standard supported. Additionally, they exploit the rich back-
ground inherited from the IR field. Semantic descriptions-
based approaches rely on machine-interpretable descrip-
tions by using ontologies to describe services such as
OWL-S or WSDL-S. These two meta-models are the main
efforts to support automatic service discovery and selection.
Other approaches such as pure QoS-aware approaches (Al-
Masri and Mahmoud 2007; Own and Yahyaoui 2015) are
not focused in functional description matching and thus are
out of the scope of this work.

The literature shows that both IR-based and Seman-
tic descriptions-based approaches have different goals and
weaknesses/ strengths. IR-based approaches depend on
publishers to use self-explanatory and meaningful identi-
fiers and comments, which is not always the case (Mateos
et al. 2013). Semantic-based approaches require ontologies
and semantically annotated services based on concepts from
these ontologies. However, such semantic extensions are
not widely adopted as standards yet (Sheng et al. 2014;
Chen and Paik 2013; Garriga et al. 2015). Meanwhile, infor-
mation in WSDL specifications might be rich enough to
infer semantics of the specified services. In any case, the
cost of formally specifying provided and requested ser-
vices is inherently higher than that of building conventional,
text-based WSDL specifications.

As shown along this section, semantic-based propos-
als rely on semantic descriptions of services that generally
are not available, since publishers must put extra effort
into describing services by means of semantic meta-data
(Lanthaler and Gutl 2011). A true spread of semantic ser-
vices could only start when the derived advantages become
of clear interest for the industry. Also, the concealment
of meaningful information in WSDL documents due to
the proliferation of code-first Web Services (Mateos et al.
2015a) hinders service discovery registries from providing
accurate results.

For these reasons, this paper proposes a hybrid service
selection method, which assesses services mainly exploit-
ing as much structural and semantic information as possible
from functional WSDL specifications. Also, our approach
is based upon a lightweight semantic support to analyze

terms in identifiers through WordNet to lower the adoption
barrier.

6 Conclusions

In this paper we presented a novel hybrid service selection
approach. Its underlying Interface Compatibility analysis
gathers as much information as possible from the most
widespread and de-facto standard documents for Web Ser-
vices: WSDL specifications. Particularly, the underlying
algorithms assess names (from operations and parameters
identifiers), return types, parameter types and exceptions.
These algorithms rely on the lexical database WordNet
(through its Java API JWI) and the Paranamer library for
accessing parameter names from compiled units, allowing
us to solve the shortcomings of the Java Reflection Mech-
anism. Upon this basis, the Adaptability Gap provides an
observable value as a meaningful insight for the adaptation
effort for candidate services.

Also, we performed comparative experiments featuring
structural, semantic and hybrid service selection methods.
Through a set of experiments performed over the EasySOC
service discovery registry (Crasso et al. 2011a), we com-
pared three different service selection approaches. These
approaches assess semantic and/or structural aspects of
candidate Web Services to evaluate and rank candidate
Web Services for its likely integration into a client appli-
cation. The experiments have shown that executing any
service selection method over previously discovered ser-
vices improves the visibility of suitable candidate services
w.r.t. original discovery results (from the EasySOC registry)
and the Stroulia algorithm. Such improvement is expressed
in terms of retrievability through Recall and NDCG metrics.
For this experiment, the hybrid service selection method
outperformed the other approaches. It is important to notice
that results can depend on the data-set and queries used,
and cannot be merely generalized to other experimental
configurations. However, considering that the selection of
candidate services is performed after a discovery process,
increasing the visibility of most suitable candidates in a
list of previously discovered services may ease the devel-
opment of client applications. It should be highlighted that
lightweight semantic-based methods depend on lexical dic-
tionaries (e.g., WordNet), which are not always reliable.
Without an “use context”, the semantic relationships sup-
ported by WordNet are way too general and the similarity
values cannot be trusted as-is. When addressing a critical
domain such as healthcare or financial, a domain-specific
and well-founded ontology will be more reliable, regard-
less of their low availability. In general, the lack of relevant
ontologies for the majority of domains is still a prob-
lem. Even so, the ontologies (when available) sometimes
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are not comprehensive enough to express all the relevant
concepts in a domain (Bouchiha et al. 2012; Guizzardi 2005;
Lanthaler and Gutl 2011; Crasso et al. 2011b), hindering
their applicability in practice.

Experimental results show that structural-aware service
selection methods are better in terms of retrievability of
suitable candidate services, and also suggest a likely reduc-
tion in the subsequent adaptation and integration effort for
the candidate services retrieved in the topmost positions.
This is due to the inherent importance of structural (e.g.,
data-types) and semantic aspects (e.g., parameter names)
when assessing adaptability. Also, hybrid selection method
outperformed other approaches, ensuring that the services
retrieved in the first positions are the easiest to adapt and
integrate into a client application.

Our current work to improve service selection is twofold.
On one side, we are fine tuning the hybrid service selec-
tion method. This involves the recursive application of the
semantic assessment to nested complex types and their
corresponding fields, the usage of different lexical rela-
tions supported by the WordNet underlying hierarchy –
e.g., hyponyms of hyperonyms or siblings, and the replace-
ment (or combination) of such ontology with another one,
such as Google n-gram (Michel et al. 2011) or DISCO (De
Renzis et al. 2014; Kolb 2009). Particularly, Google n-gram
is composed of terms extracted from millions of books from
different domains.

In addition, we are currently working in a complementary
step for service selection: a Behavioral Compatibility anal-
ysis that complements the Interface Compatibility analysis
addressed in this work by achieving a protocol-level assess-
ment. This analysis is based on assessing the operational
behavior execution of services. This is achieved by applying
a testing framework, in which a compliance test suite (TS) is
generated, based on the required functionality. Preliminary
results on a prototype for test generation and reduction are
encouraging (Anabalon et al. 2015; Garriga et al. 2011).

Another concern is the composition of candidate services
to fulfill functionality, which is particularly useful when a
single candidate service cannot provide the whole required
functionality. Service composition encompasses roles and
functionality to aggregate multiple services into a single
composite service, which can be even used as an atomic ser-
vice in further service compositions. We are expanding the
current procedures and models mainly based on business
process descriptions and service orchestration to address
trustful service composition, building interface or protocol
adapters, and pragmatically attending the required testing
task that inevitably follows any integration process (Peltz
2003; Weerawarana et al. 2005). Moreover, RESTful ser-
vices (Fielding 2000) have shown their potential to compose
reliable and visible Web-scale applications (Garriga et al.
2016) based on the so-called mashups (Benslimane et al.

2008). However, RESTful services and mashups still suffer
from shortcomings on semantically describing, discovering
and composing services as well as the absence of a holis-
tic framework covering the entire service life-cycle (Garriga
et al. 2016). In this context, we are adapting our approach
to support retrieval and selection of services based upon
RESTful descriptions.
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